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Abstract

We study decentralized colleges admissions in the face of uncertain student prefer-

ences. Enrollment uncertainty causes colleges to strategically target their admissions

to students overlooked by others. Highly ranked students may receive fewer admissions

or suffer from a higher chance of coming up empty—“falling through the cracks”—than

those ranked below. When students’ attributes are multidimensional, colleges avoid

head-on competition by placing excessive weights on school-specific measures such as

essays. Restricting the number of applications or wait-listing alleviates enrollment un-

certainty, but the outcomes are inefficient and unfair. A centralized matching via Gale

and Shapley’s deferred acceptance algorithm attains efficiency and fairness, but some

college may be worse off relative to decentralized matching.

1 Introduction

Centralized matching has gained prominence in economic theory and practice, spurred by

successful applications such as medical residency matching and public school choice. Yet,

many matching markets remain decentralized notably with college and graduate school ad-

missions. It is often suggested that these markets do not operate well and will therefore

benefit from improved coordination or complete centralization, but it is not well understood
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why they remain decentralized and what welfare benefits would be gained by improved co-

ordination. At least part of the problem is the lack of an analytical grasp of decentralized

matching markets. A seminal work by Roth and Xing (1997) attributes the problems of

such markets to “congestion”—participants are not allowed to make enough offers and ac-

ceptances to clear the markets. But, its analytical content, namely the equilibrium and

welfare implications of congestion, remains poorly understood. Indeed, we have yet to de-

velop a workhorse model of decentralized matching that could serve as a useful benchmark

for comparison with a centralized system.1

The current paper develops an analytical framework for understanding decentralized

matching markets in the context of college admissions. College admissions in countries such

as Japan, Korea and the US are organized similarly to decentralized labor markets: Colleges

make exploding and binding admission offers to applicants, and the admitted students ac-

cept or reject the offers, often within a short window of time. This process provides little

opportunity for colleges to learn students’ preferences and adjust their admissions decisions

accordingly. Consequently, they often end up enrolling too many or too few students relative

to their capacities. For instance, 1,415 freshmen accepted Yale’s invitation to join its incom-

ing class in 1995-96, although the university had aimed for a class of 1,335. At the same

year, Princeton also reported 1,100 entering students, the largest in its history. The college

had to set up mobile homes in fields and build new dorms to accommodate the students

(Avery, Fairbanks and Zeckhauser, 2003). Undoubtedly, these mistakes are costly for the

colleges.2

Controlling yield is particularly challenging for colleges in Korea, since students apply

for a department, instead of a college, and each department faces a relatively rigid and

low quota. The challenge is not much easier for US counterparts. Applications to US

colleges have grown dramatically in recent years, largely due to the introduction of the

Common Application—the online platform which allows students to apply to many colleges

at negligible costs.3 As a consequence, the average yield rate of four-year colleges in the US

has declined significantly over the past decade, from 49% in 2001 to 38% in 2011 (National

Association for College Admission Counseling, 2012, NACAC hereafter).4 The declining

1There are some important exceptions to this characterization. We shall discuss them in detail in Related
Literature (see Section 1.1).

2The cost may also take the form of an explicit penalty imposed on the admitting unit (e.g., department)
by the government (as in Korea) or by the college (as in Australia).

3The average number of applications per institution increased 60% between 2002 and 2011; and 79% of
Fall 2011 freshmen applied to three or more colleges and 29% of them submitted seven or more applications
(NACAC, 2012).

4NACAC reports the State of College Admission for each year since 2002, based on data sets including
annual counseling trends survey for 2002-2011 and annual admission trends survey for 2002-2011. In the
2011 surveys, 1,928 out of 10,000 secondary schools contacted participated in the former survey, whereas 369
four-year postsecondary institutions out of 1,346 contacted participated in the latter. See NACAC (2012)
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rates imply increased uncertainty for colleges.5

Importantly, the enrollment uncertainty a college faces is endogenous, depending on

the admissions decisions made by other colleges. A student admitted by a college poses

a greater uncertainty for its enrollment when she is also admitted by other colleges, since

her enrollment depends on the student’s (unknown) preference. This interdependent nature

of uncertainty introduces a novel strategic interaction among colleges in their admissions

decisions. In this paper, we develop a model that captures this feature.

In our baseline model, there are two colleges, each with limited capacity, and a unit mass

of students each with a “score” (e.g., high school grade point average (GPA) or Scholastic

Aptitude Test (SAT) scores). Students apply to colleges at no cost. Colleges rank students

according to their scores, but they do not know students’ preferences toward them. This

uncertainty takes an aggregate form: The mass of students preferring one college over the

other varies with unknown states of nature (in particular, unknown to colleges). Each

college incurs a (sufficiently large) constant cost for each enrollment exceeding its capacity.

Our baseline model involves a simple time line: Initially, students simultaneously apply to

colleges. Each college observes only the scores of those students who apply to it. Then, the

two colleges simultaneously offer admissions to sets of students. Finally, students decide on

which offer (if any) to accept.

Given that application is costless, students have a (weak) dominant strategy of applying

to both colleges. Hence, the focus of the analysis is the colleges’ admissions decisions. Our

main finding is that the colleges engage in “strategic targeting”: In equilibrium, each college

avoids good students who are sought after by the other college and admit less attractive

students overlooked by the other. The reason is that, for a college, a student receiving a

competing offer from the other college presents greater enrollment uncertainty, which adds

more capacity cost to the college, than a student who does not receive a competing offer.

Thus the college favors the latter type student, all else equal. This incentive may also cause

colleges to randomize their admissions offers among students with different scores. Strategic

targeting results in an equilibrium that does not have a simple cutoff structure suggested in

the existing research, and the effects on the students are non-monotonic with respect to their

scores. Students with higher scores may receive admissions fewer colleges or suffer from a

higher chance of not being admitted by any (i.e., “falling through the cracks”) than students

with lower scores. The outcome is unfair in the sense of entailing justified envy—that is, a

high-score student may envy a lower-score student—and it fails efficiency in various senses

for detail.
5The increased uncertainty also means an increased difficulty in meeting an admission target. Jennifer

Delahunty, dean of admissions and financial aid at Kenyon College in Ohio, stated: “Trying to hit those
numbers is like trying to hit hot tub when you are skydiving 30,000 feet. I’m going to go to church every
day in April” (“In Shifting Era of Admissions, Colleges Sweat,” by Kate Zernike, New York Times, March
8, 2009).
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(to be defined).

We next study the admission problem when students are of multidimensional types. Some

measures, such as students’ academic performances or system-wide test like SAT, are highly

correlated across colleges in their admissions standards, but others measures, such as stu-

dents’ college-specific essays and tests or their extracurricular activities, are less correlated.

According to 2011 NACAC admissions trend survey, about 62% of the colleges surveyed

place moderate to considerable importance in essays and about 48% of them place moder-

ate to considerable emphasis on extracurricular activities in admissions decisions (NACAC,

2012). Consistent with this, we find that colleges bias their evaluation toward less corre-

lated measures by placing excessive weights on these dimensions in order to avoid head-on

competition.

We also study two common ways for colleges to reduce enrollment uncertainty. One

is to restrict the number of applications each student can submit. Such restrictions are

widely observed; for instance, students in the UK cannot apply to both Cambridge and

Oxford, students in Japan can apply to at most two public universities, and students in

Korea face a similar restriction. Restrictions are also placed on students applying for early

decision or single-choice early action at US colleges. We show that restriction on applications,

while reducing uncertainty for colleges, causes students to be strategic in their application

decisions, and this entails justified envy and inefficiencies.

Another common method for colleges to cope with enrollment uncertainty is to admit

students in sequence, or “wait-listing”: Some students are admitted outright and others

are placed in a wait list in each of multiple rounds, and students on the wait list are later

admitted when some offers are rejected and seats open up. This method is also observed

in several countries, including France, Korea and the US. Wait-listing allows colleges to

adjust their admission offers based on additional information they learn from the students’

acceptance decisions, thereby reducing the uncertainty in enrollment. We show, however,

that colleges will still engage in strategic targeting by admitting “non-contiguous” set of

students in scores, and the welfare and fairness problems still remain.

Finally, we consider centralized matching via Gale and Shapley’s Deferred Acceptance

algorithm (DA in short). This eliminates colleges’ yield control problem and justified envy

completely and attains efficiency. However, it is possible for some colleges to be worse off

relative to the decentralized matching. This may explain a possible lack of consensus toward

centralization and may underscore why college admissions remain decentralized in many

countries.

The paper is organized as follows. Section 1.1 discusses the related literature. After illus-

trating the main insight via an example in Section 1.2, we introduce our model in Section 2.

Section 3 characterizes equilibria and their existence. Section 3.1 discusses welfare and fair-
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ness implications of equilibria. Section 4 studies the model of multidimensional admissions

criteria. Restricted application and wait-listing are studied in Section 5 and Section 6, re-

spectively, followed by centralized matching via DA in Section 7. Section 8 offers further

implications of our findings. Proofs are provided in Appendix A unless stated otherwise.

Appendix B extends the baseline model to allow for more than two colleges and shows that

our analysis in the two-college model carries over to this environment.

1.1 Related Literature

Several papers in the matching literature have studied decentralized matching markets. Roth

and Xing (1997) focus on the entry-level market for clinical psychologists in which firms make

offers to workers sequentially and workers can either accept, reject or hold the offers within

a day. They find that, mainly based on simulations, such a decentralized (but coordinated)

market exhibits congestion, and the resulting outcome is unstable. Neiderle and Yariv (2009)

study a decentralized one-to-one matching market in which firms make offers sequentially

through multiple periods. They provide sufficient conditions for such decentralized markets

to generate stable outcomes in equilibrium in the presence of market friction (namely, time

discounting). Coles, Kushnir and Neiderle (2013) show that introducing a signaling device

in a decentralized matching market alleviates congestion and increases welfare in terms of

the number of matches and the workers’ payoffs.

Similar to these papers, we are concerned with the congestion arising from decentralized

matching. Unlike Roth and Xing (1997), however, we study participants’ strategic interaction

in their admissions game and the welfare and fairness properties of its equilibria. Our

framework identifies strategic targeting as an important new implication of decentralized

matching. Moreover, the explicit analysis of equilibria permits a clear comparison with the

outcome that would arise from a centralized matching.

The college admissions problem has recently received attention in the economics liter-

ature. Chade and Smith (2006) study students’ application decision as a portfolio choice

problem. In Chade, Lewis and Smith (forthcoming), students with heterogeneous abilities

make application decisions subject to application costs, and colleges set admission standards

based on noisy signals of students’ abilities. Avery and Levin (2010) and Lee (2009) study

early admissions. Unlike our model, these models have no aggregate uncertainty with respect

to students’ preferences, so colleges face no enrollment uncertainty in these models. Hence,

colleges do not employ strategic targeting; they instead use cutoff strategies.

Some aspects of our equilibrium are related to political lobbying behavior studied by

Lizzeri and Persico (2001, 2005). Just as colleges target students in our model, politicians

in these models target voters in distributing their favors. Voters are homogenous in their

model, whereas students in our model have heterogeneous abilities and preferences. This
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heterogeneity leads colleges to choose differing admission rates for different student types.

More important, aggregate uncertainty plays a unique role in shaping competition in our

model, whereas the rule of splitting the spoils of office (winner-take-all versus proportional

rule) matters in their model.

Our model also shares some similarities with directed search models, such as Montgomery

(1991) and Burdett, Shi and Wright (2001). In these studies, each firm (seller) posts a wage

(price), and each worker (buyer) decides which job to apply for. Firms have a fixed number of

job openings and cannot hire more than the capacity, and workers can only apply to one firm.6

Workers’ inability to coordinate their job applications causes “search friction.” Similar to the

workers in these models, colleges in our model can be seen to engage in “directed searches”

on students. The main differences of our model are that prices play no role in matching and

that colleges offer admissions to many (in fact, a continuum of) students with heterogeneous

qualities subject to aggregate uncertainty. This leads to strategic targeting, a novel feature

of our model.

1.2 Illustrative Example

Before proceeding, we illustrate the idea of strategic targeting via a simple example. Suppose

there are only two students, 1 and 2, applying to colleges A and B. Each college has one

seat to fill and faces a prohibitively high cost of having two students. Student i has score vi,

i = 1, 2, where 0 < v2 < v1 < 2v2. Each student has an equal probability of preferring either

school, which is private information (unknown to the other student and to the colleges).

Each college values having student i at vi. The applications are free of cost, and the timing

is the same as that explained above.

Given the large cost of over-enrollment, each college admits only one student. Their

payoffs are described as follow.

A’s strategy\ B’s strategy Admit 1 Admit 2

Admit 1 1
2
v1, 1

2
v1 v1, v2

Admit 2 v2, v1
1
2
v2, 1

2
v2

This game has a battle of the sexes’ structure (with asymmetric payoffs), so there are two

different types of equilibria. First, there are two asymmetric pure-strategy equilibria in which

one college admits student 1 and the other admits student 2. There is also a mixed-strategy

equilibrium in which each college admits 1 with probability γ := 2v1−v2
v1+v2

> 1/2 and admits 2

with probability 1−γ, where γ is chosen such that the other college is indifferent in whom it

admits. Both types of equilibria show the pattern of strategic targeting. In the pure-strategy

6See also Albrecht, Gautier and Vroman (2006), Julien, Kennes and King (2000), Kircher (2009), and
Galenianos and Kircher (2009) who extend the model to accommodate multiple applications.
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equilibria, colleges manage to avoid competition by targeting different students. The mixed-

strategy equilibrium also arises from their targeting motive, namely their attempt to avoid

students sought after by the other, although it does not result in perfect coordination.

This example, while extremely simple, reveals problems with decentralized matching in

terms of welfare and fairness. First, the student with high score (student 1) may go to a less

preferred school (in both types of equilibria) even though both colleges prefer that student;

that is, justified envy arises. Second, it could be the case that student 1 prefers A and student

2 prefers B, but the former is assigned B and the latter is assigned A, showing that the

equilibrium outcome is inefficient among students. Lastly, the mixed-strategy equilibrium is

Pareto inefficient because both colleges may admit the same student, and it would be Pareto

improving for the unmatched college to match with the other student. The example also

shows that not all parties may benefit if the matching were organized centrally. For instance,

if DA were used to match students with the colleges, enrollment uncertainty would disappear,

and the assignment would be fair and efficient. Yet, a college would be worse off relative to

the decentralized matching equilibrium in which it always gets student 1 regardless of her

preference.

2 Model

There is a unit mass of students with score v distributed from V ≡ [0, 1] according to

an absolutely continuous distribution G(·). There are two colleges, A and B, each with

capacity κ < 1
2
. Each college values a student with score v at v and faces a cost λ ≥ 1 for

each additional enrollment exceeding the quota.7 Each student has a preference over the

two colleges, which is private information. A state of nature s is drawn from [0, 1] according

to the uniform distribution. In state s, a fraction µ(s) ∈ [0, 1] of students prefers A to B

(independent on v), where µ(·) is strictly increasing and continuous in s.8

The timing of the game is as follows. First, Nature draws state s (i.e., aggregate uncer-

tainty is realized). Next, all students simultaneously apply to colleges. Each college only

observes the scores of those students who apply to it, and based on the scores, colleges

simultaneously decide which applicants to admit. Lastly, students accept or reject their

offers.

We assume that colleges have no application costs, which makes it weakly dominant for

students to apply to both colleges.9 Throughout, we focus on a perfect Bayesian equilibrium

7The common preference assumption is later relaxed when we allow colleges to consider students’ at-
tributes that are imperfectly correlated. See Section 4.

8There is no loss of generality to assume the uniform distribution, because for a distribution F (·) of s,
we can simply relabel s, and the popularity of a college over the other is captured by µ(·).

9The strategy of applying to both colleges can be made a strictly dominant strategy if students have some
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in which students play the weak dominant strategy.

Colleges distribute admissions based on students’ scores. Let σi : V → [0, 1], i = A,B,

denote college i’s admission strategy specifying the fraction of students with score v it admits.

For given σi(·), let Vi := {v ∈ [0, 1] |σi(v) > 0} be the types of students college i admits. Let

VAB := VA ∩ VB denote the set of students who receive admissions from both colleges.

We call an equilibrium competitive if VAB has a positive measure, and non-competitive

otherwise.

Consider the students with score v. A fraction σi(v) (1− σj(v)) of them, where i, j = A,B

and i 6= j, is admitted only by college i, and a fraction σi(v)σj(v) of them is admitted by

both colleges. The former group all accepts i’s admissions, but only a fraction µi(s) of the

latter group accepts i’s offer, where µi(s) = µ(s) if i = A and µi(s) = 1 − µ(s) if i = B.

Thus, the mass of students who attend college i in state s, given strategies σi(·) and σj(·), is

mi(s) :=

∫ 1

0

σi(v) (1− σj(v) + µi(s)σj(v)) dG(v). (2.1)

Each college enjoys the scores of all enrolled students as its gross payoff and incurs cost λ

for each incremental enrollment beyond its capacity. Thus, college i’s ex ante payoff is

πi := E
[ ∫ 1

0

vσi(v) (1− σj(v) + µi(s)σj(v)) dG(v)− λmax{mi(s)− κ, 0}
]
.

One immediate observation is that each college’s payoff is concave in its own admission

strategy; that is, πi(ησi + (1− η)σ′i) ≥ η πi(σi) + (1− η)πi(σ
′
i) for any feasible strategies σi

and σ′i and for any η ∈ [0, 1]. Therefore, randomizing across distinct σi’s is unprofitable for

college i. For this reason, any equilibrium is characterized by a pair (σA, σB). However, this

does not mean that the equilibrium is in pure-strategies; the values of σA and σB may be

strictly interior, in which case the admission strategies would involve randomization.

3 Characterization of Equilibria

We analyze colleges’ admission decisions in this section. To this end, we fix any equilibrium

(σA, σB) and explore the properties it must satisfy. Later, we shall prove existence of the

equilibria. We begin with the following observations.

Lemma 1. In any equilibrium (σA, σB), the following results hold.

(i) mA(0) ≤ κ ≤ mA(1) and mB(1) ≤ κ ≤ mB(0).

(ii) VA ∪ VB is an interval with sup(VA ∪ VB) = 1 and inf(VA ∪ VB) > 0.

uncertainty about their scores, which is realistic in case that the scores are either not publicly observable or
depend on multiple dimensions of attributes the weighting of which is unknown to the students.
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(iii) If the equilibrium is competitive (i.e., VAB has a positive measure), then there exists

a unique (ŝA, ŝB) ∈ (0, 1)2 such that mA(ŝA) = κ and mB(ŝB) = κ.

(iv) If the equilibrium is non-competitive (i.e., VAB has zero measure), then mA(s) =

mB(s) = κ for all s ∈ [0, 1]. Further, almost every student with v ≥ G−1(1− 2κ) receives an

admission offer from exactly one college.

Proof. See Appendix A.1. �

Part (i) of the lemma states that in equilibrium, colleges cannot have strict over-enrollment

for all states or strict under-enrollment for all states. If a college over-enrolled in all states,

then it would profitably deviate by rejecting some students with v < 1 (since λ ≥ 1), and

if it under-enrolled in all states, it would profitably deviate by accepting more students.

Part (ii) states that the support of types who receive an admission from at least one college

must form an interval [v, 1], for some v > 0. Part (iii) states that in a competitive equilib-

rium, each college will suffer from under-enrollment in some states and over-enrollment in

other states. This is intuitive since given (aggregately) uncertain preferences of students, the

presence of students receiving admissions from both colleges creates non-trivial enrollment

uncertainty. Each college then manages the uncertainty by optimally trading off the cost of

over-enrollment in high demand states with the loss from under-enrollment in low demand

states. Part (iv) states that in a non-competitive equilibrium, colleges can avoid over- and

under-enrollment problems, and almost all top 2κ students receive admissions from only one

college. This is also intuitive since the colleges in this case face no enrollment uncertainty;

so they will fill their capacities exactly in all states with the top 2κ students.

Fix any equilibrium (σA, σB). For ease of notation, let SA := {s | s ≥ ŝA} and SB :=

{s | s ≤ ŝB} denote the sets of states that the colleges A and B have over-enrolled, respec-

tively. Note that in a non-competitive equilibrium, Prob(s ∈ Si) = 0 for all i = A,B, and in

a competitive equilibrium, Prob(s ∈ SA) = 1− ŝA and Prob(s ∈ SB) = ŝB. It is convenient

to rewrite college i’s payoff at the equilibrium as follows:

πi =

∫ 1

0

vσi(v)
(
1− σj(v) + E[µi(s)]σj(v)

)
dG(v)− λE

[
mi(s)− κ | s ∈ Si

]
Prob(s ∈ Si)

=

∫ 1

0

σi(v)Hi(v, σj(v)) dG(v) + λκProb(s ∈ Si)

where

Hi(v, σj(v)) := v
(
1−σj(v)+E[µi(s)]σj(v)

)
−λProb(s ∈ Si)

(
1−σj(v)+E[µi(s)|s ∈ Si]σj(v)

)
is college i’s marginal payoff from admitting a student with score v for given ŝi and σj(·) in

equilibrium. (We suppress the dependence of σ on ŝi unless its role is important.) Hi captures
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college i’s local incentive—namely, its benefit from admitting type-v students, holding fixed

its opponent’s decision and its own decisions for all other students at σi(·).

Lemma 2. A strategy profile (σA, σB) is an equilibrium if and only if (i) Hi(v, σj(v)) > 0

implies σi(v) = 1, (ii) Hi(v, σj(v)) < 0 implies σi(v) = 0, (iii) Hi(v, σj(v)) = 0 implies

σi(v) ∈ [0, 1], where i, j = A,B and j 6= i.

Proof. See Appendix A.2. �

Lemma 2 characterizes equilibrium based on the sign of Hi: College i admits student v if

Hi(v, σj(v)) > 0 and rejects her if Hi(v, σj(v)) < 0. Since this condition only ensures “local”

incentive compatibility, there is a concern that a college may profitably deviate “globally”

by changing its admission decisions on a mass of students. The lemma assures that no such

global deviation is profitable. Hence, a strategy profile satisfying local incentives is indeed

an equilibrium.

In what follows, we shall focus on competitive equilibria. Competitive equilibria always

exist (see Theorem 2), whereas non-competitive equilibria can be ruled out if either λ is not

too large or κ is not too small (see Appendix A.3). Even if a noncompetitive equilibrium

exists, the characterization provided in Lemma 1-(iv) is sufficient for our welfare and fairness

results, as will be seen later.

Now, for a given competitive equilibrium (σA, σB), inspection of colleges’ marginal payoffs

together with Lemma 2 reveals their admission decisions in more detail. Rewrite

Hi(v, σj(v)) = (1− σj(v)) (v − vi) + σj(v)E[µi(s)] (v − vi),

where vi := λProb(s ∈ Si) is college i’s capacity cost of admitting a student who does not

receive an offer from college j, and vi := λProb(s ∈ Si) E[µi(s)|s∈Si]
E[µi(s)]

is its cost of admitting a

student who receives an offer from j. Recall that a college incurs capacity cost only when

it over-enrolls. If the student does not receive an offer from college j, then she accepts i’s

admission for sure. Hence, over-enrollment occurs with probability Prob(s ∈ Si), explaining

the marginal cost vi. If the student receives an offer from college j, then she accepts i’s offer

only when she prefers i to j. Hence, conditional on acceptance, college i over-enrolls with

probability Prob(s ∈ Si) E[µi(s)|s∈Si]
E[µi(s)]

, which explains the marginal cost vi.

Observe that vi > vi. This is because while students without an offer from the opponent

college accept a college’s offer independently of the state, students with a competing offer are

more likely accept a college’s offer when it is more popular, i.e., when it over-enrolls. This

explains why admitting the latter students is more costly. Hence, a college finds it optimal

to favor those who do not have a competing offer over those who have, all else equal.
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0 vi vi v

“Not Admit” “Admit”“Admit only if j does not”

Hi(v, 0) < 0 Hi(v, 1) > 0Hi(v, 1) < 0 < Hi(v, 0)

Figure 3.1: College i’s Admission Decision

Remark 1. (Preference for higher yield) It is worth emphasizing that a college disfavors

a student with a competing offer, not because of her uncertain preference per se. A college

can hedge idiosyncratic preferences uncertainty fully in a large market. The reason why it

disfavors such a student is because of the “incidence” of her acceptance: Given the aggregate

uncertainty, she is more likely to accept the college’s offer when it over-enrolls, compared

with a student without competing offer. This intuition also suggests that a college would

favor students with fewer offers, even among those receiving multiple offers, as is seen in

Appendix B: Even though all such students exhibit uncertain acceptance decisions, those

with fewer competing offers are relatively less likely to accept the college’s offer when it

over-enrolls, compared with those with more competing offers. For this reason, colleges in

our model exhibit (endogenous) preference for high yield, as they target students with fewer

competing offers.

Lemma 3. In any competitive equilibrium, Hi(v, x), i = A,B, is strictly increasing in v for

each x. Moreover, for each v, Hi(v, x) satisfies the single crossing property: If Hi(v, x) ≤ 0,

then Hi(v, x
′) < 0 for any x′ > x.

Proof. See Appendix A.4. �

Lemma 3 implies that Hi(v, σj(v)) partitions the students’ types into three intervals, as

depicted in Figure 3.1. Since Hi(v, 1) > 0 for v > vi and Hi(v, 0) < 0 for v < vi (recall Hi is

strictly increasing in v), college i admits all students with v > vi even if college j admits all

of them and rejects all students with v < vi even if college j rejects all of those students.

For the students with v ∈ (vi, vi), we have Hi(v, 1) < 0 < Hi(v, 0). This means that

college i’s incentive for admitting these students depends on college j’s admission decisions

toward them. The single crossing property established in Lemma 3 implies that for each v,

there exists σ̂j(v) ∈ (0, 1) such that Hi(v, x) > 0 if x < σ̂j(v), Hi(v, x) < 0 if x > σ̂j(v), and

Hi(v, σ̂j(v)) = 0 if x = σ̂j(v). Hence, college i admits (rejects) all students with v if college j

admits less (greater) than fraction σ̂j(v) of them and admits any fraction of those students

if college j admits exactly fraction σ̂j(v) ∈ (0, 1) of them. In particular, college i admits all

of them if college j does not admit any of them, but does not admit them if college j admits

all of them.

Combining the two colleges’ admission decisions leads to the following characterization

of equilibria.
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Theorem 1. In any competitive equilibrium, there exist vi < vi, i = A,B, such that college i

admits students with v > vi and v ∈ [vi, vj] and rejects students with v < vi and v ∈
[vj, vi], where j 6= i. At least one college admits a positive fraction of students with v ∈
[max {vA, vB} ,min {vA, vB}].

Theorem 1 describes the structure of competitive equilibrium. Note that the charac-

terization does not pin down colleges’ admission decisions on students with scores v ∈
[max {vA, vB} ,min {vA, vB}]. One can easily construct pure strategy equilibria in which

the colleges coordinate to avoid competition.10 Such a precise coordination seems difficult

for the colleges to achieve in practice. For this reason, we focus on maximally mixed

equilibrium (MME, in short) in which both colleges play mixed strategies for students

with score v such that Hi(v, 1) < 0 < Hi(v, 0) for i = A,B. The following example shows a

MME in which college A is more selective than college B with respect to both low and high

cutoffs.

Example 1. Let v ∼ U [0, 1], λ = 20, κ = 0.32 and µ(s) = 1
2
s+ 2

5
. Then, there is a competitive

equilibrium with

ŝA ŝB vB vA vB vA

0.97 0.02 0.47 0.59 0.79 0.82

Theorem 1 and the requirement of MME partition the students’ types into five regions,

as depicted Figure 3.2 according to Example 1.

• Head-on competition for the top: These are the students with v such that

Hi(v, 1) > 0, i = A,B. Both colleges admit them since their scores are high enough to

justify the enrollment uncertainty arising from head-on competition.

• The shunning of the second best: These are the students with v such that

Hi(v, 1) < 0 < Hj(v, 1), i 6= j. College i finds the students admission-worthy only if

they do not receive admissions from college j, but college j finds them admission-worthy

even when they receive admissions from college i. This incentive gives “commitment

power” to college j (the less selective college, B in Figure 3.2). Consequently, the more

“selective” college i (A in Figure 3.2) totally “shuns” these students.

• Targeting competition for the middle: These students have v such that Hi(v, 1) <

0 < Hi(v, 0) for i = A,B. Each college i admits a fraction

σoi (v) :=
v − vj

v − vj + E[µj(s)](v − vj)
10That is, some students in [max {vA, vB} ,min {vA, vB}] are admitted only by A and the others are

admitted only by B.

12



0.4 0.6 0.8 1.0
v

0.2

0.4

0.6

0.8

1.0

ΣAHvL

(a) College A

0.4 0.6 0.8 1.0
v

0.2

0.4

0.6

0.8

1.0

ΣBHvL

(b) College B

Figure 3.2: Mixed-Strategy Equilibrium

of students with score v, where σoi (v) satisfies Hj(v, σ
o
i (v)) = 0 for j 6= i. Given

this behavior, college j is indifferent, so it is a best response to admit a fraction

σoj (v) of students with v, where σoj (v) satisfies Hi(v, σ
o
j (v)) = 0. Observe that σ0

i (·) is

increasing.11 This is because higher score students are more valuable, all else equal, so

admitting a higher fraction of those students is necessary to keep the opponent college

indifferent.

• Pursuit of the safe: These students have v such that Hi(v, 0) < 0 < Hj(v, 0), i 6= j.

Selective college i have no incentive to admit them regardless of what college j does.

Hence, these students are “safe” from college j’s standpoint, and this safety makes

them valuable to college j.

• Rejection of the bottom: These students have v such that Hi(v, 0) < 0 for i = A,B,

so both colleges reject them.

The equilibrium exhibits a striking sense of “non-monotonicity” in the way students with

11A few other features can be noticed. The strategies involve discrete jumps—σoA(vA) > 0 and σoB(vB) < 1
in the figure. The former follows from the fact that vA > vB which implies HB(vA, 0) > 0, and the latter
follows from vA > vB , which implies HA(vB , 1) < 0.
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different scores are treated by the colleges, as opposed to the cutoff strategy equilibrium

found by the existing literature (see Chade, Lewis and Smith, forthcoming). Each college

distributes admissions bimodally, rejecting more “middling” students than those above or

below. In Figure 3.2, the selective college A rejects the students with v ∈ (0.79, 0.82); their

“curse” stems from being the second-best (thus being highly sought after by the less selective

college). Likewise, college B admits the students with v ∈ (0, 47, 0.59) even though admitting

very few students with higher scores, because they are “safe” (i.e., not being sought after by

A). These strategies produce non-monotonicity of welfare enjoyed by students with different

scores. To be precise, a student enjoys the utility of u from the most preferred college and

u′ from the less preferred, and zero from non-assignment, where 0 < u′ < u. Then, the

following characterization holds:

Corollary 1. Consider the canonical MME with vA 6= vB and vA 6= vB and max{vA, vB} <
min{vA, vB}.

(i) “Curse of the Second-Best”: The fraction of students receiving admissions from

both colleges falls discontinuously as their score v rises at v = min{vA, vB}. There is a

positive measure of students whose expected utility falls discontinuously at that score.

(ii) “Falling through the Cracks”: The fraction of students receiving at least one ad-

mission falls discontinuously as their score v rises at v = max{vA, vB}. The students’

expected utility falls discontinuously at that score, if u′ is sufficiently close to u.

Proof. Let v̌ := max{vA, vB} and v̂ := min{vA, vB}. Part (i) follows since

lim
v↑v̂

σA(v)σB(v) = min{σA(v̂), σB(v̂)} > 0 = lim
v↓v̂

σA(v)σB(v),

where the first equality follows since σA(v̂) = 1 or σB(v̂) = 1. Thus, the expected utility of

students who prefer college i with σi(v̂) = 1 falls discontinuously.

Part (ii) follows since

lim
v↑v̌

(1− (1− σA(v))(1− σB(v))) = 1 > lim
v↓v̌

(1− (1− σA(v))(1− σB(v))) ,

where the inequality follows from the facts that v̌ < v̂ and σoi (v̌) :=
v̌−vj

v̌−vj+E[µj(s)](vj−v̌)
< 1 for

i = A,B. The expected utility ranking between students with v slightly below and slightly

above v̌ follows immediately (regardless of their preferences as long as u′ is not too smaller

than u). �

Remark 2. (Non-essential attribute as a randomization device) Each college selects

students in the middle range of scores at random for admission. In practice, colleges could

14



use extraneous or nonessential attributes of students for their randomization device. For

instance, a college may select students based on extracurricular activities or non-academic

performances it may not genuinely care about.12

We now state the existence result.

Theorem 2. There exists a competitive MME.13

Proof. The proof is presented in Appendix A.5. We sketch it here. The proof constructs

equilibrium strategies (σA, σB) with maximal mixing in terms of threshold states (ŝA, ŝB).

Since the latter space is Euclidean, we can simply appeal to the Brouwer’s fixed point theorem

to establish the existence. To begin, fix any candidate threshold states ŝ = (ŝA, ŝB) for the

two colleges. Next, we construct the colleges’ mutual best-responses (σA, σB) at ŝ according

to the algorithm described earlier. Formally, we set for i, j = A,B and i 6= j,

σi(v; ŝ) =



1 if Hi(v, 1; ŝ) > 0

0 if Hi(v, 1; ŝ) < 0, Hj(v, 1; ŝ) > 0

σoi (v; ŝ) if Hi(v, 1; ŝ) < 0 < Hi(v, 0; ŝ), Hj(v, 1; ŝ) < 0 < Hj(v, 0; ŝ)

1 if Hi(v, 0; ŝ) > 0, Hj(v, 0; ŝ) < 0

0 if Hi(v, 0; ŝ) < 0

(3.1)

where σoi (·) satisfies Hj(v, σ
o
i (v); ŝ) = 0 for v ∈ [max {vA, vB} ,min {vA, vB}].

Since the threshold states (ŝA, ŝB) are arbitrary, there is no guarantee that the constructed

strategies reproduce them as the correct thresholds. In fact, they will reproduce another

possible threshold states s̃ = (s̃A, s̃B):

s̃A = inf {s ∈ [0, 1] |mA(s; ŝ)− κ > 0} and s̃B = sup {s ∈ [0, 1] |mB(s; ŝ)− κ > 0} , (3.2)

where mA and mB are derived from the formula (2.1).14

But this process defines a mapping T : [0, 1]2 → [0, 1]2 such that T (ŝ) = s̃. In Ap-

pendix A.5, we apply the Brouwer’s fixed point theorem to show that T admits a fixed point

ŝ∗ = (ŝ∗A, ŝ
∗
B) such that T (ŝ∗) = ŝ∗. By Lemma 2, the strategies (σA, σB) (constructed as

above) at this fixed point ŝ∗ = (ŝ∗A, ŝ
∗
B) are indeed best responses for both colleges. �

12Colleges’ interests in these aspects are often genuine. In that case, our insight suggests that colleges
would over-emphasize them in admission decisions. This will be shown formally in the next section.

13Note that existence of an (arbitrary) equilibrium follows from the Fan-Glicksberg theorem, since each
college’s strategy space is compact and convex, and each college’s payoff function is concave in its own
strategy. A proof is required here only because the special structure of behavior we require with MME.

14As usual, these formulae are valid only if the associated sets in (3.2) are nonempty. If they are empty,
then threshold values are set equal to one for s̃A and zero for s̃B .
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Figure 3.3: Cutoff Equilibrium

It is important to recognize that a randomization by each college arises from its attempt

to avoid competition for students within the middle range of scores. In this sense, as long

as a competitive equilibrium admits the intermediate region, i.e., if v̌ = max{vA, vB} <
v̂ = min{vA, vB}, one can say that equilibrium involves strategic targeting. We say a MME

exhibits strategic targeting if v̌ < v̂.

When do MMEs exhibit strategic targeting? Note that MME does not preclude a com-

petitive equilibrium in which v̂ < v̌. Example 2 shows such a possibility with vB < vB <

vA < vA, as depicted in Figure 3.3.

Example 2. Let v ∼ U [0, 1], λ = 20, κ = 0.32 and µ(s) = 1
7
s+ 5

7
. Then, there is a competitive

equilibrium with

ŝA ŝB vB vB vA vA

0.97 0.02 0.41 0.54 0.57 0.62

As before, college i admits students with v > vi and rejects those with v < vi. Observe

that college A does not admit any student with v ∈ [vA, vA], since college B admits them

for sure (because vB < vA). Despite the fact that colleges have targeting incentives in this
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example, the resulting equilibrium is indistinguishable from the cutoff equilibria featured in

the existing research.

A natural question is when such an equilibrium can be ruled out. The exact condition

for its existence appears difficult to find, but we show that if the two colleges are sufficiently

symmetric ex ante, then any MME must exhibit strategic targeting. To be precise, redefine

the share µ to depend on parameter t ∈ [0, 1]. That is, for a given t, µ(s, t) is the mass of

students preferring A over B in state s. We assume that µ(s, t) is continuous in (s, t) and

µ(s, 0) = 1− µ(s, 0) for all s, i.e., the colleges are ex ante symmetric when t = 0.

Theorem 3. There exists η > 0 such that for all t < η, any competitive MME under

µ(·, t) involves strategic targeting. In other words, any MME exhibits strategic targeting if

the colleges are sufficiently symmetric.15

Proof. See Appendix A.6. �

Although the result is not limited to symmetric equilibria, the intuition can be seen more

clearly when we focus on symmetric equilibria (in the case that colleges are symmetric).

Suppose to the contrary that both colleges adopt cutoff strategies using the same cutoff v̂.

Namely, they compete for students of types [v̂, 1]. Suppose now a college deviates by shifting

its admissions from students of types [v̂, v̂+ε) to types [v̂−ε′, v̂). Notice the former students

receive a competing offer, so they entail uncertainty in enrollment; but not the latter. For

small enough ε and ε′, chosen to keep the expected yield unchanged, the resulting drop in

the quality of admission pool is negligible but the benefit in reducing the uncertainty is of

first order importance. Hence, the (symmetric) cutoff equilibrium cannot be sustained.

3.1 Properties of Equilibria

We have seen that the equilibrium outcome involves strategic targeting. We now consider

the properties of the equilibria in welfare and fairness.

A few definitions are necessary. For each state s, an assignment is a mapping from

V × {A,B} into [0, 1] that specifies the fraction of students of a given type that are enrolled

at each college. An outcome is a mapping from a state to an assignment, i.e., the realized

allocation in state s. Welfare and fairness can be defined based on the colleges’ and the

students’ (ordinal) preferences. We say that a student has justified envy at state s if at

that state she is not admitted by her favorite college even though it enrolls a student with a

lower score. An outcome is fair if for almost every state, almost all students have no justified

envy.

15Theorem 3 holds more generally beyond MME. In fact, any competitive equilibrium in which both
colleges admit students within [v̌, v̂] exhibits strategic targeting.
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Since admissions may involve randomness (as with our strategic targeting equilibrium),

we can define a student’s ex ante preference over lotteries via first order stochastic dominance

and evaluate welfare and fairness based on it. We say that for any two lotteries x, y ∈
{(zA, zB, z∅) ∈ R3

+|zA + zB + z∅ = 1}, a student FOSD-prefers x to y, if the probabilities of

being admitted by her favorite college and being admitted by either college are both (weakly)

higher at x than at y, and the ranking is strict for at least one category. We say that a student

has ex ante justified envy prior to random selection if the student FOSD-prefers a lottery

obtained by a lower-score student to the lottery she obtains. An outcome is said to be ex

ante fair if for almost every state, almost all students have no ex ante justified envy.16 If an

outcome fails to be ex ante fair, or equivalently ex ante unfair, then a positive measure of

students are disadvantaged for having better scores than others in an ex ante strong sense:

they FOSD envy lower-score students. Note that when the assignment is deterministic, the

ex ante notion of fairness collapses to the (ex post) notion of fairness, so we shall use the

latter.

Next, an outcome is Pareto efficient if the associated assignment is Pareto undominated

for almost every state—namely, there is no other assignment in which both colleges and all

students are weakly better off and at least one college or a positive measure of students is

strictly better off. It is also useful to study the welfare of one side of the market, taking the

other side simply as resources. We say that an outcome is student efficient if for almost

every state, there is no other assignment in which all students are weakly better off and a

positive measure of students is strictly better off. An outcome is said to be college efficient

if for almost every state, no other assignment can make both colleges weakly better off and

at least one college strictly better off relative to the assignment that the outcome selects.

Note that Pareto efficiency does not imply student efficiency or college efficiency.

The next theorem states properties of equilibria that arise in decentralized matching.

Theorem 4. (i) Every competitive equilibrium is student, college and Pareto inefficient.

(ii) Every competitive MME is unfair if and only if it exhibits strategic targeting.

(iii) Suppose vA 6= vB and vA 6= vB and max{vA, vB} < min{vA, vB} in a MME. Then,

the outcome is ex ante unfair.

(iv) Every non-competitive equilibrium is unfair, student inefficient, but college efficient.

(v) Every non-competitive equilibrium is Pareto inefficient unless almost every student

admitted by one college has higher score than those admitted by the other college.

Proof. See Appendix A.7. �

16Note that this is a weak notion of ex ante fairness. One may consider a stronger notion which requires
(almost) all students to FOSD-prefer the lotteries they obtain in comparison with those obtained by lower-
score students in (almost) all states. We consider the weak notion because equilibria fail even the weak
notion. The DA mechanism ensures a stronger notion of fairness, but the assignment is deterministic in this
case, so the ex ante notion of fairness reduces to the (ex post) fairness.
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Part (i) follows since some seats are unfilled even though it would be Pareto improving

to allocate them to students who are unmatched. Part (ii) follows easily from the fact that

some students in the targeting competition region are rejected by their favorite college (or by

both colleges), even though that college admits lower-score students. Part (iii) follows from

the ex ante non-monotonicity observed in Corollary 1. The unfairness as well as student

inefficiency in Part (iv) follows from the fact that two colleges simply admit different sets

of students. In such an equilibrium, high-score students receive an admission from only one

college, and some of these students, rejected by their top choice, will have justified envy

with lower-score students who were assigned their top choice. The outcome is still college

efficient since the colleges cannot be made both better offer. Nevertheless it admits a Pareto

improving reallocation, as stated in Part (v).

4 Multidimensional Performance Measures and Eval-

uation Distortion

In the baseline model, we have assumed that colleges assess students based on a common

criterion. In practice, colleges consider multiple dimensions of students’ attributes and per-

formances, academic as well as non-academic. Some dimensions are common among colleges;

for instance, SAT scores or GPA of students are commonly observed and interpreted virtually

the same by colleges. Others such as essays and college entrance exams are specific to indi-

vidual colleges.17 Non-academic measures are often less correlated among colleges since they

usually focus on different aspects and/or interpret them differently. For instance, students’

community service or leadership activities may weigh heavily for some colleges, whereas ex-

tracurricular activities such as musical or athletic talents may be important for others. We

show that strategic targeting takes a particular form in this environment: Colleges bias their

admissions criteria toward non-common performances.

To illustrate this point, we extend our model as follows. A student’s type is described

as a triple (v, eA, eB) ∈ V × EA × EB ≡ [0, 1]3, where v is the common measure or score,

and eA and eB are college specific measures considered respectively by colleges A and B.

One interpretation is that v is a student’s test score of the nationwide exam, and eA and eB

are her performances on college-specific essays or tests. Alternatively, v can be an academic

performance measure observed by both colleges, and eA and eB correspond to different

dimensions of extracurricular activities that the two colleges emphasize.

17College essay topics vary greatly across different colleges in the US. In Japan, there is a nation-wide
exam, called National Center Test (NCT), and each university has its own exam. Public universities usually
use both NCT and their own exams, and private ones use their own exams only. Similarly, students in Korea
take a nationwide exam, and each college often has its own essay tests and/or oral interviews.
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As before, v is distributed according to G(·), and ei, i = A,B, is conditionally indepen-

dent on v and is distributed according to Xi(·|v) which admits a density xi(·|v). We also

assume that ∂
∂v
Xi(ei|v) < 0 for any ei ∈ [0, 1]. That is, a student with larger v has a higher

probability of scoring high ei. We also assume full support of G and Xi for all i. College i

only values (v, ei). Specifically, it derives payoff Ui(v, ei) from matriculating a student with

type (v, eA, eB), where Ui is strictly increasing and differentiable in both arguments.

College i’s strategy is now described as a mapping σi : V × Ei → [0, 1], whereby it

admits a fraction σi(v, ei) of students of type (v, ei). Enrollment uncertainty facing college i

generated by students of type (v, ei) depends on whether they receive an offer from college j,

j 6= i. Since ej is conditionally uncorrelated with ei, the probability of such event is σj(v) :=

E[σj(v, ej)|v].

For given σA(·) and σB(·), the mass of students enrolling in college i in state s is

mi(s) =

∫ 1

0

∫ 1

0

σi(v, ei) (1− σj(v) + µi(s)σj(v)) dXi(ei|v) dG(v).

Let ŝi be such that mi(ŝi) = κ as before. Then, college i’s payoff is descried as follows:

πi =

∫ 1

0

∫ 1

0

Ui(v, ei)σi(v, ei)
(
1− σj(v) + E[µi(s)]σj(v)

)
dXi(ei|v) dG(v)

− λEs[mA(s)− κ | s ∈ Si] Prob(s ∈ Si)

=

∫ 1

0

∫ 1

0

σi(v, ei)Hi(v, ei, σj(v)) dXi(ei|v) dG(v) + λκProb(s ∈ Si),

where SA := {s | s ≥ ŝA} and SB := {s | s ≤ ŝB}, and

Hi(v, ei, σj(v)) :=Ui(v, ei)
(
1− σj(v) + E[µi(s)]σj(v)

)
− λProb(s ∈ Si)

(
1− σj(v) + E[µi(s)|s ∈ Si]σj(v)

)
. (4.1)

As before, this marginal payoff equals the student’s value Ui(v, ei) to college i multiplied

by the probability of her accepting i’s admission minus the capacity cost the student adds

to i. It is worth noting that the capacity cost only depends on the common measure v but

not on the non-common measure ei. This is because a student with high v is more likely to

have a competing offer, but conditional on v, ei is independent with ej. Intuitively, a student

scoring high in ei is less likely to incur enrollment uncertainty than a student scoring high

in v.

We focus on a cutoff strategy equilibrium in which college i admits student type (v, ei)

if and only if ei ≥ ηi(v) for some ηi nonincreasing in v. Figure 4.1 depicts a typical cutoff

strategy. In the figure, the solid line represents the locus of ηi, so the shaded area depicts the
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Figure 4.1: College’s Cutoff Locus

types of students college i admits under a cutoff strategy, whereas the dotted line is i’s true

indifference curve. Appendix A.8 provides a condition under which cutoff equilibrium exists.

Such an equilibrium is quite plausible since the use of non-common performance measure

lessens head-on competition and enrollment uncertainty.

We shall now show that in such a cutoff equilibrium, the colleges place more weight on

the non-common measures relative to their common measures. The reasoning of Lemma 2

implies that a college i must accept student type (v, ei) if and only if Hi(v, ei, σj(v)) ≥ 0. In

particular, the cutoff locus ei = ηi(v) must satisfy Hi(v, ηi(v), σj(v)) = 0 whenever ηi(v) ∈
(0, 1). Its slope −η′i(v) shows the “relative worth” of the student’s common performance

v in college i’s evaluation in terms of the units of the student’s non-common performance.

The higher this value is, the larger weight the college places on common performance. In

particular, we shall say that the college under-weights a student’s common performance v

and over-weights her non-common performance ei if for all v,

−η′(v) ≤ ∂Ui(v, ηi(v))/∂v

∂Ui(v, ηi(v))/∂ei

and the inequality is strict for a positive measure of v.18 Since students with high v con-

tributes more to enrollment uncertainty than students with high ei, as seen from (4.1),

evaluation distortion arises in a cutoff equilibrium:

Theorem 5. In a cutoff equilibrium, each college under-weights a student’s common perfor-

mance and over-weights her non-common performance.

18Suppose for instance Ui(v, ei) = (1 − ρ) v + ρ ei. Then, the condition means −η′(v) ≤ 1−ρ
ρ , so the

college places a weight less than 1− ρ to common performance v and a weight more than ρ to non-common
performance ei.

21



Proof. See Appendix A.8. �

This particular form of strategic targeting again entails justified envy in a positive mea-

sure of states. Among students who prefer A to B, those who are in region II (at the bottom

between dotted and solid lines) in Figure 4.1 have justified envy toward those students in

region I (at the top between solid and dotted lines). The outcome is also Pareto inefficient

since a college have vacant seats in a positive measure of states, which could have been filled

with unmatched students.

Theorem 6. A cutoff equilibrium is unfair and students, college and Pareto inefficient.

5 Restriction on Applications: Self-Targeting

So far, we have studied decentralized college admissions in the most stylized format. In

the current and following sections, we study two common ways for colleges to manage their

enrollment uncertainty. We assume, as in the baseline model, that students’ type is single

dimensional.

One common method used is to limit the number of applications that students can

submit. For instance, students cannot apply to both Cambridge and Oxford in the UK,

and applicants in Japan can apply to at most two public universities.19 In Korea, schools

(more precisely, college-department pairs) are partitioned into three groups, and students

are allowed to apply to only one in each group. Some US colleges place restrictions on

application in their Early Admissions plans.20

Limiting the number of applications a student can make forces her to “self-target” col-

leges. Since students apply to schools they are likely to accept when admitted, this method

improves the colleges’ yield rates and reduces their enrollment uncertainty. In our model

with two colleges, if the number of applications is restricted to one, colleges face no enroll-

ment uncertainty because a student admitted by a college will never turn down its offer,

so their admission behavior is non-strategic; namely, they admit students in the descending

order of v until their capacities are filled. As will be seen, however, students’ application

behavior now becomes strategic. Thus, the overall welfare is unclear a priori.

19Public colleges in Japan may hold three exams. The first one is called “zenki(former period)-exam” and
the last one is called “koki(later period)-exam.” There are very small number of schools that have exam
between these two exams. Students can apply to at most one public school at each exam date.

20Early admissions consist of Early Decision which requires students to enroll, if admitted, and Early
Action which does not involve such commitment. While pursuing admission under an Early Decision plan,
students may apply to other institutions, but may have only one Early Decision application pending at any
time (NACAC, 2012). Some Early Action plans place restrictions on student applications to other early
plans. Selective universities such as Harvard, Stanford, Yale and Princeton restricted applicants to a single
private university in their 2014 Early Action plans.
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We now provide a simple model showing students’ application behavior when they are

limited to one application. To this end, we introduce students’ cardinal preferences for

colleges. Each student has a taste y ∈ Y ≡ [0, 1], which is independent of score v ∈ [0, 1].

A student with taste y obtains payoff y from attending college A and 1− y from attending

college B. Thus, students with y ∈ [0, 1
2
] prefer B to A, and those with y ∈ [1

2
, 1] prefer A

to B. To facilitate analysis, we assume that colleges observe an applicant’s score v but not

her preference y, while each student knows her preference y but not her score v.21 In reality,

even though students submit their records to colleges, they do not know precisely how they

are ranked by colleges. See Avery and Levin (2010) for the same treatment.

A student’s taste y is drawn according to a distribution that depends on the underlying

state. For a given s, let K(y|s) be the distribution of y with density function k(y|s), which is

continuous and obeys (strict) monotone likelihood ratio property: For any y′ > y and s′ > s,

k(y′|s′)
k(y|s′)

>
k(y′|s)
k(y|s)

, (5.1)

meaning that a student’s value of A is likely to be high when s is high. We further assume

that there exists δ > 0 such that
∣∣∣ky(y|s)
k(y|s)

∣∣∣ < δ for any y ∈ [0, 1] and s ∈ [0, 1], which indicates

that students’ tastes change moderately relative to the state. Each student with taste y

forms a posterior belief about the state s, given by the following conditional density:

l(s|y) :=
k(y|s)∫ 1

0
k(y|s)ds

.

Before proceeding, we make the following observations: First, for each student, applying

to a school dominates not applying at all. Second, since a student does not know her score

and her preference is independent of the score, the student’s application depends solely on

the preference. Third, since each student’s preference depends on the state, the mass of

students applying to each college varies across states. Let ni(s) be the mass of students who

apply to college i = A,B in state s.

We next consider a college’s admission strategy. Since a college faces no enrollment

uncertainty, it is optimal to admit all students up to a cutoff

ci(s) := inf {c ∈ [0, 1] |ni(s)[1−G(c)] ≤ κ} .

If ni(s) ≥ κ in state s, then college i will set its cutoff so as to admit students up to its

21Note that introducing cardinal preferences does not alter the previous analyses, because even if students
have cardinal preferences, it is still a weak dominant strategy for students to apply to both colleges. Nonob-
servability of scores by students makes it a strict dominant strategy for students to apply to both colleges.
Hence, the previous analyses still remain with this assumption.
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capacity. Otherwise, it will admit all applicants.

Consider now students’ application decisions. Fix any strategy σ : Y → [0, 1] which

specifies a probability of applying to A for each y ∈ Y . The mass of students applying to A

in each state s is then given by

nA(s|σ) :=

∫ 1

0

σ(y)k(y|s) dy.

Clearly, nB(s|σ) = 1− nA(s|σ). A student with taste y expects to be admitted by college i

with probability

Pi(y|σ) ≡ E[1−G(ci(s)) | y, σ] =

∫ 1

0

qi(s|σ)l(s|y)ds,

where qi(s|σ) := min
{
κ/ni(s|σ), 1

}
for i = A,B. This probability depends on the student’s

preference y since it is correlated with the underlying state. Note that a student with taste

y will apply to A if and only if

yPA(y|σ) ≥ (1− y)PB(y|σ).

We show that students follow a cutoff strategy in any equilibrium, given a moderate value

of δ.

Lemma 4. Suppose δ ≤ 1
2
. In any equilibrium, there exists a cutoff ŷ such that students

with y ≥ ŷ apply to A and those with y < ŷ apply to B. And such an equilibrium exists.

Proof. See Appendix A.9. �

We now show that an equilibrium involves strategic application by students if one school

is more popular than the other.

Theorem 7. Suppose µ(s) > 1
2

(
µ(s) = 1

2

)
for almost all s. Then, ŷ ∈ (1

2
, 1)

(
ŷ = 1

2

)
, where

ŷ is the equilibrium cutoff.

Proof. See Appendix A.9. �

The intuition behind Theorem 7 is clear. If college A is more popular than B, then A

becomes more difficult to get in than B, all else equal. Hence, students who prefer B (y ≤ 1
2
)

will definitely apply to B. But even students who mildly prefer A (i.e., y is greater than but

close to 1
2
) will apply to B instead of A. This behavior leads to a cutoff ŷ > 1

2
as depicted

in Figure 5.1.

Example 3. Suppose there are two states a and b, each arising with probability 1
2
. Let

K(y|a) = y2, K(y|b) = y and κ = 0.4. Then, we have
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ŷ
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1 y1
2

(b) State b

Figure 5.1: Equilibrium Assignment when κ = 0.4

ŷ nA(a) nB(a) cA(a) cB(a) nA(b) nB(b) cA(b) cB(b)

0.547 0.701 0.299 0.429 0 0.453 0.547 0.116 0.269

Observe that if ni(s) ≥ κ for all s and for all i = A,B, then self-targeting eliminates

colleges’ yield control problem, since each college fills its capacity with the best students

among those who applied to it. But, a college may be undersubscribed; for instance, the mass

of applicants to college B in state a is smaller than its capacity (nB(a) = 0.299 < κ = 0.4).

Let us now consider welfare and fairness properties of the equilibrium outcome. First, the

equilibrium is unfair. Justified envy arises in that (i) students who happen to have applied to

a more popular college for a given state may be unassigned even though their scores are good

enough for the other college (the area on the bottom right below cA(a) of Figure 5.1(a));

and (ii) students who prefer but avoid an ex ante more popular college get into an ex ante

less popular college, but they could have gotten into the former when it becomes ex post

less popular (the shaded area between 1
2

and ŷ of Figure 5.1(b)).

Second, a college may be undersubscribed in equilibrium so that its capacity is not

filled even though there are unassigned, acceptable students. By assigning those students

to unfilled seats of that college, students and the college will be both better off. Thus, the

equilibrium outcome is still student, college and Pareto inefficient.

Theorem 8. The outcome of the restricted applications is unfair. Suppose K(ŷ|s) < κ for a

positive measure of states. Then, college B suffers from under-subscription, and the outcome

is student, college and Pareto inefficient.

Proof. See Appendix A.9. �
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6 Sequential Admissions: Wait-listing

Colleges also manage enrollment uncertainty by offering admissions sequentially. According

to this method, a college would admit some applicants and wait-list others in the first round.

Later it would admit students from the wait list when some offers are rejected. This process

may repeat in several rounds. Wait-listing is adopted by most colleges in France and Korea.

In the US, nearly 45% of four-year colleges adopted wait lists in 2011, up from 32% in

2002 (NACAC, 2012). In a typical application, the acceptance decisions cannot be deferred

and/or the number of iterations is limited. Hence, even though wait-listing allows for more

admission offers and acceptances than the baseline model or restricted applications, it does

not fully eliminate congestion. For this reason, strategic targeting remains an issue.

To see this, we consider a simple extension of our baseline model. There are three colleges,

A, B and C, each with a mass κ < 1
3

capacity. There is a unit mass of students with score

v, where v is distributed from [0, 1] according to G(·) as before. All students prefer A and B

to C, but C is significantly better than not attending any school. A college’s utility is given

by students’ scores, but for each student, there is a probability ε that each of colleges A and

B finds the student unacceptable. College C admits students simply based on their scores.

There are two states, a and b, each arising with probability 1
2
. In state i = a, b, a

fraction si of students gets utility u from A and u′(< u) from B, and the remaining 1 − si
students have the opposite preference, where sa = 1− sb > 1

2
. In either state, a student gets

utility u′′ from C, where (1− ε)u < u′′ < u so that entering C with certainty is better than

entering A with probability 1 − ε. In state a, the mass of students who prefer A to B is

larger than that of those who prefer B to A (sa >
1
2
> 1− sa), and in state b, the opposite

is true (sb <
1
2
< 1− sb).

Suppose also the capacity cost is prohibitively high so that whenever a college makes

an admission decision, it must make sure that the capacity constraint is not violated. We

consider the following model of wait-listing. In each round, each college admits a set of

students and wait-lists the remaining. A student who has received an offer must accept or

reject it immediately. After the first round, colleges A and B learn the state, so the game

effectively ends in two rounds.

We show that there is no symmetric equilibrium in which both colleges A and B use a

cutoff strategy (i.e., admit the top κ acceptable students) in the first round.

Theorem 9. There is no symmetric equilibrium in which both colleges A and B offer ad-

missions to the top κ acceptable students in the first round.

Proof. See Appendix A.10. �

The intuition behind this result is as follows. Suppose A and B admit the best candidates

up to their capacities while keeping the next best group in mind in case some offers are turned
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down. The problem with this strategy is that when some of those admitted turn down their

offers, the second-best students the colleges have in mind may not be available. The reason is

that those students are uncertain about whether A or B would find them acceptable, hence

if they receive an admission offer from C, they would simply accept it. This implies that

the students who remain after the first round are likely to be far worse than the second-best

group. Hence, a college would deviate profitably by skipping over some of the top κ students

and preemptively admitting some of the second-best students.

Theorem 9 implies that strategic targeting must occur in any symmetric equilibrium.

Strategic targeting here can be attributed to the uncertainty facing the colleges about the

quality of students remaining after each round. This uncertainty rests on the uncertainty

students face on whether better offers will emerge should they turn down current offers.

Without allowing deferral of decisions, either for colleges in admitting students or for students

in accepting offers, the uncertainties will result in strategic targeting.22

Again, strategic targeting—i.e., a non-cutoff equilibrium—means that the equilibrium

outcome involves justified envy and is thus unfair. It is also student inefficient because

there are two sets of students with the second-best group such that one set prefers A but

is admitted only by B and the other prefers B but is admitted only by A. In sum, the

undesirable properties of decentralized matching are not eliminated by wait-listing.

Such a pattern of strategic targeting is observed in practice. We present one evidence

from the admissions decisions made by Hanyang University in Korea.23 Figure 6.1 depicts

the distribution of the nation-wide College Scholastic Ability Test (CSAT) scores earned by

the students who were admitted by the Department of Economics and Finance (DEF) at

different sequential rounds in years 2011, 2012 and 2013.24 The horizontal axis represents

students’ CSAT scores, and the vertical axis is the number of students admitted in each

round of admission.25

The figure reveals a pattern of strategic targeting. In 2011, 133 students applied to

DEF, and DEF admitted 35 students in the first round, 7 students in the second round and

additional 9 students in the subsequent rounds. The average score of the top four students

admitted in the second round (266.155) is higher than that of the bottom four students in the

22As will be seen in the next section, the deferral of decisions allowed in the Gale-Shapley’s algorithm
solves this problem.

23We gratefully acknowledge the Hanyang University for providing their admissions data.
24As noted in Section 5, college-department pairs in Korea are divided into three groups, called groups

Ga, Na and Da, and students can apply to at most one in each group. Thus, an unit in each group competes
with other units in the same group but does not face competition with units in other groups. DEF divides
its quota into two groups, Ga and Na, and admits students separately for the two groups. We focus on the
admissions decision on the group Ga applications, which is the primary target group of DEF. The quota
assigned for group Ga is twice as many as the quota for group Na.

25The total score of CSAT is normalized as 280 by the admission office, while the actual score may depend
on the subjects taken by students.
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(a) 2011

(b) 2012

(c) 2013

Note: “i-th,” i = 1, .., 4, means the i-th round of admission and “≥5th” includes all rounds after 5th round.

Figure 6.1: Admissions on Wait Lists
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first round (266.027). In 2012, DEF admitted 54 students out of 103 applicants through 11

rounds. It admitted 34 students in the first round and 2 students in the second round. The

highest score in the second round (273.844) is the same as the 27th highest score in the first

round. In 2013, 45 students were admitted out of 124 applicants in 8 rounds. DEF admitted

31 and 3 students in the first and the second rounds, respectively. The scores of the top

two students in the second round are higher than those of the bottom three students in the

first round. The reason for the observed non-monotonicity is that DEF offers a significant

number of its admissions based on a measure that “garbles” a student’s CSAT score by

another less-informative measure.26

7 Centralized Matching via Deferred Acceptance

The most systemic response to enrollment uncertainty is to organize centralized matching

between students and colleges. Centralized admissions are adopted in countries such as

Australia, China, Germany, Taiwan, Turkey and the UK.27 In this section, we consider a

centralized matching with a Gale and Shapley’s Deferred Acceptance algorithm (henceforth

DA). Not only is the DA employed in many centralized markets, such as public school

admissions and medical residency assignments, but it has a number of desirable properties

compared with the outcomes of decentralized matching, as we shall highlight below.

In the DA algorithm, students and colleges report their ordinal preferences to the clear-

inghouse, which then uses the information to simulate the following multi-round procedure.

In each round, students propose to the best schools that have not yet rejected them. The

colleges then tentatively accept the most preferred students up to their capacities and reject

the rest. This process is repeated until no further proposals are made, in which case each

student is assigned to a college that has tentatively accepted her proposal.28

26A college in Korea typically considers an applicant’s CSAT score and his/her high school GPA. But
for the high school GPA, a college is prohibited by law from adjusting it for the quality of the high school
the student is attending. Since the quality of high schools differs significantly across regions and between
“special-purpose” schools and regular schools, a student’s CSAT score is widely regarded as a more reliable
indicator of his/her ability than his/her high school GPA. In keeping with this, DEF, as well as many other
departments, at Hanyang University awards a small number of the so-called “priority” admissions in its
first round admission based solely on applicants’ CSAT scores. But for the remaining admissions in the
first and the subsequent rounds, DEF makes selection based on the sum of an applicant’s CSAT score and
his/her GPA (unadjusted for high school quality). Accordingly, the students receiving priority admissions
have higher CSAT scores than all other admitted students. But, because of the “garbling” of the CSAT
scores by the high school GPA for the remaining admissions, the students admitted in the earlier rounds
need not have higher CSAT scores than those admitted in later rounds. Figure 6.1 includes the students
receiving priority admissions as part of the first-round admittees.

27See Chen and Kesten (2013) for Shanghai mechanism and Westkamp (2013) for Germany medical school
matchings.

28The outcome of college-proposing DA is the same as that of student-proposing DA in our model, since
colleges have a uniform rank on students. See also Abdulkadiroğlu, Che and Yasuda (forthcoming) and
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Figure 7.1: Deferred Acceptance Algorithm

Figure 7.1 illustrates the process for the case µ(s) ≥ 1
2
. In the first round, a fraction µ(s)

of students proposes to college A, and the remaining students propose to college B. Each

college tentatively admits the top κ students among the applicants. Thus, colleges’ cutoffs

in this round, denoted by ĉi(s), i = A,B, satisfy µ(s)[1−G(ĉA(s))] = κ and (1− µ(s))[1−
G(ĉB(s))] = κ (see Figure 7.1(a)). Unassigned students then propose to another college

at the second round, and again, colleges reselect the top κ students from those admitted

tentatively in the first round together with the new applicants. Thus, colleges’ cutoffs in

this round satisfy µ(s)[1− G(ĉA(s))] = κ and 1− G(ĉB(s)) = 2κ (see Figure 7.1(b)). Since

there are no more colleges unassigned students can apply to, the assignment is finalized in

the second round in our model.

Consider now the equilibrium properties of the DA outcome. DA is strategy-proof for

the students, so they have a dominant strategy of reporting their preferences truthfully

(Dubins and Freedman, 1981; Roth, 1982). In addition, colleges in our model also report

their rankings and capacities truthfully in an ex post equilibrium; namely, truthful reporting

forms a Nash equilibrium for any profile of preferences students may report.

Lemma 5. Given the common college preferences, it is an ex post equilibrium for colleges

to report their rankings and capacities truthfully.

Proof. See Appendix A.11. �

The matching in the equilibrium involves no justified envy (Gale and Shapley, 1962;

Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003) since the assignment is non-

random for each realized state.29 The matching is Pareto efficient (an implication of stability)

Azevedo and Leshno (2012) for a model of DA in which a continuum mass of students is matched to a finite
number of schools.

29It also involves no ex ante weak justified envy as well; that is, the outcome is strongly fair.
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and is student efficient (because colleges’ preferences are acyclic in the sense of Ergin (2002)).

It also eliminates colleges’ yield control problem completely. Colleges never exceed their ca-

pacities (because it is never allowed by the algorithm) and have no seats left unfilled in the

presence of acceptable unmatched students (a consequence of stability).

In fact, given the homogeneous preferences of the colleges, there exists a single cutoff such

that a student is assigned a college under DA if and only if her score exceeds that cutoff.

In order words, only those with the top 2κ scores are assigned to a college. This outcome

is jointly optimal for the two colleges—that is, the outcome would be chosen if the colleges

were to merge into a single entity. In particular, the outcome is college efficient.

By contrast, a competitive equilibrium in decentralized matching entails unfilled seats for

a college in low demand states and overfilled seats in high demand states, so the assignment

is far from jointly optimal. This observation suggests that at least one college must be

strictly better off from a shift from decentralized matching to a centralized matching via the

deferred acceptance algorithm. Despite the overall benefit from switching centralization via

DA, it is possible for one college to be worse off. To see this, consider the following example.

Example 4. Let v ∼ U [0, 1], λ = 5, κ = 0.45 and µ(s) = 2
5
s + 3

5
. Then, in a decentralized

admission, there is a MME such that v̌ = vA < vB = v̂ and colleges’ payoffs in the equilibrium

are πA = 0.283 and πB = 0.180. Suppose now that DA is adopted. Then, their payoffs are

πDAA = 0.321 and πDAB = 0.174. Notice πDAA + πDAB = 0.495 > πA + πB = 0.463 (total payoff

of the colleges increases), πDAA > πA (college A is strictly better off), but πDAB < πB (college

B is worse off).

In this example, college A is more popular than B for all states. Yet, decentralized

matching enables college B to attract some good students it cannot attract under DA. This

may explain why centralized matching is not as common in college admissions as in other

contexts such as public high-school admissions. In the latter situation, schools are largely

under the control of central authority which serves the interest of the students. In contrast,

colleges are independent strategic players with their own interest to pursue.

Equilibrium properties of the outcome under DA are summarized as follows.

Theorem 10. Under DA, the equilibrium outcome is fair, and student, college and Pareto

efficient. However, some college may be worse off compared to decentralized matching.

8 Conclusion

The current paper has studied a new model of decentralized college admissions. In this

model, colleges face enrollment uncertainty that arises from students’ (aggregately) uncertain

preferences. We have shown that colleges respond to enrollment uncertainty by strategically
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targeting their admissions to students who are likely overlooked by their competitors. When

colleges also consider students’ performance in college-specific essays or tests, or their non-

academic performance or extracurricular activities, strategic targeting takes the form of

colleges’ placing excessive weights on these measures in their admissions decisions. We have

shown that this equilibrium behavior of colleges leads to justified envy and Pareto inefficiency.

We have also studied alternative arrangements in which colleges limit the number of

applications students can submit, in which they admit students in multiple rounds via wait-

listing, and in which they centralize admissions via DA. Both restricted application and

wait-listing alleviate colleges’ yield control burden, but targeting and enrollment uncertainty

remain. So do inefficiencies and justified envy. Centralized matching via DA completely

eliminates enrollment uncertainty and justified envy and achieves efficiency. However, not

all colleges may benefit from such a centralized matching. This last observation may explain

why college admissions remain decentralized in many countries.

Our analyses have several other implications.

Early Admissions. Early admissions are widely adopted by colleges in the US and Korea.

Early admissions programs allow students to apply to sponsoring colleges early, and the col-

leges in turn process their applications prior to the regular admissions round (with binding

or non-binding requirements for students to accept them early). The remaining students

and seats are then allocated through regular admissions. This process resembles sequential

admissions studied in Section 6. In addition, some early admissions programs restrict appli-

cations just as in Section 5. Although the model involving both sequential admissions and

restricted application is not tractable (especially with aggregate uncertainty), our analyses

imply that these features can help colleges to cope with enrollment uncertainty. We believe

this is an important function of early admissions not emphasized by other recent papers

(Avery and Levin, 2010; Lee, 2009). Despite this benefit to colleges, our analyses suggest

that the outcomes of these programs are unlikely to be efficient or fair.

Loyalty and Legacy. It is well documented that colleges favor students who show ea-

gerness to attend them. Students who signal their interests through campus visits, essays,

letter of intention, and webcam interviews are known to be favored by colleges. According

to the 2004 and 2005 NACAC Admission Trends Survey, 59% of the colleges surveyed as-

signed some level of importance to a student’s “demonstrated interest” in their admissions

decisions. Table 1 shows the extent to which certain applicant activities would be considered

as a “plus factor” in the admission process by institutions with varying yield rates.

Early admissions, as Avery and Levin (2010) argue, also serve as a tool for colleges to

identify enthusiastic applicants and favor them in the admission. It is entirely plausible that
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Table 1: Percentage of institutions that consider a “plus factor” in the admission process

Campus
visit

Interview
(on or off
campus)

Frequent
contact the
admission
office

Applying
Early Action
or Decision

Particular
academic or
professional
focus

Contact
with faculty
members on
campus

Yield 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005 2004 2005

< 30% 61.9 59.0 58.3 56.6 42.7 41.3 35.8 26.9 39.8 39.6 43.3 38.5
30 ∼ 40% 51.3 47.2 54.1 42.5 37.0 34.0 24.4 26.5 38.0 36.4 34.8 34.4
46 ∼ 60% 30.9 32.3 36.3 32.3 25.9 26.2 10.3 11.1 32.5 36.9 8.9 31.8
> 60% 32.6 45.0 37.0 52.5 23.9 39.3 17.4 7.3 33.3 48.3 17.8 32.2

Source: NACAC (2012)

these preferences by colleges are intrinsic, as postulated by Avery and Levin (2010). But, our

theory suggests that such preference could also arise endogenously from the desire to manage

enrollment uncertainty. Like the students without an competing offer in our model, those

with demonstrated interest add less to the capacity cost, since their preference is unlikely to

vary much with the popularity of the college among regular students.30 Accordingly, even a

college with no intrinsic preference for loyal students has a reason to favor them. Consistent

with this view, Table 1 shows that colleges suffering lower yield rates tend to favor students

with “demonstrated interest” more than the colleges enjoying higher yield rates. A similar

explanation applies to the favoring of legacy students (who have a family history with the

school).31

Yield Manipulation and Strategic Targeting. As noted in Remark 1, colleges in our

model exhibit (endogenous) preference for a high yield. While such a preference arises in our

model from the desire to manage enrollment uncertainty, in practice, colleges may prefer a

high yield rate for an intrinsic reason—favorable perception and brand image. Importantly,

“yield and acceptance rates for a college’s entering class account for one-fourth of the ‘student

selectivity’ score in the influential US News & World Report annual rankings of colleges and

30To see this, suppose there are two groups of students, loyal (L) and regular (R), for college A. A regular
student prefers college A with probability µ(s) in state s ∈ [0, 1] as before, but a loyal student prefers A with
probability µL(s) = µ(s) + a, for some constant a > 0. That is, a higher fraction of loyal students prefer A
than regular students at every state. Suppose there are two students, one loyal and one regular, and suppose
both receive an offer from B. The loyal student adds to capacity cost λ whenever college A over-enrolls.
This latter probability conditional on the loyal student accepting A’s offer is

(1− sA)
E[µL(s)|s > sA]

E[µL(s)]
= (1− sA)

E[µ(s)|s > sA] + a

E[µ(s)] + a
,

which is is strictly lower than (1 − sA)E[µ(s)|s>sA]
E[µ(s)] , the corresponding probability of A over-enrolling condi-

tional on the regular student accepting A’s offer.
31Espenshade, Chung and Walling (2004) show that legacy applicants have nearly three times the likelihood

of being accepted as non-legacies.
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universities, enough to raise or lower a school’s position by several spots.”32 Our analysis

implies that “yield-motivated” colleges will behave similarly to colleges in our model; namely,

they will strategically target students overlooked by other (particularly stronger) colleges and

reject students who are unlikely to accept their offers (or “too good for them”). This behavior

is consistent with anecdotal evidence. The Wall Street Journal article cited in footnote 32

reports one such practice employed by Franklin and Marshall College:

By wait-listing top applicants who didn’t visit the campus or interview with

college representatives, the college bumped up its yield for the next school year

to 27% from 25%. It also improved its acceptance rate – the ratio of acceptances

to total applications – to a more selective 51% from 53%. Such numbers could

help Franklin and Marshall rise in the US News ranking of national liberal-arts

colleges from its current position of 33rd.
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For Online Publication

A Appendix A: Proofs

A.1 Proof of Lemma 1

Claim 1. Suppose VAB has zero measure. Then, the following results hold.

(i) mA(s) = mB(s) = κ for all s ∈ [0, 1].

(ii) Almost every student with v ≥ G−1(1− 2κ) receives an admission.

Proof. (i) Since VAB is a measure zero set, mi(s) is constant across states for all i = A,B.

If mi(s) < κ, then college i can benefit by admitting some students with measure less than

κ − mi(s). Similarly, if mi(s) > κ, then it can benefit by rejecting some students with

measure less than mi(s)− κ.

(ii) Observe that VA ∪ VB cannot have a gap, otherwise at least one college can benefit

by replacing a positive measure of low score students with the same measure of students in

the gap. So, it must be an interval with sup{VA ∪ VB} = 1. Since mA(s) = mB(s) = κ for

all s by Part (i), this means that almost every top 2κ students are admitted. �

Note that the proofs for Parts (i), (ii) and (iv) of the lemma for non-competitive equi-

librium follow from Claim 1. We thus consider competitive equilibrium in what follows. We

prove in the sequence of Parts (i), (iii) and (ii).

Proof of Part (i). Consider a competitive equilibrium. Suppose mA(1) < κ. Let college

A admit a mass κ−mA(1) of students. Then, the mass of students attending A, denoted by

m̃A(s), satisfies that for any s < 1,

mA(s) < mA(s) + µ(s)[κ−mA(1)] ≤ m̃A(s) ≤ mA(s) + [k −mA(1)] < κ,

where the first and the last inequality follow from the fact that mA(s) < mA(1) for s < 1

(since µ(·) is strictly increasing in s). Observe that A benefits from such deviation since it

admits more students without having over-enrollment. Hence, we must have κ ≤ mA(1) in

equilibrium. Similarly, if mA(0) > κ, then A can benefit by rejecting a mass mA(0) − κ of

students. Therefore, we must have mA(0) ≤ κ ≤ mA(1) in any competitive equilibrium. The

proof for college B is analogous. �

Proof of Part (iii). We consider college A here. The proof for college B will be analogous.

Since µ(·) is strictly increasing and continuous in s, so is mA(·). Thus, there exists ŝA ∈ [0, 1]

such that mA(ŝA) = κ by Part (i). We show that ŝA 6= 0, 1 in what follows.
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Suppose ŝA = 0. Then, mA(s) > mA(0) = κ for all s > 0. Thus, college A’s payoff is

πA =

∫ 1

0

vσA(v)(1− σB(v) + µσB(v))dG(v)− λ
∫ 1

0

[mA(s)− κ]ds,

where µ := E[µ(s)] and

mA(s) =

∫ 1

0

σA(v)(1− σB(v) + µ(s)σB(v))dG(v).

Let A reject a positive measure of students, say (c, c+ δ) ⊂ VA. Then, its payoff is

π̃A =

∫
[0,1]\(c,c+δ)

vσA(v)(1− σB(v) + µσB(v))dG(v)− λ
∫ 1

s̃A

[m̃A(s)− κ]ds,

where

m̃A(s) = mA(s)−
∫ c+δ

c

σA(v)(1− σB(v) + µ(s)σB(v))dG(v) (A.1.1)

and s̃A is such that m̃A(s̃A) = κ. Note that s̃A > ŝA = 0 since m̃A(s) < mA(s). Now, we

can choose δ such that s̃A < ε for sufficiently small ε > 0. Then, A’s net payoff from the

deviation is

−
∫ c+δ

c

vσA(v)(1− σB(v) + µσB(v))dG(v)− λ
∫ 1

s̃A

[m̃A(s)− κ]ds+ λ

∫ 1

0

[mA(s)− κ]ds

=−
∫ c+δ

c

vσA(v)(1− σB(v) + µσB(v))dG(v) + λ

∫ 1

s̃A

[mA(s)− m̃A(s)]ds+ λ

∫ s̃A

0

[mA(s)− κ]ds

=−
∫ 1

s̃A

(∫ c+δ

c

vσA(v)(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

−
∫ s̃A

0

(∫ c+δ

c

vσA(v)(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

+ λ

∫ 1

s̃A

(∫ c+δ

c

σA(v)(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

+ λ

∫ 1

0

[mA(s)− κ]ds

=

∫ 1

s̃A

(∫ c+δ

c

(λ− v)σA(v)(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

−
∫ s̃A

0

(∫ c+δ

c

vσA(v)(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

+ λ

∫ s̃A

0

[mA(s)− κ]ds

>0,
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where the second equality follows from (A.1.1) and the last inequality holds for sufficiently

small ε.

Next, suppose ŝA = 1. Then, mA(s) < mA(1) = κ for all s < 1. Let A admit all students

in (c, c+ δ) 6* VA for some c < 1. Then, the mass of students attending A becomes

m̃A(s) = mA(s) +

∫ c+δ

c

(1− σB(v) + µ(s)σB(v))dG(v). (A.1.2)

Let s̃A be such that m̃A(s̃A) = κ. Note that s̃A < ŝA = 1 since m̃A(s) > mA(s). We can

choose δ such that 1− s̃A < ε for sufficiently small ε. A’s net payoff from the deviation is∫ c+δ

c

v(1− σB(v) + µσB(v))dG(v)− λ
∫ 1

s̃A

(m̃A(s)− κ)ds

=

∫ c+δ

c

v(1− σB(v) + µσB(v))dG(v)

− λ
∫ 1

s̃A

(
mA(s) +

∫ c+δ

c

(1− σB(v) + µ(s)σB(v))dG(v)− κ
)
ds

=

∫ c+δ

c

v(1− σB(v) + µσB(v))dG(v)− λ
∫ 1

s̃A

(∫ c+δ

c

(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

+ λ

∫ 1

s̃A

[κ−mA(s)]ds

=

∫ s̃A

0

(∫ c+δ

c

v(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

−
∫ 1

s̃A

(∫ c+δ

c

(λ− v)(1− σB(v) + µ(s)σB(v))dG(v)
)
ds+ λ

∫ 1

s̃A

[κ−mA(s)]ds

>0

where the first equality follows from (A.1.2) and the last inequality holds for sufficiently

small ε. �

Proof of Part (ii). We first show sup(VA ∪ VB) = 1 and then show that VA ∪ VB is an

interval and inf(VA ∪ VB) > 0.

Step 1. sup(VA ∪ VB) = 1.

Proof. Suppose to the contrary that c := sup(VA ∪ VB) < 1. We show that at least one

college can benefit by rejecting some students in favor of those with (c, 1].

Suppose Vi \ VAB contains an open interval with positive measure for some i = A,B.

Then, it is clear that college i can benefit by rejecting a positive measure of students from

the bottom of Vi \ VAB and admits the same measure of students from 1.
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Suppose now it is not the case. Let college A reject students in (c, c + δ) ⊂ VAB and

admit those in (1− ε, 1] instead, where δ and ε satisfy∫ 1

1−ε
v dG(v) =

∫ c+δ

c

v dG(v) (A.1.3)

and ∫ 1

1−ε
1 dG(v) =

∫ c+δ

c

σA(v)[1− σB(v) + µ(ŝA)σB(v)]dG(v), (A.1.4)

for given ŝA such that mA(ŝA) = κ. The mass of students attending A from this deviation is

m̃A(s) = mA(s) +

∫ 1

1−ε
1 dG(v)−

∫ c+δ

c

σA(v)[1− σB(v) + µ(s)σB(v))dG(v).

Note that m̃A(ŝA) = mA(ŝA). Denote college A’s payoff from the deviation by π̃A. Then, its

net payoff from the deviation is

π̃A − πA =

∫ 1

1−ε
v dG(v)−

∫ c+δ

c

vσA(v)(1− σB(v) + µσB(v))dG(v)

− λE[m̃A(s)−mA(s)|s ∈ SA]Prob(s ∈ SA)

≥
∫ 1

1−ε
v dG(v)−

∫ c+δ

c

v dG(v)

− λ
∫ 1

ŝA

(∫ 1

1−ε
1 dG(v)−

∫ c+δ

c

σA(v)[1− σB(v) + µ(s)σB(v))dG(v)
)
ds

=− λ
∫ 1

ŝA

(∫ 1

1−ε
1 dG(v)−

∫ c+δ

c

σA(v)[1− σB(v) + µ(s)σB(v)]dG(v)
)
ds

>− λ
∫ 1

ŝA

(∫ 1

1−ε
1 dG(v)−

∫ c+δ

c

σA(v)[1− σB(v) + µ(ŝA)σB(v)]dG(v)
)
ds

=0,

where the first inequality holds since σA(v), σB(v), µ = E[µ(s)] ≤ 1 for any v, the second

equality follows from (A.1.3), the penultimate inequality follows from the fact that µ(·) is

strictly increasing in s, and the last equality follows from (A.1.4). �

Step 2. VA ∪ VB is an interval.

Proof. Suppose that there is gap in VA∪VB. The proof is analogous to Step 1, where (1−ε, 1]

is now replaced by the gap in VA ∪ VB. We omit the details. �

Step 3. inf(VA ∪ VB) > 0
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Proof. Suppose to the contrary that inf(VA ∪ VB) = 0. Suppose inf(VA) = 0. Let A reject

a small fraction of students at the bottom, [0, ε), where 2ε < 1 − ŝA and ŝA is such that

mA(ŝA) = κ. Then, the mass of students attending A from the deviation is

m̃A(s) =

∫ 1

ε

σA(v)(1− σB(v) + µ(s)σB(v))dG(v).

Let s̃A be the state such that m̃A(s̃A) = κ. Note that s̃A > ŝA since m̃A(s) < mA(s). Hence,

we can choose ε such that s̃A − ŝA < ε. Then, A’s net payoff from the deviation is

π̃A−πA = −
∫ ε

0

vσA(v)[1− σB(v) + µσB(v)]dG(v)︸ ︷︷ ︸
(∗)

+λ

[∫ 1

ŝA

(mA(s)− κ)ds−
∫ 1

s̃A

(m̃A(s)− κ)ds

]
︸ ︷︷ ︸

(∗∗)

.

Note that

(∗) =

∫ 1

0

(∫ ε

0

vσA(v)(1− σB(v) + µ(s)σB(v))dG(v)
)
ds

< ε

∫ 1

s̃A

(∫ ε

0

σA(v)[1− σB(v) + µ(s)σB(v)]dG(v)
)
ds

+ ε

∫ s̃A

0

(∫ ε

0

σA(v)[1− σB(v) + µ(s)σB(v)]dG(v)
)
ds

and

(∗∗) =

∫ 1

s̃A

(mA(s)− κ)ds+

∫ s̃A

ŝA

(mA(s)− κ)ds−
∫ 1

s̃A

(m̃A(s)− κ)ds

=

∫ 1

s̃A

(∫ ε

0

σA(v)[1− σB(v) + µ(s)σB(v)]dG(v)
)
ds+

∫ s̃A

ŝA

(mA(s)− κ)ds

>

∫ 1

s̃A

(∫ ε

0

σA(v)[1− σB(v) + µ(s)σB(v)]dG(v)
)
ds

where the last inequality holds since mA(s) > κ for any s ∈ (ŝA, s̃). Thus, we have

π̃A − πA > (λ− ε)
∫ 1

s̃A

(∫ ε

0

σA(v)[1− σB(v) + µ(s)σB(v)]dG(v)
)
ds

− ε
∫ s̃A

0

(∫ ε

0

σA(v)[1− σB(v) + µ(s)σB(v)]dG(v)
)
ds

> (λ− ε)(1− s̃A)

∫ ε

0

σA(v)[1− σB(v) + µ(s̃A)σB(v)]dG(v)

− ε s̃A
∫ ε

0

σA(v)[1− σB(v) + µ(s̃A)σB(v)]dG(v)
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=
(
λ(1− s̃A)− ε

) ∫ ε

0

σA(v)[1− σB(v) + µ(s̃A)σB(v)]dG(v)

>ε(λ− 1)

∫ ε

0

σA(v)[1− σB(v) + µ(s̃A)σB(v)]dG(v)

≥ 0

where the penultimate inequality holds since

λ(1− s̃A)− ε = λ((1− ŝA)− (s̃A − ŝA))− ε > λε− ε = ε(λ− 1)

because s̃A − ŝA < ε and 2ε < 1− ŝA. � �

A.2 Proof of Lemma 2

“If” part. We show that the strategy profile satisfying the stated conditions forms a best

response. First, let σ̃i(v) ∈ [0, 1] be an arbitrary strategy and define σi(v, t) := tσ̃i(v) + (1−
t)σi(v) for t ∈ [0, 1] and for i = A,B. Let ŝi(t) be the cutoff state in equilibrium for given

σi(v; t), and Si(t) be such that SA(t) := {s | s ≥ ŝA(t)} and SB(t) := {s | s ≤ ŝB(t)}. Next,

let

W (t, ŝi(t)) :=

∫ 1

0

vσi(v; t)
(
1− σj(v) + E[µi(s)]σj(v)

)
dG(v)

− λ
∫
Si(t)

[ ∫ 1

0

σi(v; t)
(
1− σj(v) + µi(s)σj(v)

)
dG(v)− κ

]
ds,

and denote it by V (t) := W (t, ŝi(t)). Observe that πi(σ̃i) = V (1) and πi(σi) = V (0).

Therefore, the proof is completed by showing that V (1) ≤ V (0). Because σ̃i(·) is arbitrary,

this proves that σi(·) is a best response for a given σj(·), where j 6= i. To do this, we establish

the following lemmas.

Lemma A1. V (·) is concave in t for any t ∈ [0, 1].

Proof. Observe that σi(·, t) is linear in t, clearly. Hence, it suffices to show that πi is concave

in σi because if so, we have for any η ∈ [0, 1] and t, t′ ∈ [0, 1],

V (η t+ (1− η) t′) = πi(σi(v, η t+ (1− η) t′))

= πi(η σi(v, t) + (1− η)σi(v, t
′))

≥ η πi(σi(v, t)) + (1− η) πi(σi(v, t
′))

= ηV (t) + (1− η)V (t′),
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where the second equality follows from the linearity of σi(·, t). For the concavity of πi, recall

that

πi =

∫ 1

0

[ ∫ 1

0

vσi(v)
(
1− σj(v) + µi(s)σj(v)

)
dG(v)

]
ds

− λ
∫ 1

0

max

{∫ 1

0

σi(v)
(
1− σj(v) + µi(s)σj(v)

)
dG(v)− κ, 0

}
ds.

(A.2.1)

Consider any feasible σi and σ′i. Note that the first part of (A.2.1) is linear in σi clearly, and

the second part is convex in σi, since for η ∈ [0, 1],

max

{∫ 1

0

(
ησi(v) + (1− η)σ′i(v)

)(
1− σj(v) + µi(s)σj(v)

)
dG(v)− κ, 0

}
= max

{
η

[ ∫ 1

0

σi(v)(1− σj(v) + µi(s)σj(v))dG(v)− κ
]

+ (1− η)

[ ∫ 1

0

σ′i(v)(1− σj(v) + µi(s)σj(v))dG(v)− κ
]
, 0

}
≤ ηmax

{∫ 1

0

σi(v)(1− σj(v) + µi(s)σj(v))dG(v)− κ, 0
}

+ (1− η) max

{∫ 1

0

σ′i(v)(1− σj(v) + µi(s)σj(v))dG(v)− κ, 0
}
.

Therefore, we have πi(ησi + (1− η)σ′i) ≥ η πi(σi) + (1− η)πi(σ
′
i). �

Lemma A2. V ′(0) ≤ 0.

Proof. Observe that

V ′(t) = W1(t, ŝi(t)) +W2(t, ŝi(t))ŝ
′
i(t),

where

W1(t, ŝi(t)) =

∫ 1

0

(σ̃i(v)−σi(v))

[
v
(
1−σj(v)+E[µi(s)]σj(v)

)
−λ
∫
Si(t)

(1−σj(v)+µi(s)σj(v))ds

]
dG(v)

and

W2(t, ŝi(t)) = λ

[ ∫ 1

0

σi(v; t)
(
1− σj(v) + µi(ŝi(t))σj(v)

)
dG(v)− κ

]
.

Notice that W2(0, ŝi(0)) = 0 by definition of ŝi. Therefore, we have

V ′(0) = W1(0, ŝi(0)) =

∫ 1

0

(σ̃i(v)− σi(v))Hi(v, σj(v)) dG(v) ≤ 0,

where the inequality holds since if Hi(v, σj(v)) > 0 for some v, then σi(v) = 1 and σ̃i(v) ≤
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1; if Hi(v, σj(v)) < 0 for some v, then σi(v) = 0 and σ̃i(v) ≥ 0; and Hi(v, σj(v)) = 0

otherwise. �

Now, note that

πi(σ̃i) = V (1) ≤ V (0) + V ′(0) ≤ V (0) = πi(σi),

where the first inequality follows from the concavity of V (·) and the second inequality follows

from Lemma A2. This completes the proof.

“Only if” part. We now show that in any competitive equilibrium, the strategy profile

must satisfy the stated conditions. Let

V+ := {v |Hi(v, σj(v)) > 0} and V− := {v |Hi(v, σj(v)) < 0} .

Suppose to the contrary that in equilibrium, σi(·) doest not satisfy either (i) or (ii) (or

both); that is, either σi(v) < 1 for v ∈ V+, or σi(v) > 0 for v ∈ V− (or both). Consider a

deviating strategy σ̃i(·) such that σ̃i(v) = 1 for every v ∈ V+, σ̃i(v) = 0 for every v ∈ V−,

and σ̃i(v) = σi(v) for all other v’s. Now, define σi(v, t) := tσ̃i(v) + (1− t)σi(v) for t ∈ [0, 1]

and V (t) similar as above. In what follows, we show that V ′(0) > 0 so there exists σi(·, t)
for small t that will be profitable. To see this, observe that

V ′(0) = W1(0, ŝA(0))

=

∫
V+

(σ̃i(v)− σi(v))Hi(v, σj(v))dG(v) +

∫
V−

(σ̃i(v)− σi(v))Hi(v, σj(v))dG(v)

+

∫
V\{V+∪V−}

(σ̃i(v)− σi(v))Hi(v, σj(v))dG(v)

=

∫
V+

(1− σi(v))Hi(v, σj(v))dG(v)−
∫
V−
σi(v)Hi(v, σj(v))dG(v)

> 0,

where the last equality follows from the construction of σ̃i(·), and the inequality holds since

σ̃i(v) = 1 > σi(v), Hi(v, σj(v)) > 0 for v ∈ V+, and σ̃i(v) = 0 < σi(v), Hi(v, σj(v)) < 0 for

v ∈ V−.

A.3 Non-Competitive Equilibrium

In this section, we show that when κ < 1
2

is not too small or λ > 1 is not too large, there

does not exist a non-competitive equilibrium.
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Lemma A3. Suppose that VAB has zero measure. Then, we have the followings:

(i) There is κ̂ < 1
2

such that for any κ > κ̂, one college has an incentive to deviate.

(ii) There is λ̂ > 1 such that for any λ < λ̂, one college has an incentive to deviate.

Proof. Since VAB has zero measure, mi(s) = κ for all s and

πi =

∫
Vi
v dG(v), i = A,B.

Now, let ci := inf(Vi) and ci := sup(Vi).

Proof of Part (i). Let cA = inf(VA∪VB), without loss of generality. Then, cA = G−1(1−2κ)

by Lemma 1. We show that college A has an incentive to deviate. Suppose A rejects students

in [cA, cA + δ] but accepts those in [cB − ε, cB], where ε and δ are such that

G(cB)−G(cB − ε) = G(cA + δ)−G(cA). (A.3.1)

Note that the mass of students attending A under this deviation is

m̃A(s) =

∫ cB

cB−ε
µ(s) dG(v) +

∫
VA\[cA,cA+δ]

1 dG(v)

= µ(s)
(
G(cB)−G(cB − ε)

)
+ κ−

(
G(cA + δ)−G(cA)

)
≤ κ,

where the second equality holds since mA(s) = κ for all s, and the last inequality follows

from (A.3.1) and the fact that µ(s) ≤ 1 for all s.

Since A is never over-demanded, its payoff from the deviation is

π̃A = µ

∫ cB

cB−ε
v dG(v) +

∫
VA\[cA,cA+δ]

v dG(v) = µ

∫ cB

cB−ε
v dG(v) + πA −

∫ cA+δ

cA

v dG(v),

where µ = E[µ(s)]. Therefore,

π̃A − πA = µ

∫ cB

cB−ε
v dG(v)−

∫ cA+δ

cA

v dG(v)

= µ

[
cBG(cB)− (cB − ε)G(cB − ε)−

∫ cB

cB−ε
G(v)dv

]
−
[
(cA + δ)G(cA + δ)− cAG(cA)−

∫ cA+δ

cA

G(v)dv

]
> µ

[
cBG(cB)− (cB − ε)G(cB − ε)− εG(cB)

]
−
[
(cA + δ)G(cA + δ)− cAG(cA)− δG(cA)

]
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=
(
G(cB)−G(cB − ε)

) (
µ cB − cA − µ ε− δ

)
, (A.3.2)

where the second equality follows from the integration by parts, and the last equality follows

from (A.3.1). Observe that if µ >
cA
cB

, then (A.3.2) is strictly positive for sufficiently small

ε and δ, hence π̃A > πA. Note that since cA = G−1(1 − 2κ) and mi(s) = κ for all s and

i = A,B, we have that G(cB) ≥ 1−κ; that is, cB ≥ G−1(1−κ). (Otherwise, college A must

be admitting more than measure κ of students.) Therefore,

cA
cB
≤ G−1(1− 2κ)

G−1(1− κ)
. (A.3.3)

Since the RHS of (A.3.3) is continuous in κ and converges to zero as κ approaches to 1
2
,

there is κ̂ < 1
2

such that for any κ > κ̂, µ >
cA
cB

for any given µ. �

Proof of Part (ii). Let cB = sup(VA ∪ VB), without loss of generality. Then, cB = 1 by

Lemma 1. We show that college A has an incentive to deviate. Suppose A rejects students

in [cA, cA + δ] but admits students in [1− ε, 1], where ε and δ satisfy

µ(1− cA)
(
1−G(1− ε)

)
= G(cA + δ)−G(cA). (A.3.4)

The mass of students attending A in state s under the deviation is

m̃A(s) =

∫ 1

1−ε
µ(s) dG(v)+

∫
VA\[cA,cA+δ]

1 dG(v) = µ(s)
(
1−G(1−ε)

)
+κ−

(
G(cA+δ)−G(cA)

)
.

Let ŝA be such that m̃A(ŝA) = κ, i.e., µ(ŝA)
(
1 − G(1 − ε)

)
=
(
G(cA + δ) − G(cA)

)
. Since

µ(·) is strictly increasing in s, ŝA = 1− cA by (A.3.4).

Thus, A’s payoff from the deviation is

π̃A = µ

∫ 1

1−ε
v dG(v) +

∫
VA\[cA,cA+δ]

v dG(v)− λ
∫ 1

ŝA

(m̃(s)− κ) ds

= µ

∫ 1

1−ε
v dG(v) + πA −

∫ cA+δ

cA

v dG(v)

− λ
[
(1−G(1− ε))

∫ 1

ŝA

µ(s)ds−
(
G(cA + δ)−G(cA)

)
(1− ŝA)

]
.

and the net payoff from the deviation is

π̃A − πA = µ

∫ 1

1−ε
v dG(v)−

∫ cA+δ

cA

v dG(v)
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− λ
[
(1−G(1− ε))

∫ 1

ŝA

µ(s)ds−
(
G(cA + δ)−G(cA)

)
(1− ŝA)

]
> µ(1− ε)[1−G(1− ε)]− (cA + δ)

(
G(cA + δ)−G(cA)

)
− λ
[
(1−G(1− ε))

∫ 1

ŝA

µ(s)ds−
(
G(cA + δ)−G(cA)

)
(1− ŝA)

]
= [1−G(1− ε)]

(
µ− η cA − µ ε− η δ − λ

[ ∫ 1

ŝA

µ(s)ds− η(1− ŝA)
])
,(A.3.5)

where η = µ(1− cA) and the last equality follows from (A.3.4).

Observe that if µ− η cA−λ
[ ∫ 1

ŝA
µ(s)ds− η(1− ŝA)

]
> 0, then (A.3.5) is strictly positive

for sufficiently small ε and δ. Note that

µ− η cA − λ
[ ∫ 1

ŝA

µ(s)ds− η(1− ŝA)
]

= µ− λ
∫ 1

ŝA

µ(s) ds+ (λ− 1) η cA,

Since µ =
∫ 1

0
µ(s) ds >

∫ 1

ŝA
µ(s) ds (which follows from the fact that ŝA < 1), there exists

λ̂ > 1 such that for any λ < λ̂, π̃A > πA. � �

A.4 Proof of Lemma 3

Observe that Hi(·, x) is strictly increasing in v, since for v′ > v,

Hi(v
′, x)−Hi(v, x) = (1− x+ E[µi(s)]x)(v′ − v) > 0,

where the inequality holds since E[µi(s)] > 0 because µ(·) is strictly increasing in s.

Next, Hi(v, x) satisfies the strict single crossing property with respect to x; that is, if

Hi(v, x) ≤ 0 for some x ∈ (0, 1), then Hi(v, x
′) < 0 for any x′ > x. Suppose for any x ∈ (0, 1),

Hi(v, x) = (1− x)
(
v − λProb(s ∈ Si)

)
+ xE[µi(s)]

(
v − λProb(s ∈ Si)

E[µi(s)|s ∈ Si]
E[µi(s)]

)
≤ 0.

(A.4.1)

Consider any x′ > x. If v < λProb(s ∈ Si), then

Hi(v, x
′) = (1−x′)

(
v−λProb(s ∈ Si)

)
+x′ E[µi(s)]

(
v−λProb(s ∈ Si)

E[µi(s)|s ∈ Si]
E[µi(s)]

)
< 0,

where the inequality follows from (A.4.1) and the facts that x′ > x and E[µi(s)|s ∈ Si] >
E[µi(s)]. If v ≥ λProb(s ∈ Si), then

Hi(v, x)−Hi(v, x
′) = (x′ − x)

[
v
(
1− E[µi(s)]

)
− λProb(s ∈ Si)

(
1− E[µi(s)|s ∈ Si]

)]
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> (x′ − x)
(
v − λProb(s ∈ Si)

)(
1− E[µi(s)|s ∈ Si]

)
≥ 0,

where the first inequality holds since x′ > x and E[µi(s)|s ∈ Si] > E[µi(s)], and the second

inequality holds since v ≥ λProb(s ∈ Si). Since Hi(v, x) ≤ 0, we have Hi(v, x
′) < 0.

A.5 Proof of Theorem 2

Step 1. Existence of a profile of admission strategies (σA, σB) that forms local

best responses.

We first establish existence of a profile of admission strategies (σA, σB) such that for each

v ∈ [0, 1], σi(v) is given by (3.1) for i = A,B. Now, fix any ŝ = (ŝA, ŝB) ∈ S ≡ [0, 1]2

and consider the resulting profile (σA(·; ŝ), σB(·; ŝ)). This strategy profile in turn induces the

mass of students enrolling in each college i:

mi(s; ŝ) =

∫ 1

0

σi(v; ŝ)[1− σj(v; ŝ) + µi(s)σj(v; ŝ)] dG(v).

Observe that mA(·; ŝ) and mB(·; ŝ) in turn yield a new profile of cutoff states:

s̃A = inf {s ∈ [0, 1]|mA(s; ŝ)− κ > 0} , (A.5.1)

if the set in the RHS is nonempty, or else s̃A ≡ 1, and

s̃B = sup {s ∈ [0, 1]|mB(s; ŝ)− κ > 0} , (A.5.2)

if the set in the RHS is nonempty, or else s̃B ≡ 0.

Next, define a mapping T such that T (ŝ) = s̃, where s̃ = (s̃A, s̃B) is given by (A.5.1) and

(A.5.2). The next lemma shows that T is continuous. Therefore, it has a fixed point by the

Brouwer’s fixed point theorem. From the construction of T , it is immediate that given the

fixed point, say ŝ∗ = (ŝ∗A, ŝ
∗
B), the profile (σA(·; ŝ∗), σB(·; ŝ∗)) satisfies the local incentives.

Lemma A4. T (·) is continuous in s for s ∈ S.

Proof. Note that vA and vA are continuous in ŝA, and vB and vB are continuous in ŝB. Let

v := min {vA, vB} , v̌ := max {vA, vB} , v̂ := min {vA, vB} , v := max {vA, vB} .

For any given ŝ, T (ŝ) = s̃ is given by (A.5.1) and (A.5.2). Consider any ŝ′ = (ŝ′A, ŝ
′
B) ∈ S,
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where ŝ′ 6= ŝ. Then, σ′A ≡ σA(·; ŝ′) and σ′B ≡ σB(·; ŝ′) are defined by (3.1). Let

v′ := min {v′A, v′B} , v̌′ := max {v′A, v′B} , v̂′ := min {v′A, v′B} , v′ := max {v′A, v′B} .

Again, s̃′ = (s̃′A, s̃
′
B) ∈ S is defined by T through (A.5.1) and (A.5.2). Next, let

v1 := min {v, v′} , v2 := max {v, v′} , v3 := min {v̌, v̌′} , v4 := max {v̌, v̌′} ,
v5 := min {v̂, v̂′} , v6 := max {v̂, v̂′} , v7 := min {v, v′} , v8 := max {v, v′} ,

and consider a partition of [0, 1] such that

V1 = (∪i=2,4,6,8[vi−1, vi]) ∩ [0, 1], V2 = [v4, v5] ∩ [0, 1], V3 = [0, 1] \ (V1 ∪ V2).

Consider σi and σ′i for i = A,B. For any v ∈ [0, 1], we have

∫ 1

0

|σ′i(v)− σi(v)| dG(v) =
3∑

k=1

∫ 1

0

|σ′i(v)− σi(v)| 11Vk(v) dG(v),

where 11Vk(v) is 1 if v ∈ Vk or 0 otherwise. Observe, first, that by the continuity of vi and vi,

there is δ1 > 0 such that for any ε > 0, if ‖ŝ′ − ŝ‖ < δ1, then∫ 1

0

11V1(v) dG(v) <
ε

6
. (A.5.3)

Second, for any v ∈ V2, the continuity of σoi (·), given by

σoi (v) :=
v − λProb(s ∈ Sj)

v (1− E[µj(s)])− λProb(s ∈ Sj)
(

1− E[µj(s)|s ∈ Sj]
) ,

implies that there is δ2 such that ‖ŝ′ − ŝ‖ < δ2 implies

|σ′i(v)− σi(v)| =
∣∣∣σo′i (v)− σoi (v)

∣∣∣ < ε

6
, (A.5.4)

Lastly, for any v ∈ V3, σ′i(v) and σi(v) are either 0 or 1 at the same time, hence we have that

|σ′i(v)− σi(v)| = 0. (A.5.5)

Now, let δ := min {δ1, δ2} and suppose ‖ŝ′ − ŝ‖ < δ. Then, we have∫ 1

0

|σ′i(v)− σi(v)| dG(v) =

∫ 1

0

|σ′i(v)− σi(v)| 11V1(v) dG(v) +

∫ 1

0

∣∣∣σo′i (v)− σoi (v)
∣∣∣ 11V2(v) dG(v)
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<
ε

6
+
ε

6
=
ε

3
, (A.5.6)

where the equality follows from (A.5.5) and the inequality follows from (A.5.3) and (A.5.4).

Observe that∣∣∣mi(s; ŝ
′)−mi(s; ŝ)

∣∣∣
=

∣∣∣∣∫ 1

0

σ′i(v)[1− σ′j(v) + µi(s)σ
′
j(v)] dG(v)−

∫ 1

0

σi(v)[1− σj(v) + µi(s)σj(v)] dG(v)

∣∣∣∣
=

∣∣∣∣∫ 1

0

[
[σ′i(v)− σi(v)]− (1− µi(s))[σ′i(v)σ′j(v)− σi(v)σj(v)]

]
dG(v)

∣∣∣∣
≤
∫ 1

0

|σ′i(v)− σi(v)| dG(v) + (1− µi(s))
∫ 1

0

∣∣σ′i(v)σ′j(v)− σi(v)σj(v)
∣∣ dG(v) (A.5.7)

The first part of (A.5.7) is smaller than ε/3 by (A.5.6). The second part of (A.5.7) is∫ 1

0

∣∣σ′i(v)σ′j(v)− σi(v)σj(v)
∣∣ dG(v)

=

∫ 1

0

∣∣σ′i(v)σ′j(v)− σ′i(v)σj(v) + σ′i(v)σj(v)− σi(v)σj(v)
∣∣ dG(v)

≤
∫ 1

0

∣∣σ′j(v)− σj(v)
∣∣ dG(v) +

∫ 1

0

|σ′i(v)− σi(v)| dG(v)

<
2

3
ε,

where the first inequality holds since σ′i(v), σj(v) ≤ 1, and the last inequality follows from

(A.5.6). Therefore, if ‖ŝ′ − ŝ‖ < δ, then∣∣∣∣∫ 1

0

σ′i(v)[1− σ′j(v) + µi(s)σ
′
j(v)]dG(v)−

∫ 1

0

σi(v)[1− σj(v) + µi(s)σj(v)]dG(v)

∣∣∣∣ < ε.

(A.5.8)

Hence, we conclude that there is δ > 0 such that for any ε > 0, if ‖ŝ′ − ŝ‖ < δ, then

‖s̃′ − s̃‖ < ε. Since ŝ is chosen arbitrary, T is continuous on S. �

Step 2. VAB has a positive measure in the strategy profile identified in Step 1.

Suppose to the contrary that VAB has measure zero. Then, ŝ∗B = 0 and ŝ∗A = 1. But

in that case, HA(v, 1) > 0 and HB(v, 1) > 0 for all v. Hence, vA = vB = 0. Therefore, we

cannot have a non-competitive equilibrium.
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A.6 Proof of Theorem 3

Let µ(s, t) be the mass of students preferring A over B in state s for a given t ∈ [0, 1]. We

assume that (i) µ(·, ·) is continuous in (s, t); (ii) µ(·, t) is strictly increasing in s for a given

t, as before; and (iii) µ(s, 0) is symmetric, i.e., µ(s, 0) = 1− µ(s, 0) for all s.

Now, for a given t, let T (·, t) be a map from state space to itself as in Appendix A.5. Let

S(t) be the set of fixed points in competitive equilibrium, and vi(ŝ(t)) and vi(ŝ(t)), i = A,B,

be the associated cutoffs for ŝ(t) ∈ S(t), where ŝ(t) = (ŝA(t), ŝB(t)).

The proof consists of two steps. We first show that when t = 0 (i.e., µ(·, 0) is symmetric),

any competitive equilibrium exhibits strategic targeting. We next show that there is η > 0

such that for any t < η, every competitive equilibrium involves strategic targeting.

Step 1. At t = 0, any competitive equilibrium exhibits strategic targeting.

Proof. Let t = 0. Suppose to the contrary that v̂ ≤ v̌ in a competitive equilibrium. Suppose

further that33

vB < vB ≤ vA < vA, (A.6.1)

without loss of generality, where the first and the last strict inequalities follows from Theo-

rem 1. Note that we must have vA ∈ (0, 1) in equilibrium, since if vA = 1, then mA(s) = 0

for all s, and if vA = 0, then vB = vB = vA = vA = 0, so inf(VA∪VB) = 0, which contradicts

Lemma 1.

In equilibrium, we have

mA(ŝA) = µ(ŝA, 0)[1−G(vA)] = κ, (A.6.2)

and

mB(ŝB) = (1− µ(ŝB, 0))[1−G(vA)] +G(vA)−G(vB) = κ. (A.6.3)

From (A.6.2), 1−G(vA) = κ
µ(ŝA)

. Substituting this into (A.6.3), we have

G(vA)−G(vB) = κ

(
µ(ŝA, 0) + µ(ŝB, 0)− 1

µ(ŝA, 0)

)
.

Since vB < vA, this implies

µ(ŝA, 0) + µ(ŝB, 0) > 1⇔ µ(ŝB, 0) > 1− µ(ŝA, 0) = µ(1− ŝA, 0),

where the last equality follows from the symmetry of µ(·, 0). Since µ(·, 0) is strictly increasing,

we have ŝB > 1− ŝA, and so vB = λ ŝB > λ (1− ŝA) = vA which contradicts (A.6.1). �

33At t = 0, equilibrium cutoffs depend on ŝi(0); that is, vi(ŝ(0)) and vi(ŝ(0)). For notational simplicity,
we suppress the dependence and denote them by vi and vi, respectively.
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Step 2. There exists η > 0 such that for any t < η, every competitive equilibrium under

µ(·, t) involves strategic targeting.

Proof. Let V0 be the set of limit cutoff points at t = 0, i.e., for i = A,B,

V0 := {(vi, vi) | ∀ε > 0,∃δ > 0 s.t. min{|vi(ŝ(t))− vi| , |vi(ŝ(t))− vi|} < ε,∀t < δ,∀ŝ(t) ∈ S(t)} .

Then, for any v = (vi, vi)i=A,B ∈ V0, there is a sequence of tn going to zero such that ŝ(tn)

converges, and v(ŝ(tn)) = (vi(ŝ(tn)), vi(ŝ(tn)))i=A,B converges to v.34 Let ŝ∗ be the limit of

{ŝ(tn)}. Then,

ŝ∗ := lim
n→∞

ŝ(tn) = lim
n→∞

T (ŝ(tn), tn) = T (ŝ∗, 0),

where the second equality follows from the fact that ŝ(tn) is a fixed point of T , and the last

one follows from the continuity of T . Therefore, ŝ∗ is an equilibrium at t = 0. This shows

that every v = (vi(ŝ
∗), vi(ŝ

∗))i=A,B ∈ V0 is supported as an equilibrium when t = 0, so it

must involve strategic targeting by Step 1 above.

We now show that S(0), the set of fixed points at t = 0, is closed. To this end, consider

any sequence ŝn ∈ S(0) for each n such that |ŝn − ŝ| → 0 as n→ 0 for some ŝ. Then,

|T (ŝ, 0)− ŝ| ≤ |T (ŝ, 0)− T (ŝn, 0)|+ |T (ŝn, 0)− ŝ| = |T (ŝ, 0)− T (ŝn, 0)|+ |ŝn − ŝ| ,

where the last equality holds since T (ŝn, 0) = ŝn. From the continuity of T , we have that

|T (ŝ, 0)− T (ŝn, 0)| → 0 as n→ 0, implying T (ŝ, 0) = ŝ, and so ŝ ∈ S(0).

Next, observe that

V 0 := {v | v = (vi(ŝ), vi(ŝ))i=A,B for ŝ ∈ S(0)}

is closed since v is continuous and S(0) is closed, implying that V 0 is compact. Hence,

ξ := min
v∈V 0

[
min{vA, vB} −max{vA, vB}

]
is well defined. Furthermore, ξ > 0 due to Step 1. Lastly, from the definitions of V0 and V 0,

the above arguments show that V0 ⊆ V 0. Hence, for each v ∈ V0, we have

min{vA, vB} −max{vA, vB} ≥ ξ > 0,

implying that there exists η > 0 such that for any t < η, every competitive equilibrium

under µ(·, t) involves strategic targeting. �

34Since ŝ(tn) ∈ [0, 1] lies in a compact set, a sequence of ŝ(tn) admits a convergent subsequence. For any
such converging (sub)sequence, v(ŝ(tn)) is convergent since v is continuous as shown in Lemma A4.
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A.7 Proof of Theorem 4

Proof of Part (i). Recall that there are cutoff states (ŝA, ŝB) such that colleges have a

mass of unfilled seats in a positive measure of states, [0, ŝA) for A and (ŝB, 1] for B, despite

the fact that there are unmatched and acceptable students (inf(VA ∪ VB) > 0 in Lemma 1).

By assigning those unmatched students to a college with excess capacity, both the students

and college are better off. Thus, it is student, college and Pareto inefficient. �

Proof of Part (ii). Suppose a MME exhibits strategic targeting; i.e., v̌ = max {vA, vB} <
v̂ = min {vA, vB}. Fix a state s such that µ(s) 6= 0, 1. For students in [v̌, v̂], there is a positive

measure of students who are assigned to a college, say B, but prefer A, and their scores are

higher than those of a positive measure of students who are assigned to A, even though

both colleges prefer the high-score students. Moreover, students in [v̌, v̂] get no admission

from either college with positive probabilities even if their scores are high. Thus, it entails

justified envy for a positive measure of students for almost every state.

Suppose now a MME does not exhibit strategic targeting; i.e., v̂ < v̌. Let vB < vA, as

depicted in Figure 3.3, without loss of generality, so students in [vB, vA] admitted only by

college B and those in (vA, 1] are admitted by both colleges. Observe that only the students

who are not admitted by either college or admitted only by B may have envies. However,

the students whom they envy have higher scores. So, no justified envy arises in any state s,

making the outcome fair. �

Proof of Part (iii). This part follows directly from Corollary 1. Let k := arg max{vA, vB},
` 6= k, i ∈ arg max{vA, vB}, and j 6= i, where k, l, i, j = A,B. For almost every state s, a

positive measure of students with v ∈ (v̂, vi) prefer college i to college j, but are not admitted

by i. These students have ex ante justified envy with students with v̂ = vj, who, as noted

in Corollary 1, are admitted by college i with probability one.

Also, for almost every state s, a positive measure of students with v ∈ [v̌, v̌+ ε), for some

ε > 0, prefer college ` to college k but are not admitted by ` with positive probability. These

students have ex ante justified envy with students with (v`, v̌), who, as noted in Corollary 1,

are admitted by college i with probability one. �

Proof of Part (iv). Consider any non-competitive equilibrium. For each state s except

µ(s) = 0 or 1, the equilibrium must admit a positive measure of students who prefer A but

are assigned to B and a positive measure of students who are assigned to A but have scores

lower than those of the first group of students; that is, justified envy exists. Since justified

envy arises for a positive measure of students for almost every state, the outcome is unfair.

Also, for almost every state, there must be a positive measure of students assigned to A but

prefer B and a positive measure of students assigned to B but prefer A. Thus, the outcome

is student inefficient.
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Next, the equilibrium is college efficient. To see this, recall that in any non-competitive

equilibrium, almost all top 2κ students are assigned to either college. Suppose to the contrary

that for a given state, there is another assignment that makes both colleges weakly better

off and at least one college strictly better off. Then, it must also admit almost all top 2κ

students, or else at least one college is strictly worse off. Therefore, it is a reallocation of the

initial assignment, hence if one college is strictly better off, then the other college must be

strictly worse off. Thus, we reach a contraction. �

Proof of Part (v). Suppose that almost all top κ students are assigned to one college, and

the next top κ students are assigned to the other college. Then, any change of assignments

by positive measure of students will leave the former college strictly worse off, hence it is

Pareto efficient.

Suppose this is not the case in a non-competitive equilibrium. Note that for a fixed

s, there are some V ′i,V ′′i ⊂ Vi and V ′j ⊂ Vj, i 6= j, all with positive measures, such that

v′ < v̂ < v′′ whenever v′ ∈ V ′i, v′′ ∈ V ′′i and v̂ ∈ V ′j. Let i = A and j = B without loss of

generality. We can choose V ′A, V ′′A and V ′B that satisfy∫
V ′A∪V

′′
A
v dG(v)∫

V ′A∪V
′′
A

1 dG(v)
=

∫
V ′B
v dG(v)∫

V ′B
1 dG(v)

(A.7.1)

and

(1− µ(s))

∫
V ′A∪V

′′
A

1 dG(v) = µ(s)

∫
V ′B

1 dG(v). (A.7.2)

(If either (A.7.1) or (A.7.2) is violated, we can adjust V ′A, V ′′A and/or V ′B by adding or

subtracting a positive mass of students.) Note that the LHS (resp. RHS) of (A.7.2) is the

measure of students who prefer B (resp. A) in V ′A ∪ V ′′A (resp. V ′B). From (A.7.1), we have∫
V ′A∪V

′′
A
v dG(v)

(1− µ(s))
∫
V ′A∪V

′′
A

1 dG(v)
=

∫
V ′B
v dG(v)

(1− µ(s))
∫
V ′B

1 dG(v)

⇔

∫
V ′A∪V

′′
A
v dG(v)

µ(s)
∫
V ′B

1 dG(v)
=

∫
V ′B
v dG(v)

(1− µ(s))
∫
V ′B

1 dG(v)

⇔ (1− µ(s))

∫
V ′A∪V

′′
A

v dG(v) = µ(s)

∫
V ′B
v dG(v),

where the first equivalence follows from (A.7.2). The last equivalence shows that the average

value of students who prefer B in V ′A ∪ V ′′A is the same as that of students who prefer A in

V ′B. Thus, in state s, a fraction 1 − µ(s) of students in V ′A ∪ V ′′A who prefer B to A can be

swapped with a fraction of µ(s) of students in V ′B who prefer A to B. This reassignment

leaves both colleges the same in welfare and makes all students weakly better off and some
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positive measure of students strictly better off. Since this argument holds for all s except

µ(s) = 0 or 1, the outcome is Pareto inefficient. �

A.8 Proof of Theorem 5 and Existence of a Cutoff Equilibrium

A.8.1 Proof of Theorem 5

Suppose there is a cutoff equilibrium with strategy profiles (σA, σB) where σi(v, ei) = 11{ei≥η(v)},

i = A,B, for some ηi(·) which is nonincreasing. Since ∂Ui/∂ei > 0, by the Implicit Function

Theorem, Hi(v, ei, σj(v)) = 0, j 6= i, implicitly defines ηi(v). Since E[µi(s)|s ∈ Si] > E[µi(s)],

we must have

1− σj(v) + E[µi(s)|s ∈ Si]σj(v) > 1− σj(v) + E[µi(s)]σj(v).

Then, Hi(v, ηi(v), σj(v)) = 0 implies that by (4.1),

Ui(v, ηi(v)) > λProb(s ∈ Si). (A.8.1)

Next, totally differentiate Hi to obtain:

∂Ui(v, ηi(v))

∂v
+
∂Ui(v, ηi(v))

∂ei
η′i(v)

=

[
Ui(v, ηi(v))(1− E[µi(s)])− λProb(s ∈ Si)(1− E[µi(s)|s ∈ Si])

]
σ′j(v)

1− σj(v) + E[µi(s)]σj(v)
. (A.8.2)

Since college j adopts a cutoff strategy, σj(v) = 1−Xj(ηj(v)|v), we have that

σ′j(v) = −xj(ηj(v)|v)η′j(v)− ∂Xj(ηj(v)|v)

∂v
> 0, (A.8.3)

where the inequality holds since η′j(v) ≤ 0 and ∂
∂v
Xj(e|v) < 0.35 Further, E[µi(s)] <

E[µi(s)|s ∈ Si] ≤ 1, so it follows from (A.8.1) that the RHS of (A.8.2) is strictly positive for

any v such that ηi(v) ∈ (0, 1). Hence, for all v,

−η′i(v) ≤ ∂Ui(v, ηi(v))/∂v

∂Ui(v, ηi(v))/∂ei
,

and the inequality is strict for a positive measure of v.

35When v and ei are independent, σ′j(v) = −xj(ηj(v))η′j(v) ≥ 0. This implies that each college under-
weights a students’ common performance and over-weights her non-common performance at least weakly
and one college does so strictly. Further, together with college j’s condition (total differentiation of Hj), one
can show that σ′j(v) > 0 for a positive measure of v, generically.
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A.8.2 Existence of a Cutoff Equilibrium

Step 1. Existence of a profile of cutoff strategies for A and B.

Define

δ := max
v,eA,eB

{
xA(eA|v)

(
∂UA(v,eA)

∂v
∂UA(v,eA)

∂eA

)
− ∂XA(eA|v)

∂v

∨
xB(eB|v)

(
∂UB(v,eB)

∂v
∂UB(v,eB)

∂eB

)
− ∂XB(eB|v)

∂v

}
.

LetM be the set of Lipschitz-continuous function from [0,1] to [0,1] with Lipschitz bound

given by δ. We define an operator T : [0, 1]2 ×M2 → [0, 1]2 ×M2 as follows.

For any (ŝA, ŝB, σA, σB) ∈ [0, 1]2 ×M2, the third component of T (ŝA, ŝB, σA, σB) is a

function α defined as follows. First, ηA(v) is implicitly defined via HA(v, ηA(v), σB(v)) = 0

according to the Implicit Function Theorem (since ∂UA/∂eA > 0). For v such that ηA(v) ∈
(0, 1), the same argument as in the proof of Theorem 5 implies that

− η′A(v) ≤ ∂UA(v, ηA(v))/∂v

∂UA(v, ηA(v))/∂eA
. (A.8.4)

We now define σA(v, e) := 11{eA≥ηA(v)}. Let α(v) := E[σA(v, eA)|v]. Then,

α(v) = 1−XA(ηA(v)|v)

and

α′(v) = −xA(ηA(v)|v)η′A(v)− ∂XA(ηA(v)|v)

∂v
≤ xA(ηA(v)|v)

∂UA(v,ηA(v))
∂v

∂UA(v,ηA(v))
∂eA

− ∂XA(ηA(v)|v)

∂v
≤ δ,

where the first inequality follows from (A.8.4). It thus follows that α ∈M.

The fourth component of T (ŝA, ŝB, σA, σB), labeled β, is analogously constructed via

eB = ηB(v) determined implicitly by HB(v, ηB(v), σA) = 0, analogously, and belongs to M.

The first two components (ŝ′A, ŝ
′
B) are determined by the mA(ŝ′A) = mB(ŝ′B) = κ, much

as in the earlier proofs, using σA and σB, along with (ŝA, ŝB) as input.

In sum, the operator T maps from (ŝA, ŝB, σA, σB) ∈ [0, 1]2 × M2 to (ŝ′A, ŝ
′
B, α, β) ∈

[0, 1]2 ×M2. By Arzela-Ascoli theorem, the set M endowed with sup norm topology is

compact, bounded and convex. Hence, the same holds for the Cartesian product [0, 1]2×M2.

Following the techniques used in Appendix B, the mapping T is continuous (with respect to

sup norm). Hence, by the Schauder’s theorem, T has a fixed point. The fixed point then

identifies a profile of cutoff strategies (σA, σB) via σA(v, eA) = 11{eA≥ηA(v)} and σB(v, eB) =

11{eB≥ηB(v)}. See Appendix B for technical details.

Step 2. The cutoff strategies identified in Step 1 form an equilibrium under a
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condition.

Consider the following conditions:(
∂Ui(v, ei)/∂v

Ui(v, ei)
+
∂Xj(ηj(v)|v)

∂v
Ψi(s)

)
∂Uj(v, ẽ)/∂ej
∂Uj(v, ẽ)/∂v

≥ xj(ẽ|v)Ψi(s)

for all v, ei, ẽ, s, where

Ψi(s) :=
E[µi(s)|s ∈ Si]− E[µi(s)]

E[µi(s)|s ∈ Si]E[µi(s)]
. (A.8.5)

Since the RHS of each inequality is bounded by some constant, the conditions can be

interpreted as requiring that each college values the non-common performance sufficiently

highly. For instance, if Ui(v, ei) = (1 − ρ)v + ρei for all i = A,B, then the LHS of each in-

equality will be no less than ρ−γ, where γ := maxv,eA,eB

{∣∣∣∂XA(eA|v)
∂v

∣∣∣ , ∣∣∣∂XB(eB |v)
∂v

∣∣∣}, whenever

E[µi(s)] ≥ ρ. So the condition will hold if the RHS of each inequality is less than ρ− γ.

We now show the cutoff strategies identified by Step 1 form an equilibrium, given this

condition. For the proof, it suffices to show that

∂Hi(v, ei, σj(v))

∂v
≥ 0 whenever Hi(v, ei, σj(v)) = 0.

This result holds since

sgn

(
∂Hi(v, ei, σj(v))

∂v

)
=
∂Ui(v, ei)

∂v
− [Ui(v, ei)(1− E[µi(s)])− λProb(s ∈ Si)(1− E[µi(s)|s ∈ Si])]

1− σj(v) + E[µi(s)]σj(v)
σ′j(v)

=
∂Ui(v, ei)

∂v
− Ui(v, ei)

1− σj(v) + E[µi(s)]σj(v)
×(

(1− E[µi(s)])−
1− σj(v) + E[µi(s)]σj(v)

1− σj(v) + E[µi(s)|s ∈ Si]σj(v)
(1− E[µi(s)|s ∈ Si])

)
σ′j(v)

=
∂Ui(v, ei)

∂v
− Ui(v, ei)

E[µi(s)|s ∈ Si]− E[µi(s)]

(1− σj(v) + E[µi(s)]σj(v))(1− σj(v) + E[µi(s)|s ∈ Si]σj(v))
σ′j(v)

≥ ∂Ui(v, ei)

∂v
− Ui(v, ei)Ψi(s)σ

′
j(v)

=
∂Ui(v, ei)

∂v
+ Ui(v, ei)Ψi(s)

(
xj(ηj(v)|v)η′j(v) +

∂Xj(ηj(v)|v)

∂v

)
≥ ∂Ui(v, ei)

∂v
− Ui(v, ei)Ψi(s)

(
xj(ηj(v)|v)

∂Uj(v, ηj(v))/∂v

∂Uj(v, ηj(v))/∂ej
− ∂Xj(ηj(v)|v)

∂v

)
≥0,

where Ψi(s) is given by (A.8.5), the second equality is obtained by substitutingHi(v, ei, σj(v)) =
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0, the first inequality follows since E[µi(s)],E[µi(s)|s ∈ Si] ≤ 1, the penultimate equality fol-

lows from the fact that σj(v) = 1−Xj(ηj(v)|v), the second inequality follows from (A.8.4),

and the last inequality follows from the above conditions.

We last show that the identified strategies are nonincreasing in v. Note that

dηi(v)

dv
= − ∂Hi(v, ei, σj(v))/∂v

∂Hi(v, ei, σj(v))/∂ei
≤ 0,

where the equality follows from the Implicit Function Theorem, and the inequality holds

since ∂Hi(v, ei, σj(v))/∂v ≥ 0 and

∂Hi(v, ei, σj(v))

∂ei
=
∂Ui(v, ei)

∂ei

(
1− σj + E[µi(s)]σj

)
> 0.

A.9 Proofs of Lemma 4, Theorem 7 and Theorem 8

It is convenient to define T (y|σ) := y PA(y|σ)− (1− y)PB(y|σ) for the proofs.

A.9.1 Proof of Lemma 4

Fix any σ. To prove the optimality of the cutoff strategy, we show that T ′(y|σ) > 0 for any

y. Note that

T ′(y|σ) = PA(y|σ) + PB(y|σ) + yP ′A(y|σ)− (1− y)P ′B(y|σ)

≥ y
[
PA(y|σ) + P ′A(y|σ)

]
+ (1− y)

[
PB(y|σ)− P ′B(y|σ)

]
= y

∫ 1

0

qA(s|σ)
[
l(s|y) + ly(s|y)]ds+ (1− y)

∫ 1

0

qB(s|σ)
[
l(s|y)− ly(s|y)]ds.

Observe that

l(s|y) + ly(s|y) =
k(y|s)∫ 1

0
k(y|s)ds

[
1 +

ky(y|s)
k(y|s)

−
∫ 1

0
ky(y|s)ds∫ 1

0
k(y|s)ds

]
>

k(y|s)∫ 1

0
k(y|s)ds

(1− 2δ),

where the inequality holds since

ky(y|s)
k(y|s)

> −δ and

∫ 1

0
ky(y|s)ds∫ 1

0
k(y|s)ds

=

∫ 1

0

ky(y|s)
k(y|s) k(y|s)ds∫ 1

0
k(y|s)ds

< δ
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because
∣∣∣ky(y|s)
k(y|s)

∣∣∣ < δ. Similarly,

l(s|y)− ly(s|y) =
k(y|s)∫ 1

0
k(y|s)ds

[
1− ky(y|s)

k(y|s)
+

∫ 1

0
ky(y|s)ds∫ 1

0
k(y|s)ds

]
>

k(y|s)∫ 1

0
k(y|s)ds

(1− 2δ),

where the inequality holds since

ky(y|s)
k(y|s)

< δ and

∫ 1

0
ky(y|s)ds∫ 1

0
k(y|s)ds

=

∫ 1

0

ky(y|s)
k(y|s) k(y|s)ds∫ 1

0
k(y|s)ds

> −δ.

Therefore, we have that T ′(y|σ) > 0 since δ ≤ 1
2
.

It remains to show that there exists an equilibrium in cutoff strategy. Let ŷ be a cutoff.

Then, we have nA(s|ŷ) =
∫ 1

ŷ
k(y|s)dy = 1−K(ŷ|s). Hence,

PA(y|ŷ) =

∫ 1

0

min
{ κ

1−K(ŷ|s)
, 1
}
l(s|y)ds and PB(y|ŷ) =

∫ 1

0

min
{ κ

K(ŷ|s)
, 1
}
l(s|y)ds,

Now, let

T (y|ŷ) := yPA(y|ŷ)− (1− y)PB(y|ŷ).

Note that

T (0|ŷ) = −PB(0|ŷ) = −
∫ 1

0

min
{ κ

K(ŷ|s)
, 1
}
l(s|0)ds < 0,

where the inequality holds since min
{

κ
K(ŷ|s) , 1

}
> 0 and l(s|0) ≥ 0 for all s, and l(s|0) > 0

for a positive measure of states. Similarly, T (1|ŷ) > 0. By the continuity of T (·|ŷ), there is

a ỹ such that T (ỹ|ŷ) = 0. Moreover, such a ỹ is unique since T ′(y|ŷ)
∣∣
y=ỹ

> 0.

Next, let τ : [0, 1] → [0, 1] be the map from ŷ to ỹ, which is implicitly defined by

T (τ(ŷ)|ŷ) = 0 according to the Implicit Function Theorem (since T ′(y|ŷ)
∣∣
y=ỹ

> 0). Since

PA(y|·) is nondecreasing and PB(y|·) is nonincreasing ŷ, τ(·) is decreasing. Therefore, there

is a fixed point such that τ(ŷ) = ŷ, and hence there is ŷ such that T (ŷ|ŷ) = 0.

A.9.2 Proof of Theorem 7

We first show ŷ < 1. Suppose ŷ = 1. Then, nA(s|1) = 1 −K(1|s) = 0, so PA(y|ŷ) = 1 for

any y. Hence, T (1|1) = PA(1|1) = 1, which contradicts the fact that T (ŷ|ŷ) = 0.

We now show that ŷ > 1
2

whenever µ(s) > 1
2
. Suppose to the contrary ŷ ≤ 1

2
. We then
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have 1
2
< µ(s) = 1−K(1

2
|s) ≤ 1−K(ŷ|s), so K(ŷ|s) < 1−K(ŷ|s). Therefore,

PA(y|ŷ)− PB(y|ŷ) =

∫ 1

0

min
{ κ

1−K(ŷ|s)
, 1
}
l(s|y)ds−

∫ 1

0

min
{ κ

K(ŷ|s)
, 1
}
l(s|y)ds ≤ 0.

(A.9.1)

Hence, if ŷ < 1
2
, then

T (ŷ|ŷ) = ŷPA(ŷ|ŷ)− (1− ŷ)PB(ŷ|ŷ) <
1

2

[
PA(ŷ|ŷ)− PB(ŷ|ŷ)

]
≤ 0, (A.9.2)

where the first inequality holds since ŷ < 1
2
. Thus, T (ŷ|ŷ) < 0, a contradiction. Suppose

now ŷ = 1
2
. Notice that since K(ŷ|s) < 1 − K(ŷ|s), we have K(1

2
|s) < 1

2
< 1 − κ, where

the the second inequality holds since κ < 1
2
. So, κ/(1 − K(1

2
|s)) < 1. Therefore, the last

inequality of (A.9.1) becomes strict, and hence

T (ŷ|ŷ) =
1

2

[
PA(1

2
|1
2
)− PB(1

2
|1
2
)
]
< 0,

a contradiction again.

Lastly, let µ(s) = 1
2
. If ŷ < 1

2
, then 1

2
= µ(s) = 1 − K(1

2
|s) < 1 − K(ŷ|s), so we

have K(ŷ|s) < 1 − K(ŷ|s). By (A.9.1) and (A.9.2), we reach a contradiction. If ŷ > 1
2
,

then 1
2

= µ(s) = 1 − K(1
2
|s) > 1 − K(ŷ|s) and so K(ŷ|s) > 1 − K(ŷ|s). We then have

PA(y|ŷ)− PB(y|ŷ) ≥ 0 and

T (ŷ|ŷ) = ŷPA(ŷ|ŷ)− (1− ŷ)PB(ŷ|ŷ) >
1

2

[
PA(ŷ|ŷ)− PB(ŷ|ŷ)

]
≥ 0,

where the first inequality holds since ŷ > 1
2
. Thus, T (ŷ|ŷ) > 0, a contradiction again.

A.9.3 Proof of Theorem 8

For the first part of the theorem, observe that for a given s, justified envy arises whenever

cA(s) 6= cB(s) as depicted in Figure 5.1. We thus show that there is a positive measure of

states in which cA(s) 6= cB(s). Suppose to the contrary cA(s) = cB(s) for almost all s. Recall

that equilibrium admission cutoff of each college satisfies

G(cA(s)) = max

{
1− κ

1−K(ŷ|s)
, 0

}
and G(cB(s)) = max

{
1− κ

K(ŷ|s)
, 0

}
.

Since G(·) is strictly increasing, if cA(s) = cB(s), then we must have either ni(s) < κ for all

i = A,B (so that cA(s) = cB(s) = 0) or nA(s) = nB(s) ≥ κ.

First, we cannot have ni(s) < κ for all i in equilibrium, since this means that all applicants

are admitted by either college, which contradicts the fact that 2κ < 1. Second, suppose
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nA(s) = nB(s) ≥ κ. This implies that K(ŷ|s) = 1
2

for all s (recall that nA(s) = 1 −K(ŷ|s)
and nB(s) = K(ŷ|s)). However, by (5.1), we have K(ŷ|s′) < K(ŷ|s) for all s′ > s. Therefore,

we reach a contradiction again.

To see the second part of the theorem, recall that for given ŷ in equilibrium, the mass

of students applying to B is K(ŷ|s). Thus, if there is a positive measure of states in which

K(ŷ|s) < κ, college B faces under-subscription in such states. Therefore, the equilibrium

outcome is inefficient.

A.10 Proof of Theorem 9

Suppose there is a symmetric equilibrium as described in the theorem. Then, colleges A and

B will admit all acceptable students with v > ṽ, where ṽ is such that each of A and B fills its

capacity in the popular state, i.e., sa(1− ε)[1−G(ṽ)] = κ and (1− sb)(1− ε)[1−G(ṽ)] = κ,

and wait-lists the remaining students. College C will offer admissions to all of these students

(i.e., those whose scores are above ṽ), knowing that exactly measure ε2 of them will accept

its offer. It will also offer κ − ε2 admissions to all students with v ∈ [v̂, ṽ], where v̂ is such

that G(ṽ)−G(v̂) = κ− ε2.

The students in [v̂, ṽ] now have a choice to make. If a student accepts C, then she will

get u′′ for sure, but if she turns down C’s offer, then with probability 1− ε the less popular

one between A and B will offer an admission to her (assuming all other students admitted

by C have accepted that offer), and the student will earn the payoff u if she happens to like

the college, or u′ otherwise. Since u′′ > (1− ε)u, she will accept C.

Given this, consider now the incentive for deviation of college A. If it does not deviate,

there will be seats left in the less popular state, equal to κ − sb(1 − ε)[1 − G(v̂)]. Thus, A

will fill those vacant seats with students whose scores are below v̂. Its payoff in this case is

πA =
1

2
sa(1− ε)

∫ 1

ṽ

v dG(v) +
1

2

[
sb(1− ε)

∫ 1

ṽ

v dG(v) + (1− ε)
∫ v̂

v̌

v dG(v)
]

=
1

2
(1− ε)

[ ∫ 1

ṽ

v dG(v) +

∫ v̂

v̌

v dG(v)
]
,

where v̌ is such that

(1− ε)[G(v̂)−G(v̌)] = κ− sb(1− ε)[1−G(ṽ)]. (A.10.1)

and the second equality follows from sa = 1− sb.
Suppose now A admits a small fraction, say δ′, of (acceptable) students just below ṽ

instead of admitting those who are acceptable and slightly above ṽ, say [ṽ, ṽ + δ], where δ

61



and δ′ are such that

sa[G(ṽ + δ)−G(ṽ)] = G(ṽ)−G(ṽ − δ′). (A.10.2)

Notice that students in [ṽ − δ′, ṽ] accept A’s admission offer, since they prefer it over C.

Hence, A fills its capacity in the popular state, i.e.,

sa(1− ε)[1−G(ṽ + δ)] + (1− ε)[G(ṽ)−G(ṽ − δ′)] = sa(1− ε)[1−G(ṽ)] = κ.

So, A’s payoff under the deviation is

πdA = (1− ε)
∫ ṽ

ṽ−δ′
v dG(v) +

1

2
sa(1− ε)

∫ 1

ṽ+δ

v dG(v)

+
1

2

[
sb(1− ε)

∫ 1

ṽ+δ

v dG(v) + (1− ε)
∫ v̂

v

v dG(v)
]

= (1− ε)
∫ ṽ

ṽ−δ′
v dG(v) +

1

2
(1− ε)

[ ∫ 1

ṽ+δ

v dG(v) +

∫ v̂

v

v dG(v)
]
,

where v satisfies

(1− ε)[G(v̂)−G(v)] = κ− (1− ε)[G(ṽ)−G(ṽ − δ′)]− sb(1− ε)[1−G(ṽ + δ)], (A.10.3)

that is, v is set to meet the capacity in the less popular state. Observe that v > v̌, since

from (A.10.1) and (A.10.3),

(1− ε)[G(v)−G(v̂)] =− sb(1− ε)[G(ṽ + δ)−G(ṽ)] + (1− ε)[G(ṽ)−G(ṽ − δ′)]
=(sa − sb)(1− ε)[G(ṽ + δ)−G(ṽ)]

>0

(A.10.4)

where the second equality follows from (A.10.2) and the inequality holds since sa > sb. We

thus have

2(πdA − πA)

1− ε
= 2

∫ ṽ

ṽ−δ′
v dG(v)−

[ ∫ ṽ+δ

ṽ

v dG(v) +

∫ v

v̌

v dG(v)
]

= 2
[
ṽ G(ṽ)− (ṽ − δ′)G(ṽ − δ′)−

∫ ṽ

ṽ−δ′
G(v)dv

]
−
[
(ṽ + δ)G(ṽ + δ)− ṽ G(ṽ)−

∫ ṽ+δ

ṽ

G(v)dv
]

−
[
v G(v)− v̌ G(v̌)−

∫ v

v̌

G(v)dv
]

= 2ṽ[G(ṽ)−G(ṽ − δ′)] + 2
[
δ′G(ṽ − δ′)−

∫ ṽ

ṽ−δ′
G(v)dv

]
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− ṽ[G(ṽ + δ)−G(ṽ)]−
[
δG(ṽ + δ)−

∫ ṽ+δ

ṽ

G(v)dv
]

−
[
v G(v)− v̌ G(v̌)−

∫ v

v̌

G(v)dv
]

> 2ṽ[G(ṽ)−G(ṽ − δ′)]− 2δ′[G(ṽ)−G(ṽ − δ′)]
− ṽ[G(ṽ + δ)−G(ṽ)]− δ[G(ṽ + δ)−G(ṽ)]− v[G(v)−G(v̌)]

=
(
2sa(ṽ − δ′)− ṽ − δ − (sa − sb)v

)
[G(ṽ + δ)−G(ṽ)]

=
(
(sa − sb)(ṽ − v)− (2saδ

′ + δ)
)
[G(ṽ + δ)−G(ṽ)]

where the inequality holds since δ′G(ṽ) >
∫ ṽ
ṽ−δ′ G(v)dv,

∫ ṽ+δ

ṽ
G(v)dv > δG(ṽ) and

∫ v
v̌
G(v)dv >

(v − v̌)G(v̌), the penultimate equality follows from (A.10.2) and (A.10.4), and the last in-

equality holds since sa + sb = 1. Therefore, for sufficiently small δ, we have πdA > πA, which

shows that the admission strategies described in the theorem are not equilibrium.

A.11 Proof of Lemma 5

Recall that when both colleges A and B report truthfully up to the capacity, they achieve

jointly optimal matching for the two colleges. Now suppose college A unilaterally deviates

by either reporting untruthfully about its preferences or its capacity and is strictly better

off for some state s. Then, college B must be strictly worse off. Thus, there must exist a

positive measure set of students whom A must obtain from the deviation which it prefers

to some students it had before the deviation. At the same time, it must be the case that

either college B gets a positive measure set of students who are worse than the former set

of students or it has some unfilled seats left after A’s deviation. Note that students in the

former set (who are assigned to A in the new matching) must prefer B, or else the original

matching would not be stable. But then since B prefer each of those students to some

students it has in the new matching, this means that the new matching is not stable (given

the stated preferences).
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B Appendix B: More than Two Colleges

Our main model in Section 2 considers the case with two colleges. In this section, we show

that our analysis extends to the case with more than two colleges. While the extension

works for any arbitrary number of colleges, we provide the result for the three-college case

for expositional simplicity. It will become clear that the method also extends to larger

numbers.

Suppose there are three colleges, each with mass κ < 1
3

capacity. Let σi : V → [0, 1] be

college i’s admission strategy, where i = 1, 2, 3. In each state s ∈ [0, 1], let µijk(s), where

i, j, k = 1, 2, 3, denote the mass of students whose preference ordering is i � j � k.

Define the following notations: µi�j(s) := µijk(s)+µikj(s)+µkij(s) (the mass of students

who prefer i over j in state s), µi�j,k(s) := µijk(s) +µikj(s) (the mass of students who prefer

i over j and k in state s) and

µi�j :=

∫ 1

0

µi�j(s) ds, µi�j,k :=

∫ 1

0

µi�j,k(s) ds.

We assume that for any distinct i, j, k and s, s′,

µi�j(s) > µi�j(s
′) ⇔ µi�k(s) > µi�k(s

′) ⇔ µi�j,k(s) > µi�j,k(s
′) (B.0.1)

and
|µi�j(s)− µi�j(s′)|

E[µi�j(s)]
<
|µi�j,k(s)− µi�j,k(s′)|

E[µi�j,k(s)]
. (B.0.2)

The first assumption, (B.0.1), simply says that when college i is popular relative to college

j, it will be more popular relative to college k. The second assumption, (B.0.2), means that

µi�j,k(·) is more sensitive to the students’ preference toward i than does µi�j(·).
For given σi(·), i = 1, 2, 3, let ni(v|s) be the probability that a student with score v

attends college i in state s when she is admitted by i. That is,

ni(v|s) := (1− σj(v))(1− σk(v)) + µi�j(s)σj(v)(1− σk(v))

+ µi�k(s)σk(v)(1− σj(v)) + µi�j,k(s)σj(v)σk(v).
(B.0.3)

The student will attend college i if she is admitted only by i, which happens with probability

(1−σj(v))(1−σk(v)); or is admitted by college i and one of the less preferred colleges, which

happens with probability µi�j(s)σj(v)(1 − σk(v)) + µi�k(s)σk(v)(1 − σj(v)) in state s; or is

admitted by both of the other colleges but prefers i the most, which happens with probability

µi�j,k(s)σj(v)σk(v) in state s.

Thus, for a given profile of admission strategies, σ = (σi)i=1,2,3, the mass of students who
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attend college i in state s is

mi(s) :=

∫ 1

0

σi(v)ni(v|s) dG(v), (B.0.4)

and college i’s payoff is

πi =

∫ 1

0

v σi(v)ni(v) dG(v)− λ
∫ 1

0

max {mi(s)− κ, 0} ds,

where

ni(v) :=

∫ 1

0

ni(v|s) ds.

Recall that in the two-school case, the monotonicity of µ(·) yields cutoff states (ŝA, ŝB)

that trigger over-enrollment for each college, and the set of over-enrolled states for each of

them is an interval, (ŝA, 1] for college A and [0, ŝB) for college B. Using this, we project the

admission strategies to state space to use the Brouwer’s fixed point theorem. When there

are more than two colleges, however, we do not know the structure of the set of over-enrolled

states in general, so we cannot directly define a map on the cutoff states. Nonetheless, the

main idea of the proof can be carried over, although we use a fixed point theorem (Schauder)

in a functional space.

Define a subdistribution Fi : [0, 1]→ [0, 1], i = 1, 2, 3, such that Fi(0) = 0 and

Fi(s) := Prob
(
mi(t) > κ for t < s

)
. (B.0.5)

The subdistribution of college i places a positive mass only on the states in which college i

over-enrolls. Observe that Fi(·) is nondecreasing and

0 ≤ Fi(s
′)− Fi(s) ≤ s′ − s, ∀ s′ ≥ s.36

Let Fi be the set of all such subdistributions and F := ×3
i=1Fi. (It will become clear that

these subdistributions will play a similar role to the cutoff states in the two-school case.)

36The second inequality holds because

Fi(s
′)− Fi(s) = Prob

(
mi(t) > κ for t < s′

)
− Prob

(
mi(t) > κ for t < s

)
= Prob

(
mi(t) > κ for s < t < s′

)
≤ Prob(s < t < s′)

= s′ − s.
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Using the subdistributions, each college’s payoff is now given by37

πi =

∫ 1

0

v σi(v)ni(v) dG(v)− λ
∫ 1

0

(
mi(s)− κ

)
dFi(s)

=

∫ 1

0

σi(v)Hi(v, σj(v), σk(v)) dG(v) + λ

∫ 1

0

κ dFi(s),

where

Hi(v, σj(v), σk(v)) := v ni(v)− λ
∫ 1

0

ni(v|s) dFi(s)

is college i’s marginal payoff from admitting a student with score v. Observe that Hi can be

decomposed as follow:

Hi(v, σj(v), σk(v)) = (1− σj(v))(1− σk(v))Hi(v, 0, 0) + σj(v)(1− σk(v))Hi(v, 1, 0)

+ (1− σj(v))σk(v)Hi(v, 0, 1) + σj(v)σk(v)Hi(v, 1, 1),

where Hi(v, 0, 0) is college i’s marginal payoff from admitting a student with score v if she

is refused by both of the other colleges, Hi(v, 1, 0) and Hi(v, 0, 1) are the marginal payoffs if

the student is admitted by college j (k) but rejected by k (j, respectively), and Hi(v, 1, 1) is

the marginal payoff if the student is admitted by both of the other colleges.

Let us now define v11
i , v10

i , v01
i and v00

i such that

Hi(v
11
i , 1, 1) = 0, Hi(v

10
i , 1, 0) = 0, Hi(v

01
i , 0, 1) = 0, Hi(v

00
i , 0, 0) = 0.

Lemma B1. v00
i < min{v10

i , v
01
i } ≤ max{v10

i , v
01
i } < v11

i .

Proof. See Appendix B.1. �

Lemma B2. (i) If v < v00
i , then Hi(v, x, y) < 0, and if v > v11

i , then Hi(v, x, y) > 0, for all

x and y.

(ii) If v < v10
i , then Hi(v, x, y)

>
=
<

0 if x
<
=
>
x̂(y) for some x̂(y) ∈ [0, 1] for each y.

(iii) If v < v01
i , then Hi(v, x, y)

>
=
<

0 if y
<
=
>
ŷ(x) for some ŷ(x) ∈ [0, 1] for each x.

(iv) For any v 6∈ [min{v10
i , v

01
i },max{v10

i , v
01
i }], if Hi(v, x, y) ≤ 0, then Hi(v, x

′, y′) < 0

for (x′, y′) > (x, y).

Proof. Write

Hi(v, x, y) = (1− x)(1− y)(v − v00
i ) + x(1− y)µi�j(v − v10

i )

37Note that since Fi is Lipschitz continuous, it is absolute continuous. Thus, the integration is well defined.
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0 v00i v01i v10i v11i
v

Hi(v, 0, 0) < 0

Hi(v, 0, 1) < 0 < Hi(v, 0, 0)

Hi(v, 1, 0) < 0 < Hi(v, 0, 1)

Hi(v, 1, 1) < 0 < Hi(v, 1, 0)

Hi(v, 1, 1) > 0

σi = 0

σj = 0
σk = 0

}
⇒ σi = 1

σj = 0
σk = 1

}
⇒ σi = 0

σj = 0
σk = 1

}
⇒ σi = 1

σj = 1
σk = 0

}
⇒ σi = 0

σj = 1
σk = 0

}
⇒ σi = 1

σj = 1
σk = 1

}
⇒ σi = 0

σi = 1

Figure B.1: College i’s Admission Decision

+ (1− x)y µi�k(v − v01
i ) + xy µi�j,k(v − v11

i ).

Part (i) follows easily from Lemma B1. To see part (ii), suppose v < v10
i . Then,

Hi(v, 1, y) = (1− y)µi�j(v − v10
i ) + y µi�j,k(v − v11

i ) < 0,

by Lemma B1. Since Hi is linear in x, part (ii) follows. Part (iii) follows analogously.

We now prove part (iv). If v < min{v10
i , v

01
i }, then the result follows from parts (ii)

and (iii), since both Hi(v, 1, y) < 0 and Hi(v, x, 1) < 0 for any x, y. Next suppose v >

max{v10
i , v

01
i }, then both Hi(v, 0, y) > 0 and Hi(v, x, 0) > 0 for any x, y. If Hi(v, x, y) < 0

for some (x, y), it must be that ∂Hi/∂x < 0 and ∂Hi/∂y < 0. Linearity of Hi in x and y

implies the result. �

As discussed in Remark 1, Lemma B1 and Lemma B2 reveal that a college’s marginal

payoff from students with fewer offers is higher than those with more competing offers, and

so the college prefers the former students than the latter. The lemmas also imply that

Hi(v, σj, σk) partitions the students’ type space, as depicted in Figure B.1 for the case that

v01
i ≤ v10

i . College i admits type-v students for sure if Hi(v, 1, 1) > 0 and rejects them if

Hi(v, 0, 0) < 0. In the case Hi(v, 1, 1) < 0 < Hi(v, 0, 0), college i admits type-v students

only when Hi(v, 1, 0) > 0 or Hi(v, 0, 1) > 0; that is, those students are worthy only in the

case that they are admitted by one of the other colleges. This shows that colleges engage in

strategic targeting for those intermediate range of scores.

As in the two-school case, there are many ways that colleges could coordinate for the

students in the middle. To be consistent, we consider the maximally mixed equilibrium

(MME) as before. Figure B.2 depicts a competitive MME in the case that for instance,

v00
3 < v00

2 < v00
1 < v01

3 < v01
2 < v01

1 < v10
3 < v10

2 < v10
1 < v11

3 < v11
2 < v11

1 .

We now provide the existence of MME. For a given profile of subdistributions (Fi)
3
i=1, let

σ := (σi)
3
i=1 be the profile of admission strategies that satisfy the local conditions described

above. Then, such σ in turn determines a new profile of subdistributions, (Fi)
3
i=1 via (B.0.5).
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(a) College 1 (c1)
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MixedMixed
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(b) College 2 (c2)

0 1

σ3(v)

v003 v002 v001 v013 v012 v011 v103 v102 v101 v113 v112 v111

MixedMixed
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1

v

(c) College 3 (c3)

Figure B.2: Admission Strategies

Next, we define T : F → F , a self-map from the set of subdistributions to itself, where

F = ×3
i=1Fi. The existence of equilibrium is achieved when T has a fixed point (on the

functional space of F). As mentioned earlier, the idea of proving the existence of equilibrium

is similar to that of Theorem 2, projecting the strategy profile into a simpler space. The

difference is that in the two-school case, the strategy profiles are projected into the state

space, but in the general case, they are projected into the set of subdistributions F .

Theorem 11. There exists a maximally mixed equilibrium.

We show that F is a compact and convex subset of a normed linear space, and T : F → F
is continuous. Then, T has a fixed point by Schauder’s fixed point theorem.38 We provide a

38Schauder’s fixed point theorem is a generalization of Brouwer’s theorem on a normed linear space. It
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formal proof in Appendix B.2.

B.1 Proof of Lemma B1

We first establish a useful lemma.

Lemma B3. For any distinct i, j, k, E[µi�j(s)|mi(s) > κ] > µi�j and

E[µi�j,k(s)|mi(s) > κ]

µi�j,k
>

E[µi�j(s)|mi(s) > κ]

µi�j
.

Proof. Observe first that if mi(s) > mi(s
′) for some s and s′, then by (B.0.4) it holds either

µi�j(s) > µi�j(s
′) or µi�k(s) > µi�k(s) or µi�j,k(s) > µi�j,k(s

′). But, if one of this holds,

then (B.0.1) implies that the other two must also hod.

Now, let F+(x) := Prob(s ≤ x and mi(s) > κ) and F−(x) := Prob(s ≤ x and mi(x) ≤
κ), and define φ+(y) := inf{z |F+(z) ≥ y} and φ−(y) := inf{z |F−(z) ≥ y}. Note that for

each s ∈ φ+([0, 1]), mi(s) > κ and for each s ∈ φ−([0, 1]), mi(s) ≤ κ.

To see the first part, note that

E[µi�j(s)|mi(s) > κ]− µi�j = Prob(mi(s) ≤ κ)
(
E[µi�j(s)|mi(s) > κ]− E[µi�j(s)|mi(s) ≤ κ]

)
= Prob(mi(s) ≤ κ)

(∫ 1

0

µi�j(s)dF+(s)−
∫ 1

0

µi�j(s)dF−(s)

)
= Prob(mi(s) ≤ κ)

(∫ 1

0

µi�j(φ+(y))dy −
∫ 1

0

µi�j(φ−(y))dy

)
= Prob(mi(s) ≤ κ)

∫ 1

0

[µi�j(φ+(y))− µi�j(φ−(y))]dy

> 0,

where the inequality follows from (B.0.1), since mi(φ+(y)) > κ ≥ mi(φ−(y)) implies that

µi�j(φ+(y)) > µi�j(φ−(y))). Similarly, for the second inequality,

E[µi�j,k(s)|mi(s) > κ]

µi�j,k
− E[µi�j(s)|mi(s) > κ]

µi�j

=
E[µi�j,k(s)|mi(s) > κ]− µi�j,k

µi�j,k
−

E[µi�j(s)|mi(s) > κ]− µi�j
µi�j

= Prob(mi(s) ≤ κ)

(
E[µi�j,k(s)|mi(s) > κ]− E[µi�j,k(s)|mi(s) ≤ κ]

µi�j,k

)
guarantees that every continuous self-map on a nonempty, compact, convex subset of a normed linear space
has a fixed point (see Ok, 2007).
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− Prob(mi(s) ≤ κ)

(
E[µi�j(s)|mi(s) > κ]− E[µi�j(s)|mi(s) ≤ κ]

µi�j,k

)
= Prob(mi(s) ≤ κ)

∫ 1

0

(
µi�j,k(φ+(y))− µi�j,k(φ−(y))

µi�j,k
− µi�j(φ+(y))− µi�j(φ−(y))

µi�j

)
dy

> 0,

where the inequality follows from (B.0.2), since mi(φ+(y)) > κ ≥ mi(φ−(y)) implies that

µi�j,k(φ+(y))− µi�j,k(φ−(y)) > 0 and µi�j(φ+(y))− µi�j(φ−(y)) > 0. �

We now prove Lemma B1. Let v01
i = min{v10

i , v
01
i } and v10

i = max{v10
i , v

01
i } without loss

of generality. Then

v01
i − v00

i = λProb(mi(s) > κ)

(
E[µi�k(s)|mi(s) > κ]

E[µi�k(s)]
− 1

)
> 0,

where the equality follows from the construction of v01
i , v00

i and Fi, and the inequality follows

from the first part of Lemma B3. Similarly,

v11
i − v10

i = λProb(mi(s) > κ)

(
E[µi�j,k(s)|mi(s) > κ]

E[µi�j,k(s)]
− E[µi�j(s)|mi(s) > κ]

E[µi�j(s)]

)
> 0,

where the inequality follows from the second part of Lemma B3.

B.2 Proof of Theorem 11

For given (Fi)i=1,2,3, consider colleges’ strategy profile (σi)i=1,2,3 which satisfies the following

local conditions:

• σi(v) = 1 if H1(v, 1, 1) > 0, i = 1, 2, 3.

• σ1(v) = 0 if H1(v, 1, 1) < 0, H2(v, 1, 1) > 0, H3(v, 1, 1) > 0.

σ2(v) = 0 if H1(v, 1, 1) > 0, H2(v, 1, 1) < 0, H3(v, 1, 1) > 0.

σ3(v) = 0 if H1(v, 1, 1) > 0, H2(v, 1, 1) > 0, H3(v, 1, 1) < 0.

• σ1(v) = 1, σ2(v) = 0, σ3(v) = 1 if


H1(v, 1, 1) < 0, H1(v, 0, 1) > 0

H2(v, 1, 1) < 0

H3(v, 1, 1) > 0
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• σ1(v) = 0, σ2(v) = 1, σ3(v) = 1 if


H1(v, 1, 1) < 0

H2(v, 1, 1) < 0, H2(v, 0, 1) > 0

H3(v, 1, 1) < 0, H3(v, 0, 1) > 0

• σ1(v) = 1, σ2(v) = 0, σ3(v) = 1 if


H1(v, 1, 1) < 0, H1(v, 0, 1) > 0

H2(v, 1, 1) < 0

H3(v, 1, 1) < 0, H3(v, 1, 0) > 0

• σ1(v) = 1, σ2(v) = 1, σ3(v) = 0 if


H1(v, 1, 1) < 0, H1(v, 1, 0) > 0

H2(v, 1, 1) < 0, H2(v, 1, 0) > 0

H3(v, 1, 1) < 0

• σ1(v) = 1, σ2(v) = 0, σ3(v) = 0 if


H1(v, 1, 1) < 0, H1(v, 0, 0) > 0

H2(v, 1, 1) < 0, H2(v, 1, 0) < 0

H3(v, 1, 1) < 0, H3(v, 1, 0) < 0

• σ1(v) = 0, σ2(v) = 1, σ3(v) = 0 if


H1(v, 1, 1) < 0, H1(v, 1, 0) < 0

H2(v, 1, 1) < 0, H2(v, 0, 0) > 0

H3(v, 1, 1) < 0, H3(v, 0, 1) < 0

• σ1(v) = 0, σ2(v) = 0, σ3(v) = 1 if


H1(v, 1, 1) < 0, H1(v, 0, 1) < 0

H2(v, 1, 1) < 0, H2(v, 0, 1) < 0

H3(v, 1, 1) < 0, H3(v, 0, 0) > 0

• σi(v) = 0 if H1(v, 0, 0) < 0, i = 1, 2, 3.

• σi(v)’s satisfy H1(v, σ2(v), σ3(v)) = H2(v, σ1(v), σ3(v)) = H3(v, σ1(v), σ2(v)) = 0, if

max
i=1,2,3

{Hi(v, 1, 0), Hi(v, 0, 1)} < 0 < min
i=1,2,3

{Hi(v, 0, 0)}

• σi(v) and σj(v) satisfy Hi(v, σj, 0) = 0 and Hj(v, σi, 0) = 0 if Hk(v, 0, 0) < 0 and

max {Hi(v, 1, 0), Hj(v, 1, 0)} < 0 < min {Hi(v, 0, 0), Hj(v, 0, 0)}
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Now, let CB([0, 1]) be the space of continuous and bounded real maps on [0, 1]. Then,

CB([0, 1]) is a normed linear space, with a sup norm: for any F, F ′ ∈ CB([0, 1]),

‖F − F ′‖ = sup
s∈[0,1]

|F (s)− F ′(s)| .

Lemma B4. F is compact and convex.

Proof. We first show that Fi, i = 1, 2, 3, is closed. To this end, consider any sequence {F n
i },

where F n
i ∈ Fi for each n, such that ‖F n

i − Fi‖ → 0 as n→∞. We prove that Fi ∈ Fi.
Observe first that Fi is nondecreasing. Suppose to the contrary that Fi(s

′) − Fi(s) < 0

for some s′ > s. But then,

‖F n
i − Fi‖ ≥ max {|F n

i (s′)− Fi(s′)| , |Fi(s)− F n
i (s)|}

≥ 1
2
(|F n

i (s′)− Fi(s′)|+ |Fi(s)− F n
i (s)|)

≥ 1
2
|F n
i (s′)− Fi(s′) + Fi(s)− F n

i (s)|
≥ 1

2
|Fi(s)− Fi(s′)|

> 0

which is a contradiction. Similarly, for s′ > s, we must have that Fi(s
′)− Fi(s) ≤ s′ − s. If

Fi(s
′)− Fi(s) > s′ − s, then

‖F n
i − Fi‖ ≥ max {|Fi(s′)− F n

i (s′)| , |F n
i (s)− Fi(s)|}

≥ 1
2
(|Fi(s′)− F n

i (s′)|+ |F n
i (s)− Fi(s)|)

≥ 1
2
|Fi(s′)− Fi(s) + F n

i (s)− F n
i (s′)|

≥ 1
2
|Fi(s′)− Fi(s)− (s′ − s)|

> 0,

which is a contradiction again. Combining these, we have Fi ∈ Fi, proving that Fi is closed.

Next, we show that Fi is compact. Note that for any Fi ∈ Fi and s, s′ ∈ [0, 1],

|Fi(s′)− Fi(s)| ≤ |s′ − s| ,

Hence, Fi is Lipschitz continuous and so is equicontinuous and bounded. By the Arzèla-

Ascoli theorem,39 Fi is compact.

We now show that Fi is convex. Observe that for any Fi, F
′
i ∈ F and s, s′ ∈ [0, 1], for

39Arzèla-Ascoli theorem gives conditions for a set of C(T ) to be compact, where C(T ) is the space of
continuous maps on T and T is a compact metric space. A subset of C(T ) is compact if and only if it is
closed, bounded, and equicontinuous.
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and η ∈ (0, 1),

(ηFi + (1− η)F ′i )(s
′)− (ηFi + (1− η)F ′i )(s) = η(Fi(s

′)− Fi(s)) + (1− η)(F ′i (s
′)− F ′i (s))

≤ η(s′ − s) + (1− η)(s′ − s)
= s′ − s,

which proves that Fi is convex.

Since Fi is compact and closed, so is its Cartesian product F = ×3
i=1Fi (with respect to

the product topology). �

Lemma B5. T is continuous.

Proof. The proof involves several steps. For the first step, with slight abuse of notation, let

vjki be such that j = 1 if σj(v) = 1 or j = 0 if σj(v) = 0; and k = 1 if σk(v) = 1 or k = 0 if

σk(v) = 0.

Step 1. vjki s are continuous on F1, F2, F3.

Proof. Fix any Fi ∈ Fi and ε > 0. Let vjki = v11
i . Take δ =

µi�j,k

2λ
ε. Then, for any Fi, F

′
i ∈ Fi

such that ‖Fi − F ′i‖ < δ, we have that

∣∣∣vjki − vjk′i

∣∣∣ =

∣∣∣∣ λ

µi�j,k

∫ 1

0

µi�j,k(s)[dFi(s)− dF ′i (s)]
∣∣∣∣

=
λ

µi�j,k

∣∣∣∣µi�j,k(1)[Fi(1)− F ′i (1)]−
∫ 1

0

µ′i�j,k(s)[Fi(s)− F ′i (s)]ds
∣∣∣∣

≤ 2λ

µi�j,k
‖Fi(s)− F ′i (s)‖

< ε,

where the second equality follows from the integration by parts and Fi(0) = F ′i (0) = 0, and

the penultimate inequality holds since
∫ 1

0
µ′i�j,k(s)ds = µi�j,k(1)− µi�j,k(0) ≤ 1. The proofs

for other cases (v10
i , v

01
i , v

00
i ) are similar, so we omit them. �

Step 2. σi’s in mixed-strategies are continuous.

Proof. Consider, at first, students with score v such that

Hk(v, 0, 0) < 0, (B.2.1)

Hi(v, 1, 0) < 0 < Hi(v, 0, 0), (B.2.2)

Hj(v, 1, 0) < 0 < Hj(v, 0, 0). (B.2.3)
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That is, college k puts zero probability for those students (by (B.2.1)), and colleges i and j

use mixed-strategies σi and σj which satisfy Hi(v, σj, 0) = 0 and Hj(v, σi, 0) = 0.

Now, let Ji : Fi ×Fj × [0, 1]2 → [0, 1] such that

Ji(Fi, Fj, σi, σj) ≡ Hi(v, σj, 0) = v
[
(1− σj) + µi�jσj(v)

]
− λ

∫ 1

0

[
(1− σj) + µi�j(s)σj(v)

]
dFi(s),

Jj(Fi, Fj, σi, σj) ≡ Hj(v, σi, 0) = v
[
(1− σi) + µj�iσi(v)

]
− λ

∫ 1

0

[
(1− σi) + µj�i(s)σi(v)

]
dFj(s).

Then, σi and σj are the solutions to Ji = 0 and Jj = 0 in terms of Fi and Fj. Observe that

Ji = (1− σj)Hi(v, 0, 0) + σjHi(v, 1, 0).

Hence,
∂Ji
∂σj

= −Hi(v, 0, 0) +Hi(v, 1, 0) < 0,

where inequality follows from (B.2.2). Similarly, we also have by (B.2.3)

∂Jj
∂σi

= −Hj(v, 0, 0) +Hj(v, 1, 0) < 0.

Therefore,

∆ij :=

∣∣∣∣∣ ∂Ji
∂σi

∂Ji
∂σj

∂Jj
∂σi

∂Jj
∂σj

∣∣∣∣∣ =

∣∣∣∣∣ 0 ∂Ji
∂σj

∂Jj
∂σi

0

∣∣∣∣∣ = −∂Ji
∂σj

∂Jj
∂σi

< 0.

Since ∆ji 6= 0, the Implicit function theorem implies that there are unique σi and σj such

that

Ji(Fi, Fj, σi, σj) = 0 and Jj(Fi, Fj, σi, σj) = 0.

Furthermore, such σi and σj are continuous.

Consider now the case that H1(v, σ2, σ3) = H2(v, σ1, σ3) = H3(v, σ1, σ2) = 0 when

max
i=1,2,3

{Hi(v, 1, 0), Hi(v, 0, 1)} < 0 < min
i=1,2,3

{Hi(v, 0, 0)} . (B.2.4)

Similar as before, let

J1(F1, F2, F3, σ1, σ2, σ3) ≡ H1(v, σ2, σ3) = 0,

J2(F1, F2, F3, σ1, σ2, σ3) ≡ H2(v, σ1, σ3) = 0,

J3(F1, F2, F3, σ1, σ2, σ3) ≡ H3(v, σ1, σ2) = 0.
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Observe that

Ji = (1− σj)(1− σk)Hi(v, 0, 0) + σj(1− σk)Hi(v, 1, 0) + (1− σj)σkHi(v, 0, 1) + σjσkHi(v, 1, 1)

= (1− σj)Hi(v, 0, 0) + σj(1− σk)Hi(v, 1, 0)− (1− σj)σkHk(v, 1, 0) + σjσkHi(v, 1, 1).

where the second equality holds after some rearrangement using the fact that 1− µi�k(s) =

µk�i(s). Therefore,

∂Ji
∂σj

= −Hi(v, 0, 0) + (1− σk)Hi(v, 1, 0) + σkHk(v, 1, 0) + σkHi(v, 1, 1) < 0,

where the inequality holds since Hi(v, 0, 0) > 0, Hi(v, 1, 0) < 0, Hk(v, 1, 0) < 0 and

Hi(v, 1, 1) < 0 by (B.2.4). This implies that

∆ :=

∣∣∣∣∣∣∣
∂J1
∂σ1

∂J1
∂σ2

∂J1
∂σ3

∂J2
∂σ1

∂J2
∂σ2

∂J2
∂σ3

∂J3
∂σ1

∂J3
∂σ2

∂J3
∂σ3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
0 ∂J1

∂σ2

∂J1
∂σ3

∂J2
∂σ1

0 ∂J2
∂σ3

∂J3
∂σ1

∂J3
∂σ2

0

∣∣∣∣∣∣∣ =
∂J1

∂σ2

∂J2

∂σ3

∂J3

∂σ1

+
∂J1

∂σ3

∂J2

∂σ1

∂J3

∂σ2

< 0

Using the Implicit function theorem again, we conclude that such σ1, σ2, σ3 exist and

they are continuous. �

Observe that from Step 1 and Step 2, Hi(v, σj, σk), i = 1, 2, 3, is continuous in (Fi)i=1,2,3

for a given s and fixed v.

Step 3. mi(s) is continuous.

Proof. Consider any Fi, F
′
i ∈ Fi such that ‖Fi − F ′i‖ < δ for all i = 1, 2, 3. Let σi and σ′i

are admission strategies of college i which correspond to Fi and F ′i , respectively. Then, for

a given s and v, ni(v|s) is defined by (B.0.3) and n′i(v|s) is defined similarly using σ′i.

Let X := {v ∈ [0, 1]| |σi(v)− σ′i(v)| ≥ ε/2}. Clearly,

|σi(v)− σ′i(v)| = |σi(v)− σ′i(v)| 11X(v) + |σi(v)− σ′i(v)| 11Xc(v),

where 11X(v) is the indicator function which is 1 if v ∈ X or 0 otherwise, and Xc is the

complementary set of X. Since vjki are continuous by Step 1, we have∫ 1

0

11X(v) dG(v) <
ε

2
. (B.2.5)

For v ∈ Xc, it must be the case that either σi = σ′i, or σi and σ′i are the mixed-strategies.

Thus, we have for v ∈ Xc,

|σi(v)− σ′i(v)| < ε

2
. (B.2.6)
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Observe that∫ 1

0

|σi(v)− σ′i(v)| dG(v) =

∫ 1

0

|σi(v)− σ′i(v)| 11X(v) dG(v) +

∫ 1

0

|σi(v)− σ′i(v)| 11Xc(v) dG(v)

<

∫ 1

0

11X(v) dG(v) +

∫ 1

0

|σi(v)− σ′i(v)| 11Xc(v) dG(v)

< ε,

where the first inequality holds since σi, σ
′
i ≤ 1, and the last inequality follows from (B.2.5)

and (B.2.6). Thus, there exists δ1 such that ‖Fi − F ′i‖ < δ1, for all i, i′ = 1, 2, 3, implies∫ 1

0

∣∣σi(1− σj)(1− σk)− σ′i(1− σ′j)(1− σ′k)∣∣ dG(v)

≤
∫ 1

0

[
|σi − σ′i| (1− σj)(1− σk) +

∣∣σj − σ′j∣∣σ′i(1− σk) + |σk − σ′k|σ′i(1− σ′j)
]
dG(v)

<
ε

4

Similarly, there are δt, t = 2, 3, 4, such that ‖Fi − F ′i‖ < δt respectively imply that∣∣σiσj(1− σk)− σ′iσ′j(1− σ′k)∣∣ < ε

4
,
∣∣σiσk(1− σj)− σ′iσ′k(1− σ′j)∣∣ < ε

4
,
∣∣σiσjσk − σ′iσ′jσ′k∣∣ < ε

4
.

Now, let δ = mint=1,2,3,4 {δt}. We have that ‖Fi − F ′i‖ < δ implies

|mi(s)−m′i(s)| ≡
∣∣∣∣∫ 1

0

σi(v)ni(v|s) dG(v)−
∫ 1

0

σ′i(v)n′i(v|s) dG(v)

∣∣∣∣ < ε.

That is, mi(s) is continuous on (Fi)i=1,2,3. � �

Lemma B5 proves the existence admission strategies that satisfy the local conditions.

The proof that those strategies are mutual (global) best responses is analogous to that of

the two college case.
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