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Abstract

This paper studies the optimal design of a liability-sharing arrangement as an
infinitely repeated game. We construct a non-cooperative, 2-player model. The
active agent can take a costly, unobservable action to reduce the incidence of crisis.
Crisis is costly for both agents. When a crisis occurs, each agent decides unilaterally
how much to contribute mitigating it. For the one-shot game, when the avoidance
cost is too high relative to the expected loss of crisis for the active agent, the
first-best is not achievable, i.e., the active agent cannot be induced to put in effort
to minimize the incidence of crisis at any static Nash equilibrium. We show that
with the same stage-game environment, the first-best cannot be implemented as a
perfect public equilibrium (PPE) of the infinitely repeated game either. Instead, at
any constrained efficient PPE, the active agent “shirks” infinitely often, and when
crisis happens, the active agent is “bailed out” infinitely often. The frequencies of
crisis and bailout are endogenously determined at equilibrium. This result of the
welfare optimal equilibrium being characterized by recurrent crises and bailouts is
consistent with historical episodes of financial crises with varying frequency and
varied external responses for troubled institutions and countries in the real world.
We explore some comparative statics of the PPEs of the repeated game numerically.
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1 Introduction
This paper studies the optimal design of a cost-sharing arrangement among parties
where one member’s unobservable action may inflict negative externality on others in an
infinitely repeated setting. More specifically, we model an ongoing relationship among
parties (for example, countries in the Euro zone today) that jointly suffer the adverse
effects of financial crises that can result from imprudent behavior (for example, shirking
on effort to avoid crisis) by a member of the group. This mechanism design problem
has the typical tradeoff. Cost sharing among parties affected is necessary to induce
the ex-post socially optimal level of mitigating crises. However, if it is ex-ante efficient
for some member to make unobservable, costly investment to reduce the incidence of
crises, sharing the cost of mitigation might undermine that party’s incentive to do so.
This tradeoff is further complicated if the parties involved cannot directly subsidize one
another.

In episodes of financial failure, a “bailout” occurs when one institution (or country)
experiences some financial difficulties or turmoil that causes direct harm there, and
when other institutions contribute to the cost of “cleaning up” the mess (for example,
by recapitalizing a bank) because they suffer the externalities from the financial failure.
Historically, in episodes of financial turmoil, some troubled institutions have been bailed
out, and others have not. As a result, the fate of these troubled parties ranges from
complete failure/bankruptcy to full recovery.1 A good positive theory on crisis/bailout
needs to account for this very wide spectrum of outcomes. In view of the diverse
outcomes, and of the tension between ex-ante and ex-post efficiency, questions about
economic efficiency are especially salient in this context.

The problem has to be modeled as a game between the “crisis-inflicting” party
and the potential “help-to-clean-up” party. We construct a non-cooperative, 2-player
model where an active agent takes costly unobservable action to reduce the incidence
of a crisis, and whenever a crisis occurs, each agent decides unilaterally how much to
contribute mitigating it. The two players are assumed to have non-transferable utility.
That is, the two agents’ contribution can be used only to mitigate the crisis, and cannot
contribute to each other’s consumption. This is a moral hazard problem regarding the
potential action taken by the active agent, and the implied negative externality on the

1For example, while the majority of US companies sinks or floats on their own, the US government
has consistently bailed out large corporations in auto-mobile industry such as GM and Chrysler. Among
financial institutions, the Federal Reserve Bank gave a lot of assistance in recent economic crisis in the
form of loans and guarantees to large banks like Citigroup and Bank of America, while letting other
large financial institutions such as Lehman Brothers and Washington Mutual fail. Among sovereign
countries, US government helped Mexico to survive the 1994 Tequila crisis, while many countries
suffered huge losses during the 1997 Asian financial crisis with little help from the IMF. The current
ongoing Euro area crisis is yet to be fully resolved, with multiple rounds, varying magnitudes of bailouts
given to Greece, Italy, Spain, and all other potential problem countries.
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passive agent. The non-transferable-utility assumption rules out direct subsidy from the
passive agent to the active agent to pay his avoidance cost. The one-shot game can have
any combination of avoidance/mitigation patterns as the static Nash equilibrium. In
particular, when the avoidance cost is too high relative to the expected loss of crisis for
the active agent, he cannot be induced to take the socially desirable but costly avoidance
action at a static Nash equilibrium. As a result, crisis is more likely to happen. In
this context, we consider what can be accomplished with the infinite repetition of the
one-shot game.

We study the perfect public equilibria (PPE) of the repeated game. We show that in
the same environment where the active agent shirking is the only static Nash equilibrium
of the stage game, the first-best outcome which requires that he takes the avoidance
action every period cannot be implemented as a PPE of the infinitely repeated game
either. This is because in order to induce the active agent to take the costly avoidance
action, the expected mitigation cost for him in case of crisis must be even higher. With
both high avoidance cost and high mitigation cost, the active agent is better off not
doing anything. In order to compensate the active player for taking the avoidance action
sometimes, he has to be allowed to shirk other times, and be bailed out (pay less than
his share of the mitigation cost) when crises happen. Based on this intuition, we show
that at any constrained efficient PPE, the active agent shirks infinitely often, and when
crises happen, the active agent is bailed out infinitely often. As a result, crisis occurs
more often compared to the first-best outcome.

Given that the constrained efficient allocation is necessarily achieved with stochastic
shirking and bailout, we approximate the constrained efficient allocation with equilibrium
allocation of finite-state automaton representation of the original game. With numerical
examples, we show that a particular PPE, where the active agent shirks sometimes and is
bailed out other times, can yield a welfare level much higher than the repetition of static
Nash equilibrium, and the welfare loss relative to the allocation of the first-best varies
with the parameters of the model. The corresponding PPE characterized by recurrent
crises and bailouts is consistent with historical episodes of financial crises with varying
frequency and varied external responses for troubled institutions and countries in the real
world. As in Green and Porter (1984), such a phenomenon reflects an equilibrium that
passes recurrently through several distinct states, rather than independent randomization
by individual agents. It is a deliberate arrangement of using both occasional shirking
and bailout as mechanisms to incentivize good behavior of the active agent as often as
possible. We explore some comparative statics of the PPEs of the N-state automaton
numerically.

The argument given here is very different from those in majority of research on
financial crisis and bailout. Those papers take particular institutional design and
market structures very seriously, and explain crisis as a multiple equilibria phenomenon
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that can be generated via some kind of self-fulfilling belief or sunspots, e.g., Cole and
Kehoe (1996), Cole and Kehoe (2000). Here, the endogenously determined incidence
of crises and bailouts are necessary part of the solution to a high-cost liability-sharing
arrangement. Under the premise that the passive agent has to suffer the negative
externality generated by the crisis, the proposed scheme of stochastic crises and bailouts
help to lower the expected cost to both agents, where they coordinate with the aid of
optimally chosen number of pseudo states and transition probabilities between these
states. Explicitly introducing positive gain from the relationship (e.g., trade) would
help alleviate the incentive problem, but will not eliminate it entirely.

2 The one-shot game
There are two agents, the active agent 1, and the passive agent 2. The terminology
“active” versus “passive” reflects that player 2 will have no role in the first period of the
two-period stage game. There are two periods. In period 1, the active agent chooses
whether to take a costly action to avert a crisis, a ∈ A = {0, 1}. The cost of avoidance
is d > 0, and not taking the action costs nothing. Agent 1’s first period action a affects
the distribution of the state in period 2, ξ ∈ X = {0, 1}. If ξ = 1, a crisis occurs, and if
ξ = 0, there is no crisis. The probability of a crisis in period 2 is π1 ∈ (0, 1) if agent 1
takes the avoidance action (a = 1), and π0 ∈ (0, 1) otherwise (a = 0). That is,

Pr(ξ = 1 | a) = πa, and Pr(ξ = 0 | a) = 1− πa. (1)

We assume that π1 < π0 so that taking the avoidance action reduces the probability of
having a crisis.

In period 2, the state ξ is realized. If there is a crisis (ξ = 1), the two agents
simultaneously decide how much to contribute to mitigate it. Let mi denote agent i’s
contribution, mi ∈ M = R+. The crisis is mitigated if the total contribution of the
two agents m1 + m2 is no less than 1. Otherwise, each agent i suffers a loss ci due
to the crisis in addition to the cost of his contribution mi. If there is no crisis, the
two agents incur no loss due to crisis, but we still allow the agents to choose positive
contributions, which would be completely wasted since there is no crisis to mitigate.2

Figure 1 summarizes the structure of the game.
We are interested in studying the case where mitigation after a crisis is ex-post

efficient. So we impose the following assumption.

Assumption 1. For i = 1, 2, ci ∈ (0, 1), and c1 + c2 > 1.
2This is the non-transferable utility assumption. In section 6, we show that relaxing this assumption

would greatly reduce the difficulty of achieving better allocation in equilibrium.
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Figure 1: The one-shot game

The assumption implies that neither agent alone will be willing to mitigate the crisis,
but together they should, since the cost of mitigation, 1, is less than the total loss if the
crisis is not mitigated, c1 + c2.

2.1 Equilibrium
The structure of the game allows us to restrict attention to pure and public strategies
without loss of generality. Players have no use for randomization of the mitigation
action because they are risk neutral and M is convex. The active player has no reason
to randomize the avoidance action because it is the only action chosen at the first
stage. The only private information is the avoidance action of the active player, and
he finds no benefit from conditioning his choice on this information. We thus solve for
(pure-strategy, public-perfect) Nash equilibria.

Consider period 2 first. Let ui(ξ, m1, m2) denote agent i’s period-2 utility when the
state is ξ, and the two agents’ contributions are m1 and m2. When there is a crisis
(ξ = 1), the mitigation game is played. Agent i’s payoff is

ui(1, m1, m2) = −mi − ci I{m1+m2<1}. (2)

Let ρi(m−i) denote agent i’s response in a crisis state when the other agent’s contribution
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is m−i, ρi : M →M . Then agent i’s optimal response correspondence is

ρ∗i (m−i) =


0 if ci < 1−m−i
[0, 1−m−i] if ci = 1−m−i
1−m−i otherwise

. (3)

The fixed points of the product correspondence of the two agents’ optimal response corre-
spondences determines the Nash equilibria of the period-2 mitigation game, (m1(1), m2(1)).
By assumption 1, there are two types of period-2 equilibria when there is a crisis (ξ = 1):

• No-mitigation: neither agent contributes anything, mN
1 (1) = mN

2 (1) = 0. The
period-2 utility of agent i is then ui(1,mN

1 (1),mN
2 (1)) = −ci.

• Mitigation: the two agents jointly contribute 1 unit to mitigate the crisis, mM
1 (1) ∈

[1− c2, c1], mM
2 (1) = 1−mM

1 (1). The period-2 utility of agent i in this equilibrium
is then ui(1,mM

1 (1),mM
2 (1)) = −mM

i (1).

When there is no crisis (ξ = 0), there is no loss due to crisis, so period-2 utility of agent
i is

ui(0, m1, m2) = −mi. (4)

The optimal action is not to contribute anything. So at equilibrium, m1(0) = m2(0) = 0,
and period-2 utility of agent i is ui(0, m1(0),m2(0)) = 0.

Now consider agent 1’s period-1 problem of whether to take the avoidance action,
a ∈ A, assuming that the two agents are going to play their equilibrium strategies in
period 2. Let vi(a, m1, m2) denote the expected value of agent i at the beginning of
period 1 if agent 1 takes action a in period 1, and the strategy profile in period 2 is
(m1(ξ), m2(ξ))ξ∈X .

v1(a, m1, m2) =
∑
ξ∈X

Pr(ξ|a)u1(ξ, m1(ξ), m2(ξ))− ad. (5)

v2(a, m1, m2) =
∑
ξ∈X

Pr(ξ|a)u2(ξ, m1(ξ), m2(ξ)). (6)

Agent 1’s optimal period-1 action a depends on which of the period-2 equilibrium is to
be played in case of crisis. If no-mitigation equilibrium (mN

1 (1), mN
2 (1)) is anticipated,

then:

v1(a,mN
1 ,m

N
2 ) =

 −π
0c1 if a = 0

−d− π1c1 if a = 1
.
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and the optimal action aN is:

aN =


1 if c1 ≥ d̂

0 otherwise
, (7)

where d̂ is a rescale of the avoidance cost d adjusting by its impact on the probability of
a crisis,

d̂ ≡ d

π0 − π1 . (8)

By a similar argument, if a mitigation equilibrium (mM
1 (1), mM

2 (1)) is anticipated, then
the optimal action aM is:

aM =


1 if mM

1 (1) ≥ d̂

0 otherwise
. (9)

Putting the two-period analysis together, Table 1 summarizes all the equilibria of the
one-shot game for different parameter regions, which depend on the magnitude of the
adjusted cost of avoidance d̂ relative to c1 and 1− c2. Note that, by Assumption 1, none
of these regions is empty and they cover all possible cases. The table only specifies the
range of equilibrium values for agent 1’s contribution m1(1). Agent 2’s contribution is
given by m2(1) = 1−m1(1) for equilibria with mitigation, and m2(1) = 0, for equilibria
without mitigation. The table indicates two important results. First, regardless of
the parameter region, both mitigation and no-mitigation equilibrium always coexist.3

Second, every possible combination of avoidance and mitigation occurs in at least one
region.

2.2 Welfare comparison among coexisting equilibria
The last column of Table 1 lists the ex-ante expected total cost C at each equilibrium,
which includes the cost of the avoidance action, and the expected cost of mitigation
and/or the loss due to crisis if there is insufficient mitigation,

C = ad+
(
(1− a)π0 + aπ1

) [
m1 +m2 + (c1 + c2)I{m1+m2<1}

]
. (10)

3In each case, there is always a continuum of mitigation equilibrium where the two agents’ split of 1
unit of contribution varies over an interval. This is due to the assumption that the mitigation choices
are simultaneous. Other game form assumptions would yield a smaller set of equilibria.
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Table 1: Equilibria of the one-shot game
region parameter values a m1(1) mitigation/not ex-ante cost

I d̂ ≤ 1− c2 < c1
1 [1− c2, c1] yes d+ π1

1 0 no d+ π1(c1 + c2)

II 1− c2 < d̂ ≤ c1

1
[
d̂, c1

]
yes d+ π1

0
[
1− c2, d̂

]
yes π0

1 0 no d+ π1(c1 + c2)

III 1− c2 < c1 < d̂
0 [1− c2, c1] yes π0

0 0 no π0(c1 + c2)

We use this cost to discuss the welfare ranking of different coexisting equilibria. An
action profile is said to ex-ante dominate another one, if it has a lower expected total
cost.

We have assumed that when there is a crisis, it is less costly to mitigate than to
suffer the consequence (c1 + c2 > 1), i.e., ex-post mitigation dominates no-mitigation in
all parameter regions. In parameter region I, the cost of avoidance is low (d̂ ≤ 1− c2),
agent 1 takes the avoidance action in any equilibrium regardless of subsequent mitigation
decisions, and avoidance/mitigation dominates avoidance/no-mitigation ex-ante. In
parameter region II, the cost of avoidance is in the intermediate range (1− c2 < d̂ ≤ c1).
Among the three types of equilibria, avoidance/mitigation ex-ante dominates both the
no-avoidance/mitigation and the avoidance/no-mitigation equilibria. So in both regions,
the ex-ante efficient outcome can be achieved as an equilibrium outcome.

Parameter region III is more problematic. At both types of equilibrium, agent 1 does
not take the avoidance action. When d̂ ≥ 1, the no-avoidance/mitigation equilibrium
has the lower expected total cost than avoidance/mitigation, so it is ex-ante efficient.
When d̂ < 1, the first-best outcome requires that agent 1 takes the avoidance action,
which implies that the first-best outcome cannot be supported as an equilibrium. The
rest of the paper is concerned with whether and how more efficient outcome, other than
the static Nash, can be achieved in the repeated game in this parameter region.

3 The repeated game
Time is discrete, dates are indexed by t ∈ {1, 2, . . .}. At each date t, the two agents,
who have a common discount factor δ ∈ (0, 1), play the two-period stage game described
above. At the beginning of date t a payoff-irrelevant public signal θt ∈ Θ = [0, 1] is
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observed. These signals are i.i.d. U [0, 1]4. Agent 1 then decides whether to take the
avoidance action, at ∈ A. The state ξt ∈ X is then drawn independently according to
the distribution Pr(ξt | at), as given in (1). Both agents observe the realization of state
variable ξt before simultaneously deciding their respective contributions, (mt1, mt2) ∈
M ×M .

Denote the date-t public information by ht = (θt, ξt,mt1,mt2) ∈ H ≡ Θ×X×M×M ,
and let ht = (h1, . . . , ht) ∈ H t, where H0 = {∅} and H t = H t−1×H. The public history
at stage 1 of date t is (ht−1, θt) ∈ H t−1 ×Θ. The public history at stage 2 of date t is
(ht−1, θt, ξt) ∈ H t−1 ×Θ×X.

We focus on perfect Bayesian equilibria where both agents play pure and public
strategies. The structure of the game allows us to do this without loss of generality (see
Proposition 6 in Appendix C). Formally, a public strategy is a sequence of measurable
functions σ1 = {αt, µt1}∞t=1 for agent 1, and σ2 = {µt2}∞t=1 for agent 2, where αt : H t−1×
Θ→ A, and µti : H t−1×Θ×X →M , i = 1, 2. That is, at date t, given a public history
ht−1 and public signal θt, agent 1 takes the avoidance action αt(ht−1, θt). Then, given
the realization of ξt = 1, the two agents contribute (µt1(ht−1, θt, 1), µt2(ht−1, θt, 1)) to
mitigate crisis. As in the one-shot game, we assume that no contribution is made when
there is no crisis, i.e., µt1(ht−1, θt, 0) = µt2(ht−1, θt, 0) = 0.

Associated with strategy profile σ = (σ1, σ2) is a stochastic stream of payoff vectors,
which can be defined as the expected present discounted value of the continuation game af-
ter any history. Formally, at any date t ≥ 1, for any history ht−1 ∈ H t−1, let σ|ht−1 denote
the partial function obtained by restricting the domain of σ to histories that extend ht−1,
which represents the strategy profile induced by σ after the history ht−1. For any public
history ht−1 ∈ H t−1, any θt ∈ Θ, denote the expected discounted value for the two agents
associated to strategy profile σ|ht−1 by V (σ|ht−1 ; θt) = (V1(σ|ht−1 ; θt), V2(σ|ht−1 ; θt)),

Vi(σ|ht−1 ; θt) = (1− δ)E
[ ∞∑
τ=t

δτ−t vi
(
ατ , µ1τ , µ2τ

) ∣∣∣ ht−1, θt

]
(11)

where vi is the single period payoff function of agent i given by (5)–(6), and the
expectation is taken with respect to ξt and all future realization of {θτ , ξτ}∞τ=t+1.

Definition 1. A public strategy profile σ∗ = (α∗, µ∗1, µ∗2) is a perfect public equilibrium
(PPE) if and only if for any t ≥ 1:

(i) For any ht−1 ∈ H t−1, any θt ∈ Θ, and for any public strategy σ′1:

V1

(
σ∗1|ht−1 , σ∗2|ht−1 ; θt

)
≥ V1

(
σ′1, σ

∗
2|ht−1 ; θt

)
. (12)

4The signal θt is introduced to convexify the payoff set without explicitly considering randomized
strategy for agent 1’s action at.
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(ii) For any h = (ht−1, θt, ξt) ∈ H t−1 ×Θ×X and for any pair of public strategies σ′1
and σ′2:

(1− δ)u1

(
ξt, µ

∗
t1(h), µ∗t2(h)

)
+ δEV1

(
σ∗1|h∗ , σ∗2|h∗ ; θt+1

)
≥ (1− δ)u1

(
ξt, µ

′
t1(h), µ∗t2(h)

)
+ δEV1

(
σ′1|h′1 , σ

∗
2|h′1 ; θt+1

)
, (13)

(1− δ)u2

(
ξt, µ

∗
t1(h), µ∗t2(h)

)
+ δEV2

(
σ∗1|h∗ , σ∗2|h∗ ; θt+1

)
≥ (1− δ)u2

(
ξt, µ

∗
t1(h), µ′t2(h)

)
+ δEV2

(
σ∗1|h′2 , σ

′
2|h′2 ; θt+1

)
. (14)

where h∗ = (h, µ∗t1(h), µ∗t2(h)), h′1 = (h, µ′t1(h), µ∗t2(h)), and h′2 = (h, µ∗t1(h), µ′t2(h)).

Condition (12) states that, at the beginning of period t, agent 1’s continuation strategy
(α∗|ht−1 , µ∗1|ht−1) is optimal from period t onward after any history ht−1. Conditions (13)
and (14) state that at period t, after the state ξt is realized, both agents’ contribution
strategies at period t, (µ∗t1(h), µ∗t2(h)), and continuation strategies (α∗|h∗ , µ∗1|h∗ , µ∗2|h∗)
from period t+ 1 onward, are optimal, for any history h = (ht, θt, ξt).

Let V denote the set of PPE payoff vectors.

V =
{
V (σ)

∣∣∣ σ is a PPE
}
.

This set is non-empty since unconditional repetition of a static Nash equilibrium of the
stage game is a PPE, and we have shown that the stage game always has equilibria.
We show in Appendix C that the payoff set V is convex and compact and can be
characterized recursively using a modified version of the standard APS decomposition.
We use this recursive formulation in the proof of our main results.

As discussed in section 2.2, the first-best outcome can be achieved as an equilibrium
of the one-shot game whenever the adjusted cost of avoidance d̂ is either sufficiently low
or sufficiently high. When d̂ is low than c1, the private cost of a crisis together with
appropriate assigned mitigation cost can induce the active agent to take the avoidance
action. When d̂ is greater than 1, the social benefit of avoiding a crisis is smaller than
its cost. For the rest of the paper we focus on the case in which d̂ takes an intermediate
value so that the first-best is not achievable in the static one-shot game.

Assumption 2. c1 < d̂ < 1.

4 Optimal level of crises and bailouts
Under assumptions 1 and 2, the first-best requires the active agent to always take the
avoidance action, and that crises are always mitigated. However, this is not achievable
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at any the static Nash equilibria where the active agent do no take the avoidance action.
In this section, we study how and to which extent the active agent can be induced to
take some avoidance action in the repeated game. The first result is that the first-best
can never be attained: it is not possible to generate incentives for the active agent to
behave every period.

Given that the first-best is not possible, we then turn our attention to constrained
efficient allocation. We investigate the properties of those PPE that are constrained
efficient within the set of PPE. We find that, in any constrained efficient PPE, crisis are
always mitigated, and hence all the welfare loss arises from the impossibility that the
avoidance action is taken every period. Also, for sufficiently high discount factors, it is
possible to reduce the inefficiency of the static equilibrium by having the active agent
take the avoidance action sometimes. In order to do so, the passive agent has to bail
him out, in a precise sense described further ahead. Both avoidance and bailouts occur
infinitely often, and their optimal frequency is determined endogenously.

4.1 The impossibility of implementing the first-best
Under assumption 2, avoidance/mitigation is socially optimal, but agent 1 does not
take the avoidance action in any equilibrium of the static game since c1 < d̂. Can
avoidance/mitigation be sustained as a PPE of the repeated game? Unfortunately, the
answer is no.

Proposition 1. There is no PPE in which the avoidance action is taken at every period.

Proof. Let σ∗ = (α∗, µ∗1, µ∗2) be a PPE and fix a history (ht, θt) with α∗1t(ht, θt) = 1.
Define mi(ξ) = µ∗it(ht, θt, ξ), uξ = u1(ξ,m1(ξ),m2(ξ)) as in equation (2), V = V1(σ∗|ht,θt,)
as 1’s expected discounted payoff, and V ξ = V1(σ∗|ht,θt,ξ,m(ξ)) as the continuation values.
So that:

V = −(1− δ)d+ π1
(
δV 1 + (1− δ)u1

)
+ (1− π1)

(
δV 0 + (1− δ)u0

)
. (15)

For α∗(ht, θt) to be optimal, choosing a = 0 must be no better than a = 1, which implies:(
δV 1 + (1− δ)u1

)
≤
(
δV 0 + (1− δ)u0

)
− (1− δ)d̂. (16)

After ξ = 1 is realized, player 1 could guarantee himself a cost of not more than c1

for this period, and his minimax payoff −π0c1 from t+ 1 onwards. Hence, in order for
µ∗1t(ht, θt, ξ) to be optimal, it must be the case that:(

δV 1 + (1− δ)u1
)
≥ −(1− δ + π0δ)c1. (17)
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Combining both incentive constraints we have that:

δπ0d̂ ≥ −
(
δV 0 + (1− δ)u0

)
− (1− δ + π0δ)

(
c1 − d̂

)
. (18)

Substituting (15) in (16) and doing some algebra:

δπ0d̂ ≤
(

δ2

1− δ

)
V 0 −

(
δ

1− δ

)
V + δu0. (19)

Combining (18) and (19) and doing some more algebra we obtain:

V 0 ≥ V + γ, γ ≡ (1− δ + π0δ)
(

1− δ
δ

)(
d̂− c1

)
. (20)

Hence, we have established that whenever the active agent chooses a = 1 and there is
no crisis, his expected value must increase at least by a fixed factor γ. The assumption
d̂ > c1 guarantees that γ > 0. This implies that, if there is no crisis for n subsequent
periods and the active agent keeps choosing a = 1 with probability 1, then we must have

V n > V + nγ, (21)

where V n is agent 1’s expected discounted value at period t+n. Since the set of feasible
payoffs of agent 1 is bounded above by 0, it must be the case that after a long enough
history of no crisis agent 1 takes the non-avoidance action. Otherwise, V n would be
greater than 0. On the other hand, since π1, π0 ∈ (0, 1), any finite sequence of no crisis
occurs with positive probability. Therefore, taking the avoidance action at every period
with probability 1 cannot be part of a PPE.

The reason that full avoidance cannot be supported as a PPE when the cost of
avoidance is too high is informative. The expected discounted value for the active agent
V is a mixture of his expected value if there is crisis V 1 and his expected value if there is
no crisis V 0. The only way to generate incentives for avoidance is to guarantee that V 0

is sufficiently greater than V 1. On the other hand, the mitigation incentive constraint
implies that V 1 cannot be too low. As a result, whenever agent 1 chooses a = 1 and there
is no crisis, his continuation value must increase at least by a fixed amount. Therefore,
if there is no crisis for a sufficiently long period, the implied continuation value stops
being feasible.5

5It is crucial for this proposition that the avoidance action is not observable, see section 6.1. Hence,
this is a result of moral hazard and not of the structure of the payoffs.
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4.2 Efficient mitigation
It is never possible to have avoidance played on every period. However, except for very
low discount factors, there exist PPE in which the active agent sometimes takes the
avoidance action (Lemma 3). Since there is no static Nash equilibrium with avoidance,
incentives must be provided for some action at an equilibrium, for instance, punishing
the active agent after a crisis, or rewarding him if there is no crisis. There are two
possible ways to punish the active agent after a crisis: let him suffer the cost of the
crisis (no mitigation), or ask him to contribute more than necessary to mitigate the
crisis (money-burning). Our second result is that neither of these forms of punishment
schemes are optimal. In every constrained efficient PPE, whenever a crisis happens,
both agents contribute exactly as much as is needed to mitigate it.6

Proposition 2. In any constrained efficient PPE, crises are efficiently mitigated, that
is, µ1t(ht, θt, 1) + µ2t(ht, θt, 1) = 1 almost surely along the equilibrium path.

This result is very natural since both of these forms of punishment are ex-post
inefficient. However, the proof is far from trivial because, given that there is imperfect
monitoring, some degree of inefficiency ex-post could be necessary to generate incentives
ex-ante.7 In order to establish the result, we need to show that there are always better
ways to punish the active agent. That is, given a strategy profile that uses one of these
forms of punishment, we need to find continuation strategies which improve the payoff
to player 2 while generating exactly the same expected continuation payoff for player 1.

This is easy to do when either the total contributions are insufficient to mitigate the
crisis, or when both players make positive contributions. In such cases, it is enough to
rearrange the contributions in the current period. The difficult case is when player 2
does not contribute anything and player 1 contributes more than 1. It is then necessary
to change the continuation strategies from the next-period onward. The details of the
proof are in Appendix A.

4.3 Bailouts as an incentive mechanism for avoidance
The difficulty in inducing player 1 to take the avoidance action is that the avoidance
cost is too high for him to pay it on his own. The solution seems to be that agent
2 should help to pay it. If the two agents had transferable utility, we could consider
schemes in which agent 2 sometimes subsidizes agent 1.8 However, we have made the

6 We conjecture that a similar result holds when crises don’t happen. That is, µit(ht, θt, 0) = 0
almost surely along the equilibrium path. However, we don’t have a formal proof.

7This is a common feature of models with imperfect monitoring that can be traced back to Green
and Porter (1984).

8Section 6.2 shows that, if subsidies are allowed (agent 2 directly pay agent 1 in consumption goods),
and if both agents are sufficiently patient, then the first-best of avoidance/mitigation can be achieved.
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assumption that each agent’s contribution can be used only to mitigate crises, the only
way for agent 2 to compensate agent 1 is by sometimes paying more in mitigation cost
after a crisis has occurred. When this happens, we call it a ‘bailout’.

Definition 2. A bailout is the situation where a crisis occurs and the active party —
agent 1 — pays less than his crisis loss c1 in mitigation. In other words, we say that
there is a bailout if µ1t(ht, θt, 1) < c1 and µ1t(ht, θt, 1) + µ2t(ht, θt, 1) ≥ 1.

If agent 1 expects to be bailed out in the future, he may be willing to take the
avoidance action, at least in some instances. On the other hand, bailouts are the only
form of compensation available. And if agent 1 is not compensated then he has no
reason to choose avoidance. It follows that bailouts are necessary to induce avoidance.

Proposition 3. In any PPE where avoidance action is taken with positive probability,
bailout occurs with positive probability.

Proof. We will show that in a PPE in which there are no bailouts, the active agent
always takes the no-avoidance action almost surely. Consider a strategy profile with
no bailouts, i.e., such that for almost every history (ht, θt), either µ1t(ht, θt, 1) ≥ c1

or µ1t(ht, θt, 1) + µ2t(ht, θt, 1) < 1. This implies that v1(σt(ht, θt)) ≤ −d − π1c1 if
αt(ht, θt) = 1, and v1(σt(ht, θt)) ≤ −π0c1 if αt(ht, θt) = 0. Assumption 2 implies
that −d − π1c1 < −π0c1, and thus V1(σ) ≤ −π0c1, with strict inequality whenever
αt(ht, θt, ) = 1 for some history set of histories {ht} which is reached with positive
probability along the equilibrium path. Individual rationality requires V1(σ) ≥ −π0c1,
and thus it can be satisfied if and only if αt(ht, θt, ) = 0 almost surely along the
equilibrium path.

Proposition 3 shows that bailouts are necessary in order to support avoidance actions,
but it says nothing about efficiency. Assumption 2 implies only that more avoidance
reduces total expected cost, but this benefit could be outweighed by the cost of generating
incentives for it. This issue is addressed by the following proposition.

Proposition 4. There exists some δ∗ ∈ (0, 1) such that:

(i) If δ < δ∗, then every PPE (and therefore every constrained efficient PPE) has
avoidance played with probability zero at all periods.

(ii) If δ > δ∗, then every constrained efficient PPE has avoidance played infinitely
often, and bailouts happen infinitely often.

These results so far provide a relatively complete picture of efficient PPE. For low
discount factors, there is nothing to be done, and every PPE essentially reduces to
repetition of static Nash equilibria of the stage game. For higher discount factors, in
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every efficient PPE: crises are always mitigated, there exist both periods of avoidance
and periods of non avoidance infinitely often, and the active agent is bailed out infinitely
often. Hence the level of avoidance and bailouts are endogenously determined to generate
the right incentives that maximize efficiency. In the next section we investigate concrete
equilibria to further illustrate how bailouts help to generate incentives for avoidance.

The proof of Proposition 4 makes use of the three lemmas below. The proofs of
the lemmas are in Appendix B. Lemma 1 simply indicates that whenever it is possible
to have avoidance, it is possible to do it in a way that dominates the best static Nash
equilibria of the stage game in terms of total cost.

Lemma 1. If it is possible for agent 1 to choose the avoidance action with positive
probability at least once in at least one PPE, then there exists a PPE with total cost less
than π0, i.e. there exists (V1, V2) ∈ V such that V1 + V2 > −π0.

Lemma 2, is the crucial step of the proof. It states that, if it is possible to have
avoidance then, given any non-avoidance PPE, it is possible to improve the payoff of
player 2 without affecting the payoff of player 1. Since continuation values of efficient
PPE must always lay on the upper boundary of V, this implies that avoidance must
happen infinitely often. By Proposition 3, this implies that bailouts must happen
infinitely often as well.

Lemma 2. If there exists a PPE with total cost less than π0, then every PPE without
avoidance is Pareto dominated by a different PPE which increases the payoff of agent 2
while keeping the payoff of agent 1 unchanged, i.e. for every PPE σ such that αt(ht) = 0
almost surely, there exist (V1, V2) ∈ V such that V1 = V1(σ) and V2 > V2(σ).

Finally, lemma 3 shows that it is not possible to have avoidance when the discount
factor is very low, and it is possible to do so when it is very high. This, together with
the monotonicity of the set of PPE payoffs with respect to the discount factor, implies
the existence of the threshold δ∗ –strictly between 0 and 1– separating a region where
no avoidance is possible, from a region where avoidance and bailouts happen infinitely
often in all efficient equilibria.

Lemma 3. There exists numbers 0 < δ < δ̄ < 1 such that, if δ ≤ δ then there is no
avoidance in any PPE, and if δ > δ̄ then there exist PPE in which the avoidance action
is played with positive probability at least once.

Now we are in a position to prove Proposition 4.

Proof of Proposition 4. Let D ⊆ (0, 1) be the set of discount factors for which it is
possible to play avoidance. Lemma 3 implies that D 6= ∅. Lemma 1 implies that for
any δ ∈ D, there exits a PPE with total cost below π0. Since the set of PPE payoffs is
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monotone with respect to the discount factor, the same is true for every δ′ ≥ δ. Since
obtaining a cost below π0 requires avoidance, this implies that D is an interval.

Let δ∗ = inf D. We have established that (δ0, 1) ⊆ D. Lemma 3 implies that
0 < δ ≤ δ∗ ≤ δ̄ < 1. For the remainder of the proof fix any δ > δ∗ and let σ be a
constrained efficient PPE given δ.

Suppose towards a contradiction that there exists a set of histories which is reached
with positive probability after which there is no avoidance. For every history in the
set let σ′ be the continuation strategies. By Lemma 1 we know that the consequence
of Lemma 2 apply, and hence there exists some PPE σ′′ such that V1(σ′′) = V1(σ′)
and V2(σ′′) > V2(σ′). If we replace σ′ with σ′′ in every such history, all the incentive
constraints of previous periods are (weakly) relaxed. Hence we obtain a PPE which
Pareto dominates σ. Therefore we can conclude that if σ is constrained Efficient, there
is avoidance infinitely often almost surely. By Proposition 3, this implies that there are
also bailouts infinitely often almost surely.

5 Automaton: equilibrium with endogenously de-
termined crises and bailouts

In this section we approximate the second-best by considering PPEs where equilibrium
behavior can be described by finite-state automata. An automaton consists of four
components: states, an initial distribution over states, a transition rule, and a mapping
from states to actions. Let Ω be a finite set of states. States are mapped into actions by
α1 : Ω→ Ai and µi : Ω×X →M , i = 1, 2. Given the current state ωt, the active agent
takes the action α1(ωt), and, after a crisis state ξt is realized, the agents’ contributions
are given by µi(ωt, ξt). After actions are realized, the state ωt+1 for the next period is
randomly drawn according to the transition rule η : Ω ×X ×M ×M → ∆(Ω). The
initial state for period 1 is drawn according to the initial distribution η0 ∈ ∆(Ω).

An automaton, describes a profile of public strategies for the repeated game. In fact,
if we didn’t restrict attention to finite automata, every profile of public strategies could
be described by an automaton (Mailath and Samuelson, 2006, pp. 230). However, for
computational reasons, in all of our numerical exercises we restrict attention to finite
automata with a fixed upper bound on the number of states in Ω. In what follows, we
provide an example in the form of an automaton, where avoidance takes place at some
and not at other times.
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5.1 An illustrative example of equilibrium mechanism
Here, we illustrate how bailouts can be used to induce avoidance action and, thus,
improve efficiency. Consider the set of parameters

δ = 0.95, π1 = 0.2, π0 = 0.9, d = 0.5, c1 = 0.6, c2 = 0.5.

With this set of parameters, the adjusted avoidance cost is higher than the cost for
agent 1 and avoidance is socially efficient,

c1 = 0.6 < d̂ ≈ 0.7143 < 1.

The first-best has an expected total cost of 0.7, which is not obtainable in any PPE by
Proposition 1. The total cost that can be obtained in a static Nash equilibrium is 0.9,
which implies a welfare loss (relative to the first-best) of 28.57%.

ω1 : a m1 m2
1 0.61 0.39

ω2 : a m1 m2
1 0.00 1.00

ω3 : a m1 m2
0 0.00 1.00

1.00 0.81

0.191.00

0.68

0.32

No-CrisisCrisis

0.13 0.74

0.87 0.26

Figure 2: Automaton

Figure 2 describes a PPE which minimizes the total expected long-run cost among
all PPEs that can be described by a 4-state automata, with one state being the minmax
equilibrium. The equilibrium works as follows. Agents start in state ω1, where the
strategy profile is (a,m1,m2) = (1, 0.61, 0.39). In this state, agent 1 is supposed to take
the avoidance action, but has no private incentives to do so since c1 = 0.6 < d̂ ≈ 0.7143.
To generate incentives, when there is no crisis, the state switches to ω2 with probability
0.19. This is a better state for agent 1 than ω1 since his contribution in mitigating crisis
is 0.00 instead of 0.61. In ω2 the strategy profile is (1, 0.00, 1.00). Again, agent 1 is
supposed to take the avoidance action, but he needs incentive to do so. This time, to
generate incentives, when there is no crisis, the state becomes ω3 with probability 0.32,
which is a better state for agent 1 than ω2 because his contribution in mitigating crisis
is the same but he does not need to avoid crisis. There is a fourth state ω4, which is
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not in the figure, with strategy profile of non-avoidance/no-mitigation (the minmax
equilibrium). This state is out of the equilibrium path and works as a punishment state
in case of a detectable deviation.

Table 2: Summary statistics of the sample PPE

State ω Invariant
distribution u1(ω) u2(ω) V1(ω) V2(ω) Welfare Welfare

loss

ω1 0.50 −0.622 −0.078 −0.539 −0.177 −0.748 2.23%
ω2 0.38 −0.500 −0.200 −0.478 −0.250 −0.727 3.87%
ω3 0.12 −0.000 −0.900 −0.420 −0.328 −0.716 6.86%

LRA − −0.501 −0.222 −0.501 −0.222 −0.724 3.41%

Notes: LRA refers to the long run averages, which correspond to the expected values evaluated
using the invariant distribution. ui(ω) denotes agent i’s expected payoff for the current period
when the state is ω. Vi(ω) denotes agent i’s total discounted expected payoff when the current
state is ω.

Although this PPE may not be in the Pareto frontier, it provides a lower bound on
what can be achieved by a constrained efficient allocation. In state ω1, the expected
discounted total cost is 0.748, which is only 2.23% greater than the minimum feasible
one 0.7. Furthermore, in states ω2 and ω3, agent 1 contributes m0 = 0 to mitigate the
crisis, rather than 0.6 — his loss if there is no mitigation. By our earlier definition,
this is a bailout. On average, crisis occurs 28.4% of the time, compared to 20% at the
first-best. When crisis does happen, bailout occurs 70.3% of the time.

Player 1 takes the avoidance action in all states except for ω3, and, if a crisis occurs,
he is bailed out in all states except for ω1. In state ω1, plater 1’s discounted expected
payoff is close to his minimax payoff, which is −π0c1 = −0.54. Notice that all transitions
happen from one state to the immediate follower. Also, the probability of moving to a
state preferred by player 1 is always higher when there is no crisis. Hence, the automata
is reminiscent of the revision strategies used in Rubinstein and Yaari (1983) and Radner
(1985). If there is no crisis, player 1 is rewarded by moving into states in which he does
not have to take the avoidance action and is bailed out. Otherwise, he is punished by
moving into states in which he has to take the avoidance action and pay a high share of
the mitigation cost. Similar patterns are observed with different specifications of payoffs,
and different bounds on the number of states.

5.2 Comparative statics
The equilibrium displayed in Figure 2 illustrates how bailouts can be used in order to
induce avoidance in equilibrium. In this subsection we study how properties of this
equilibrium change with key parameters of the model: the avoidance cost, d, the private
costs of non-mitigated crisis, (c1, c2), and the probabilities of crises, (π0, π1). For each
set of parameters we found the PPE which minimizes the total discounted long-run
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cost among 6 states automata. Then we compare the implied long run probabilities of
avoidance, crisis and bailouts, as well as the long run average cost of avoidance and the
agents’ mitigation payments.

Table 3 displays features of the equilibrium outcome for different values of the
avoidance cost d. As one could expect, when the avoidance cost increases, avoidance
action is taken less frequently and, therefore, crisis happens more often. The average
avoidance cost (column 5) is non-monotone, reflecting the more costly avoidance action
is taken less often. The incidence of bailouts (column 4) is non-monotone, so is agent
1’s mitigation cost (column 6). These changes reflect the structure of the equilibrium.
Bailouts are the mechanism by which agent 2 compensates agent 1 for bearing the
avoidance cost alone. As d increases the compensation needed is higher in order to
generate higher incentives for avoidance action to be taken.

Table 3: δ = 0.9, π1 = 0.2, π0 = 0.9, c1 = 0.6, c2 = 0.5

d P(a = 1) P(ξ = 1) P(m1 < c1) E(d) E(m1) E(m2) Expected
Total Cost2

0.45 0.9569 0.2302 0.4647 0.4306 0.0784 0.1518 101.66%
0.50 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08%
0.55 0.7598 0.3682 0.8942 0.4179 0.0182 0.3500 104.81%
0.60 0.7115 0.4019 0.9301 0.4269 0.0143 0.3877 103.61%
0.60 0.6851 0.4204 0.8727 0.4453 0.0227 0.3977 101.85%

Note: The probabilities and expectations are evaluated using the implied invariant distribution.
2 Expressed as percentage of the first-best expected total cost.

Table 4 displays features of the equilibrium outcome for different values of (c1, c2).
When c1 and c2 increases, both agents’ min max payoff decreases. The impact of c1 on
the equilibrium outcome is substantial. Increasing c1 from 0.55 to 0.65 reduces long run
average cost from about 106.4% to 101.8% of the first-best; the incidence of crisis is
reduced by approximately one third (from 0.36 to 0.24); and bailouts is reduced to 60%
of the time from 89%. Agent’s 2 private cost of crisis, c2, has a very small effect on the
equilibrium outcome, since he is a passive agent, with no unobservable actions.

Table 5 displays the long run expected total cost above the first-best for different
combinations of (π0, π1). The other parameter are set to δ = 0.95, d = 0.5, c1 = 0.6 and
c2 = 0.5. The cells with symbol “−” represents the cases where the parameters do not
satisfy assumption 2. From section 2, we know that the first-best is achieved in the
static game when c1 ≥ d̂ = d/(π0 − π1). When d̂ ≥ 1, non-avoidance is optimal and
the first-best is also achieved in the static game by non-avoidance/mitigation. These
possibilities are represented in the left lower corner and right higher corner of Table 5.
The effect of (π0, π1) on the welfare cost is not uniform. Combinations of (π0, π1), with
d̂ either closer to c1 or 1, lead to lower cost. This means that sometimes decreasing
π0 reduces the welfare cost, sometimes increasing π0 reduces the welfare cost. The
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Table 4: δ = 0.9, π1 = 0.2, π0 = 0.9, d = 0.5

c1 c2 P(a = 1) P(ξ = 1) P(m1 < c1) E(d) E(m1) E(m2) Expected
Total Cost2

0.55 0.5 0.7763 0.3566 0.8870 0.3882 0.0177 0.3388 106.39%
0.7 0.7729 0.3590 0.8875 0.3864 0.0176 0.3414 106.49%

0.60 0.5 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08%
0.7 0.8529 0.3029 0.7119 0.4265 0.0391 0.2638 104.20%

0.65 0.5 0.9363 0.2446 0.6136 0.4681 0.0655 0.1791 101.82%
0.7 0.9349 0.2456 0.5420 0.4675 0.0722 0.1733 101.86%

Note: The probabilities and expectations are evaluated using the implied invariant distribution.
2 Expressed as percentage of the first-best expected total cost.

same is true for π1. On the other hand, for combinations of (π0, π1) with the same
d̂ (i.e. π0 − π1 constant), higher π0 and π1 always lead to a lower welfare cost. The
interpretation of this results is not simple. One could think that higher π1 means that
avoidance is less effective in preventing crisis, which could imply a higher cost, but this
is not true. The correct measure is π0− π1, how much the probability of crisis decreases
by the avoidance action. With π0 − π1 hold constant, the only impact is of increasing
π0. Higher π0 implies that the min max utility of agent 1 is lower, hence, it is easier to
generate incentives for avoidance.

Table 5: Total cost above the first-best (%)1

π1 π0 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0.10 3.25 5.71 8.49 9.05 8.00 2.94 −
0.15 − 2.70 4.65 6.46 6.59 4.41 1.28
0.20 − − 2.20 3.68 4.67 4.54 2.74
0.25 − − − 1.75 2.89 3.30 2.89
0.30 − − − − 1.38 2.19 2.26
1 Long run average as percentage of the first-best.

Table 6 displays features of the equilibrium outcome for different values of the
discount rate δ. As one could expect, lower δ is associated with lower welfare. Increasing
δ from 0.6 to 0.9 decreases the total cost in about 4% of the first-best. This pattern
reflects that when δ is high agents are more willing to cooperate since they care more
about punishments in the future.

6 Alternative mechanisms
We have shown that the first-best cannot be achieved as a PPE of the repeated game,
and that every constrained efficient PPE has bailouts infinitely often. In this section we
show that these results depend crucially on the assumptions that the avoidance action
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Table 6: π1 = 0.2, π0 = 0.9, c1 = 0.6, c2 = 0.5, d = 0.5

δ P(a = 1) P(ξ = 1) P(m1 < c1) E(d) E(m1) E(m2) Expected
Total Cost2

0.6 0.7111 0.4022 0.5978 0.3555 0.1063 0.2960 108.25%
0.7 0.7630 0.3659 0.8345 0.3815 0.0636 0.3023 106.77%
0.8 0.7979 0.3415 0.7491 0.3989 0.0444 0.2970 105.78%
0.9 0.8571 0.3000 0.7937 0.4285 0.0340 0.2660 104.08%

Note: The probabilities and expectations are evaluated using the implied invariant distribution.
2 Expressed as percentage of the first-best expected total cost.

is not observable, and that the only way to compensate the active agent is through
mitigation. In particular, we consider two alternative models, one in which the avoidance
action is perfectly observed, and one in which the passive agent can directly subsidize
the active agent. In both cases, when agents are sufficiently patient, there is a PPE
which achieves the first-best.

6.1 The avoidance action is observable
Suppose that a is perfectly observable, so that mitigation contributions and continuation
strategies can depend on both the realization of the crisis state and the action taken by
the active player. Consider the grim trigger strategy profile described as follows. Along
the equilibrium path, active agent always chooses a = 1, and the agents contribute m2

and m1 = 1−m2 if there is a crisis and 0 otherwise. If there is any deviation, then the
active agent chooses a = 0 forever and both agents never again make positive mitigation
contributions.

We can show that for sufficiently high discount factor, there exists one such grim
trigger strategy which is a PPE. Since there is always avoidance and mitigation along
the equilibrium path, this strategy profile implements the first-best.

The single-deviation principle still applies, and hence it suffices to search for deviations
at a single period. The strategies after a deviation are repetition of a static Nash
equilibrium and thus constitute a PPE. Along the equilibrium path, it is optimal for
the active agent to choose the avoidance action if and only if:

− (d+ π1m1) ≥ −π0c1. (22)

The mitigation incentive constraint for player 1 is:

− (1− δ)m1 − δ(d+ π1m1) ≥ −(1− δ)c1 − δπ0c1, (23)
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and for player 2 it is:

− (1− δ)m2 − δπ1m2 ≥ −(1− δ)c2 − δπ0c2. (24)

The mitigation constraint for player 3 is satisfied if and only if:

m2 ≤
(

1− δ + δπ0

1− δ + δπ1

)
c2 (25)

Hence, we can choose m2 as to satisfy this condition with equality, and incentives for
player 2 are automatically satisfied. Then, using the fact that m1 +m2 = 1, we have
that:

m1 = 1−
(

1− δ + δπ0

1− δ + δπ1

)
c2 < 1− c2 < c1 (26)

This implies that c1 − m1 > 0, and thus, after some simple algebra, the mitigation
constraint for 1 is satisfied whenever the avoidance constraint is satisfied. This implies
that the proposed strategy profile is a PPE if and only if:

d+ π1 − π1
(

1− δ + δπ0

1− δ + δπ1

)
c2 ≤ π0c1 (27)

Which, after some algebra, is satisfied if and only if:

δ ≥ d+ π1(1− c2)− π0c1

d+ π1(1− c2)− π0c1 + π1(d+ π0(c1 + c2)− π1) (28)

6.2 Monetary transfers
Up to now, we have assumed that the two agents have non-transferable utility. Specifi-
cally, by (2), (4), (5) and (6), each period if agent 1 takes the avoidance action, he has
to pay the cost d by himself. If there is a crisis, the two agents’ contributions m1 and
m2 are only for mitigation, and if there is no crisis, any positive contribution by the
two agents is wasted. Suppose we relax this assumption by allowing agents to make
transfer to each other when there is no crisis. That is, at any date t, after any history
ht, when there is no crisis, if agent i makes strictly positive contribution µti(ht, 0), it
goes to agent−i for consumption.

Now consider the following strategy profile. For any t ≥ 1, any ht ∈ H t−1 on the
equilibrium path,

α(ht) = 1,
µt1(ht, 1) = m1, µt2(ht, 1) = 1−m1 (29)
µt1(ht, 0) = 0, µt2(ht, 0) = b
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where m1 ≥ 0, and b ≥ 0 will be specified later. That is, agent 1 always takes the
avoidance action, and contributes m1 when there is a crisis, and agent 2 compensates
agent 1 with b units of consumption when there is no crisis. The transfer b can be
viewed as the subsidy to agent 1 from agent 2 in no-crisis time. In case of a detectable
deviation, the agents switch to play the one-shot Nash equilibrium with no-avoidance
and no mitigation forever. This strategy profile implies the following discounted expected
lifetime utility for the two agents,

V1 = −(d+ π1m1) + (1− π1)b,
V2 = −π1(1−m1)− (1− π1)b

For the strategy profile (α, µ1, µ2) described to be an equilibrium strategy, agent 1’s
payoff V1 has to satisfy the following incentive constraints,

−d− π1m1 + (1− π1)b ≥ −π0m1 + (1− π0)b (30)
−(1− δ)m1 + δV1 ≥ −(1− δ)c1 − δπ0c1 (31)

and agent 2’s payoff V2 has to satisfy the following incentive constraints,

−(1− δ)b+ δV2 ≥ − δπ0c2 (32)
−(1− δ)(1−m1) + δV2 ≥ − (1− δ)c2 − δπ0c2 (33)

(m1, b) can be chosen such that all incentive constraints (30)–(33) are satisfied if δ is
sufficient high. In particular, let

m1 = π0c1, b = d̂− π0c1 (34)

That is, in crisis time agent 1 contributes π0c1, and in no-crisis time agent 2 compensates
agent 1 exactly the amount that makes him indifferent between avoidance and non-
avoidance action. At this (m1, b), all incentive constraints (30)–(33) are satisfied for high
δ, hence the corresponding strategy implements avoidance/mitigation as an equilibrium
of the repeated game.

This subsidy in no-crisis-time scheme is simple theoretically, but may not be easy
to implement in reality. For example, it might be difficult to justify paying Greece’s
government every period—subsidy in normal time and mitigation in crisis time—to the
public!
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Appendix A. Proof of proposition 2
Crises are mitigated. First we show that in all constrained efficient PPE crises are
mitigated, i.e., µ1t(ht, 1) + µ2t(ht, 1) ≥ 1, almost surely along the equilibrium path. To
see this, let σ∗ be a PPE such that µ∗1t(ht, 1) +µ∗2t(ht, 1) < 1 for every history ht in some
set of histories {ht} reached with positive probability. Consider the alternative strategy
profile σ′ with µ′1t(ht, 1) = µ∗1t(ht, 1) + c1 and µ′2t(ht, 1) = max{0, 1− µ′1t(ht, 1)} for all
such histories, and which coincides wit σ∗ everywhere else. We claim that σ′ is also a
PPE and Pareto dominates σ∗.

Notice that the cost for player 1 according to σ′ and σ∗ coincide in every period
after any history. The cost for 2 is also the same for every period and history other
than ht. If there is a crisis in period t and given ht, the cost for 2 corresponding to σ∗ is
−µ∗2t(ht, 1)− c2, and according to σ′ it is:

−µ′2t(ht, 1) = −max{0, 1− µ′1t(ht, 1)} ≤ −max{0, 1− c1} < −c2 ≤ −c2 − µ∗2t(ht, 1).

This implies that σ′ Pareto dominates σ∗, and that, in order to verify that σ′ is an
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equilibrium, we only need to check that there are no profitable deviations after (ht, 1).
For 2 there are no profitable deviations because µ′2t(ht, 1) is a static best response to

µ′1t(ht, 1). For 1 there are two possibilities. If µ′2t(ht, 1) > 0 then µ′1t(ht, 1) is already
a static best response to µ′2t(ht, 1). If µ′2t(ht, 1) = 0, then the best possible deviations
where also available given σ∗. Since σ∗ is an equilibrium, then so is σ′.

No excessive mitigation. Now we will show that there is no money burning after
a crises occurred in any constrained efficient PPE, i.e., µ1t(ht, 1) + µ2t(ht, 1) ≤ 1 almost
surely along the equilibrium path. Let σ∗ be a PPE such that µ1t(ht, 1) + µ2t(ht, 1) > 1
after a set of positive histories {ht} that is reached with positive probability. Fix any
such history ht and let σ∗∗ = σ∗|ht. Further ahead, we will show that there exists some
V ′ ∈ V such that V ′1 = V1(σ∗∗) and V ′2 > V2(σ∗∗). Now consider the alternative strategy
profile σ′ that plays according to σ∗ before any history in {ht} is reached, but after one
such history ht is reached, it switches to the strategy profile which generates V ′. Since
the payoffs for player 1 remain unchanged, and the payoffs for player 2 are increased, σ′

is also a PPE and it Pareto dominates σ∗.
It remains to show that, given σ∗∗, there exists some V ′ ∈ V such that V ′1 = V1(σ∗∗)

and V ′2 > V2(σ∗∗). For that purpose we use the APS decomposition. From proposition 5,
it follows that V ∈ V if and only if there exists an action profile (a, (mξ

i )), and a profile
of continuation values W ξ = (W ξ

i )i∈I ∈ V satisfying mitigation and avoidance incentive
constraints, and such that V = (1− δ)u(a,m1,m2) + δw. Notice that we can write:

Vi = −(1− δ)ad+ πa
[
δW 1

i − (1− δ)m1
i

]
+ (1− πa)

[
δW 0

i − (1− δ)m0
i

]
.

Since mitigation deviations are observable they can be punished radically and hence
the mitigation constraints can be written as:

−(1− δ)m1
i + δW 1

i ≥ −(1− δ + δπ0)ci, and − (1− δ)m0
i + δW 0

i ≥ −δπ0ci.

If a = 1, then the avoidance constraint can be written as:
[
δW 0

1 − (1− δ)m0
1

]
−
[
δW 1

1 − (1− δ)m1
1

]
≥ (1− δ)d̂,

and if a = 0 the only difference is that the sign of the inequality must be reversed. The
thing to notice here is that both the total expected discounted value and the incentive
constraints, only depend on δW ξ

i − (1− δ)mξ
i .

Now let a = α∗∗1 (∅) and mξ
i = µ∗∗i1 (∅, ξ) denote the profile of first period strategies.

And let wξi = Vi(σ∗∗|ξ, σ∗1(ξ)) denote the equilibrium continuation values.
First suppose that m1

2 > 0 or m0
2 > 0, then it suffices to replace with m̃1

2 =
max{0, 1−m1

1}. Hence for the rest of the proof we assume that m1
1 > 1 and player 2
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doesn’t make any contributions. Since the crisis is mitigated this implies that u2 = 0 > V2,
and, consequently:

V2 > W2 ≥ min{W 1
2 ,W

0
2 }. (35)

We will use this fact to construct new continuation values that support the desired
outcomes. The construction depends on three different cases.

The first case is that both m1
1 > 1 and m0

1 > 0. This gives us freedom to adjust the
contribution of player 1 independently of ξ. Let ξ be a crisis state such that V2 > W ξ

2 ,
and consider the alternative strategy profile obtained by setting:

W̃ ξ = (1− ε)W ξ + εV ∈ V , and m̃ξ
1 = mξ

1 + δε

1− δ (V1 −W ξ
1 ). (36)

Simple algebra shows that:

(1− δ)mξ
1 + δW ξ

1 = (1− δ)m̃ξ
1 + δW̃ ξ

1 . (37)

which implies that neither the expected payoff nor the incentives changes for player 1.
However, the continuation value for player 2 has improved.

The second case is when m0
1 = 0, and a = 1. In this case, the fact that m1

1 > 1 > d̂ =
d̂+m0

1 implies that incentives won’t change if we set W̃ ξ = W . After this transformation,
we know that u2 > V2 > W = W ξ

2 for both ξ, and the previous transformation with
ξ = 1 does the trick.

Finally, suppose that m0
1 = 0, and a = 0. If V2 > W 1

2 then the previous trans-
formation with ξ = 1 works. Since we need m̃0

1 ≥ 0 = m0
1, applying the previous

transformation for ξ = 0 is only feasible if and only if V1 ≥ W 0
1 . Hence we only need to

worry about the case when W 0
1 > V1 and W 1

2 ≥ V2.
What we can do here is try to change W 0 and m1

1 in such a way that V1 is preserved
and incentives are preserved. Moving W 0

1 towards V1 makes player 1 worse off, hence, to
preserve 1’s payoffs we would need to make him better off by reducing m1

1 Reducing m1
1

does not affect the mitigation constraint, and makes avoiding the crisis less important
for player 1, hence incentives are preserved. Hence in this last sub-case it suffices to set
m̃1

1 so that:

m̃1
1 = m1

1 −
δ(1− π0)ε
(1− δ)π0 (W 0

1 − V1). (38)

Which implies that (1− δ)∆u = −δ∆W1 and thus ∆V1 = 0
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Appendix B. Missing steps in proof of proposition 4
We start with some notation and preliminaries. Throughout the proof we only use
strategy profiles with efficient mitigation, i.e. strategy profiles such that µ1t(ht, 0) =
µ2t(ht, 0) = 0 and µ1t(ht, 1) + µ2t(ht, 1) = 1.9 A strategy profile for the pure game
without money burning can be described by a tuple (a,m1,m2) where mi represents
i’s contribution in the event of a crisis. We use the notation 〈a,m1,m2〉 to denote the
strategy of the repeated game which consists of repeating (a,m1,m2) after any arbitrary
history. Notice that 〈0,m1, 1−m1〉 is a PPE as long as m1 ∈ [1− c2, c1].

Given a strategy profile σ = (α, µ1, µ2), in order to analyze the incentive constraints
at period t given ht, we use the notation mi = µit(ht, 1) to denote the mitigation
contributions if there is a crisis at period t, and V ξ

i = Vi(σ|ht,ξ) for the continuation
values. Also, we only consider strategies which go to the minimax equilibrium 〈0, 0, 0〉
after any observable deviation. With this in mind, and with mitigation and no money
burning, the incentive constraints for mitigation if mi > 0 can be written as:

−(1− δ)mi + δV 1
i ≥ −(1− δ + δπ0)ci (39)

If a = 1, then the incentive constraint for avoidance can be written as:

δ(V 0
1 − V 1

1 ) ≥ (1− δ)(d̂−m1) (40)

Proof of lemma 1. Suppose that σ is a PPE and after some history we have αt(ht) = 1.
There are two possibilities, if the continuation values are such that either V 0

1 +V 0
2 > −π0

or V 1
1 + V 1

2 > −π0 then the continuation strategies satisfy the conclusion of the lemma
and we are done. Otherwise, we must have V 0

1 + V 0
2 ≤ −π0 and V 1

1 + V 1
2 ≤ −π0.

This implies that V 1 and V 0 can be achieved by some strategy profiles 〈0,m0
1,m

0
2〉

and 〈0,m1
1,m

1
2〉 respectively, i.e. we must have V ξ

i = −π0mξ
i for i = 1, 2 and ξ = 0, 1.

Also, since we are trying to minimize total cost and increasing the payoff of agent 2
only relaxes the incentive constraints, we can assume without loss of generality that
m2 = 1−m1, and mξ

2 = 1−mξ
1. Substituting in (39) and (40), the incentive constraints

for agent 1 at period t given ht yield:

(1− δ)m1 + δπ0m1
1 ≥ (1− δ)d̂+ δπ0m0

1
(1− δ)m1 + δπ0m1

1 ≤ (1− δ + δπ0)c1

 ⇒ (1− δ)d̂+ δπ0m0
1 ≤ (1− δ + δπ0)c1

Individual rationality requires that V 0
2 = −π0(1−m0

1) ≥ −π0c2, which in turn implies
9We don’t change the game as to preclude the possibility of burning money or no-mitigation. We

simply don’t use such strategies in our constructions.
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that m0
1 ≥ 1− c2 and thus:

(1− δ)d̂+ δπ0(1− c2) ≤ (1− δ + δπ0)c1

After some simple algebra, this implies that δ ≥ δ and therefore, by Lemma 3, σ0 is a PPE
and (V1(σ0), V2(σ0)) ∈ V . Finally, notice that V1(σ0)+V2(σ0) = −(1−δ)(d+π1)−δπ0 >

−π0, where the inequality follows because assumption 2 implies that d+ π1 < π0.

Proof of lemma 2. We will show that there exist two PPE σ1 and σ2 such that V1(σ1) =
−π0c1 and V2(σ1) > −π0(1 − c1), and V1(σ2) > −π0(1 − c2) and V2(σ2) = −π0c2.
Now consider any m1 ∈ [1 − c2, c1] and the strategy profile σ = 〈0,m1, 1 −m1〉. The
corresponding payoff vector is Vi(σ) = (−π0m1,−π0(1−m1)). Since 1− c2 ≤ m1 ≤ c1,
it follows that V1(σ1) = −π0c1 ≤ −π0m1 ≤ −π0(1 − c2) < V1(σ2), and hence we can
write V1(σ) = λV1(σ1) + (1− λ)V1(σ2) with λ ∈ (0, 1]. Now consider the strategy profile
σ̃ that plays σ1 with probability λ and σ2 with probability (1− λ). By construction we
have that V1(σ̃) = V1(σ). Also we know that V1(σ̃) + V2(σ̃) > −π0 = V1(σ) + V2(σ), and
therefore V2(σ̃) > V2(σ). Hence it only remains to show the existence of σ1 and σ2.

Let σ∗ be a PPE with total expected discounted cost less than π0, i.e. such that
V1(σ∗) + V2(σ∗) > −π0. Individual rationality implies that Vi(σ0) ≥ −π0ci for i = 1, 2,
and we assume that both the inequalities are strict (the proof can be easily adapted
to accommodate the general case). Hence we can write V1(σ∗) = −π0(m1 −∆1) and
V2(σ∗) = −π0(1 −m1 −∆2), for some m1 ∈ [1 − c2, c1] and ∆1,∆2 > 0. Also, notice
that by mixing σ∗ with 〈0,m1, 1−m1〉 we obtain a new PPE with payoffs between those
of σ∗ and 〈0,m1, 1−m1〉. Hence we can assume without loss of generality that ∆1,∆2

are arbitrarily small.
For ε ∈ (0, 1− c1), consider the strategy profile σε defined as follows:

• σε1 = (0, c1 + ε, 1− c1 − ε)

• It ξ1 = 1 then σεt = σ1
t−1 for all t > 1

• It ξ1 = 0 then σεt = (0, 1− c2, c2) for all t > 1

The continuation strategies after period 1 are PPE. In period 1, agent 2 plays a static
best response, and his contributions do not affect the continuation value. Hence we
only need to check the incentives for agent 1 in period 1. The corresponding mitigation
constraint (39) can be written as:

− (1− δ)(c1 + ε)− δπ0(m1 −∆1) ≥ −(1− δ)c1 − δπ0c1

⇔ ε ≤ ε∗ ≡
(

δ

1− δ

)
π0(∆1 + c1 −m1) > 0
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The corresponding avoidance constraint for α1 = 0 can be written as the opposite of
(40):

δ(V 0
1 − V 1

1 ) = −δπ0(m1 −∆1) + δπ0(1− c2) ≤ (1− δ)(d̂−m1) (41)

Using the fact that m1 ∈ [1− c2, c1], it is straightforward to verify that:

δ(V 0
1 − V 1

1 ) ≤ δπ0∆1 ∧ (1− δ)(d̂−m1) ≥ (1− δ)(d̂− c1)

Hence, a sufficient condition in order to satisfy the avoidance constraint (41) is that:

δπ0∆1 ≤ (1− δ)(d̂− c1) ⇔ D1 ≤
(1− δ)(d̂− c1)

δπ0 > 0

which can be satisfied because we have already established that we can assume without
loss of generality that ∆1 is small enough. Hence σ1 = σε

∗ is a PPE. The corresponding
payoff for player 1 is:

V2(σ1) =π0
[
− (1− δ)(c1 + ε∗)− δπ0(m1 −∆1)

]
+ (1− π0)

[
− δπ0c1

]
= −π0c1

Finally, since the total cost of σ∗ is less than π0, it follows that so is the total cost of σ1

and therefore:

V2(σ1) > −π0 − V1(σ∗) = −π0 + π0c1 = −π0(1− c1)

Hence σ1 is a PPE satisfying the desired properties.
The proof for σ2 is almost analogous. The only difference is that the relevant

avoidance constraint in the construction can also be satisfied when δ is low enough. This
is not a problem because it can be satisfied whenever δ ≤ δ̄ (and in particular when
δ = δ̄ the conditions of the Lemma are also satisfied (by lemmas 3 and 1)). Since the set
of equilibrium payoffs is monotone with respect to δ, this implies that whenever δ > δ̄

there will be some PPE which achieves the same payoff vector.

proof of Lemma 3. Let δ̄, δ ∈ (0, 1) be the following bounds for the discount factor:

δ̄ ≡ d̂− c1

d̂− c1 + π0(c1 + c2 − 1)
, δ ≡ d̂− c1

d̂− c1 + π0c1
. (42)

The assumptions that d̂ > c1, c1 + c2 > 1, and c2 < 1 imply that 0 < δ < δ̄ < 1.
Let σ0 be the public strategy profile described as follows:

• σ0
1 = (1, c1, 1− c1)
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• It there is a crisis in period one, then σ0
t = (0, c1, 1− c1) for t > 1.

• It there is no crisis in period one, then σ0
t = (0, 1− c2, c2) for t > 1.

For t > 1, σ0 is just repetition of static Nash equilibria and hence the continuation
strategies are PPE. If there is a crisis in period 1, the agent’s contributions are static
best responses and do not affect the continuation value, hence the mitigation incentive
constraints are satisfied. We only need to check the avoidance incentives for agent 1 in
period 1. We have V 0

1 = −π0(1−c2) and V 1
1 = −π0c1. And hence V 0

1 −V 1
1 = π0(c1+c2−1).

Therefore the avoidance constraint (40) can be written as:

δ(V 0
1 − V 1

1 ) ≥ (1− δ)(d̂− c1) ⇔ δπ0(c1 + c2 − 1) ≥ (d̂− c1)− δ(d̂− c1)

⇔ δ
[
π0(c1 + c2 − 1) + (d̂− c1)

]
≥ (d̂− c1) ⇔ δ ≥ δ̄

On the other hand, suppose that σ is a PPE and after some history the active
agent chooses αt(ht) = 1. If µ1t(ht) > 0 then the avoidance and mitigation constraints
(39)–(40) require:

(1− δ)m1 − δV 1
1 ≤ (1− δ + δπ0)c1

(1− δ)m1 − δV 1
1 ≥ (1− δ)d̂− δV 0

1

 ⇒ (1− δ)d̂− δV 0
1 ≤ (1− δ + δπ0)c1

If µ1t(ht) = 0 then there is no mitigation constraint, but individual rationality requires
−δV 1

1 ≤ δπ0c1 ≤ (1 − δ + δπ0)c1 and we obtain the same inequality. Furthermore,
feasibility implies that V 0

1 ≤ 0. After some algebra this implies that δ ≥ δ ∈ (0, 1).
Hence if δ is low enough there is no avoidance.
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Appendix C. APS decomposition
With agents playing public strategies only, this repeated game has a recursive structure.
After an arbitrary history, the continuation strategy profile of a PPE is an equilibrium
profile of the original game. The standard way to characterize the set of PPE values is
to use the self-generation procedure introduced in Abreu et al. (1990). This appendix
establishes an analogous procedure, and shows that our restriction to pure and public
strategies is without loss of generality.

The model here differs from APS in three aspects. The stage game is a multi-stage
game. We allow for public randomization but exclude individual mixed strategies. Our
game is not purely a game with perfect monitoring (actions are perfectly observable),
nor one purely with imperfect public monitoring (agents observe only noisy information
of past actions). It is a mixture of the two: at any date t, agent 1’s avoidance action at is
his private information, agent 2 sees only the at-induced realization of state ξt, yet both
agents observe each other’s contribution m1t and m2t. Nonetheless, the self-generation
procedure can be used to generate the set of PPE values V .

The expected payoff for player i = 1, 2 of action profile s = (a, m1, m2) when the
continuation values are given by w : X ×M2 → R2 is10

gi(s, w) ≡ (1− δ)vi(s) + δ
∑
ξ∈X

Pr(ξ|a)wi
(
ξ, m1(ξ), m2(ξ)

)
(43)

Definition 3. An action profile s∗ = (a∗, m∗1, m∗2) together with a continuation payoff
function w : X ×M2 → R2 is admissible with respect to a set W ⊂ R2 if and only if:

(i) for all ξ ∈ X, w(ξ, m∗1(ξ), m∗2(ξ)) ∈ W .

(ii) a∗ ∈ arg maxa∈A g(a,m∗1,m∗2, w)

(iii) For any ξ ∈ X:

m∗1(ξ) ∈ arg max
m1∈M

(1− δ)u1
(
ξ, a∗, m1, m

∗
2(ξ)

)
+ δw1

(
ξ, m′1, m

∗
2(ξ)

)
m∗2(ξ) ∈ arg max

m2∈M
(1− δ)u2

(
ξ, a∗, m∗1(ξ), m2

)
+ δw2

(
ξ, m∗1(ξ), m′2

)

Condition (i) says that the continuation payoff takes value in the W set. Conditions
(ii) and (iii) require that the action profile (a, m1, m2) is a Nash equilibrium if the two
agents’ payoff function is given by gi.

10 The sunspots do not appear explicitly the sequential formulation. The action profile s specifies
the pure actions chosen after θt is realized, and the continuation value w is taken to be the average
continuation values integrating over θt+1. Public randomization enters implicitly in the convex hull
operation in (45).
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In our setting with public randomization, the adequate self-generating operator is
the one in Cronshaw and Luenberger (1994). For any set W ⊆ R2 and every action
profile s = (a, m1, m2) define:

Bs(W ) =
{
v ∈ W

∣∣∣∣ ∃w : X ×M2 → W such that

(s, w) is admissible w.r.t. W and v = g(s, w)
}

(44)

and:

B(W ) = co
(⋃
s∈S

Bs(W )
)

(45)

A set W ⊆ R2 is said to be self-generating if and only if W ⊆ B(W ). The following
proposition states that using this notion of self-generation, the characterization of APS
applies to our setting.

Proposition 5. V is compact and convex and it is the largest-self generating set.
Furthermore, if W is bounded and V ⊆ W then Bn(W )→ V.

Lemma 4 (Single deviation principle). An individually rational strategy profile is a
PPE if and only if it admits no profitable single-deviations.

Proof. The result follows can be proven in a similar way as Proposition 2.2.1 in (Mailath
and Samuelson, 2006, pp 25), The general lines of the argument are as follows. Fix an
individually rational strategy profile and suppose that there is a profitable deviation
and let V be the difference in values. Since the set of individually rational payoffs is
bounded, we know that there is some T such that the payoffs after T contribute to less
than ‖V ‖/2 and thus there is also a profitable deviation of length at most T . If the
deviation in the last period is profitable, then the proof is complete. If not, then there
is a profitable deviation of length at most T − 1 periods. By induction, this implies that
there is a profitable deviation of length 1.

Lemma 5 (Self-generation). If W is bounded and self-generating then W ⊆ V

Proof. For each v ∈ W , by Carateheodory’s theorem, there exist some b1
v, b

2
v, b

3
v ∈

∪sBs(W ) and (λ1
v, λ

2
v, λ

3
v) ∈ ∆3 such that v = ∑3

n=1 λ
n
v b
n
v . For each bnv , we can define

snv and wnv so that bnv = g(snv , wnv ) and (snv , wnv ) is admissible w.r.t. W . Now fix some
v∗ ∈ W . We will construct a PPE σ∗ such that v∗ = V (σ∗). For that purpose we define
a sequence of (public) history-dependent continuation values {w∗t } with w∗t : H t → W .
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σ∗ is defined as a function of w∗:

σ∗t (ht, θt) =


s1
w∗t (ht) if θt ≤ λ1

w∗t (ht)

s2
w∗t (ht) if λ1

w∗t (ht) < θt ≤ λ2
w∗t (ht)

s3
w∗t (ht) if θt > λ2

w∗t (ht)

w∗ is defined recursively with w∗1 = v∗ and:

w∗t+1

(
ht+1

)
=


w1
w∗t (ht)(mt, ξt) if θ1 ≤ λ1

w∗t (ht)

w2
w∗t (ht)(mt, ξt) if λ1

w∗t (ht) < θ1 ≤ λ2
w∗t (ht)

w3
w∗t (ht)(mt, ξt) if θ1 > λ2

w∗t (ht)

It is straightforward to see that w∗T and thus σ∗t are measurable. Now notice that for
every ht:

w∗t (ht) =
3∑

n=1
λnw∗t (ht)g

(
snw∗t (ht), w

n
w∗t (ht)

)
= Et

[
g
(
σ∗t (ht, θt), w∗t+1(ht+1)

) ]
= Et

[
(1− δ)v

(
σ∗t (ht, θt)

)
+ δw∗t+1(ht+1)

]
= (1− δ)Et

[
v(σ∗t ) + δv(σ∗t+1) + δ

1− δw
∗
t+2(ht+2)

]
= . . . = V (σ∗|tt)

And hence we have that v∗ = w∗1 = V (σ∗). Finally, since actions and continuation values
are admissible at every period, we know that there are no profitable single-deviations.
By Lemma 4 this implies that σ∗ is a PPE.

Lemma 6 (Factorization). V is self-generating

Proof. Fix an arbitrary point v∗ ∈ V and let σ∗ be the PPE that generates it. For each
θ ∈ [0, 1], m1,m2 ∈ M and ξ ∈ X set wθ(m1,m2, ξ) = V

(
σ∗|θ,ξ,m1(ξ),m2(ξ)

)
∈ V. Since

σ∗ is measurable it follows that wθ is measurable for θ ∈ [0, 1]. Since σ∗ is a PPE we
know that for each realization of θ1 we have that (σ∗1(θ1), wθ1) is admissible w.r.t. V and
thus g (σ∗1(θ1), wθ1) ∈ Bσ1(θ1)(V). This implies that:

v∗ =
∫ 1

0
g (σ∗1(θ1), wθ1) dθ1 ∈ co

(⋃
s

Bs(V)
)

= B(V)

Lemma 7. If W is compact then B(W ) is compact

Proof. Fix some a ∈ A. We will start by showing that Ba(W ) ≡ ∪mBa,m(W ) is compact.
Consider any sequence {vn} in Ba(W ) converging to some v∗ ∈ <2. By construction there
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exist sequences {mn} and {wn} such that vn = g(a,mn, wn) and (a,mn, wn) is admissible
w.r.t. W . Since it is contained in a compact space, the sequence {mn, wn(mn)} has
a subsequence converging to some limit m∗, w∗(m∗). Since W and M are closed, we
know that m∗ : X → M and w∗(m∗) ∈ W . Let w∗i (m,m∗−i(ξ), ξ) = minw∈W wi for
m 6= m∗i (ξ) and define other values of w∗ arbitrarily. Since g is continuous we know that
v∗ = g(a,m∗, w∗). Since the incentive constraints are defined by continuous functions
we know that and (a,m∗, w∗) is admissible w.r.t. W . Hence v∗ ∈ Ba(W ). Since this
was for arbitrary convergent sequences, this means that Ba(W ) is closed.

Now, since the payoffs of the stage game are all non-positive and W is bounded,
then Ba(W ) is bounded above. Since admissibility implies that the values have to be
conditionally individually rational, it is also bounded below. Hence Ba(W ) is compact.

Since a finite union of compact sets is compact, we have that ∪sBs(W ) = ∪aBa(W )
is compact. The result then follows from the fact that the convex hulls of compact sets
are compact.

Proof of proposition 5. Since B is ⊆-monotone by construction, Lemma 5 implies that
V contains the union of all self-generating sets. By Lemma 6 this implies that V is the
largest self-generating set. Since B(W ) is convex for any W by construction, Lemma 6
also implies that V is convex. Now fix any bounded set W such that V ⊆ W . Let W̄ be
the closure of W and define the sequence {W n}∞n=1 by W 0 = W̄ and W n+1 = B(W n)
for n = 1, 2, . . .. By definition of B and Lemma 7 we know that W n is a ⊆-decreasing
sequence of compact sets and therefore has a (Hausdorff) limit W ∗ = ∩nW n and
this limit is compact. Since B is ⊆-monotone and V is self-generating, we know that
V = Bn(V) ⊆ Bn(W 0) = W n for all n, and thus V ⊆ W ∗.

It only remains to show that W ∗ is self-generating, for this purpose we combine the
proofs from Lemmas 5 and 7. Consider any v∗ ∈ W ∗. By construction we know that
v∗ ∈ B(W ) for all n. Therefore there exists sequences

{
(bnk, λnk, snk, wnk)3

k=1

}∞
n=1

such
that v∗ = ∑3

k=1 λ
nkbnk, bnk = g(snk, wnk) and (snk, wnk) is admissible w.r.t. W n for all

n. Since it is contained in a compact space, the sequence {bn, λn, sn, wn(mn)} has a
subsequence converging to some limit b∗, λ∗,m∗, w∗(m∗). Since all the sets are closed,
we know that the limit is where we want it to be. Let wk∗(m,mk∗

−i(ξ), ξ) = minw∈W ∗ wi
for m 6= mk∗

i (ξ) and define other values of wk∗ arbitrarily. Since g is continuous we
know that bk∗ = g(sk∗, wk∗). Since the incentive constraints are defined by continuous
functions we know that (sk∗, wk∗) is admissible w.r.t. W ∗. It is straightforward to see
that v∗ = ∑3

k=1 λ
k∗bk∗ ∈ B(W ∗). Therefore W ∗ is self-generating and, by Lemma 5,

W ∗ ⊆ V .

We are now in a position to prove our claim about the restriction to pure-public
strategies being without loss of generality. One could extend the definition of equilibrium
in the obvious way to allow for mixed strategies that depend on private information.
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The following proposition states that the set of equilibrium payoffs would not change.
The reason for this is because the new set would be self-generating in the original sense,
and thus it would be contained in V .

Proposition 6. The set of equilibrium payoffs would remain unchanged if we allowed
player 1 to use private strategies and we allowed both players to use mixed strategies.

Proof of proposition 6. We present a sketch of the proof, a formal proof can be provided
upon request. The definitions of PPE and V (σ) can be easily extended to allow for
mixed strategies in the obvious way. Let Ṽ be the set of payoffs resulting from pure or
mixed PPE. Fix some v∗ ∈ Ṽ and let σ∗ be the mixed strategy PPE and that generates
it. Now delegate all the randomization to t1, define continuation values in the obvious
way and show that the resulting pairs (σ|θ1, w|θ1) are admissible w.r.t. the set of mixed
PPE payoffs. Intuitively, this occurs because M is convex and thus there is no need to
randomize contributions, and m1 and m2 are chosen after observing a and thus there is
no need to randomize the avoidance action. This implies that the set of mixed PPE
payoffs is self-generating and is thus contained in V .
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