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Abstract

This paper revisits the family of MDP Procedures and ana-
lyzes their properties. It also reviews the procedure developed
by Sato (1983) which achieves Aggregate Correct Revelation in
the sense that the sum of the Nash equilibrium strategies al-
ways coincides with the aggregate value of the correct MRSs.
The procedure named the Generalized MDP Procedure can pos-
sess other desirable properties shared by continuous-time locally
strategy proof planning procedures, i.e., feasibility, monotonicity
and Pareto e¢ ciency. Under myopia assumption, each player�s
dominant strategy in the local incentive game associated at any
iteration of the procedure is proved to reveal his/her marginal
rate of substitution for a public good. In connection with the
Generalized MDP Procedure, this paper analyses the structure
of the locally strategy proof procedures as algorithms and game
forms. An alternative characterization theorem of locally strat-
egy proof procedures is given by making use of the new Condition,
Transfer Independence. A measure of incentives is proposed to
show that the exponent attached to the decision function of public
good is characterized. A Piecewise Nonlinearized MDP Proce-
dure is presented, which is coalitionally locally strategy proof.
Equivalence between price-guided and quntity-guided procedures
are also discussed.
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1 Introduction

According to Samuelson (1954), public goods are characterized by non-
rivalness and nonexcludability. Since the appearance of Samuelson�s
seminal paper (1954), the prevalent view was that the free rider problem
was inevitable in the provision of pure public goods: once the good is
made available to one person, it is available to all. It was epoch-making
that this pessimistic view was shattered by the advent of the Malinvaud-
Drèze-de la Vallée Poussin (hereafter, MDP) Procedure. Since then
large literature has accumulated that develops so many kinds of individu-
ally rational and incentive compatible planning procedures for optimally
providing public goods.
Jacques Drèze and de la Vallée Poussin, and Edmond Malinvaud in-

dependently presented a tâtonnement process for guiding and �nancing
an e¢ cient production of public goods at the 1969 meeting of the Econo-
metric Society in Brussels. As Malinvaud noted in his paper that the
two approaches closely resembled each other: each attempted a dynamic
presentation of the Samuelson�s Condition for the optimal provision of
public goods. Subsequently, Malinvaud published another article on
the subject, proposing a mixed (price-quantity) procedure. Their pa-
pers are among the most important contributions in planning theory and
in public economics. They came to be termed the MDP Procedure, and
spawned numerous papers.1

The theory of incentives in planning procedures with public goods
were initiated by these three great pioneers, this �eld of research made a
remarkable progress in the last four and half decades. They sowed the
seeds for the subsequent developments in the theory of public goods, and
successfully introduced a game theoretical approach in the planning the-
ory of public goods. Numerous succeeding contributions generated the
means of providing incentives to correctly reveal preferences for public
goods. The analyses of incentives in tâtonnement procedures began in
the late sixties and was mathematically re�ned by the characterization
theorems of Champsaur and Rochet (1983), which generalized the previ-
ous results of Fujigaki and Sato (1981) and (1982), as well as La¤ont and
Maskin (1983). Champsaur and Rochet highlighted the incentive the-
ory in the planning context to reach the acme and culminated in their

1See Malinvaud (1969), (1970), (1970-1971), (1971) and (1972), and Drèze and de
la Vallée Poussin (1969) and (1971). For an idea of the tâtonnement process, see
also Drèze (1972) and (1974).

2



generic theorems. Most of these procedures can be characterized by
the conditions, the formal de�nitions of which are given in Section 3.2,
i.e., (i) Feasibility, (ii) Monotonicity, (iii) Pareto E¢ ciency, (iv) Local
Strategy Proofness and (v) Neutrality.
The MDP theory was very appealing for its mathematical elegance

and the direct application of the Samuelson�s Condition, it received a
lot of attention in the 1970s and 1980s, especially on the problem of
incentives in planning procedures with public goods, but there has been
very little work on it over the last twenty years, leaving some very dif-
�cult problems. Sato (2012) is a follow up on the literature of the use
of processes as mechanisms for aggregating the decentralized informa-
tion needed for determining an optimal quantity of public goods.2 This
paper tries to add some interesting results on the family of MDP Proce-
dures. In addition to implementation, it is required that the equilibria of
the procedures be limit points of a given dynamic adjustment process.
This paper also aims at clarifying the structure of the locally strategy
proof planning procedures as algorithms and game forms, including the
MDP Procedure. They are called locally strategy proof, if players�cor-
rect revelation for a public good is a dominant strategy for any player
in the local incentive game associated with each iteration of procedures.
This property is not possessed by the original MDP Procedure, when
the number of players exceeds three. The task of the MDP Procedure
is to enable the planner or the planning center to determine an opti-
mal amount of public goods. As an algorithm, it can reach any Pareto
optimum.
This paper revisits the procedure developed by Sato (1983) who ad-

vocated Aggregate Correct Revelation in the sense that the sum of the
Nash equilibrium strategies always coincides with the aggregate value
of correct preferences for public goods. I could escape out of the im-
possibility theorem among the above �ve desiderata, without requiring
dominance. The procedure developed by Sato (1983) is able to possess
similar desirable features shared by continuous-time procedures, i.e., ef-
�ciency and incentive compatibility. An alternative characterization
theorem of locally strategy proof procedures is given by making use of
the new Condition, Transfer Independence. It means that the transfer
function of a private good as a numéraire is independent of any strategy
of players.
The remainder of the paper is organized as follows. The next sec-

tion outlines the general framework. Section 3 reviews the MDP Proce-
dure and the Fujigaki-Sato Procedure, and introduces the genuine Gen-

2See Kakhbod, Koo and Teneketzis (2013) for the most recent research in this
�eld.
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eralized MDP Procedure which achieves neutrality and aggregate cor-
rect revelation. This section explores players�strategic manipulability
in the incentive game associated with each iteration of the procedure
and presents the new theorems. Section 4 analyzes the structure of
the locally strategy proof planning procedures. A Piecewise Nonlin-
earized MDP Procedure is presented, which is coalitionally locally strat-
egy proof. Equivalence between price-guided procedures and quantity-
guided procedures are discussed in Section 5. The last section provides
some �nal remarks.

2 The Model

The model involves two goods, one public good and one private good,
whose quantities are represented by x and y, respectively. Denote yi
as an amount of the private good allocated to the ith consumer. The
economy is supposed to possess n individuals. Each consumer i 2
N = f1; :::; ng is characterized by his/her initial endowment of a private
good !i and his/her utility function ui : R2

+ ! R.3 The production
sector is represented by the transformation function g : R+ ! R+,
where y = g(x) signi�es the minimal private good quantities needed to
produce the public good x. It is assumed as usual that there is no
production of private good. Following assumptions and de�nitions are
used throughout this paper.

Assumption 1. For any i 2 N; ui(�; �) is strictly concave and at least
twice continuously di¤erentiable.
Assumption 2. For any i 2 N; @ui(x; yi)=@x � 0; @ui(x; yi)=@yi > 0

and @ui(x; 0)=@x = 0 for any x.
Assumption 3. g(x) is convex and twice continuously di¤erentiable.

Let 
(x) = dg(x)=dx denote the marginal cost in terms of the private
good, which is assumed to be known to the planner or the planning
center. It asks each individual i to report his/her marginal rate of
substitution between the public good and the private good used as a
numéraire in order to determine an optimal quantity of the public good.

�i (x; yi) =
@ui(x; yi)=@x

@ui(x; yi)=@yi
; 8i 2 N: (1)

De�nition 1. An allocation z is feasible if and only if

z 2 Z =
(
(x; y1; :::; yn) 2 Rn+1

+ j
X
i2N

yi + g (x) =
X
i2N

!i

)
: (2)

3Drèze and de la Vallée Poussin (1971) did not explicitly introduce initial re-
sources, but implicitly incorporated them in the production set.
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De�nition 2. An allocation z is individually rational if and only if

ui (x; yi) � ui (0; !i) ; 8i 2 N: (3)

De�nition 3. A Pareto optimum for this economy is an allocation
z� 2 Z such that there exists no feasible allocation z with

ui (x; yi) � ui (x
�; y�i ) ; 8i 2 N (4)

uj (x; yj) > uj
�
x�; y�j

�
; 9j 2 N: (5)

These assumptions and de�nitions altogether give us conditions for
Pareto optimality in our economy.

Lemma 1. Under Assumptions 1�3, necessary and su¢ cient con-
ditions for an allocation to be Pareto optimal are

X
i2N

�i � 
 and

 X
i2N

�i � 


!
x = 0:

The condition,
P

i2N �i = 
 for x > 0; is called the Samuelson�s
Condition.4 Conventional mathematical notation is used throughout in
the same manner as in Sato (2012). Hereafter all variables are assumed
to be functions of time t, however, the argument t is often omitted.
The analyses in the following sections bypass the possibility of boundary
problem at x = 0. This is an innocuous assumption in the single public
good case, because x is always increasing. The results below cannot be
applied to the model with many public goods.

3 The Family of MDP Procedures

3.1 Reviewing the MDP Procedure and Its Proper-
ties

The MDP Procedure is the best-known member belonging to the family
of the quantity-guided procedures in which the relevant information ex-
changed between the center and the periphery is in the form of quantity.
The planning center asks individuals their MRSs between the public
good and the private good as a numéraire. Then the center revises an
allocation according to the discrepancy between the sum of the reported
MRSs and the MRT.

4See Samuelson (1954). See also Mclure (1968), Milleron (1972) and La¤ont
(1982) and (1985) for diagrams with public goods.
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Besides full implementation, an additional property is required: its
equilibria must be approachable via an adjustment process. Suppose a
game is played repeatedly in continuous time at any iteration t 2 [0;1)
of the procedure. Denote  i(t) as player i�s strategy announced at t.
Let  (t) = ( 1(t); :::;  n(t)) 2 Rn

+ be the vector of strategies. Needless
to say,  i(t) does not necessarily coincide with the true MRS, �i, thus,
the incentive problem matters.

The MDP Procedure reads:8>>>><>>>>:
_x =

P
i2N  i(t)� 
(t)

_y = �
(t) _x

_yi = � i(t) _x+ �i _x
2; 8i 2 N:

(6)

Remark 1. (i) a is an adjustment speed of public good. The term,
� i(t) _x < 0 is a contribution to _x > 0, and � i(t) _x > 0 is a compen-
sation from _x < 0: Denote a distributional coe¢ cient �i > 0; 8i 2 N;
with

P
i2N �i = 1; determined by the planner prior to the beginning of

an operation of the procedure. Its role is to share among individuals
the �social surplus�, _x2, generated along the procedure, which is always
positive except at the equilibrium.
(ii) Drèze and de la Vallée Poussin (1971) set �i > 0, which was fol-

lowed by Roberts (1979a, b), whereas �i � 0 was assumed by Champsaur
(1976) who advocated a notion of neutrality to be explained below.

A local incentive game associated with each iteration of the process
is formally de�ned as the normal form game (N;	;U); 	 = �i2N	i �
R+ is the Cartesian product of the 	i; which is the set of player i�s
strategies, and U = ( _u1; :::; _un) is the n-tuple of payo¤ functions. The
time derivative of consumer i�s utility is such that

_ui ( (t)) =
@ui
@x

_x+
@ui
@yi

_yi =
@ui
@yi
(�i _x+ _yi) (7)

which is the payo¤ that each player obtains at iteration t in the local
incentive game along the procedure.
The behavioral hypothesis underlying the above equation is the fol-

lowing myopia assumption. In order to maximize his/her instanta-
neous utility increment, _ui( (t)) as his/her payo¤, each player deter-
mines his/her dominant strategy, ~ i 2 	i:
Denote  �i =

�
 1; :::;  i�1;  i+1; :::;  n

�
2 	�i = �j2N�fig	j and

we introduce the de�tion.
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De�nition 4. A dominant strategy for each player in the local incen-
tive game (N;	;U) is the strategy ~ i 2 	i such that

_ui(~ i;  �i) � _ui( i;  �i); 8 i 2 	i; 8 �i 2 	�i; 8i 2 N: (8)

In the Procedure the planning center plans to provide an optimal
quantity of a public good by revising its quantity at iteration t = [0;1).
In order for the center to decide in what direction an allocation should
be changed, it proposes a tentative feasible amount of the public good,
x(0) at the initial time 0 given by the center to which agents are asked
to report his/her true MRS, �i(x(t); !i); 8i 2 N; 8t 2 [0;1), as a local
privately held information. The planning center can easily calculate for
any t the sum of their announced MRSs to change the allocation at the
next iteration t + dt: It is supposed that the center can get an exact
value of MRT.
The continuous-time dynamics is summarized as follows.
Step 0 : At initial iteration 0, the center proposes a feasible allocation

(x(0); !1; :::; !n) and asks players to reveal their preference for the public
good, �i(x(0); !i).
Step t: At each iteration t, players report their information and

the center calculates the discrepancy between the sum of MRSs and
the MRT. Unless the equality of these two values holds, the center
suggests a new proposal allocation, and players update and reveal their
preferences. If the Samuelson�s Condition holds at some iteration, the
MDP Procedure is truncated and an optimal quantity of the public good
is determined and supplied.
The MDP Procedure must be modi�ed to deal with many pub-

lic goods, 1; : : : ;m. Denote  k(t) = ( 1k(t); :::;  ik(t); :::;  nk(t)) and
 (t) = ( 1(t); :::;  k(t); :::;  m(t)) : With many public goods k 2 K, the
MDP Procedure is de�ned as:8>>>>>>>><>>>>>>>>:

_xk =

8<:
P

i2N  ik(t)� 
k(t); xk(t) > 0;

max
�
0;
P

i2N  ik(t)� 
k(t)
�
; xk(t) = 0

9=;
k = 1; :::;m

t � 0

_y = �
P

k2K 
k(t) _xk

_yi = �
P

k2K  ik(t) _xk + �i
P

k2K _x
2
k; 8i 2 N:

(9)

where the max operator is needed to avoid a decrease of any public good
in negative direction. This paper is con�ned to one public good.

Remark 2. For the existence of solutions to the equations with
the discontinuous right-hand side, see Henry (1972a, b) and (1973) and
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Champsaur, Drèze and Henry (1977) who reproduced Castaing and Val-
adier (1969) and Attouch and Damlamian (1972).

3.2 Normative Conditions for the Family of the Pro-
cedures

The conditions presented in Introduction are in order. They charac-
terize procedures. The conditions except PE must be ful�lled for any
t 2 [0;1): PE is based on the announced values,  i;8i 2 N; which
implies that a Pareto optimum reached is not necessarily equal to one
achieved under the truthful revelation of preferences for the public good.
Condition LSP signi�es that truth-telling is a dominant strategy for each
player. It is also called Strongly Locally Individual Incentive Compati-
bility (SLIIC).
Let P0 be the set of individually rational Pareto optima (IRPO)

which are better than the status quo among Pareto optima. Let � be
the set of � = (�1; :::; �n); and z (�) a solution along the procedure. Con-
dition N means that for every e¢ cient point z� 2 Z and for any initial
point z0 2 Z, there exists � and z(t; �), a trajectory starting from z0,
such that z� = z(1; �): It was Champsaur (1976) who advocated the
notion of neutrality for the MDP Procedure, and Cornet (1983) general-
ized it by omitting two restrictive assumptions imposed by Champsaur,
i.e., (i) uniqueness of solution and (ii) concavity of the utility functions.
Neutrality depends on the distributional coe¢ cient vector �: Remem-
ber that the role of � is to attain any IRPO by distributing the social
surplus generated during the operation of the procedure: � varies tra-
jectories to reach every IRPO. In other words, the planning center can
guide an allocation via the choice of �, however, it cannot predetermine
a �nal allocation to be achieved. This is a very important property for
the noncooperative games, since the equity considerations among players
matter.5

Condition F: Feasibility


(t) _x( (t)) +
X
i2N

_yi( (t)) = 0; 8t 2 [0;1): (10)

Condition M: Monotonicity

_ui =
@ui
@yi
f(�i _x( (t)) + _yi( (t))g � 0

5For the concepts of neutrality associated with planning procedures, see Cornet
(1977a, b, c, d) and (1979), Cornet and Lasry (1976), Rochet (1982), and Sato (1983).
See also d�Aspremont and Drèze (1979) for a version of neutrality which is valid for
the generic context.
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8 (t) 2 	; 8i 2 N; 8t 2 [0;1): (11)

Condition PE: Pareto E¢ ciency

_x ( (t)) = 0 ()
X
i2N

 i(t) = 
(t); 8 (t) 2 	: (12)

Condition LSP: Local Strategy Proofness

�i _x(�i(t);  �i(t)) + _yi(�i(t);  �i(t)) � �i _x( (t)) + _yi( (t))

8 i 2 	; 8 �i 2 	�i; 8i 2 N; 8t 2 [0;1): (13)

Condition N: Neutrality

9� 2 � and 9z(t; �) 2 Z; 8z0 2 Z and 8z� = lim
t!1

z (t; �) 2 P0: (14)

The MDP Procedure enjoys feasibility, monotonicity, stability, neu-
trality and incentive properties pertaining to minimax and Nash equilib-
rium strategies, as was proved by Drèze and de la Vallée Poussin (1971),
Schoumaker (1977), Henry (1979) and Roberts (1979a,b). The MDP
Procedure as an algorithm evolves in the allocation space and stops
when the Samuelson�s Condition is met so that the public good quantity
is optimal, and simultaneously the private good is allocated in a Pareto
optimal way, i.e., z� = (x�; y�1; :::; y

�
n) is Pareto optimal.

3.3 The Locally Strategy Proof MDP Procedure
In our context, as the planning center�s most important task is to achieve
an optimal allocation of the public good, it has to collect the relevant
information from the periphery so as to meet the conditions presented
above. Fortunately, the necessary information is available if the pro-
cedure is locally strategy proof. It was already shown by Fujigaki and
Sato (1981), however, that the incentive compatible n-person MDP Pro-
cedure cannot preserve neutrality, since �i; 8i 2 N; was concluded to
be �xed, i.e., 1=n to accomplish LSP, keeping the other conditions ful-
�lled. This is a sharp contrasting result between local and global games,
since the class of Groves mechanisms is neutral. [See Green and La¤ont
(1979), pp. 75-76.]
Let a 2 R++ be an arbitrary adjustment speed of public good. Fu-

jigaki and Sato (1981) presented the Locally Strategy Proof MDP Proce-
dure which reads:8><>:

_x = a
�
sgn

�P
i2N  i(t)� 
(t)

�	n�2 �P
i2N  i(t)� 
(t)

�n�1
_yi = � i(t) _x ( (t)) +

1

n

�P
i2N  i(t)� 
(t)

�
_x ( (t)) ; 8i 2 N

(15)
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where

sgn

 X
i2N

 i(t)� 
(t)

!
=

�
+1 if

P
i2N  i(t)� 
(t) � 0

�1 if
P

i2N  i(t)� 
(t) < 0:
(16)

Equivalently8><>:
_x = a

�P
i2N  i(t)� 
(t)

� ��P
i2N  i(t)� 
(t)

��n�2
_yi = � i(t) _x ( (t)) +

1

n

�P
i2N  i(t)� 
(t)

�
_x ( (t)) ; 8i 2 N:

(17)

Remark 3. We termed our procedure the �Generalized MDP Pro-
cedure� in our paper (1981). Certainly, the public good adjustment
function was generalized to include the MDP Procedure, whereas, the
distributional vector was concluded to be �xed to the above speci�c
value: 1=n. Let me call hereafter the above procedure the Fujigaki-
Sato Procedure as named by La¤ont and Rochet (1985). The genuine
Generalized MDP Procedure is presented below.

The Fujigaki-Sato Procedure for optimally providing the public good
has the following properties:
(i) The Procedure monotonically converges to an individually ratio-

nal Pareto optimum, even if agents do not report their true valuation,
i.e., MRS for the public good.
(ii) Revealing his/her true MRS is always a dominant strategy for

each myopically behaving agent.
(iii) The Procedure generates in the feasible allocation space simi-

lar trajectories as the MDP Procedure with uniform distribution of the
instantaneous surplus occurred at each iteration, which leaves no in�u-
ence of the planning center on the �nal plan. Hence, the Procedure is
nonneutral.

Remark 4. The property (ii) is an important one that cannot be
enjoyed by the original MDP Procedure except when there are only two
agents with the equal surplus share, i.e., �i = 1=2, i = 1; 2. [See Roberts
(1979a, b) for these properties]. The result on nonneutrality in (iii) can
be modi�ed by designing the Generalized MDP Procedure below.

3.4 Best Reply Strategy and the Nash Equilibrium
Strategy

In the local incentive game the planning center is assumed to know
the true information of individuals, since the Fujigaki-Sato Procedure
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induces them to elicit it. Its operation does not even require truthful-
ness of each player to be a Nash equilibrium strategy, but it needs only
aggregate correct revelation to be a Nash equilibrium, as was veri�ed
by Sato (1983). It is easily seen from the above discussion that the
Fujigaki-Sato Procedure is not neutral at all, which means that local
strategy proofness impedes the attainment of neutrality. Hence, Sato
(1983) proposed another version of neutrality, and Condition Aggregate
Correct Revelation (ACR) which is much weaker than LSP. In order to
introduce Condition ACR, I need �i as a best reply strategy given by

�i =
1

n(�i � 1)

(
(1� n)�i � (1� n�i)

 X
j 6=i

 j � 


!)
; 8i 2 N: (18)

Let �0 = (�1; : : : ; �n) and �i = (1� n�i)=(n� 1); then one observes0BBBBB@

2666664
1 : : : 0 : : : 0
...

...
...

0 : : : 1 : : : 0
...

...
...

0 : : : 0 : : : 1

3777775+
2666664
�1 : : : �1
...

...
�i : : : �i
...

...
�n : : : �n

3777775

1CCCCCA

2666664
 1
...
 i
...
 n

3777775 =
2666664
�1
...
�i
...
�n

3777775+ 


2666664
�1
...
�i
...
�n

3777775 : (19)
Let us solve a system of n linear equations to get a Nash equilibrium

vector � = f�ig. First of all, the inverse matrix is computed as:

(I + A)�1 = (I � A)=

 
1 +

X
i2N

�i

!
= I � A: (20)

The Nash equilibrium vector � as a function of � reads

� = (I + A)�1(� + �
) = (I � A)(� + �
)

= � + �
 �
 X
j2N

�j + 

X
j2N

�j

!
�

= � �
 X
j2N

�j � 


!
�: (21)

Hence, the Nash equilibrium strategy for player i is

�i = �i �
1� n�i
n� 1

 X
j2N

�j � 


!
: (22)

It is easily seen that

�i = �i if �i = 1=n (23)

which is a requirement of LSP procedures.
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3.5 Aggregate Correct Revelation of Preferences
Let � = (�1; :::; �n) be a vector of true MRSs for the public good and �
be its set. Sato (1983) named Condition Aggregate Correct Revelation
(ACR) which insists that the sum of Nash equilibrium strategies, �i;
8i 2 N, always coincides with the aggregate correct revelation of MRSs.
Clearly, ACR only claims truthfulness in the aggregate.

Condition ACR: Aggregate Correct Revelation:X
i2N

�i (�(t)) =
X
i2N

�i(t); 8�(t) 2 �; 8t 2 [0;1): (24)

To prove the main theorem, I also needed the following two con-
ditions. Let � : Rn

+ ! Rn
+ be a permutation function and Ti ( (t))

be a transfer in private good to agent i. Condition Transfer Anonim-
ity says that agent i�s transfer in private good is invariant under per-
mutation of its arguments, i.e., the order of strategies does not a¤ect
the value of Ti ( (t)) ; 8i 2 N. Sato (1983) proved that Ti ( (t)) =
Ti
�P

i2N  i(t)� 
(t)
�
which is an example of transfer functions. Con-

dition Transfer Neutrality states that any allocation in P0 is attainable
by means of choice of transfers. The planning center can attain neu-
trality by choosing Ti ( (t)) ; 8i 2 N.

Condition TA. Transfer Anonymity

Ti ( (t))) = Ti (� ( (t))) ; 8 2 	; 8i 2 N; 8t 2 [0;1): (25)

Condition TN. Transfer Neutrality

9T 2 
; 9z (t; T ) 2 Z; 8z (�) 2 Z; 8zT = lim
t!1

z (t; T ) (26)

where T = (T1; :::; Tn) is a vector of transfer functions and 
 is its set.

Theorems are enumerated with the proofs.

Theorem 1. The Generalized MDP Procedures ful�ll Conditions
ACR, F, M, TA and TN. Conversely, any planning process satisfying
these conditions is characterized to:8<: _x = a

�P
i2N  i � 


� ��P
i2N  i � 


��n�2
_yi = � i _x+ �i

�P
i2N  i � 


�
; 8i 2 N:

Proof: Consider the following process:8<:
_x( ) = �(�)

_yi( ) = � i�(�) + Ti( ); 8i 2 N:
(27)
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where � �
P

i2N  i � 
.

i) Condition F givesX
i2N

Ti( ) = ��(�): (28)

Di¤erentiating this with respect to  j yieldsX
i2N

Tij( ) = �(�) + ��j(�); 8j 2 N (29)

where �ij( ) = @Ti( )=@ j and �j(�) = @�(�)=@ j:
The payo¤ for each individual i is

_ui ( ) =
@ui
@yi
f(�i �  i)�(�) + Ti ( )g: (30)

Maximizing this with respect to  i gives

��(�) + (�i �  i)�i(�) + Tii ( ) = 0: (31)

The vector  = ( 1; : : :  n) ful�lling a system of the equations (31) is a
Nash equilibrium which is de�ned as a function of �: Since Condition
ACR is a requirement that

P
i2N  (�) =

P
i2N �i holds for any �; which

implies that the total over i of (31) yieldsX
i2N

Tii( ) = n�(�); 8 2 	: (32)

While, Condition TA implies

Tij( ) = Ti�(j)(�( )): (33)

Further, due to TAX
i2N

Tii(�
�1( )) =

X
i2N

Ti�(i)(����1( )) =
X
i2N

Ti�(i)( ); 8��1; 8 2 	:

(34)

where ��1 signi�es the inverse of �: On using (32) and (34)X
i2N

Ti�(i)( ) = n�(�); 8�; 8 2 	: (35)
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Consider the permutation �(i) = i + k; k = 0; 1; : : : ; n � 1: [�(i) =
n� i+ k; when i� k > 1]: Then, equation (35) reads

T11 + T22 + � � �+ Tnn = n�(�); if k = 0

T12 + T23 + � � �+ Tn1 = n�(�); if k = 1

:::::::::::::::::::::::::::::::::::::::::::::::::::

T1n + T21 + � � �+ Tn(n�1) = n�(�); if k = n� 1: (36)

Summing all these equations, we getX
i2N

X
j2N

Tij( ) = n2� (�) (37)

and equation (29) impliesX
i2N

X
j2N

Tij( ) = nf� (�) + ��(�)g: (38)

Combining (37) and (38) gives

���j(�) + (n� 1)�(�) = 0: (39)

Rearranging terms and using @�=@ j = 1 yields

d�(�)=d�

�(�)
=
n� 1
�

: (40)

Solving this equation for �(�), we obtain

�(�) = a�n�1; a 2 R++: (41)

Since �(�) is sign-preserving from Eq.(28), I �nally have the desired
conclusion:

�(�) = a�j�jn�2; a 2 R++: (42)

ii) In view of (32) and (39), equations (29) and (35) can be rewritten
as: X

i2N

� ij = 0; 8j 2 N (43)

and X
i2N

� i�(i) = 0; 8� (44)
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where � ij = �ij ��ii:
Let me �rst show that � ij satisfying (43) and (44) are all zero, that

is

� ij = 0; 8i; j 2 N: (45)

By de�nition

� ii = 0; 8i 2 N (46)

and considering a permutation � which, keeping the other terms �xed,
permutates any pair (i; j), I obtain from (44)

� ij + � ji = 0; 8i; j 2 N: (47)

Let us prove by induction that (43) and (44) imply (45).

Case I: n = 2: Since

� 11 = � 22 = 0 (48)

we get from (43)

� 12 = � 21 = 0: (49)

Case II: n = k: Assuming that (43) and (44) imply (45), we verify
that this observation holds for n = k + 1:
Denote

�ij = � ij +
1

k
� k+1; j: (50)

By virtue of (43) and (44) for n = k+1; we have for any permutation
� such that �(n+ 1) = n+ 1

kX
i=1

�ij =

k+1X
i=1

� ij = 0; 8j = 1; : : : ; k + 1; (51)

and

kX
i=1

�i�(i) =
kX
i=1

� i�(i) +
1

k

kX
i=1

� k+1; �(i)

= �� k+1; �(k+1) �
1

k

kX
i=1

� �(i); k+1

15



= �� k+1; k+1 �
1

k
� k+1; k+1 = 0: (52)

Hence, by assumption

�ij = 0; 8i; j = 1; : : : ; k: (53)

Particularly we have

�jj =
1

k
� k+1; j = 0; 8j = 1; : : : ; k; (54)

and thus

� ij = 0; 8i; j = 1; : : : ; k + 1: (55)

In conclusion, equation (45) implies the following:

� i1 = � i2 = � � � = � in; 8i 2 N; (56)

which means that �i is constant as far as
P

j2N  j is constant. jj

Theorem 2. Truthful revelation of preferences in any Generalized
MDP Procedure is a minimax strategy for any i 2 N: It is the only
minimax strategy for any i 2 N; when x > 0:

Proof: Di¤erentiating player i�s payo¤ _ui with respect to  j yields

@ _ui ( )

@ j
=
@ui
@yi
f�i �  i + 2� _x ( )g = 0: (57)

Hence

 j =
 i � �i
2�i

+ 
 �
X
i6=j

 i: (58)

When player j uses this strategy, _ui is minimized as follows.

_ui ( ) =
@ui
@yi

(
(�i �  i)

�
 i � �i
2�i

�
+ �i

�
 i � �i
2�i

�2)

= �@ui
@yi

�
( i � �i)

2

4�i

�
� 0: (59)

Maximizing _ui ( ) requires that  i = �i; 8i 2 N; 8t 2 [0;1); which
is a minimax strategy for x � 0: When x > 0; it is the only minimax
strategy. jj
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Theorem 3. �i = �i holds for any i 2 N at the equilibrium of any
Generalized MDP Procedure.

Proof: Since _x = 0 at the equilibrium of the Procedure, the second
term of the following equation disappears.

�i = �i �
1� n�i
n� 1

 X
j2N

�j � 


!
; 8i 2 N: (60)

Thus, the statement of the Theorem follows. jj

Theorem 4. There exists a vector of transfers T and a trajectory
z(�) : [0;1)! Z of the Generalized MDP Procedures such that ui (z�) =
limt!1 ui (x (t) ; yi (t)) ;8i 2 N; for every individually rational Pareto
optimum z�:

Proof: Due to Conditions M and PE, the stationary point of the dif-
ferential equations of the Fujigaki-Sato Procedure is clearly individually
rational Pareto optimal. To prove stability, take the sum of the utility
functions:

L =
X
i2N

ui(x; yi): (61)

Because the set of feasible allocations Z is compact, Condition F
means that the solution path (x; yi) is bounded for any i 2 N: Hence,
by continuity of the utility functions L is also bounded. Furthermore,
L is a monotonically increasing function. In fact, since Ti � 0; 8i 2 N
from Condition M

_L =
X
i2N

_ui(x; yi) =
X
i2N

�
@ui
@x

_x+
@ui
@yi

_yi

�
=
X
i2N

�
@ui
@yi

�
Ti � 0: (62)

Therefore, L may be considered to be a suitable choice of a Lyapunov
function, and thus, the procedure ful�lling Conditions F and M is quasi-
stable; i.e., any limit point of the trajectory is a stationary point. Owing
to strict concavity of the utility functions, we can conclude that the
Fujigaki-Sato Procedure monotonically converges to a unique stationary
point and that it is stable. jj

Keeping the same non-linear public good decision function as derived
from Condition LSP, Sato (1983) could state the above characterization
theorem. In the sequel, I use the Generalized MDP Procedure with
Ti
�P

i2N  i � 

�
= �i

�P
i2N  i � 


�
_x ( ) : Via the pertinent choice
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of Ti (�) we can make the family of the Generalized MDP Procedures,
including the MDPProcedure and the Fujigaki-Sato Procedure as special
members.

Remark 5. Champsaur and Rochet (1983) gave a systematic study
on the family of planning procedures that are asymptotically e¢ cient and
locally strategy proof. Now we know that the family of the LSP proce-
dures is large enough; Rochet�s (1982) classi�cation includes the Bowen
Procedure, the Bowen-La¤ont Procedure, the Champsaur-Rochet Proce-
dure, the Fujigaki-Sato Procedure, the Generalized Wicksell Procedure
and the La¤ont-Maskin Procedure as special members.6

4 The Structure of Locally Strategy Proof Proce-
dures

4.1 The MDP Procedure versus the Fujigaki-Sato
Procedure

The existence of Fujigaki-Sato Procedure is assured by the integrability
and di¤erentiability of the adjustment functions which de�ne the proce-
dures. The MDP Procedure has a linear adjustment function and its
adjustment speed of public good is constant. Whereas, the Fujigaki-
Sato Procedure has a nonlinear adjustment function which is a kind of
�turnpike�. If illustrated in the coordinates, when the Fujigaki-Sato
MDP Procedure evolves far from the origin, it runs more nimbly, while
its adjustment speed of public good reduces in the neighborhood of the
origin. This structural di¤erence of these procedures has made a sharp
contrast about the strength of incentive compatibility. This di¤erence
stems from the integrability and di¤erentiability of the adjustment func-
tion of public good.7

Let me show the incentive property of the Fujigaki-Sato Procedure.

Theorem 5. The Fujigaki-Sato Procedure cannot be manipulated
by more than three players�s strategic behaviors.

Sketch of the Proof. Let me show that the Fujigaki-Sato Procedure
cannot be manipulated by players in the local incentive game associated
with the procedure when there are three agents. Under the truthful
revelation of preference, as a payo¤ to player i, the time derivative of

6See La¤ont (1985) for the Bowen-La¤ont Procedure.
7See La¤ont and Maskin (1980) for the integrability of the equations de�ning

dominant strategy mechanisms.
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utility is represented by

_ui = �i

 X
i2N

�i � 


!2
� 0: (63)

Let _ur3 signify the payo¤given by underreporting of preference on the
part of player 3 with �3 >  3: De�ne �3 =  3 + "; " > 0: Whereas, it
is assumed that  1 = �1 and  2 = �2. Then we have the payo¤s with
underreporting and true revelation for the public good.

_ur3 = "

 X
j2N

�j � "� 


!
+ �3

 X
j2N

�j � "� 


!2
� 0 (64)

and

_u3 = �3

 X
j2N

�j � 


!
_x � 0: (65)

If �3 = 1=3; then

_ur3 � _u3 = "(1� 2�3)
 X
j2N

�j � 


!
� "2 < 0: (66)

Thus, player 3 cannot get more payo¤by falsifying his/her preference
for the public good if �3 = 1=3.
Let me show a numerical example. Specify their quasi-linear utility

function as u1 = 2x + y1, u2 = 3x + y2 and u3 = 5x + y3: Then,
@ui=@yi = 1; i = 1; 2; and 3, �1 =  1 = 2 and �2 =  2 = 3. Suppose
that the public good is produced as g(x) = 3x and 
 = 3: Provided that
individual 3 underreports his preference by announcing  3 = 1 instead
of his true MRS, �3 = 5.
Assuming a = 1; then the Generalized MDP Procedure with three

persons reads8>><>>:
_x =

�P3
j=1  j � 


� ���P3
j=1  j � 


���
_yi = � i _x+

1

3

�P3
j=1  j � 


�
_x:

(67)

With the above numerical example, this Procedure yields _ur3 = 45 <
114:33 = _u3: Similarly, _u

�
3 = 81 < 114:33 = _u3; where � means �overre-

port�, when he/she reports  3 = 7 instead of his true value, 5: Conse-
quently, free-riding individual 3 loses his/her payo¤ in the both cases of
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underreporting and overreporting. The Fujigaki-Sato Procedure gives
the payo¤ such that

_ui = (�i �  i) _x+
1

3

 
3X
j=1

 j � 


!2 �����
3X
j=1

 j � 


����� (68)

where �i =  i assures _ui � 0; 8i = 1; 2 and 3; thus, the Fujigaki-Sato
Procedure is locally strategy proof for three persons. This a¢ rmative
result can be applied to any number of individuals. This is not the
property enjoyed by the original MDP Procedure.

4.2 A Characterization Theorem with Transfer In-
dependence

Next, let me give a proof to the following theorem by making use of a
new axiom. This is a modi�ed version of the property introduced by
Green and La¤ont (1977) and (1979), which means the equality of the
increment of transfer in accordance with the marginal change of strategy.
This is an important condition which is connected with equity.

Condition TI: Transfer Independence:

@Ti ( )

@ i
=
@Tj ( )

@ j
; 8i; j 2 N: (69)

Then, the following characterization theorem holds.

Theorem 6. The planning procedure de�ned below that satis�es
Conditions ACR and TI is characterized to:8>><>>:

_x = a
�P

i2N  i � 

�
j
P

i2N  i � 
jn�1; a 2 R++

_yi( ) =

Z
�
�P

i2N  i � 

�
d i +Hi( �i); 8i 2 N

where Hi( �i) is an arbitrary function independent of  i:

Proof. Consider the process8<:
_x = �(�)

_yi = � i�(�) + �i��(�):
(70)

Using the decision functions speci�ed above yields the payo¤to player
i :

_ui =
@ui
@yi

f�i�(�)�  i�(�) + �i��(�)g : (71)

20



Di¤erentiating with respect to  i this gives

d _ui
d i

=
@ui
@yi

�
�i
d�(�)

d�
� �(�)�  i

d�(�)

d�

+�i

�
�(�) + �

d�(�)

d�

��
= 0: (72)

As a reference, if Condition LSP holds, then

�(�)
1� �i
�i

= �
d�(�)

d�
; 8i 2 N: (73)

This equation holds only if �i = �j;8i; j 2 N: Consequently, local
strategy proof of the MDP Procedure with two persons requires �i = 1=2;
8i 2 N: Hence, the MDP Procedure can possess LSP only for a two-
person economy.
Instead, if Condition ACR holds

�(�) =

�
�

n� 1

�
d�(�)

d�
; 8i 2 N: (74)

Solving for �(�) yields

�(�) = a�n�1; a 2 R++: (75)

Since �(�) is sign-preserving, we �nally get

�(�) = a�j�jn�2; a 2 R++: (76)

Next, let me show with Conditions ACR and TI that

�i( ) =

Z
�

 X
i2N

 i � 


!
d i +Hi( �i); 8i 2 N: (77)

The best reply strategy �i for player i is, given  �i

�i =

�
@�(�)

@ i

��1�
�i
@�(�)

@ i
�  i

@�(�)

@ i
� �(�) + @Ti( )

@ i

�
; 8i 2 N

(78)

where all the partial derivatives are evaluated at  i = �i:
From Condition ACRX

i2N

�
@�(�)

@ i

��1�
��(�) + @Ti( )

@ i

�
= 0: (79)
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Since �(�) is symmetric with respect to  i;

@�(�)

@ i
=
@�(�)

@ j
6= 0: (80)

ThusX
i2N

@Ti( )

@ i
= n�(�) (81)

or

1

n

X
i2N

@Ti( )

@ i
= �(�): (82)

If Condition TI holds, then

@Ti( )

@ i
= �(�): (83)

Thus, the desired conclusion follows straightforwardly. jj

In Theorem 6, the function Ti( ) cannot be uniquely determined
without Condition TI, and thus

1

n

�
@Ti( )

@ i

�
= �i�(�): (84)

4.3 A Measure of Incentives
It is shown that the exponent attached to the public good decision func-
tion is closely related to the number of players taking part in the LSP
procedures and that this fact enables procedures to achieve local strategy
proofness.

Theorem 7. The exponent attached to the public good decision
function is � = n � 1, if and only if the Fujigaki-Sato Procedure ful�lls
LSP.

Proof. Consider the Fujigaki-Sato Procedure:8>><>>:
_x ( ) =

�P
i2N  i � 


� ��P
i2N  i � 


����1
_yi ( ) = � i _x ( ) +

1

n

�P
i2N  i � 


�
_x ( ) ; 8i 2 N

(85)

where � > 1 is a parameter.
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In the local incentive game associated with each iteration of the
process, the payo¤ for each player i is given by

_ui ( )=
@ui
@yi

(
�i �  i +

1

n

 X
j2N

 j � 


!)

�
 X
j2N

 j � 


!�����X
j2N

 j � 


�����
��1

: (86)

Di¤erentiating this equation with respect to  i gives

@ _ui( i;  �i)

@ i
=
@ui
@yi

�
�(�i �  i) +

� � n+ 1

n

� X
i2N

 i � 


!�
= 0:

(87)

Since
�P

i2N  i � 

�� 6= 0 holds out of equilibrium, the best reply

strategy for player i is

 i = �i +
� � n+ 1

�n
: (88)

Let us show that this procedure satis�es LSP if and only if � = n�1.
For this purpose, de�ne a measure of incentives:

�(n) =
X
i2N

( i � �i)
2: (89)

Substituting (89) into this yields

�(n) =

�
� � n+ 1

�n

�2
: (90)

Di¤erentiating this equation with respect to n gives

@�(n)

@n
=
2(� + 1)(n� 1� �)

�2n3
= 0: (91)

The measure of incentives �(n) has a maximum at � = n � 1: Since
n > 1; we know that �(n) ! 0 as � ! n� 1 and that �(n) = 0 if and
only if � = n � 1: Hence, the Fujigaki-Sato Procedure has the unique
form of decision function of public good with � = n � 1 to accomplish
LSP. jj
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4.4 Coalitional Local Strategy Proofness
The problem of falsi�cating preferences by colluding individuals was
dealt with for static revelation mechanisms or demand revealing mech-
anisms by some authors. For instance, Bennett and Conn (1977) con-
sidered an economy with one public good and proved that there is no
revelation mechanism which is group incentive compatible. For any rev-
elation mechanism to provide public goods, if any coalition formation is
possible, some group of individuals are able to gain by misrepresenting
their preferences for the public goods. Green and La¤ont (1979) also
studied the problem of coalitional manipulability in a generic context.
They veri�ed under the separability of utility functions that revelation
of the truth was a dominant strategy for each individual in demand re-
vealing mechanisms used to provide public goods. They also showed
that any revelation mechanism can be manipulated by coalitions of two
or more agents. Their payo¤ by colluding, however, approaches zero as
the number of agents becomes in�nite, i.e., the large economy.
The main purpose of this subsection is to show whether the Fujigaki-

Sato Procedure is robust to coalitional manipulation of preferences on
the part of the agents. If the structure of coalitions is �xed and known to
the planner, their misrepresentation can be overcome by treating each
coalition as an individual agent and applying the Fujigaki-Sato Pro-
cedure to the strategies composing of the aggregated preferences over
the members of each coalition, then we can have a Coalitionally Locally
Strategy Proof (CLSP) planning procedure.
However, what could happen if the coalition structure is �exible and

unknown to the planner? Is it possible to construct a CLSP plan-
ning process in this case? The answer is partly negative and partly
a¢ rmative. Chakravorti (1995) presented coalition-proof procedures,
however, he required the assumption of separable utility functions. He
extended the method of Truchon (1984) who examined a nonmyopic
incentive game, where each agent�s payo¤ is a utility at the �nal alloca-
tion. Di¤rent from the others, Truchon introduced a �threshold�level
of a public good into his model to analyze agents�strategic behaviors.
We propose a Piecewise Nonlinearized Procedure which is CLSP.
Retaining the same assumptions as in Sato (2012), we add some new

de�nitions and notation. Let C � N be a coalition of individual agents.
The vector  C denotes the projection of  2 Rn; the marginal rate of
substitution announced by the coalition C: Let �c 2 Rn be a vector
of the true MRS of the coalition C. We use ( n C) to signify the
components of  with the exception of  i; 8i 2 C; and we also use the
notation ( C ;  NnC) and j j as a cardinality.
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De�nition 5. A joint strategy for a coalition C, ~ C 2 RjCj is called
a dominant joint strategy if it ful�lls

_ui(~ C ;  NnC) � _ui( C ;  NnC); 8i 2 C; 8 C 2 RjCj; 8 NnC 2 RjNnCj:

De�nition 6. The payo¤ function of an agent in a coalition is given
by

_ui( C ;  NnC) =
@ui
@x

_x( C ;  NnC) +
@ui
@yi

_yi( C ;  NnC)

=
@ui
@yi

�
�i _x( C ;  NnC) + _yi( C ;  NnC)

	
: (92)

Thus, we can state the condition related to coalitions.

Condition CLSP : Coalitional Local Strategy Proofness

�i _x(�C(t);  NnC(t)) + _yi(�C(t);  NnC(t))

��i _x( C(t);  NnC(t)) + _yi( C(t);  NnC(t)) (93)

8 C(t) 2 RjCj; 8 NnC(t) 2 RjNnCj; 8i 2 C; 8t 2 [0;1):
The following theorem shows the non-existence of CLSP procedures.

Theorem 8. With the nonseparable utility functions, there exists
no continuous procedure which ful�lls Condition CLSP.

Proof. A CLSP planning procedure is an LSP process. Let us
consider the joint payo¤ _uik( C ;  NnC) of the two-size coalition fi; kg:

_uik( C ;  NnC) =
X
`=i;k

@u`
@y`

(
�` �  ` +

1

n

 X
j2N

 j � 


!)
_x( C ;  NnC):

Di¤erentiation with respect to  i gives

@ _uik( C ;  NnC)

@ `
=
X
`=i;k

@u`
@y`

�
1� n

n
_x( C ;  NnC)

+

 
�` �  ` +

1

n

X
j2N

 j �
1

n



!
@ _x( C ;  NnC)

@ `

)
: (94)

Since _x( C ;  NnC) = 0 at an equilibrium where the above equation
is zero if

�i �  i +
1

n

X
j2N

 j �
1

n

 = 0 (95)
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and

�k �  k +
1

n

X
j2N

 j �
1

n

 = 0: (96)

Combining these two yields

�i �  i � �k +  k = 0 (97)

which does not necessarily imply the requirement of LSP:

�i =  i and �k =  k: (98)

Hence, even the two-size coalition fi; kg can manipulate the LSP proce-
dure. jj

Next, we show the existence of a full coalition of players even with
LSP procedures.

Theorem 9. In the Fujigaki-Sato Procedure, there exists a full
coaliton of players with a vector of strategies  ̂ =

�
 ̂1; : : : ;  ̂n

�
such

that _ui( ̂) =1; 8i 2 N:

Proof : Consider the Procedure:8>><>>:
_x = a

�P
j2N  j � 


� ���Pj2N  j � 

���n�2

_yi = � i _x ( ) + 1
n

�P
j2N  j � 


�
_x ( ) ; 8i 2 N:

(99)

Let us show that there exists  ̂i;8i 2 N; which satis�es the proce-
dure:8>><>>:

� _x = a
�P

j2N  j � 

� ���Pj2N  j � 


���n�2
� _yi = � i� _x ( ) + 1

n

�P
j2N  j � 


�
� _x ( ) ; 8i 2 N:

(100)

where � > 1:
The above equations give

 ̂i = �
_yi

�
 ̂
�

_x
�
 ̂
� + 1

n

 X
j2N

 ̂j � 


!
; 8i 2 N: (101)
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Thus,

X
j2N

 ̂j � 
 = �
X
i

_yi

�
 ̂
�

_x
�
 ̂
� � 
 +

X
j2N

 ̂j � 
: (102)

and we obtainX
i2N

_yi

�
 ̂
�
+ 
 _x

�
 ̂
�
= 0: (103)

It is also true for the MDP Procedure. jj

Nevertheless, it is possible to construct a planning procedure which
is coalition-proof. Let a be a positive constant of adjustment speed of
the public good. Let also � be a constant, e.g., � = 1. Consider the
following three cases.
(i)

P
j  j � 
 > a�1=(n�2)

(ii) �a�1=(n�2) �
P

j  j � 
 � a�1=(n�2)

(iii) �a�1=(n�2) >
P

j  j � 


The Piecewise Nonlinearized MDP Procedure reads:8>>>>>><>>>>>>:
_x =

8><>:
� if (i) holds

a
�P

j  j � 

� ���Pj  j � 


���n�2 if (ii) holds

�� if (iii) holds

_yi = � i _x ( ) + �i

�P
j2N  j � 


�
_x ( ) ; 8i 2 N:

(104)

With this procedure, we can state the theorem.

Theorem 10. The Piecewise Nonlinearized MDP Procedure satis-
�es CLSP, F, M, N and PE.

Proof: Conditions F, M, N and PE follow straightforwardly from
the construction of the Piecewise Nonlinearized MDP Procedure which
is not continuous. With this process, nobody can make his/her util-
ity increment to be 1; because of the boundedness of the public good
decision function which is predetermined. jj
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5 Price-Quantity Equivalence in Planning Proce-
dures

5.1 Price-Guided Procedures and their Normative
Conditions

This section establishes the equivalence on equity between price-guided
and quantity-guided planning procedures, which is an extention of Laf-
font and Rochet (1985). Their nonlinear pricing scheme and the duality
results on the conditions overtuned the widely held view as to the supe-
rioriy of the quantity-guided procedures, particularly with public goods.
Contrary to the conjecture in Malinvaud (1971) about the falsi�cation
of preferences, La¤ont and Rochet (1985) proved that the equivalence
between price and quantity planning procedures. To tackle the equity
issue, this paper adopts Kolm�s super-equity and transform it into our
dynamic context.
Despite the dramatical growth in the theory of incentives in planning

procedures with public goods, one of their vital aspects has been largely
neglected; that is equity and fairness which are another prerequisites for
the processes to be accomplished. It is recognized that the planning
procedures could go further than one expected, that is, they attain some
measure of equity and fairness in an economy with or without public
goods. The notion of Kolm (1973) may help to �ll the gap. Kolm�s
super equity involves the Foley�s equity. Super-fairness, which is for-
mally de�ned below, can bring us fruituful equivalence results on the
price-guided and quntity-guided planning processes.8

For the sake of completeness, let us summarize the La¤ont/Rochet�s
framework in this subsection. La¤ont and Rochet (1985) established
the equivalence theorem between locally strategy proof quantity-guided
planning procedures and nonlinear price-guided planning procedures well
de�ned.
Formally, at each iteration, individual i is confronted with a nonlinear

price, �i( _x;  �i); and a revenue funtion, Ri( �i); parametrized by the
announcements of the others,  �i: �i( _x;  �i) is considered as the price
that agent i has to pay for a marginal increase _x of a public good,
and Ri( �i) � �i( _x;  �i) is his/her marginal increase of private good
consumption. One poses as usual �i(0;  �i) = 0 for any i, and

� i( _x;  �i) = @�i( _x;  �i)=@x: (105)

8See also Arrow and Hurwicz (1961) and Tulkens (1978) for the price-guided
planning procedures. The concepts below can also hold for an economy with only
private goods.
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Following the myopic behavior, agent i tries to solve the problem:

Max

�
 i _x�

Z _x

0

� i
�
�;  �i

�
d� +Ri( �i)

�
; 8i 2 N: (106)

The normative conditions that La¤ont and Rochet (1985) posed are
as follows. In order to state the condition, let the demand for the public
good be represented by

Di( �i) = Argmax

�
 i _x�

Z _x

0

� i
�
�;  �i

�
d� +Ri( �i)

�
; 8i 2 N:

(107)

The procedure de�nes a feasible allocation of a public good at each
iteration, if every agents demand the same amount of public good varia-
tion. Thus, it is said that the system of personalized prices and revenues,
f� i; Rigi2N; is coherent.
Now, the conditions for price-guided procedures are in order.

Condition PF: FeasibilityX
i2N

Ri
�
 �j

�
+ 
 _x =

X
i2N

Z _x

0

� i
�
�;  �i

�
d�; 8 2 RN+ : (108)

Condition PM: Monotonicity

8 2 RN+ ; 8i 2 N (109)

_ui( ) =Max

�
 i _x�

Z _x

0

� i
�
�;  �i

�
d� +Ri( �i)

�
� 0:

Condition PPE: Pareto E¢ ciency

_x (s) = R1( �1) = � � � = Rn( �n) ()
X
i2N

 i = 
; 8 2 RN+ : (110)

Condition C: Coherency

D1( �1) = � � � = Dn( �n); 8 2 RN+ : (111)

Condition N: Neutrality

9� 2 � and 9z(t; �) 2 Z; 8z0 2 Z and 8z� = lim
t!1

z (t; �) 2 P0: (112)

Neutrality is the same for the quantity-guided procedures. My point
of departure is the following result.
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Theorem 11. [La¤ont and Rochet (1985)] (i) The mapping z =
(x; y1; : : : ; yn) de�nes a locally strategy proof quantity-guided planning
procedure if and only if there exists a coherent system of personalized
prices and incomes, f� i; Rigi2N such that: 8 2 RN+8><>:

_x = Argmax
n
 i _x�

R _x
0
� i
�
�;  �i

�
d� +Ri( �i)

o
_yi = �

R _x
0
� i
�
�;  �i

�
d� +Ri( �i); 8i 2 N:

In other words, C , LSP.
(ii) Let z be a quantity-guided planning procedure satisfying LSP and

f� i; Rigi2N its dual formulation in terms of prices.
Then, a) z is feasible if and only if f� i; Rigi2N is feasible. In other

words: PF , F ,X
i2N

_ui( i) =

 X
i2N

 i � 


!
_x; 8 2 RN+ :

b) z is individually rational if and only if f� i; Rigi2N is individually
rational. In other words: PM ,M ,

_ui( i) � 0; 8i 2 N; 8 2 RN+ :

c) z is Pareto e¢ cient if and only if f� i; Rigi2N is Pareto e¢ cient. In
other words: PPE , PE ,

_u1( ) = � � � = _un( ) = _x = 0 ()
X
i2N

 i = 
:

5.2 Equity and Fairness along the Procedures
My concern in this paper has concentrated on the theory of incentives
in planning procedures having asymptotic e¢ ciency and local strategy
proofness. Let us dip into a particular topic of equity and fairness in
what follows. Malinvaud (1972) was the earliest to discuss the central
role that the conception of equity played along planning procedures. In
brief, Malinvaud�s �ndings are as follows: the direction of the utility
change is the same over individuals, namely, utility increment of one
person increases, those of all the others also increase, and vice versa.
We can describe Malinvaud�s equity in a somewhat di¤erent way from
the original expression. Let _ui(x; yi) = (@ui=@yi)(�i _x+ _yi):

De�nition 7. An allocation is Malinvaud equitable if

_ui(x; yi) _uj(x; yj) � 0; 8i; j 2 N: (113)
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In the celebrated book (1979, p. 274), Green and La¤ont wrote, �By
choosing equal shares of the cost, the procedure can be made equitable in
the following sense: if the agents consider the procedure before knowing
their own preferences, in the spirit of the Rawlsian approach, no partic-
ular agent is favored�. According to their criterion, their procedure can
be equitable for the agents as in the original position à la Rawls, since
these procedures can involve equal shares of the cost.
The �rst concept of equity was proposed by Foley (1967), and the

Foley�s theorem states under suitable assumptions that there exists an
equitable allocation in a pure exchange economy. Kolm�s famous mono-
graph (1971) gave a systematic study on equity and justice in pure ex-
change economies. Just after the publication of this well-known book,
Kolm (1973) proposed a concept of super-equity which includes that
of no envy equity. Suzumura and Sato (1985) veri�ed that the con-
cept of no-envy equity is neither robust nor appropriate for an economy
with public goods. In so doing, we checked the performances of the
Lindahl equilibrium, the Zeuten-Nash bargaining solution, the Kalai-
Smorodinsky arbitration scheme and the Perles-Machler super-additive
solution. With their numerical examples, Suzumura and Sato concluded
that none of these approaches could not achieve no-envy equity for an
economy with public goods.
Here introduced are two concepts of equity.

De�nition 8. An allocation z is Foley equitable if

ui(x; yi) � ui(x; yj); 8i; j 2 N: (114)

De�nition 9. An allocation z is super-equitable if

ui(x; yi) � ui

 
x; �i

X
j2N

yj

!
; 8i 2 N (115)

with
P

j2N �j = 1; where f�ig are nonnegative numbers. This def-
inition is independent from the form of mechanism which implements
allocations, and brings us an interesting result on the relationship be-
tween price-guided and quantity-guided planning procedures.
The theory developed in this �eld being basiccaly static, we add a

dynamic touch to the theory of equity and fairness of planning proce-
dures. Let me propose two conditions on super-equity on price and
quantity procedures, then we get the theorem.

Condition TSEP: Transversal Super-Equity for Price Proce-
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dures

_ui( (t)) =Max

�
 i(t) _x�

Z _x

0

� i
�
�(t);  �i(t)

�
d� +Ri( �i(t))

�
�Max

"
 i(t) _x� �i

X
j2N

�Z _x

0

�j
�
�(t);  �j(t)

�
d�

�Rj( �j(t))
	�

8 2 RN+ ; 8i 2 N; 8t 2 [0;1): (116)

Condition TSEQ: Transversal Super-Equity for Quantity Pro-
cedures

_yi(t)��i
X
j2N

_yj(t) (117)

8 2RN+ ; 8i 2 N; 8t 2 [0;1):

Theorem 12. Let the mapping z = (x; y1; : : : ; yn) be de�ned by a
quantity-guided planning procedure ful�lling LSP and f� i; Rigi2N its dual
formulation of nonlinear price-guided procedure. Then, the mapping is
transversally equitable if and only if there exists a coherent system of
personalized prices and incomes, f� i; Rigi2N: In other words, TSEP ,
TSEQ ,

_ui( ) = _ui(x( ); yi( )) � _ui

 
x( ); �i

X
j2N

yj( )

!
; 8i 2 N:

Proof: LetX the set of adjustment functions of public good. La¤ont
and Rochet (1985) veri�ed that C becomes C�such that

�i
�
_x;  �i

�
=  i; 9 _x 2 X; 8i 2 N; 8 �i 2 RN�1

+ (118)

which immediately entails the equivalence between TSEP and TSEQ.

_ui( ) = _ui(x( ); yi( )) (119)

=Max

�
 i _x�

Z _x

0

� i
�
�;  �i

�
d� +Ri( �i)

�
�Max

"
 i _x� �i

X
j2N

�Z _x

0

�j
�
�;  �i

�
d� �Rj( �i)

�#

= _ui

 
x( ); �i

X
j2N

yj( )

!
:
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The converse is obvious.jj

La¤ont and Rochet (1985) named the original Generalized MDP Pro-
cedure as the Fujigaki-Sato Procedure:8<: _x ( ) = a

�P
i2N  i � 


� ��P
i2N  i � 


��n�2
_yi ( ) = � i _x ( ) + (1=n)

�P
i2N  i � 


�
_x ( ) ; 8i 2 N:

(120)

The nonlinear pricing scheme counterpart of this procedure was pro-
posed by La¤ont and Rochet (1985) as the coherent system of personal-
ized prices and revenues such that:

� i
�
_x;  �i

�
=
1

a
_x( )

1
n�1 + 
 �

X
j 6=i

 j (121)

or equivalently8><>:
_x = Argmax

n
 i _x�

R _x
0
� i
�
�;  �i

�
d� +Ri( �i)

o
_yi = �

R _x
0
� i
�
�;  �i

�
d� +Ri( �i); 8i 2 N:

(122)

Since the planning center�s task is to achieve a super-equitable allo-
cations via either quantity or price planning procedures, it has to collect
the relevant information from the periphery so as to meet either con-
ditions TSEP or TSEQ. It is available if the procedure is coherent or
locally strategy proof. It has been veri�ed the existence of the proce-
dure which satis�es simultaneously super-equity, Pareto optimality, and
local strategy proofness.

6 FINAL REMARKS

This paper has revisited the family of MDP Procedures and analyzed
their properties. In the local game associated with any iteration of any
procedure each player�s payo¤ is the utility increment at each point of
time. La¤ont�s di¤erential method is used to formalize the procedures
with desirable properties. I have shown that the Nonlinearized MDP
Procedure or Fujigaki-Sato Procedure can simultaneously achieve e¢ -
ciency and local strategy proofness. That is, it converges to a Pareto
optimum and that the best replay strategy of each player at each itera-
tion is to declare his/her true MRS. Instead, the Generalized MDP Pro-
cedure can possess aggregate correct revelation which means the equality
between the sum of true MRSs and that of Nash equilibrium strategies.
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Recognizing the di¢ culties concerning the possibility of manipulating
private information by individuals, the literature has veri�ed that this in-
centive problem could be treated by the planning procedures that require
a continuous revelation of information, provided that agents adopt a
myopic behavior. Whereas, if individuals are farsighted, the traditional
impossibility results occur, i.e., incentive compatibility is incompatible
with e¢ ciency, as were pointed out by Champsaur, Laroque and Rochet.
This paper has studied an instantaneous situation where agents are only
asked to reveal their true MRS at continuous dates, and the direction
and speed of adjustment are changed according to the information col-
lected. Consequently, the associated dynamic process named as the
Fujigaki-Sato Procedure has concluded to be nonlinearized. Individuals
are assumed to take myopic behaviors at each date. Their behavior
is hence characterized to be myopia, not farsightedness. The idea of
looking at an intermediate time horizon for agents�manipulations of in-
formation is more natural and more realistic, but more di¢ cult than
myopia and perfect foresight. [See Roberts (1987) for this point].
In the literature on the problem of incentives in planning procedures

with public goods, the myopic strategic behavior prevailed. Many pa-
pers imposed this behavioral hypothesis; i.e., myopia, on which the forgo-
ing discussions crucially depended, spawning numerous desirable results
in connection with the family of MDP Procedures. The aim of this
paper has been to examine the consequences of the assumption that in-
dividuals choose their strategies to maximize an instantaneous change
in utility function at each iteration along the procedure, as analyzed by
Sato (1983).
Also veri�ed is that the Generalized MDP Procedure can always keep

neutrality which is di¤erent from Champsaur and Laroque (1981) and
(1982), and Laroque and Rochet (1983). They analyzed the proper-
ties of the MDP Procedure under the non-myopic assumption. They
treated the case where each individual attempts to forecast the in�uence
of his/her announcement to the planning center over a predetermined
time horizon, and optimizes his/her responses accordingly. It is proved
that, if the time horizon is long enough, any noncooperative equilibrium
of intertemporal game attains an approximately Pareto optimal alloca-
tion. But at such an equilibrium, the in�uence of the center on the �nal
allocation is negligible, which entails non-neutrality of the procedure.
Their attempt is to bridge the gap between the local instantaneous game
and the global game, as was pointed out by Hammond (1979). Sato
(2012) aimed, however, to bridge the gap between the local game and
intertemporal game, by constructing a compromise of continuous and
discrete procedures: i.e., the piecewise linearized procedure that Sato
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presented.
The normative analysis of planning procedures has focused almost

exclusively upon their e¢ ciency and incentive facts. This paper has
proposed a concept of transversal super-equity in an economy with a
public good, where equity as well as e¢ ciency and local strategy proof-
ness are a slient dimension. The focus has been upon issues pertaining
to the performance characteristics of price-guided and quntity-guided
planning procedures. The methodology of this paper is chie�y based on
La¤ont and Rochet (1985). I have borrowed from their insightful work
in much of my analysis. The concept of transversal super-equity is con-
sisitent with the conditions already established for planning procedures.
For our purpose, the notion of super-equity must have been transformed
into our dynamic setting of planning procedures.
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