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Abstract

We provide simple su¢ cient conditions for the existence of a tight, recursive upper
bound on the sequential equilibrium payo¤ set at a �xed discount factor in two-player
repeated games with imperfect private monitoring. The bounding set is the sequential
equilibrium payo¤ set with perfect monitoring and a mediator. We show that this
bounding set admits a simple recursive characterization, which nonetheless necessarily
involves the use of private strategies. Under our conditions, this set describes precisely
those payo¤ vectors that arise in equilibrium for some private monitoring structure.

PRELIMINARY. COMMENTS WELCOME.

1 Introduction

Like many dynamic economic models, repeated games are typically studied using recursive

methods. In an incisive paper, Abreu, Pearce, and Stacchetti (1990; henceforth APS) re-

cursively characterized the perfect public equilibrium payo¤ set at a �xed discount factor in

repeated games with imperfect public monitoring. Their results (along with related con-

tributions by Fudenberg, Levine, and Maskin (1994) and others) led to fresh perspectives

on problems like collusion (Green and Porter, 1984; Athey and Bagwell, 2001), relational

�This replaces our earlier paper, �Perfect Versus Imperfect Monitoring in Repeated Games.� For helpful
comments, we thank Gabriel Carroll, Michihiro Kandori, Hitoshi Matsushima, Stephen Morris, Tadashi
Sekiguchi, and Andrzej Skrzypacz.
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contracting (Levin, 2003), and government credibility (Phelan and Stacchetti, 2001). How-

ever, other important environments� like collusion with secret price cuts (Stigler, 1964) or

relational contracting with subjective performance evaluations (Levin, 2003; MacLeod, 2003;

Fuchs, 2007)� involve imperfect private monitoring, and it is well-known that the methods of

APS do not easily extend to such settings (Kandori, 2002). Whether the equilibrium payo¤

set in repeated games with private monitoring exhibits any tractable recursive structure at

all is thus a major question.

In this paper, we do not make any progress toward giving a recursive characterization

of the sequential equilibrium payo¤ set in a repeated game with a given private monitoring

structure. Instead, working in the context of two-player games, we provide simple conditions

for the existence of a tight, recursive upper bound on this set. Equivalently, under these

conditions we give a recursive characterization of the set of payo¤s that can be attained

in equilibrium for some private monitoring structure.1 Thus, from the perspective of an

observer who knows the monitoring structure, our results give an upper bound on how well

players can do in a repeated game; while from the perspective of an observer who does not

know the monitoring structure, our results exactly characterize how well the players can do.

Throughout the paper, the set we use to upper-bound the equilibrium payo¤ set with

private monitoring is the equilibrium payo¤ set with perfect monitoring and a mediator

(or, more precisely, the closure of the strict equilibrium payo¤ set with this information

structure). We thus show that the equilibrium payo¤ set with private monitoring has a

simple, recursive upper bound by establishing two main results:

1. Under some conditions, the equilibrium payo¤set with perfect monitoring and a media-

tor is indeed an upper bound on the equilibrium payo¤ set with any private monitoring

structure.

2. The equilibrium payo¤ set with perfect monitoring and a mediator has a simple recur-

1The required private monitoring structure may be stochastic, meaning that the distribution of signals can
depend on everything that has happened in the past, rather than only on current actions. With a repeated
(non-stochastic) monitoring structure, the same characterization obtains if the players can communicate
through cheap talk. See Section 7.2.
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sive structure.

At �rst glance, it might seem surprising that any conditions at all are needed for the �rst

of these results, as one might think that improving the precision of the monitoring structure

and adding a mediator can only expand the equilibrium set. But this is not the case:

giving a player more information about her opponents�past actions splits her information

sets and thus gives her new ways to cheat, and indeed we show by example that imperfect

private monitoring can sometimes outperform (mediated) perfect monitoring. Our �rst

result provides su¢ cient conditions for this not to happen. Thus, another contribution of

our paper is pointing out that perfect monitoring is not necessarily the optimal monitoring

structure in a repeated game (even if it is advantaged by giving players access to a mediator),

while also giving su¢ cient conditions under which perfect monitoring is indeed optimal.

Our su¢ cient condition for mediated perfect monitoring to outperform any private mon-

itoring structure is that there is a feasible continuation payo¤ vector v such that no player i

is tempted to deviate if she gets continuation payo¤ vi when she conforms and is minmaxed

when she deviates. This is a joint restriction on the stage game and the discount factor,

and it is essentially always satis�ed when players are at least moderately patient. (They

need not be extremely patient: none of our main results concern the limit � ! 1.) The

reason why this condition is su¢ cient for mediated perfect monitoring to outperform private

monitoring in two-player games is fairly subtle, so we postpone a detailed discussion.

Our second main result also involves some subtleties. In repeated games with perfect

monitoring without a mediator, all strategies are public, so the sequential (equivalently,

subgame perfect) equilibrium set coincides with the perfect public equilibrium set, which

was recursively characterized by APS. On the other hand, with a mediator� who makes

private action recommendations to the players� private strategies play a crucial role, and

APS�s characterization does not apply. We nonetheless show that the sequential equilibrium

payo¤ set with perfect monitoring and a mediator does have a simple recursive structure.

Under the su¢ cient conditions for our �rst result, a recursive characterization is obtained

by replacing APS�s generating operator B with what we call a minmax-threat generating
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operator ~B: for any set of continuation payo¤sW , the set ~B (W ) is the set of payo¤s that can

be attained when rewards are drawn fromW and deviators are minmaxed.2 To see intuitively

why deviators can always be minmaxed in the presence of a mediator� and also why private

strategies cannot be ignored� suppose that the mediator recommends a target action pro�le

a 2 A with probability 1�", while recommending every other action pro�le with probability

"= jAj; and suppose further that if some player i deviates from her recommendation, the

mediator then recommends that her opponents minmax her in every future period. In

such a construction, player i�s opponents never learn that a deviation has occurred, and

they are therefore always willing to follow the recommendation of minmaxing player i.3

(This construction clearly relies on private strategies: if the mediator�s recommendations

were public, players would always see when a deviation occurs, and they then might not be

willing to minmax the deviator.) Our recursive characterization of the equilibrium payo¤

set with perfect monitoring and a mediator takes into account the possibility of minmaxing

deviators in this way.

Our paper is certainly not the �rst to develop recursive methods for private monitoring

repeated games. In an early and in�uential paper on repeated private monitoring games,

Kandori and Matsushima (1998) augment repeated private monitoring games with oppor-

tunities for public communication among players, and provide a recursive characterization

of the equilibrium payo¤ set for a subclass of equilibria that is large enough to yield a folk

theorem. Tomala (2009) gives related results when the repeated game is augmented with

a mediator rather than only public communication. However, neither paper provides a

recursive upper bound on the entire sequential equilibrium payo¤ set at a �xed discount

factor in the repeated game.4 Amarante (2003) does give a recursive characterization of

2The equilibrium payo¤ set with perfect monitoring and a mediator has a recursive structure whether
or not the su¢ cient conditions for our �rst result are satis�ed, but the characterization is somewhat more
complicated in the general case. See Section 7.1.

3In this construction, the mediator virutally implements the target action pro�le. For other applications
of virtual implementation in games with a mediator, see Rahman and Obara (2010) and Rahman (2012).

4Ben-Porath and Kahneman (1996) and Compte (1998) also prove folk theorems for repeated private
monitoring games with communication, but they do not emphasize recursive methods away from the � ! 1
limit.
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the equilibrium payo¤ set in private monitoring repeated games, but the state space in his

characterization is the set of repeated game histories, which grows over time. In contrast,

our upper bound is recursive in payo¤ space, just like in APS.

Recently, Phelan and Skrzypacz (2012) and Kandori and Obara (2010) develop recursive

methods for checking whether a given �nite-state strategy pro�le is an equilibrium in a

private monitoring repeated game. Their results do not give a recursive characterization or

upper bound on the equilibrium payo¤ set. The type of recursive methods used in their

papers is also di¤erent: their methods for checking whether a given strategy pro�le is an

equilibrium involve a recursion on the sets of beliefs that players can have about each other�s

states, rather than a recursion on payo¤s.

Like our paper, a working paper by Cherry and Smith (2011) tries to give a recursive

upper bound on the equilibrium payo¤ set in private monitoring repeated games by com-

paring this set with the equilibrium payo¤ set with perfect monitoring and mediation or

extensive-form correlation. However, to the best of our knowledge, Cherry and Smith do

not provide conditions under which the equilibrium payo¤ set with perfect monitoring and

a mediator is actually an upper bound on the equilibrium payo¤ set with private monitor-

ing (as we do in Theorem 1), and they also do not give a recursive characterization of the

sequential equilibrium payo¤ set with perfect monitoring and a mediator that takes private

strategies into account (as we do in Theorem 2). Thus, while our motivation is very similar

to Cherry and Smith�s, our results are quite di¤erent from theirs. Another recent paper by

Awaya and Krishna (2014) derives an upper bound on payo¤s in a repeated Bertrand game

for a particular private monitoring structure. They do not address the question of bounding

equilibrium payo¤s for general games, or that of bounding equilibrium payo¤s independently

of the monitoring structure.

Finally, we have emphasized that our results can be interpreted either as giving an upper

bound on the equilibrium payo¤ set in a repeated game for a particular private monitoring

structure, or as characterizing the set of payo¤s that can arise in equilibrium in a repeated

game for some private monitoring structure. With the latter interpretation, our paper

5



shares a motivation with Bergemann and Morris (2013), who characterize the set of payo¤s

that can arise in equilibrium in a static incomplete information game for some information

structure.

The rest of the paper is organized as follows. Section 2 describes our models of repeated

games with imperfect private monitoring and repeated games with perfect monitoring and a

mediator, which are standard. Section 3 gives an example showing that private monitoring

can sometimes outperform perfect monitoring with a mediator. Section 4 presents our

�rst main result, which gives su¢ cient conditions for such examples not to exist. Section 5

presents our second main result: a simple recursive characterization of the equilibrium payo¤

set with perfect monitoring and a mediator. Combining the results of Sections 4 and 5 gives

the desired recursive upper bound on the equilibrium payo¤ set with private monitoring.

Section 6 illustrates the calculation of the upper bound with an example. Finally, Section

7 discusses partial versions of our results that apply when our su¢ cient conditions do not

hold, as in the case of more than two players, as well as the tightness of our upper bound.

2 Model

A stage game G =
�
I; (Ai)i2I ; (ui)i2I

�
is repeated in periods t = 1; 2; : : :, where I =

f1; : : : ; jIjg is the set of players, Ai is the �nite set of player i�s actions, and ui : A ! R

is player i�s payo¤ function. Players maximize expected discounted payo¤s with common

discount factor �. We compare the equilibrium payo¤ sets in this repeated game under

private monitoring and mediated perfect monitoring.

2.1 Private Monitoring

In each period t, the game proceeds as follows: Each player i takes an action ai;t 2 Ai. A

signal zt = (zi;t)i2I 2 (Zi)i2I = Z is drawn from distribution p (ztjat), where Zi is the �nite

set of player i�s signals and p (�ja) is the monitoring structure. Player i observes zi;t.

A period t history of player i�s is an element of H t
i = (Ai � Zi)

t�1, with typical element
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hti = (ai;� ; zi;� )
t�1
�=1, where H

1
i consists of the null history ;. A (behavior) strategy of player

i�s is a map �i :
S1
t=1H

t
i ! �(Ai).

We do not impose the common assumption that a player�s payo¤ is measurable with

respect to her own action and signal (i.e., that players observe their own payo¤s), because

none of our results need this assumption. All examples considered in the paper do however

satisfy this measurability condition.

The solution concept is sequential equilibrium. More precisely, a belief system of player

i�s is a map �i :
S1
t=1H

t
i !

S1
t=1�(H

t) satisfying supp �i (h
t
i) �

�
hti; H

t
�i
�
for all t; we also

write �i (h
tjhti) for the probability of ht under �i (hti). We say that an assessment (�; �)

constitutes a sequential equilibrium if the following two conditions are satis�ed:

1. [Sequential rationality] For each player i and history hti, �i maximizes player i�s ex-

pected continuation payo¤ at history hti under belief �i (h
t
i).

2. [Consistency] There exists a sequence of completely mixed strategy pro�les (�n) such

that the following two conditions hold:

(a) �n converges to � (pointwise in t): For all " > 0 and t, there exists N such that,

for all n > N , ���ni (hti)� �i(hti)�� < " for all i 2 I; hti 2 H t
i :

(b) Conditional probabilities converge to � (pointwise in t): For all " > 0 and t,

there exists N such that, for all n > N ,����� Pr�
n

(hti; h
t
�i)P

~ht�i
Pr�

n
(hti;

~ht�i)
� �i(hti; ht�i j hti)

����� < " for all i 2 I; hti 2 H t
i ; h

t
�i 2 H t

�i:

We choose this relatively permissive de�nition of consistency (requiring that strategies

and beliefs converge only pointwise in t) to make our results upper-bounding the sequential

equilibrium payo¤ set stronger. The results with a more restrictive de�nition (requiring

uniform convergence) would be essentially the same.
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2.2 Mediated Perfect Monitoring

In each period t, the game proceeds as follows: A mediator sends a private messagemi;t 2Mi

to each player i, where Mi is a �nite message set for player i. Each player i takes an action

ai;t 2 Ai. All players and the mediator observe the action pro�le at 2 A.

A period t history of the mediator�s is an element of H t
m = (M � A)t�1, with typical

element htm = (m� ; a� )
t�1
�=1, whereH

1
m consists of the null history. A strategy of the mediator�s

is a map � :
S1
t=1H

t
m ! �(M). A period t history of player i�s is an element of H t

i =

(Mi � A)t�1 � Mi, with typical element hti =
�
(mi;� ; a� )

t�1
�=1 ;mi;t

�
, where H1

i = Mi. A

strategy of player i�s is a map �i :
S1
t=1H

t
i ! �(Ai).

The de�nition of sequential equilibrium is the same as with private monitoring, except

that sequential rationality is imposed (and beliefs are de�ned) only at histories consistent

with the mediator�s strategy. The interpretation is that the mediator is not a player in the

game, but rather a �machine�that cannot tremble. Note that with this de�nition, an assess-

ment (including the mediator�s strategy) (�; �; �) is a sequential equilibrium with mediated

perfect monitoring if and only if (�; �) is a sequential equilibrium with a �stochastic private

monitoring structure�where Zi = Mi � A and p (�jht+1m ) coincides with perfect monitoring

of actions with messages given by � (ht+1m ).

As in Forges (1986) and Myerson (1986), any equilibrium distribution over (in�nite paths

of) actions arises in an equilibrium of the following form:

1. [Messages are action recommendations] M = A.

2. [Obedience/incentive compatibility] At history hti = ((ri;� ; a� )
t�1
�=1; ri;t), player i plays

ai;t = ri;t.

Without loss of generality, we restrict attention to such obedient equilibria throughout.

Finally, we say that a sequential equilibrium with mediated perfect monitoring is on-

path strict if following the mediator�s recommendation is strictly optimal for each player i at

every on-path history hti. Let Emed(�) denote the set of on-path strict sequential equilibrium
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payo¤s. For the rest of the paper, we slightly abuse terminology by omitting the quali�er

�on-path�when discussing such equilibria.

3 An Illustrative (Counter)Example

The goal of this paper is to provide su¢ cient conditions for the equilibrium payo¤ set with

mediated perfect monitoring to be a (recursive) upper bound on the equilibrium payo¤

set with private monitoring. Before giving these main results, we provide an illustrative

example showing why, in the absence of our su¢ cient conditions, private monitoring (without

a mediator) can outperform mediated perfect monitoring. Readers eager to get to the results

can skip this section without loss of continuity.

Consider the repetition of the following stage game, with � = 1
6
:

L M R

U 2; 2 �1; 0 �1; 0

D 3; 0 0; 0 0; 0

T 0; 3 6;�3 �6;�3

B 0;�3 0; 3 0; 3

We show the following:

Proposition 1 In this game, there is no sequential equilibrium where the players�per-period

payo¤s sum to more than 3 with perfect monitoring and a mediator, while there is such a

sequential equilibrium with some private monitoring structure.

Proof. See appendix.

In the constructed private monitoring structure in the proof of Proposition 1, players�

payo¤s are measurable with respect to their own actions and signals. In addition, a similar

argument shows that imperfect public monitoring (with private strategies) can also out-

perform mediated perfect monitoring. This shows that some conditions are also required
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to guarantee that the sequential equilibrium payo¤ set with mediated perfect monitoring

is an upper bound on the sequential equilibrium payo¤ set with imperfect public monitor-

ing. Since imperfect public monitoring is a special case of imperfect private monitoring, our

su¢ cient conditions for private monitoring are enough.

The intuition for Proposition 1 is that player 1 (row player, �she�) can be induced to play

U in response to L only if action pro�le (U;L) is immediately followed by (T;M) with high

probability. With perfect monitoring, player 2 (column player, �he�) always �sees (T;M)

coming�after (U;L), and will therefore deviate to L. With private monitoring, player 2

may not know whether (U;L) has just occurred, and therefore may be unsure of whether the

next action pro�le will be (T;M) or (B;M), which gives him the necessary incentive to play

M . More generally, the advantage of private monitoring is that pooling players�information

sets (in this case, player 2�s information sets after (U;L) and (D;L)) can make providing

incentives easier.5

To preview our results, we will show that private monitoring cannot outperform mediated

perfect monitoring when there exists a feasible payo¤vector that is appealing enough to both

players that neither is tempted to deviate when it is promised to them in continuation if

they conform. This condition is violated in the current example because, for example, no

feasible continuation payo¤ for player 2 is high enough to induce him to respond to T with

M rather than L.
5As far as we know, the observation that players can bene�t from imperfections in monitoring even in

the presence of a mediator is original. Examples by Kandori (1991), Sekiguchi (2002), Mailath, Matthews,
and Sekiguchi (2002), and Miyahara and Sekiguchi (2013) show that players can bene�t from imperfect
monitoring in �nitely repeated games. However, in their examples this conclusion relies on the absence of a
mediator, and is thus due to the possibilities for correlation opened up by private monitoring. The broader
point that giving players more information can be bad for incentives is of course an old one.
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4 A Su¢ cient Condition for Emed (�) to Give an Upper

Bound

This section provides our su¢ cient condition for the (closure of the strict) equilibrium payo¤

set with mediated perfect monitoring to upper-bound the equilibrium payo¤ set with private

monitoring. The condition applies only for two-player games, and it implies that all action

pro�les can be played (with some probability) in equilibrium. In Section 7, we discuss what

happens when these conditions are relaxed.

Let ui be player i�s correlated minmax payo¤, given by

ui = min
��i2�(A�i)

max
ai2Ai

ui(ai; ��i):

Let ���i 2 �(A�i) be a solution to the minmax problem for player i. Let di be player i�s

greatest possible gain from a deviation at any recommendation pro�le, so that

di = max
r2A;ai2Ai

ui(ai; r�i)� ui(r):

Let wi be the lowest continuation payo¤ such that player i does not want to deviate at any

recommendation pro�le when she is minmaxed forever if she deviates, given by

wi = ui +
1� �
�
di:

Finally, let

Wi =
�
w 2 RN : wi � wi

	
:

Let u (A) be the convex hull of the set of feasible payo¤s; let E(�; p) be the set of (possibly

weak) equilibrium payo¤s with private monitoring structure p; and recall that Emed(�) is the

set of strict equilibrium payo¤s with perfect monitoring and a mediator. We show that, if

there are two players and
T
i2IWi \ u(A) has a non-empty interior (as a subspace of u (A)),

then Emed (�) is an upper bound for the Pareto frontier of E(�; p), for any private monitoring
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structure p. For notational convenience, denote the interior of
T
i2IWi\u(A) as a subspace

of u (A) by

int

 \
i2I
Wi \ u(A)

!
:

The following is our �rst main result. Note that E(�; p) is closed, as we use the product

topology on assessments (Fudenberg and Levine, 1983), so the maxima in the theorem exist.

Theorem 1 If jIj = 2 and int
�T

i2IWi \ u(A)
�
6= ;, then for every private monitoring

structure p and every non-negative Pareto weight � 2 �+ � f� 2 R2+ : k�k = 1g, we have

max
v2E(�;p)

� � v � max
v2Emed(�)

� � v:

Note that the condition int
�T

i2IWi \ u(A)
�
6= ; is a joint restriction on the stage game

and the discount factor. In particular, as � increases to one, wi decreases to ui, so
T
i2IWi\

u(A) converges to the feasible and individually rational set. Hence, int
�T

i2IWi \ u(A)
�

is non-empty for high enough � whenever there exists a feasible and strictly individually

rational payo¤ vector. Of course, int
�T

i2IWi \ u(A)
�
will typically also be non-empty

for discount factors much less than one. Theorem 1 says that, whenever this is the case,

the equilibrium payo¤ set with mediated perfect monitoring upper-bounds the equilibrium

payo¤ set with private monitoring in two-player games.

The idea of the proof is as follows. Let E(�) be the equilibrium payo¤ set in the mediated

repeated game with the following �universal� information structure: the mediator directly

observes the recommendation pro�le rt and the action pro�le at in each period t, while each

player i observes nothing beyond her own recommendation ri;t and her own action ai;t. With

this monitoring structure, the mediator can clearly replicate any private monitoring structure

p by setting � (htm) equal to p (�jat�1) for every history htm = (r� ; a� )
t�1
�=1. It particular, we
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have E(�; p) � E(�) for every p,6 so to prove Theorem 1 it su¢ ces to show that

max
v2E(�)

� � v � max
v2Emed(�)

� � v: (1)

(The maximum over E(�) is well de�ned since E(�) is closed, by the same reasoning as for

E(�; p).)

To show this, the idea is to start with an equilibrium in E(�)� where players only ob-

serve their own recommendations� and then show that the players�recommendations can

be �publicized�without violating anyone�s obedience constraints.7 To see why this is pos-

sible (when our su¢ cient conditions are satis�ed), �rst note that we can restrict attention

to equilibria with Pareto-e¢ cient on-path continuation payo¤s, as improving both players�

on-path continuation payo¤s improves their incentives. (This is assuming that deviators

are always minmaxed, which, as we will see, is always possible if int
�T

i2IWi \ u(A)
�
6= ;.)

Next, if int
�T

i2IWi \ u(A)
�
6= ; and jIj = 2, then if a Pareto-e¢ cient payo¤ vector v lies

outside of Wi for one player (say player 2), it must then lie inside of Wj for the other player

(player 1). Hence, at each history ht, there can be only one player� here player 2� whose

obedience constraint could be violated if we publicized both players�past recommendations.

Now, suppose that at history ht we do publicize the entire vector of players�past rec-

ommendations rt = (r� )
t�1
�=1, but that the mediator then issues period t recommendations

according to the original equilibrium distribution of recommendations conditional on player

2�s past recommendations rt2 = (r2;� )
t�1
�=1 only. As in h

t
m, the superscript t in r

t means that rt

is the information available at the beginning of period t. We claim that doing this violates

neither player�s obedience constraint: Player 1�s obedience constraint is easy to satisfy, as

we can always ensure that continuation payo¤s lie in W1. And, since player 2 already knew

rt2 in the original equilibrium, publicizing h
t while issuing recommendations based only on

6In light of this fact, the reader may wonder why we do not simply take E (�) rather than Emed (�) to
be our bound on equilibrium payo¤s with private monitoring. The answer is that, as far as we know, E (�)
does not admit a recursive characterization, while we recursively characterize Emed (�) in Section 5.

7More precisely, the construction in the proof both publicizes the players�recommendations and modi�es
the equilibrium in ways that only improve the players��-weighted payo¤s.
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rt2 does not a¤ect his incentives.

An important missing step in this proof sketch is that, in the original equilibrium in

E(�), at some histories it may be player 1 who is tempted to deviate when we publicize past

recommendations (while it is player 2 who is tempted at other histories). For instance, it

is not clear how we can publicize past recommendations when ex ante equilibrium payo¤s

are very good for player 1 (so player 2 is tempted to deviate in period 1), but continuation

payo¤s at some later history are very good for player 2 (so then player 1 is tempted to

deviate). The proof of Theorem 1 shows that we can ignore this possibility, because�

somewhat unexpectedly� equilibrium paths like this one are never needed to sustain Pareto-

e¢ cient payo¤s. In particular, to sustain an ex ante payo¤ that is very good for player

1 (i.e., outside W2), we never need to promise continuation payo¤s that are very good for

player 2 (i.e., outside W1). The intuition is that, rather than promising player 2 a very

good continuation payo¤ outside W1, we can instead promise him a fairly good continuation

inside W1, but promise it with higher probability. Finally, since the feasible payo¤ set is

convex, this �compromise�continuation payo¤ vector is also acceptable to player 1.

The proof is given over the next two subsections. Section 4.1 gives preliminary results,

which are also used in Section 5. In particular, it presents the key result that Emed(�)

contains any payo¤vector that can be enforced by the threat of minmaxing deviators (Lemma

2). Section 4.2 gives the main construction. The proof of another crucial Lemma� Lemma

4� is deferred to the appendix.

4.1 Proof of Theorem 1: Preliminaries

We start by introducing the notion of a �full support equilibrium�: we say that an equilibrium

has full support if for each player i and history hti = (ri;� ; a� )
t�1
�=1 such that there exists

(r�i;� )
t�1
�=1 with Pr

�(r� j(r� 0 ; a� 0)��1� 0=1) > 0 for each � = 1; :::; t� 1, there exists (�r�i;� )t�1�=1 such

that for each � = 1; :::; t� 1, we have

Pr�(ri;� ; �r�i;� j(ri;� 0 ; �r�i;� 0 ; a� 0)��1� 0=1) > 0 and �r�i;� = a�i;� :
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That is, any history hti consistent with the mediator�s strategy is also consistent with i�s

opponents�equilibrium strategies (even if player i herself has deviated, noting that we allow

ri;� 6= ai;� in hti). Note that, if the equilibrium has full support, player i never believes that

any of the other players has deviated.

The following lemma says that all payo¤s in int
�T

i2IWi \ u(A)
�
are attainable in a

strict full-support equilibrium with mediated perfect monitoring.

Lemma 1 For all v 2 int
�T

i2IWi \ u(A)
�
, there exists a strict full-support equilibrium with

mediated perfect monitoring with payo¤ v. In particular, int
�T

i2IWi \ u(A)
�
� Emed(�).

Proof. For each v 2 int
�T

i2IWi \ u(A)
�
, there exists � 2 �(A) such that u(�) = v and

�(r) > 0 for all r 2 A. On the other hand, for each i 2 I and " 2 (0; 1), consider the following

full-support approximation of the minmax strategy ���i: �
"
�i = (1� ")���i+"

P
a�i2A�i

a�i
jA�ij .

Since v 2 int
�T

i2IWi

�
, there exists " 2 (0; 1) such that, for each i 2 I, we have

vi > max
ai2Ai

ui(ai; �
"
�i) +

1� �
�
di: (2)

Consider the following recommendation schedule: The mediator follows an automaton

strategy whose state is identical to a subset of players, J � I. Hence, the mediator has 2jIj

states. Intuitively, J is the set of players who have deviated so far.

If the state J is equal to ; (no player has deviated), then the mediator recommends �.

If there exists i with J = fig (only player i has deviated), then the mediator recommends

r�i to players �i according to �"�i (a full-support approximation of the minmax punishment

for the deviator), and recommends some best response to �"�i to player i. Finally, if jJ j � 2

(several players have deviated), then for each i 2 J , the mediator recommends some best

response to �"�i, while she recommends r�J to the other players �J according to
a�J
jA�J j (a

random, full support recommendation). The state transits as follows: if the current state is

J and players J 0 deviate, then the state transits to J [ J 0.8

8We thank Gabriel Carroll for suggestions which helped simplify this construction.
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Player i�s strategy is to follow the recommendation ri;t in period t. She believes that

the mediator�s state is ; if she herself has never deviated, and believes that the state is fig

if she has deviated.

Since the mediator�s recommendation has full support, player i�s belief is consistent. If

player i has deviated, then (given her belief) it is optimal for her to always play a static

best response to �"�i, since the mediator always recommends �
"
�i in state fig. Given that a

unilateral deviation by player i is punished in this way, (2) implies that player i has a strict

incentive to follow her recommendation ri at any recommendation pro�le r 2 A. Hence, she

has a strict incentive to follow her recommendation when she believes that r�i is distributed

according to Pr�(r�ijri).

The next lemma says that any payo¤ vector that can be attained by a strategy satisfying

weak incentive compatibility on path is (virtually) attainable in strict equilibrium.

Lemma 2 With mediated perfect monitoring, suppose there exists a mediator�s strategy �

such that each player has a weak incentive to follow her recommendation on-path, when she

is minmaxed forever if she deviates: that is, for each player i and on-path history htm,

(1� �)ui(ri; �jri(htm)) + �E
" 1X
�=t+1

���1ui(�(h
�
m)) j htm; ri

#
� max

ai2Ai
(1� �)ui(ai; �jri(htm)) + � min

��i2�(A�i)
max
ai2Ai

ui(ai; ��i): (3)

Here, �jri(htm) is the distribution of r�i;t conditional on htm and ri;t = ri. Let v be the

payo¤ vector when each player obeys �. Suppose also that there exists a strict full-support

equilibrium. (For example, such an equilibrium exists if int
�T

i2IWi \ u(A)
�
6= ; by Lemma

1.) Then v 2 Emed(�).

Proof. Arbitrarily �x � and a strict full-support equilibrium �strict. We construct a strict

equilibrium that attains a payo¤ close to v.

In period 1, the mediator draws one of two states, Rv and Rperturb, with probabilities

1 � " and ", respectively. In state Rv, the mediator�s recommendation is determined as
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follows: If no player has deviated up to period t, the mediator recommends rt according to

�(htm). If only player i has deviated, the mediator recommends r�i to players�i according to

���i, and recommends some best response to �
�
�i to player i (multiple deviations are treated

as in the proof of Lemma 1). On the other hand, in state Rperturb, the mediator follows

the equilibrium �strict. Player i follows the recommendation ri;t in period t. Since the

constructed recommendation schedule has full support, player i never believes that another

player has deviated. Moreover, since �strict has full support, player i believes that the

mediator�s state is Rperturb with positive probability after any history. Therefore, by (3) and

the fact that �strict is a strict full-support equilibrium, it is always strictly optimal for each

player i to follow her recommendation.

Note that Lemmas 1 and 2 hold for any jIj � 2.

4.2 Proof of Theorem 1: Construction

We wish to establish (1) for every Pareto weight � 2 �+. Note that Lemma 1 implies

\
i2I
Wi \ u(A) � Emed(�):

Therefore, for every Pareto weight � 2 �+, if there exists v 2 argmaxv02E(�) � � v0 such that

v 2
T
i2IWi \ u(A), then there exists v� 2 Emed(�) such that � � v � � � v�, as desired.

Hence, we are left to consider the case where

arg max
v02E(�)

� � v0 \
(\
i2I
Wi \ u(A)

)
= ;: (4)

Since we consider two-player games, we can order � 2 �+ as follows: � � �0 if and only if
�1
�2
� �01

�02
, that is, the vector � is steeper than �0. For each player i, let �wi be the Pareto-

e¢ cient point in Wi satisfying

�wi 2 argmax
v2Wi

v�i:

Note that the assumption that
T
i2IWi \ u(A) 6= ; implies that �wi 2

T
i2IWi \ u(A). Let
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�i 2 �(A) be a recommendation that attains �wi: u(�i) = �wi. Let �i be the (non-empty)

set of Pareto weight �i such that �wi 2 argmaxv2u(A) �i � v:

�i 2
�
� 2 R2+ : k�k = 1; �wi 2 arg max

v2u(A)
�i � v

�
:

By (4) and convexity of u (A), either � < �1 for each �1 2 �1 or � > �2 for each �2 2 �2.

See Figure 1. We focus on the case with � > �2. (The proof for the case with � < �1 is

symmetric and thus omitted.)

Figure 1: Setup for the construction.

Fix v 2 argmaxv02E(�) � �v0. Let (�; (�i)i2I) be an equilibrium that attains v. By Lemma

2, it su¢ ces to construct a mediator�s strategy �� yielding payo¤s v� such that (3) holds and

� � v � � � v�. The rest of the proof constructs such a strategy.

Given �, for each on-path history of player 2�s recommendations, denoted by rt2 =

(r2;� )
t�1
�=1, let w

�(rt2) be the continuation payo¤ from period t onward conditional on rt2:

w�(rt2) = E�
" 1X
�=0

��u(rt+� ) j rt2

#
;
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and let Pr�(�jrt2) be the conditional distribution of recommendations in period t. We start

by de�ning value functions w�2 and w2, which map histories of player 2�s recommendations

to continuation payo¤s for player 2. Given w2(rt+12 ), de�ne w�2(r
t
2) by

w�2(r
t
2) = (1� �)u2

�
�(rt2)

�
+ �E

�
w2(r

t+1
2 )jrt2

�
: (5)

On the other hand, given w�2(r
t
2), de�ne w2(r

t
2) by

w2
�
rt2
�
= 1fw�(rt2)2W1g

�
p(rt2)w

�
2(r

t
2) +

�
1� p(rt2)

�
�w12
	
+ 1fw�(rt2)=2W1g �w

1
2; (6)

where, when w�(rt2) 2 W1, p(rt2) is the largest number in [0; 1] such that

p(rt2)w
�
2(r

t
2) +

�
1� p(rt2)

�
�w12 � w

�
2 (r

t
2): (7)

That is, if w�2 (r
t
2) � w

�
2 (r

t
2), then p(r

t
2) = 1; and otherwise, since w

�(rt2) 2 W1 implies that

w�2 (r
t
2) � �w12, p(r

t
2) 2 [0; 1] solves

p(rt2)w
�
2(r

t
2) +

�
1� p(rt2)

�
�w12 = w

�
2 (r

t
2):

(Intuitively, the term 1fw�(rt2)=2W1g �w
1
2 in (6) indicates that, instead of promising player

2 a continuation payo¤ outside of W1, we promise him his best continuation payo¤ within

W1, namely �w1. Anticipating that this replacement will occur in future may reduce w�2 (r
t
2)

below player 2�s original value w�2 (r
t
2). However, (7) ensures that, by promising �w1 with

high enough probability, player 2�s value w2 (rt2) does not fall below w
�
2 (r

t
2).)

We prove that there is a unique pair of value functions w2 and w�2 satisfying (5) and (6)

for all histories rt2 2 At�12 . In particular, any such value function w2 is a �xed point of the

following operator F : Given w2, de�ne w�2(w2) according to (5). Given w
�
2(w2), de�ne p(w2)

according to (7), and then de�ne F (w2) from w�2(w2) and p(w2) according to (6). We show

that the operator F has a unique �xed point. It su¢ ces to show that F is a contraction.
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Lemma 3 For all w2 and ~w2, we have kF (w2)� F ( ~w2)k � � kw2 � ~w2k, where kw2 � ~w2k �

suprt2 kw2(r
t
2)� ~w2(r

t
2)k.

Proof. By (5), kw�2(w2)� w�2( ~w2)k � � kw2 � ~w2k. By (6),

��F (w2) �rt2�� F ( ~w2) �rt2��� = 1fw�(rt2)2W1g

������ fp(w2)(rt2)w�2(w2)(rt2) + (1� p(w2)(rt2)) �w12g

�fp( ~w2)(rt2)w�2( ~w2)(rt2) + (1� p( ~w2)(rt2)) �w12g

������
� kw�2(w2)� w�2( ~w2)k :

Combining these inequalities yields kF (w2)� F ( ~w2)k � � kw2 � ~w2k.

We are now ready to construct the mediator�s on-path strategy ��. The mediator has

two states, !t 2 fS1; S2g. Recommendations are as follows:

1. In state S1, at history rt = (r� )t�1�=1, the mediator recommends rt according to Pr
�(�jrt2).

2. In state S2, the mediator recommends rt according to some �1 2 �(A) such that

u(�1) = �w1 2 W1.

The initial state is !1 = S1. State S2 is absorbing: if !t = S2 then !t+1 = S2. Finally,

the transition rule in state S1 is as follows:

1. If w�(rt+12 ) 62 W1, then !t+1 = S2 with probability one.

2. If w�(rt+12 ) 2 W1, then !t+1 = S2 with probability 1� p(rt+12 ).

Under strategy ��, by (5) and (6), w�2(r
t
2) is player 2�s expected continuation payo¤ at

history rt2 conditional on the event !t = S1, and w2(rt2) is player 2�s continuation payo¤

at history rt2 and state !t�1 = S1. Similarly, de�ning w�1(r
t
2) and w1(r

t
2) as player 1�s

expected continuation payo¤s at history rt2 conditional on the events !t = S1 and !t�1 = S1,

respectively, the payo¤ vectors w�(rt2) and w (r
t
2) satisfy

w�(rt2) = (1� �)u
�
�(rt2)

�
+ �E

�
w(rt+12 )jrt2

�
(8)
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and

w
�
rt2
�
= 1fw�(rt2)2W1g

�
p(rt2)w

�(rt2) +
�
1� p(rt2)

�
�w1
	
+ 1fw�(rt2)=2W1g �w

1: (9)

In particular, recalling that !0 = S1 and v = w� (;) 2 W1, the ex ante payo¤ vector v� is

given by

v� = w (;) = p(;)w�(;) + (1� p(;)) �w1:

We prove the following key lemma in the appendix.

Lemma 4 For all t � 1, if w�(rt2) 2 W1, then p(rt2)w
�(rt2)+(1� p(rt2)) �w1 Pareto dominates

w�(rt2).

Here is a graphical explanation of Lemma 4: By (8), w�(rt2) � w�(rt2) is parallel to

w(rt+12 ) � w�(rt+12 ). To evaluate this di¤erence, consider (9) for period t + 1. The term

1fw�(rt+12 )=2W1g �w
1 means that we construct w(rt+12 ) by replacing some continuation payo¤ not

included in W1 with �w1. Hence, w(rt+12 ) � w�(rt+12 ) (and thus w�(rt2) � w�(rt2)) is parallel

to �w1 � ŵ(rt+12 ) for some ŵ(rt+12 ) 2 u(A) nW1. See Figure 2 for an illustration.

Figure 2: The vector from w�(rt2) to w
�(rt2) is parallel to the one from ŵ(rt+12 ) to �w1.
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Recall that p(rt2) is determined by (7). Since the vector w�(rt2) � w�(rt2) is parallel to

�w1 � ŵ(rt+12 ) for some ŵ(rt+12 ) 2 u(A) nW1 and u(A) is convex, we have w�1(r
t
2) � w

�
1 (r

t
2).

Hence, if we take p(rt2) so that the convex combination of w
�
2(r

t
2) and �w

1
2 is equal to w

�
2 (r

t
2),

then player 1 is better o¤ compared to w�1 (r
t
2). See Figure 3.

Figure 3: p(rt2)w
�(rt2) + (1� p(rt2)) �w1 and w�(rt2) have the same value for player 2.

Given Lemma 4, we show that �� satis�es (3) for both players and � � v � � � v�.

1. Obedience for player 1: It su¢ ces to show that for w (rt2) 2 W1 for every on-path

history rt2. If !t = S2, then w (r
t
2) = �w1 2 W1. If !t = S1, then w(rt2) is given by (9).

In this case, if w�(rt2) 2 W1, then, by Lemma 4, p(rt2)w
�(rt2) + (1� p(rt2)) �w1 Pareto

dominates w�(rt2) 2 W1, so w(rt2) 2 W1. If w�(rt2) =2 W1, then w(rt2) = �w1 2 W1.

Hence, in any case w (rt2) 2 W1.

2. Obedience for player 2: If !t = S2 or if both !t = S1 and w�(rt2) =2 W1, then w (rt2) =

�w1 2 W2, so (3) holds. If !t = S1 and w�(rt2) 2 W1, then p(rt2)w
�(rt2)+(1� p(rt2)) �w1 =

w�2 (r
t
2) by (7). In this case, player 2�s continuation payo¤ at r

t
2 under �

� is the same

as it is under �. As player 2�s continuation payo¤ after a deviation under � is at least
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his minmax payo¤, incentive compatibility at rt2 = (r2;� )
t�1
�=1 under � implies (3).

3. � � v � � � v�: Immediate from Lemma 4 with t = 1.

5 Recursively Characterizing Emed(�)

We have seen that Emed(�) is an upper bound on E (�; p) for two-player games satisfying

int
�T

i2IWi \ u(A)
�
6= ;. As our goal is giving a recursive upper bound on E (�; p), it

remains to recursively characterize Emed(�).

The idea is to replace APS�s generating operator B with a �minmax-threat�generating

operator ~B. We begin with some de�nitions. Given a correlated action pro�le � 2 �(A),

let �jai be the marginal distribution on A�i conditional on ai.

De�nition 1 For any set V � RjIj, a correlated action pro�le � 2 �(A) is minmax-threat

enforceable on V if there exists a mapping 
 : A! V such that, for each player i and action

ai 2 supp�i,

E�jai [(1� �)ui (ai; a�i) + �
 (ai; a�i)]

� max
a0i2Ai

E�jai [(1� �)ui (a0i; a�i)] + � min
��i2�(A�i)

max
ai2Ai

ui (ai; ��i) :

De�nition 2 A payo¤ vector v 2 RjIj is minmax-threat decomposable on V if there exists

a correlated action pro�le � 2 �(A) which is minmax-threat enforced on V by some mapping


 such that

v = E� [(1� �)u (a) + �
 (a)] :

Let ~B (V ) =
�
v 2 RjIj : v is minmax-threat decomposable on V

	
.
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We will show that the following algorithm recursively computes Emed(�): let

W 1 = u (A) ;

W n = ~B
�
W n�1� for n > 1;

W1 = lim
n!1

W n:

Note that limn!1W
n exists because ~B (u (A)) � u (A) and ~B is a monotone operator (as if

v is minmax-threat decomposable on V , then it is also minmax-threat decomposable on any

V 0 containing V ). We will also use the fact that ~B preserves compactness: if V � RjIj is

compact, then so is ~B (V ).9

Our result is the following:

Theorem 2 If int
�T

i2IWi \ u(A)
�
6= ;, then Emed(�) =W1.

Following APS, the proof relies on the notion of self-generation.

De�nition 3 A set V � RjIj is minmax-threat self-generating if V � ~B (V ).

For the next two lemmas, assume int
�T

i2IWi \ u(A)
�
6= ;.

Lemma 5 If a set V � RjIj is bounded and minmax-threat self-generating, then ~B (V ) �

Emed (�).

Proof. By the standard proof that the set of payo¤s decomposable on a bounded, self-

generating set is contained in the sequential equilibrium payo¤ set (Theorem 1 of APS,

Proposition 7.3.1 of Mailath and Samuelson (2006)), for every v 2 ~B (V ), there exists an on-

path recommendation strategy � that yields payo¤v and satis�es (3). Under the assumption

that int
�T

i2IWi \ u(A)
�
6= ;, the conclusion of the lemma follows from Lemma 2.

Lemma 6 Emed (�) = ~B
�
Emed (�)

�
.

9The proof is as in Lemma 1 of APS or Lemma 7.3.2 of Mailath and Samuelson (2006).
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Proof. By Lemma 5, it su¢ ces to show that Emed (�) is bounded and satis�es Emed (�) �
~B
�
Emed (�)

�
. Boundedness is immediate as Emed (�) � u (A), so we need only show that

Emed (�) � ~B
�
Emed (�)

�
.

Let Eweakmed (�) be the set of (possibly weak) sequential equilibrium payo¤s with mediated

perfect monitoring. Note that in any sequential equilibrium, at any history hti consis-

tent with player i�s opponents� strategies, player i�s continuation payo¤ must be at least

min
��i2�(A�i)

maxai ui(ai; ��i). Therefore, if � is an on-path recommendation strategy in a

(possibly weak) sequential equilibrium, then it must satisfy (3). Hence, under the assump-

tion that int
�T

i2IWi \ u(A)
�
6= ;, we have Eweakmed (�) � Emed (�).

Now, for any v 2 Emed (�), let � (;) be a corresponding equilibrium period 1 recom-

mendation strategy. In the corresponding equilibrium, if some player i deviates in pe-

riod 1 while her opponents are obedient, player i�s continuation payo¤ must be at least

min
��i2�(A�i)

maxai ui(ai; ��i) (as the resulting history is consistent with player i�s oppo-

nents�equilibrium strategies). Hence, we have

E�jai [(1� �)ui (ai; a�i) + �wi (ai; a�i)]

� max
a0i2Ai

E�jai [(1� �)ui (a0i; a�i)] + � min
��i2�(A�i)

max
ai2Ai

ui (ai; ��i) ;

where wi (ai; a�i) is player i�s equilibrium continuation payo¤ when action pro�le (ai; a�i) is

recommended and obeyed in period 1. Finally, since action pro�le (ai; a�i) is in the support

of the mediator�s recommendation in period 1, each player i�s assigns probability 1 to the

true mediator�s history when (ai; a�i) is recommended and played in period 1. Therefore,

continuation play from this history is itself at least a weak sequential equilibrium. In

particular, we have wi (ai; a�i) 2 Eweakmed (�) � Emed (�) for all (ai; a�i) 2 supp� (ht). Hence,

v is minmax-threat decomposable on Emed (�) by action pro�le � (;) and continuation payo¤

function w, so in particular v 2 ~B
�
Emed (�)

�
.

We have shown that Emed (�) � ~B
�
Emed (�)

�
. As Emed (�) is compact and ~B preserves

compactness, taking closures yields Emed (�) � ~B
�
Emed (�)

�
= ~B

�
Emed (�)

�
.
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Lemma 7 W1 is minmax-threat self-generating: W1 � ~B (W1).

Proof. As ~B preserves compactness, this follows by standard arguments. For example,

the proof of Proposition 7.3.3 of Mailath and Samuelson (2006) applies verbatim (see also

Theorem 5 of APS).

Proof of Theorem 2. As ~B is monotone and Emed (�) � u (A) is a �xed point of ~B (by

Lemma 6), it follows that Emed (�) � W n for all n. Hence, Emed (�) � W1. The reverse

inclusion is immediate from Lemmas 5 and 7, as W1 is bounded.

Combining Theorems 1 and 2 yield our main conclusion: in two-player games satisfying

int
�T

i2IWi \ u(A)
�
6= ;, the equilibrium payo¤ set with mediated perfect monitoring is a

recursive upper bound on the equilibrium payo¤ set with any imperfect private monitoring

structure.

6 The Upper Bound in an Example

In this section, we illustrate how our operator ~B works to exclude payo¤ vectors from the set

Emed (�), and therefore from the equilibrium payo¤set with any private monitoring structure.

Consider the following Bertrand game: There are two �rms i 2 f1; 2g, and each �rm

i�s possible price level is pi 2 fW;L;M;Hg (price war, low price, medium price, high price).

Given p1 and p2, �rm i�s pro�t is determined by the following payo¤ matrix

W L M H

W 15; 15 30; 25 50; 15 80; 0

L 25; 30 40; 40 60; 35 90; 15

M 15; 50 35; 60 55; 55 85; 35

H 0; 80 15; 90 35; 85 65; 65

Note that L (low price) is myopically optimal, W (price war) is costly but hurts the other

�rm more than L does, and (H;H) maximizes the sum of the �rms�pro�ts. The feasible
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payo¤ set is given by

u(A) = co f(15; 15); (80; 0); (85; 15); (80; 35) ; (65; 65); (35; 80); (15; 85); (0; 80)g :

Theorems 1 and 2 imply that the operator ~B may be used to upper-bound the equilibrium

payo¤ set with private monitoring only if int
�T

i2IWi \ u(A)
�
6= ;. One can check that a

�rm�s minmax payo¤ ui is 25 and a �rm�s maximum deviation gain di is also 25. Hence,

int
�T

i2IWi \ u(A)
�
6= ; if and only if � is greater than �� = 5

13
, which is the solution to

1� �
�

25|{z}
maximum deviation gain

= 65|{z}
best symmetric payo¤

� 25|{z}
minmax payo¤

:

We therefore �x � = 1
2
> 5

13
.

We now illustrate how our algorithm works. In particular, we set W 1 = u(A), and we

show how to calculate ~B(W 1). By Theorems 1 and 2, any Pareto-e¢ cient payo¤ pro�le not

included in ~B(W 1) is not included in Emed (�), or in E(�; p) for any p.

Since � = 1
2
, we have

wi = 25 +
1� �
�
25 = 50:

Hence, Lemma 1 and Theorem 2 imply that

fv 2 u(A) : vi � 50 for each ig

= co f(50; 50) ; (75; 50) ; (50; 75) ; (65; 65)g � W n

for each n. As in Section 4.2, let �1 be the tangential vector of u(A) at (50; 75), and let �2

be the one at (75; 50). Hence,

�1 =

0@ 2=
p
13

3=
p
13

1A ; �2 =
0@ 3=

p
13

2=
p
13

1A :
As ~B(W 1) is convex, to calculate its Pareto frontier it su¢ ces to �nd v 2 argmaxv02 ~B(W 1) ��
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v0 for each � 2 �+. For � with �11
�12
� �1

�2
� �21

�22
, v is included in

co f(50; 50) ; (75; 50) ; (50; 75) ; (65; 65)g ;

as in Lemma 1. Hence, we focus on Pareto weights � with �1
�2
> �21

�22
, as in the proof of

Theorem 1. (The calculation for � with �1
�2
< �11

�12
is symmetric.)

For example, consider � = (1; 0)>: that is, we maximize �rm 1�s payo¤. Since we put a

higher weight on �rm 1�s payo¤s, it is natural to conjecture that �rm 1�s incentive constraint

is not binding. Hence, we consider a relaxed problem with only �rm 2�s incentive constraint,

and then verify that �rm 1�s incentive constraint is satis�ed. Note that playing L is always

the best deviation for �rm 2. Furthermore, the corresponding deviation gain decreases as

�rm 1 increases its price from W to L, and (weakly) increases as it increases its price from

L to M or H. On the other hand, given �rm 2�s strategy, �rm 1�s own payo¤ increases as

�rm 1 increases its price from W to L and decreases as it increases the price from L to M

or H. Hence, in order to maximize �rm 1�s payo¤, �rm 1 should play L.

Suppose that �rm 2 plays H. Then, �rm 2�s incentive compatibility constraint is

(1� �) 25|{z}
maximum deviation gain

� �(w2 � 25|{z})
minmax payo¤

;

where w2 is �rm 2�s continuation payo¤. That is, w2 � 50.

By feasibility, w2 � 50 implies that w1 � 75. Hence, conditional on r2 = H, the best

payo¤ for �rm 1 that is minmax-threat decomposable is

(1� �)

0@ 90

15

1A+ �
0@ 75

50

1A =

0@ 165
2

65
2

1A :
Since 165

2
is larger than any payo¤ that �rm 1 can get when �rm 2 plays W , M , or L, �rm

2 should indeed play H to maximize �rm 1�s payo¤. Moreover, since 75 � w1, �rm 1�s

incentive constraint is not binding.
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Therefore, the set Emed (�) does contain any payo¤ vectors v with v1 > 165
2
. On the

other hand, the set of feasible and individually rational payo¤s is

co f(25; 25) ; (87:5; 25) ; (85; 35) ; (25; 87:5) ; (35; 85) ; (65; 65)g ;

so we have eliminated some feasible and individually rational payo¤s. Thus, our algorithm

gives a substantive upper bound on �rm 1�s payo¤.

7 Extensions

This section discusses what happens when the conditions for Theorem 1 are violated, as well

as the extent to which the payo¤ bound is tight.

7.1 What if int
�T

i2IWi \ u(A)
�
= ;?

The assumption that int
�T

i2IWi \ u(A)
�
6= ; guarantees that all action pro�les are sup-

portable in equilibrium (Lemma 1), which in turn implies that deviators can be held to

their correlated minmax payo¤s (Lemma 2). This fact plays a key role both in showing

that Emed(�) is an upper bound on E (�; p) for any private monitoring structure p and in

recursively characterizing Emed(�). However, the assumption that all action pro�les are

supportable is restrictive: for instance, this assumption will often fail in models of Bertrand

oligopoly (where very high prices are not enforceable) or repeated agency (where very high

e¤ort is not enforceable). The assumption that int
�T

i2IWi \ u(A)
�
6= ; also implies that

the Pareto frontier of Emed(�) coincides with the Pareto frontier of the feasible payo¤ set

for some Pareto weights � (but of course not for others), so this assumption must also be

relaxed for our approach to be able to give non-trivial payo¤ bounds for all Pareto weights.

To address these concerns, this subsection shows that even if int
�T

i2IWi \ u(A)
�
= ;,

Emed(�) may still be an upper bound on E (�; p) for any private monitoring structure p, and

Emed(�) can still be characterized recursively. The idea is that, even if not all action pro�les
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are supportable, our approach still applies if a condition analogous to int
�T

i2IWi \ u(A)
�
6=

; holds with respect to the subset of action pro�les that are supportable.

Recall that E(�) is the equilibrium payo¤ set with the monitoring structure where a

mediator observes the recommendation pro�le rt and action pro�le at in each period t, while

each player i only observes her own recommendation ri;t and her own action ai;t. Denote

this monitoring structure by p�. We want to provide a su¢ cient condition for the Pareto

frontier of Emed(�) to dominate the Pareto frontier of E(�), and to characterize Emed(�).

Let supp(�) be the set of supportable actions with monitoring structure p�:

supp(�) =

8>>><>>>:a 2 A :
with monitoring structure p�,

there exist an equilibrium strategy �

and history htm with a 2 supp(�(htm))

9>>>=>>>; :

Note that in this de�nition htm can be an o¤-path history.

On the other hand, given a product set of action pro�les �A =
Q
i2I

�Ai � A, let Si
�
�A
�
be

the set of actions ai 2 �Ai such that there exists a correlated action ��i 2 �( �A�i) such that

(1� �)ui(ai; ��i) + � max
ai2Ai;�a�i2 �A�i

ui (ai; �a�i)

� (1� �) max
âi2Ai

ui(âi; ��i) + � min
�̂�i2�( �A�i)

max
ai2Ai

ui(ai; ��i): (10)

Let S
�
�A
�
=
Q
i2I Si (Ai) � �A. Let A1 = A, let An = S (An�1) for n > 1, and let

A1 = limn!1An. Note that the problem of computing A1 is tractable, as the set S
�
�A
�

is de�ned by a �nite number of linear inequalities.

Finally, in analogy with the de�nition of wi from Section 4, let

min
��i2�(A1�i)

max
ai2Ai

ui(ai; ��i) +
1� �
�

max
r2A1;ai2Ai

fui(ai; r�i)� ui(r)g :

be the lowest continuation payo¤ such that player i does not want to deviate at any rec-

ommendation pro�le r 2 A1, when she is minmaxed forever if she deviates, subject to the
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constraint that punishments are drawn from A1. In analogy with the de�nition of Wi from

Section 4, let

�Wi =

(
w 2 RN : wi � min

��i2�(A1�i)
max
ai2Ai

ui(ai; ��i) +
1� �
�

max
r2A1;ai2Ai

fui(ai; r�i)� ui(r)g
)
:

We show the following.

Proposition 2 Assume that jIj = 2. If

int
�\

i2I
�Wi \ u(A1)

�
6= ; (11)

in the topology induced from u(A1), then for every private monitoring structure p and every

non-negative Pareto weight � 2 �+, we have

max
v2E(�;p)

� � v � max
v2Emed(�)

� � v:

In addition, supp(�) = A1.

Proof. Given that supp(�) = A1, the proof is analogous to the proof of Theorem 1,

everywhere replacing u(A) with u(A1) and replacing �full support�with �full support within

A1.� The proof that supp(�) = A1 whenever int
�T

i2I
�Wi \ u(A1)

�
6= ; is deferred to the

appendix.

Note that Proposition 2 only improves on Theorem 1 at �low�discount factors: for a

high enough discount factor, A = S (A) = A1, so (11) reduces to int
�T

i2IWi \ u(A)
�
6= ;.

However, as we have seen, int
�T

i2IWi \ u(A)
�
can be empty only for low discount factors,

so the low discount factor case is precisely the one where an improvement is needed.10

In order to be able to use Proposition 2 to give a recursive upper bound on E (�; p)

when int
�T

i2IWi \ u(A)
�
6= ;, we must characterize Emed(�) under (11). Our earlier

10To be clear, it is possible for int
�T

i2IWi \ u(A)
�
to be empty while A1 = A. Theorem 1 and

Proposition 2 only give su¢ cient conditions: we are not claiming that they cover every possible case.
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characterization generalizes easily. In particular, the following de�nitions are analogous to

De�nitions 1 and 2.

De�nition 4 For any set V � RjIj, a correlated action pro�le � 2 �(supp(�)) is supp(�)

enforceable on V if there exists a mapping 
 : supp(�)! V such that, for each player i, and

action ai 2 supp�i,

E�jai [(1� �)ui (ai; a�i) + �
 (ai; a�i)]

� max
a0i2Ai

E�jai [(1� �)ui (a0i; a�i)] + � min
��i2�(supp(�))

max
ai2Ai

ui (ai; ��i) :

De�nition 5 A payo¤ vector v 2 RjIj is supp(�) decomposable on V if there exists a cor-

related action pro�le � 2 �(supp(�)) which is supp(�) enforced on V by some mapping 


such that

v = E� [(1� �)u (a) + �
 (a)] :

Let ~Bsupp(�) (V ) =
�
v 2 RjIj : v is supp(�) decomposable on V

	
.

Let W supp(�);1 = u (supp(�)), let W supp(�);n = ~Bsupp(�)
�
W supp(�);n�1� for n > 1, and let

W supp(�);1 = limn!1W
supp(�);n. We have the following.

Proposition 3 If int
�T

i2I
�Wi \ u(A1

�
6= ;, then Emed(�) =WA1;1.

Proof. Given that supp(�) = A1 by Proposition 2, the proof is analogous to the proof of

Theorem 2.

As an example of how Propositions 2 and 3 can be applied, one can check that apply-

ing the operator S in the Bertrand example in Section 6 for any � 2
�
1
4
; 5
18

�
yields A1 =

fW;L;Mg�fW;L;Mg� ruling out the e¢ cient action pro�le (H;H)� and int
�T

i2I
�Wi \ u(A1

�
6=

;. We can then compute Emed(�) by applying the operator ~BA
1
, just as we as we applied

~B in Section 6.

Finally, we mention thatEmed(�) can be characterized recursively even if int
�T

i2I
�Wi \ u(A1

�
=

;. This fact is not directly relevant for the current paper, so we omit the proof. It is available

from the authors upon request.
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7.2 Tightness of the Bound

There are at least two senses in which Emed (�) is a tight bound on the equilibrium payo¤

set with private monitoring.

First, thus far our model of repeated games with private monitoring has maintained

the standard assumption that the distribution of period t signals depends only on period t

actions: that is, that this distribution can be written as p (�jat). In many settings, it would

be desirable to relax this assumption and let the distribution of period t signals depend on the

entire history of actions and signals up to period t, leading to a conditional distribution of the

form pt (�jat; zt). (Recall that at = (a� )t�1�=1 and z
t = (z� )

t�1
�=1.) For example, colluding �rms

do not only observe their sales in every period, but also occasionally get more information

about their competitors�past behavior from trade associations, auditors, tax data, and the

like.11 In the space of such stochastic private monitoring structures, the bound Emed (�) is

clearly tight: Emed (�) is an upper bound on E (�; p) for any stochastic private monitoring

structure p, because the equilibrium payo¤ set with the universal monitoring structure p�,

E (�), remains an upper bound on E (�; p); and the bound is tight because mediated perfect

monitoring is itself a particular stochastic private monitoring structure.

Second, maintaining the assumption that the monitoring structure is �repeated� (i.e.,

non-stochastic), the bound Emed (�) is tight if the players can communicate through cheap

talk, as they can then �replicate� the mediator among themselves.12 For this result, we

also need to slightly generalize our de�nition of a private monitoring structure by letting

the players get signals before the �rst round of play. This seems innocuous, especially

if we take the perspective of an an outside observer who does not know the game�s start

date. Equivalently, the players have access to a mediator at the beginning of the game only.

The monitoring structure is required to be repeated thereafter. We call such a monitoring

structure a private monitoring structure with ex ante correlation.

11Rahman (2014, p. 1) quotes from the European Commission decision on the amino acid cartel: a typical
cartel member �reported its citric acid sales every month to a trade association, and every year, Swiss
accountants audited those �gures.�
12This idea is as in the literature on implementing correlated equilibria without a mediator (see Forges

(2009) for a survey).
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Proposition 4 Let Etalk (�; p) be the sequential equilibrium payo¤ set in the repeated game

with private monitoring structure with ex ante correlation p and with �nitely many rounds

of public cheap talk before each round of play. If jIj = 2, there exists a private monitoring

structure with ex ante correlation p such that Etalk (�; p) = Emed (�).

Proof. See appendix.

If instead one insists on repeated monitoring and does not allow communication, then we

believe that there are some games in which our bound is not tight, in that there are points

in Emed (�) which are not attainable in equilibrium for any repeated private monitoring

structure. We leave this as a conjecture.13

7.3 What if There are More Than Two Players?

The condition that int
�T

i2IWi \ u(A)
�
6= ; no longer guarantees that mediated perfect

monitoring outperforms private monitoring when there are more than two players. We

record this as a proposition.

Proposition 5 There are games with jIj > 2 where int
�T

i2IWi \ u(A)
�
6= ; butmaxv2E(�;p) ��

v > maxv2Emed(�) � �v for some private monitoring structure p and some non-negative Pareto

weight � 2 �+.

Proof. We give an example in the appendix.

To see where the proof of Theorem 1 breaks down with jIj > 2, recall that the proof is

based on fact that, for any Pareto-e¢ cient payo¤ v, if v =2 Wi for one player i, then it must

be the case that v 2 Wj for the other player j. This implies that incentive compatibility is

a problem only for one player at a time, which lets us construct an equilibrium with perfect

monitoring by basing continuation play only on that player�s past recommendations (which

13Strictly speaking, since our maintained de�nition of a private monitoring structure does not allow ex ante
correlation, if � = 0 then there are points in Emed (�) which are not attainable with any private monitoring
structure whenever the stage game�s correlated equilibrium payo¤ set strictly contains its Nash equilibrium
payo¤ set. The non-trivial conjecture is that the bound is still not tight when ex ante correlation is allowed
(but communication is not).
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she necessarily knows in any private monitoring structure). On the other hand, if there

are more than two players, several players�incentive compatibility constraints might bind at

once when we publicize past recommendations. The proof of Theorem 1 then cannot get

o¤ the ground.

We can however say some things about what happens with more than two players.

First, the argument in the proof of Proposition 2 that supp(�) = A1 whenever int
�T

i2I
�Wi \ u(A1)

�
6=

; does not rely on jIj = 2. Thus, when int
�T

i2I
�Wi \ u(A1)

�
6= ;, we can characterize the

set of supportable actions for any number of players. This is sometimes already enough to

imply a non-trivial upper bound on payo¤s.

Second, Proposition 6 below shows that if a payo¤ vector v 2 int (u (A)) satis�es vi >

ui +
1��
�
di for all i 2 I, then v 2 Emed(�). This shows that private monitoring cannot do

�much�better than mediated perfect monitoring when the players are at least moderately

patient.

Finally, suppose there is a player i whose opponents �i all have identical payo¤ func-

tions. Then the proof of Theorem 1 can be adapted to show that private monitoring cannot

outperform mediated perfect monitoring in a direction where the extremal payo¤ vector v

lies in
T
j2�iWj (but not necessarily in Wi). For example, if the game involves one �rm

and many identical consumers, then the consumers�best equilibrium payo¤ under mediated

perfect monitoring is at least as good as under private monitoring. We can also show that

the same result holds if the preferences of players �i are su¢ ciently close to each other.

7.4 The Folk Theorem with Mediated Perfect Monitoring

The point of this paper is bounding the equilibrium payo¤ set with private monitoring

at a �xed discount factor. Nonetheless, it is worth pointing out that� as a corollary of

our results� a strong version of the folk theorem holds with mediated perfect monitoring,

without any conditions on the feasible payo¤ set (e.g., full-dimensionality, non-equivalent

utilities), and with a rate of convergence of 1 � �. One reason why this result may be of

interest is that it shows that, if players are fairly patient, they cannot do �much�better with
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private monitoring than with mediated perfect monitoring, even if the su¢ cient conditions for

Theorem 1 fail. Another reason is that the mediator can usually be replaced by unmediated

communication among the players (we spell out exactly when below), and it seems worth

knowing that the folk theorem holds with unmediated communication without conditions on

the feasible payo¤ set.

Recall that ui is player i�s correlated minmax payo¤ and that di is player i�s greatest

possible deviation gain. Let u = (ui)i2I and d = (di)i2I .

Proposition 6 If a payo¤ vector v 2 int (u (A)) satis�es

v > u+
1� �
�
d; (12)

then v 2 Emed(�).

Proof. Fix � 2 �(A) such that v = u (�). If v satis�es (12), then v 2 int
�T

i2IWi \ u (A)
�

(so in particular int
�T

i2I \u (A)
�
6= ;), and the in�nite repetition of � satis�es (3). Lemma

1 then gives v 2 Emed(�).

The folk theorem is a corollary of Proposition 6. Recall that a payo¤ vector v is strictly

individually rational (relative to correlated minmax payo¤s) if v > u.14

Corollary 1 (Folk Theorem) For every strictly individually rational payo¤ vector v 2

u (A), there exists �� < 1 such that if � > �� then v 2 Emed(�).

Proof. It is immediate that v 2 Emed(�) for high enough �: let �� = maxi2I
di

vi�ui+di
and

apply Theorem 6. The proof that taking the closure is unnecessary is in the appendix.

In earlier work (Sugaya and Wolitzky, 2014b), we have shown that the mediator can

usually be dispensed with in Proposition 6 and Corollary 1 if players can communicate

through cheap talk. In particular, this is possible unless there are exactly three players, of

whom exactly two have equivalent utilities in the sense of Abreu, Dutta, and Smith (1994).

14The restriction to strictly individually rational payo¤ vectors cannot be dropped. In particular, the
counterexample to the folk theorem due to Forges, Mertens, and Neyman (1986)� in which no payo¤ vector
is strictly individually rational� remains valid in the presence of a mediator.
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8 Conclusion

This paper gives a simple su¢ cient condition under which the equilibrium payo¤ set in a

two-player repeated game with perfect monitoring and a mediator is a tight, recursive upper

bound on the equilibrium payo¤ set in the same game with any imperfect private monitoring

structure. Equivalently, under our su¢ cient condition, this set characterizes those payo¤s

that could arise in a repeated game from the perspective of an observer who does not know

the monitoring structure. The su¢ cient condition reduces to a lower bound on the discount

factor whenever there exists a feasible and strictly individual rational payo¤ vector. Thus,

in almost all games, simple recursive methods can be used to upper-bound the equilibrium

payo¤ set in repeated games with imperfect private monitoring at a �xed discount factor.

9 Appendix

9.1 Proof of Proposition 1: Mediated Perfect Monitoring

As the players�stage game payo¤s from any pro�le other than (U;L) sum to at most 3, it

follows that the players�per-period payo¤s may sum to more than 3 only if (U;L) is played

in some period t with positive probability. For this to occur in equilibrium, player 1�s

expected continuation payo¤ from playing U must exceed her expected continuation payo¤

from playing D by more than 1, her instantaneous gain from playing D rather than U . In

addition, player 1 can guarantee herself a continuation payo¤ of 0 by always playing D, so

her expected continuation payo¤ from playing U must exceed 1. This is possible only if the

probability that (T;M) is played in period t + 1 when U is played in period t exceeds the

number p such that

1

6
[p (6) + (1� p) (3)] + 1

6

�
1

6
+
1

62
+ � � �

�
| {z }

1
5

(6) = 1;
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or p = 3
5
. In particular, there must exist a period t+ 1 history ht+12 of player 2�s such that

(T;M) is played with probability at least 3
5
in period t+1 conditional on reaching ht+12 . At

such a history, player 2�s payo¤ from playing M is at most

3

5
(�3) + 2

5
(3) +

1

5
(3) = 0:

On the other hand, noting that player 2 can guarantee himself continuation payo¤ 0 by

playing 1
2
L+ 1

2
M , player 2�s payo¤ from playing L at this history is at least

3

5
(3) +

2

5
(�3) + 1

5
(0) =

3

5
:

Therefore, player 2 has a pro�table deviation, so no such equilibrium can exist.

9.2 Proof of Proposition 1: Private Monitoring

Consider the following imperfect private monitoring structure. Player 2�s action is perfectly

observed. Player 1�s action is perfectly observed when it equals T or B. When player 1

plays U or D, player 2 observes one of two possible private signals, m and r. Whenever

player 1 plays U , player 2 observes signal m obtains with probability 1; whenever player 1

plays D, players 2 observes signals m and r with probability 1
2
each.

We now describe a strategy pro�le under which the players�payo¤s sum to 23
7
� 3:29.

Player 1�s strategy: In each odd period t = 2n + 1 with n = 0; 1; :::, player 1 plays
1
3
U + 2

3
D. Let a1(n) denote the realization of this mixture. In the even period t = 2n+ 2, if

the previous action a1(n) equals U , then player 1 plays T ; if the previous action a1(n) equals

D, then player 1 plays B.

Player 2�s strategy: In each odd period t = 2n + 1 with n = 0; 1; :::, player 2 plays L.

Let y2(n) denote the realization of player 2�s private signal. In the even period t = 2n + 2,

if the previous private signal y2(n) equals m, then player 2 plays M ; if the previous signal

y2(n) equals r, then player 2 plays R.

We check that this strategy pro�le, together with any consistent belief system, is a
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sequential equilibrium.

In an odd period, player 1�s payo¤ from U is the solution to v = 2+ 1
6
(6) + 1

62
v. On the

other hand, her payo¤ from D is 3 + 1
6
(0) + 1

62
v. Hence, player 1 is indi¤erent between U

and D (and clearly prefers either of these to T or B).

In addition, playing L is a myopic best response for player 2, player 1�s continuation

play is independent of player 2�s action, and the distribution of player 2�s signal is also

independent of player 2�s action. Hence, playing L is optimal for player 2.

Next, in an even period, it su¢ ces to check that both players always play myopic best

responses, as in even periods continuation play is independent of realized actions and signals.

If player 1�s last action was a1(n) = U , then she believes that player 2�s signal is y2(n) = m

with probability 1 and thus that he will play M . Hence, playing T is optimal. If instead

player 1�s last action was a1(n) = D, then she believes that player 2�s signal is equal to m

and r with probability 1
2
each, and thus that he will play 1

2
M + 1

2
R. Hence, both T and B

are optimal.

On the other hand, if player 2 observes signal y2(n) = m, then his posterior belief that

player 1�s last action was a1(n) = U is

1
3
(1)

1
3
(1) + 2

3

�
1
2

� = 1

2
:

Hence, player 2 is indi¤erent among all of his actions. If player 2 observes y2(n) = r, then

his posterior is that a1(n) = D with probability 1, so that M and R are optimal.

Finally, expected payo¤s under this strategy pro�le in odd periods sum to 1
3
(4)+ 2

3
(3) =

10
3
, and in even periods sum to 3. Therefore, per-period expected payo¤s sum to

�
1� 1

6

��
10

3
+
1

6
(3)

��
1 +

1

62
+
1

64
+ : : :

�
=
23

7
:

Three remarks on the proof: First, the various indi¤erences in the above argument result

only because we have chosen payo¤s to make the example as simple as possible. One can
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modify the example to make all incentives strict.15 Second, players�payo¤s are measurable

with respect to their own actions and signals. The required realized payo¤s for player 2 are

as follows:16

(Action,Signal) Pair: (L;m) (L; r) (M;m) (M; r) (R;m) (R; r)

Realized Payo¤: 2 �2 0 0 0 0

Third, a similar argument shows that imperfect public monitoring with private strategies

can also outperform mediated perfect monitoring.17

9.3 Proof of Lemma 4

It is useful to introduce a family of auxiliary value functions
�
wT2
�1
T=1

and
�
w�;T2

�1
T=1
, which

will converge to w2 and w�2 pointwise in r
t
2 as T !1. For periods t � T , de�ne

wT2 (r
t
2) = w

�
2 (r

t
2) and w

�;T
2 (rt�12 ) = w�2 (r

t�1
2 ): (13)

On the other hand, for periods t � T �1, de�ne w�;T2 (rt2), p
T (rt2), and w

T
2 (r

t
2) given w

T
2 (r

t+1
2 )

recursively, as follows. First, de�ne

w�;T2 (rt2) = (1� �)u2
�
�(rt2)

�
+ �E

�
wT2 (r

t+1
2 )jrt2

�
: (14)

Note that, for t = T � 1, this de�nition is compatible with (13). Second, given w�;T2 (rt2),

de�ne

wT2 (r
t
2) = 1fw�(rt2)2W1g

n
pT (rt2)w

�;T
2 (rt2) +

�
1� pT (rt2)

�
�w12

o
+ 1fw�(rt2)=2W1g �w

1
2; (15)

15The only non-trivial step in doing so is giving player 1 a strict incentive to mix in odd periods. This
can be achieved by introducing correlation between the players�actions in odd periods.
16Recall that player 1 can observe player 2�s action perfectly.
17Here is a sketch: Modify the current example by adding a strategy L0 for player 2, which is an exact

duplicate of L as far as payo¤s are concerned, but which switches the interpretation of signals m and r.
Assume that player 1 cannot distinguish between L and L0, and modify the equilibrium by having player 2
play 1

2L+
1
2L

0 in odd periods. Then, even if the signals m and r are publicly observed, their interpretations
will be private to player 2, and essentially the same argument as with private monitoring applies.
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where, when w�2 (r
t
2) 2 W1, pT (rt2) is the largest number in [0; 1] such that

pT (rt2)w
�;T
2 (rt2) +

�
1� pT (rt2)

�
�w12 � w

�
2 (r

t
2): (16)

We show that w�;T2 converges to w�2.

Lemma 8 limT!1w
�;T
2 (rt2) = w

�
2(r

t
2) for all r

t
2 2 At�12 .

Proof. By Lemma 3, it su¢ ces to show that F (wT2 ) = w
T+1
2 . For t � T + 1, (13) implies

that w�;T+12 (rt�12 ) = w�2 (r
t�1
2 ). On the other hand, given wT2 , w

�
2(w

T
2 ) is the value calculated

according to (5). Since wT2 (r
t
2) = w

�
2 (r

t
2) by (13), we have w

�
2(w

T
2 )(r

t�1
2 ) = w�2 (r

t�1
2 ) by (5).

Hence,

w�2(w
T
2 )(r

t�1
2 ) = w�;T+12 (rt�12 ). (17)

For t � T , by (14), we have

w�;T+12 (rt2) = (1� �)u2
�
�(rt2)

�
+ �E

�
wT+12 (rt+12 )jrt2

�
:

By (15),

wT+12 (rt2) = 1fw�(rt2)2W1g
n
pT+1(rt2)w

�;T+1
2 (rt2) +

�
1� pT+1(rt2)

�
�w12

o
+ 1fw�(rt2)=2W1g �w

1
2

= 1fw�(rt2)2W1g
�
pT+1(rt2)w

�
2(w

T
2 )(r

t
2) +

�
1� pT+1(rt2)

�
�w12
	
+ 1fw�(rt2)=2W1g �w

1
2;

where the second equality follows from (17) for t = T , and follows by induction for t < T .

Recall that pT+1 is de�ned by (16). On the other hand, p(wT2 )(r
t
2) is de�ned in (7) using

w�2 = w
�
2(w

T
2 ). Since w

�;T+1
2 (rt2) = w

�
2(w

T
2 )(r

t
2), we have p

T+1(rt2) = p(w
T
2 )(r

t
2). Hence,

wT+12 (rt2) = 1fw�(rt2)2W1g
�
p(wT2 )(r

t
2)w

�
2(w

T
2 )(r

t
2) +

�
1� p(wT2 )(rt2)

�
�w12
	
+ 1fw�(rt2)=2W1g �w

1
2:

= F (wT2 )(r
t
2);
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as desired.

We also de�ne wT1 (r
t
2) and w

�;T
1 (rt2) analogously to w1(r

t
2) and w

�
1(r

t
2): For t � T , de�ne

wT1 (r
t
2) = w

�
1 (r

t
2) and w

�;T
1 (rt�12 ) = w�1 (r

t�1
2 ):

For t � T � 1, given wT2 (rt+12 ) and pT (rt2), de�ne

w�;T1 (rt2) = (1� �)u1
�
�(rt2)

�
+ �E

�
wT1 (r

t+1
2 )jrt2

�
and

wT1 (r
t
2) = 1fw�(rt2)2W1g

n
pT (rt2)w

�;T
1 (rt2) +

�
1� pT (rt2)

�
�w11

o
+ 1fw�(rt2)=2W1g �w

1
1:

As w�;T2 (rt2), w
T
2 (r

t
2), and p

T (rt2) converge to w
�
2(r

t
2), w2(r

t
2), and p(r

t
2) by Lemma 8, it

follows that w�;T1 (rt2) and w
T
1 (r

t
2) converge to w

�
1(r

t
2) and w1(r

t
2). Hence, the following lemma

implies Lemma 4:

Lemma 9 For all t = 1; :::; T � 1, if w�(rt2) 2 W1, then pT (rt2)w
�;T (rt2) +

�
1� pT (rt2)

�
�w1

Pareto dominates w�(rt2).

Proof. For t = T � 1, the claim is immediate since w�;T (rt2) = w
�(rt2) and so p

T (rt2) = 1.

Suppose that the claim holds for each period � � t + 1. We show that it also hold for

period t. By construction, pT (rt2)w
�;T
2 (rt2) +

�
1� pT (rt2)

�
�w12 � w

�
2 (r

t
2). Thus, it su¢ ces to

show that pT (rt2)w
�;T
1 (rt2) +

�
1� pT (rt2)

�
�w11 � w

�
1 (r

t
2).

Note that

w�;T (rt2)

= (1� �)u
�
�(rt2)

�
+ �E

�
wT (rt+12 )jrt2

�
= (1� �)u

�
�(rt2)

�
+ �

8<:
P

rt+12 :w�(rt+12 )2W1
Pr�

�
rt+12 jrt2

� �
pT (rt+12 )w�;T (rt+12 ) +

�
1� pT (rt+12 )

�
�w1
	

+
P

rt+12 :w�(rt+12 )=2W1
Pr�

�
rt+12 jrt2

�
�w1

9=; ;
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while

w�(rt2) = (1� �)u
�
�(rt2)

�
+ �

X
rt+12

Pr�
�
rt+12 jrt2

�
w�(rt2):

Hence,

w�;T (rt2)� w�(rt2)

= �

8<:
P

rt+12 :w�(rt+12 )2W1
Pr�

�
rt+12 jrt2

� �
pT (rt+12 )w�;T (rt+12 ) +

�
1� pT (rt+12 )

�
�w1 � w�(rt+12 )

	
+
P

rt+12 :w�(rt+12 )=2W1
Pr�

�
rt+12 jrt2

� �
�w1 � w�(rt+12 )

	
9=; :

When w�(rt+12 ) 2 W1, the inductive hypothesis implies that

pT (rt+12 )w�;T (rt+12 ) +
�
1� pT (rt+12 )

�
�w1 � w�(rt+12 ) � 0:

On the other hand, note that

X
rt+12 :w�(rt+12 )=2W1

Pr�
�
rt+12 jrt2

� �
�w1 � w�(rt+12 )

	
= l(rt2)( �w

1 � ~w(rt2))

for some number l(rt2) � 0 and vector ~w(rt2) =2 W1. In total, we have

w�;T (rt2) = w
�(rt2) + l(r

t
2)( �w

1 � ŵ(rt2)) (18)

for some number l(rt2) � 0 and vector ŵ(rt2) � ~w(rt2) =2 W1. Since �w11 � ŵ1(r
t
2), if �w

1
1 �

w�1 (r
t
2) then (18) implies that min

n
w�;T1 (rt2); �w

1
1

o
� w�1 (rt2), and therefore pT (rt2)w

�;T
1 (rt2) +�

1� pT (rt2)
�
�w11 � w�1 (r

t
2). In addition, if w�(rt+12 ) 2 W1 with probability one, then the

inductive hypothesis implies that w�;T2 (rt2) � w
�
2 (r

t
2), and therefore p

T (rt2) = 1 and

pT (rt2)w
�;T
1 (rt2) +

�
1� pT (rt2)

�
�w11 = w�;T1 (rt2)

= w�1 (r
t
2) + l(r

t
2)( �w

1
1 � ŵ1(rt2))

� w�1 (r
t
2):
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Hence, it remains only to consider the case where �w11 < w
�
1 (r

t
2) and l(r

t
2) > 0.

In this case, take a normal vector �1 of the supporting hyperplane of u (A) at �w1. We

have �11 � 0 and �12 > 0, and in addition (as ŵ (rt2) � ~w (rt2) 2 u (A) and w� (rt2) 2 u (A))

�1 �
�
�w1 � ŵ(rt2)

�
� 0;

�1 �
�
�w1 � w�(rt2)

�
� 0:

As �w11 � ŵ1(rt2) > 0 and �w11 � w
�
1 (r

t
2) < 0, we have

ŵ2(r
t
2)� �w12

�w11 � ŵ1(rt2)
� �11
�12
� �w12 � w

�
2 (r

t
2)

w�1 (r
t
2)� �w11

:

Next, by (18), the slope of the line from w�(rt2) to w
�;T (rt2) equals the slope of the line

from ŵ(rt2) to �w
1. Hence,

w�2 (r
t
2)� w

�;T
2 (rt2)

w�;T1 (rt2)� w
�
1 (r

t
2)
� �w12 � w

�
2 (r

t
2)

w�1 (r
t
2)� �w11

:

In this inequality, the denominator of the left-hand side and the numerator of the right-hand

side are both positive: w�;T1 (rt2) > w
�
1 (r

t
2) by (18) and l(r

t
2) > 0, while �w

1
2 > w

�
2 (r

t
2) because

w� (rt2) 2 W1 and w� (rt2) 6= �w12. Therefore, the inequality is equivalent to

w�2 (r
t
2)� w

�;T
2 (rt2)

�w12 � w
�
2 (r

t
2)

� w�;T1 (rt2)� w
�
1 (r

t
2)

w�1 (r
t
2)� �w11

:

Now, let q 2 [0; 1] be the number such that

qw�;T1 (rt2) + (1� q) �w11 = w
�
1 (r

t
2):

Note that

1� pT (rt2) =
w�2 (r

t
2)� w

�;T
2 (rt2)

�w12 � w
�
2 (r

t
2)

;
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while

1� q = w�;T1 (rt2)� w
�
1 (r

t
2)

w�1 (r
t
2)� �w11

:

Hence, pT (rt2) > q. Finally, we have seen that �w
1
1 � w

�
1 (r

t
2) � w

�;T
1 (rt2), so we have

pT (rt2)w
�;T
1

�
rt2
�
+
�
1� pT (rt2)

�
�w11 � qw

�;T
1

�
rt2
�
+ (1� q) �w11 = w

�
1 (r

t
2):

9.4 Proof of Proposition 2

We wish to show that supp(�) = A1 whenever int
�T

i2I
�Wi \ u (A1)

�
6= ;. In order to

characterize supp(�), it will be useful to consider "-sequential equilibria in the repeated game

with monitoring structure p�. We say that an assessment is an "-sequential equilibrium if it

is consistent, and, for each player i and (on- or o¤-path) history hti, player i�s deviation gain

at history hti is no more than ". Let

supp"(�) =

8<:a 2 A :
0@ there exist an "-sequential equilibrium �

such that a 2 supp (�(;))

1A9=;
be the on-path support of actions in the initial period in "-sequential equilibrium with

monitoring structure p�; and let

suppt"(�) =

8<:a 2 A :
0@ there exist an "-sequential equilibrium � and history htm

such that a 2 supp (�(htm))

1A9=;
be the (possibly o¤-path) support of actions in period t.

The proof that supp(�) = A1 relies on three preliminary observations. First,
T
">0 supp"(�)

has a product structure. Second, suppt"(�) is time invariant and the on-path support and o¤-

path support coincide:
T
">0 supp"(�) =

T
">0

S
t supp

t
"(�). Third, the "-sequential equilib-

rium correspondence is upper-hemicontinuous in ". In particular, supp(�) =
T
">0

S
t supp

t
"(�) =
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T
">0 supp"(�).

We establish these preliminary results in turn, and then prove that supp(�) = A1 when-

ever int
�T

i2I
�Wi \ u (A1)

�
6= ;. We �rst show that

T
">0 supp"(�) has a product structure.

Let

suppi;"(�) =

8<:ai 2 Ai :
0@ there exists an "-sequential equilibrium �

such that ai 2 supp (�i(;))

1A9=;
be the support of player i�s actions, where �i is the marginal distribution of player i�s

recommendation. We show the following:

Lemma 10
T
">0 supp"(�)has a product structure:

T
">0 supp"(�) =

T
">0

Q
i2I
suppi;"(�).

Proof. Since
T
">0 supp"(�) �

T
">0

Q
i2I
suppi;"(�), we are left to show

T
">0

Q
i2I
suppi;"(�) �T

">0 supp"(�). To this end, �x an arbitrary "-sequential equilibrium strategy �. It su¢ ces

to show that, for each "0 > ", there exists an "0-sequential equilibrium strategy �product

such that supp
�
�product(;)

�
=
Q
i2I
supp(�i(;)). (This is su¢ cient because it implies thatT

">0

Q
i2I
suppi;"(�) �

T
">0 supp2"(�) =

T
">0 supp"(�).)

For � > 0, de�ne the period 1 recommendation distribution under �product(;) by

�product(;)(a1) =

8>>>>>>><>>>>>>>:

(1� �)�(;)(a1) if a1 2 supp(�(;));

������Q
i2I

supp(�i(;))
������jsupp(�(;))j

if a1 2
Q
i2I
supp(�i(;))

but a1 =2 supp(�(;));

0 otherwise.

Note that the mediator recommends action a1 with a positive probability if ai;1 is in the

support of the marginal distribution of player i�s recommendation under �. In particular,

supp
�
�product(;)

�
=
Q
i2I
supp(�i(;)).

In subsequent periods t � 2, if a1 2 supp(�(;)) was recommended in period 1, then the

mediator recommends actions according to �product(h
t
m) = �(h

t
m). If a1 2

Q
i2I
supp(�i(;)) but

a1 =2 supp(�(;)) was recommended, then the mediator �resets�the history and recommends
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actions according to � as if the game started from period 2: formally, �product(h
t
m) = �(

~ht�1m )

with
�
(r1; a1); ~h

t�1
m

�
= htm.

As � ! 0, player i�s belief about a�i;1 given ai;1 2 supp(�i(;)) under �product converges to

her belief given ai;1 in the original equilibrium �. Since �product is an "-sequential equilibrium,

this implies that player i�s deviation gain in period 1 converges to at most " as � ! 0. In

addition, if a1 2 supp(�(;)), then continuation play from period 2 on is the same under

�product and �. Furthermore, if a1 2
Q
i2I
supp(�i(;)) but a1 =2 supp(�(;)), then continuation

play from period 2 on under �product is the same as play from period 1 on under �. In sum,

for any "0 > ", there exists � > 0 such that player i�s deviation gain at any history under

�product is at most "
0, so �product is an "

0-sequential equilibrium strategy.

Second, we show that suppt"(�) is time invariant, and the on-path support and o¤-path

support coincide:

Lemma 11
T
">0 supp"(�) =

T
">0

S
t supp

t
"(�).

Proof. Since
T
">0 supp"(�) �

T
">0

S
t supp

t
"(�) by de�nition, we are left to show

T
">0

S
t supp

t
"(�) �T

">0 supp"(�). Fix an "-sequential equilibrium strategy � with a consistent belief system

�. As in Lemma 10, it su¢ ces to show that, for each t and "0 > ", there exists an "0-

sequential equilibrium strategy �� with consistent belief system �� such that supp (��(;)) =[
htm

supp(�(htm)), where the union is taken over all histories h
t
m, including o¤-path histories.

Fix t and "0 > " arbitrarily. Then, there exists � > 0 such that if, for each i, � , h�i , and

h�m, a strategy-belief system pair
�
��; ��

�
satis�es

��(h�m) = �(h
�
m) (19)

and

��(h�mjh�i ) 2
�
(1� �)2 �(h�mjh�i );

1

(1� �)2
�(h�mjh�i )

�
; (20)

that is, if the recommendation schedule is the same as � and the posterior is close to �, then�
��; ��

�
is "0-sequentially rational. Fix such � > 0.
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Since � is an "-sequential equilibrium, there exists a sequence of completely mixed strate-

gies (�n)1n=1 and associated belief systems (�
n)1n=1 such that �

n converges to the obedient

strategy pro�le and �n converges to �. Consider the following mediator�s strategy ��. In

period 1, the mediator draws a ��ctitious�history htm according to �
n(htm), the probability

of htm given �n. Given htm, the mediator draws r according to �(h
t
m). In period 1, the

mediator sends (hti; ri) to each player i. Note that, since �n is completely mixed, we have

supp (��(;)) =
[
htm

supp(�(htm)).

In period � � 2, let h2;�m =
�
a1; (r� 0 ; a� 0)

��1
� 0=2

�
with h2;2m = a1 be the mediator�s history

at the beginning of period � except for her recommendation r in period 1. The mediator

recommends actions as if the history h2;�m happens after (htm; r) in the original equilibrium �:

that is, she recommends action pro�les according to �(htm; r; h
2;�
m ), where (h

t
m; r; h

2;�
m ) denotes

the concatenation of htm, r, and h
2;�
m . Similarly, let hti = (ri;s; as)

t�1
s=1 be player i�s �ctitious

history, and let h2;�i =
�
a1; (ri;� 0 ; a� 0)

��1
� 0=2

�
be her history at the beginning of period � .

When we view h�m = (htm; r; h
2;�
m ) and h

�
i =

�
hti; ri; h

2;�
i

�
as the history (including the

�ctitious one drawn at the beginning of the game), this new strategy �� satis�es (19). Hence,

it su¢ ces to show that we can construct a consistent belief system �� which satis�es (20).

To this end, denote player i�s belief about the mediator�s history h�m when player i�s history

in period � is h�i =
�
hti; ri; h

2;�
i

�
by Pr (h�m j h�i ).

We construct the following sequence of perturbed full-support strategies: Each player i

plays �ki (h
t
i; ri) in period 1 and then plays �

k
i (h

t
i; ri; h

2;�
i ; ri;� ) in period � � 2. Recall that�

�k
�1
k=1

is the sequence converging to the original equilibrium �.

Let Pr�
n;�k (h�m j h�i ) be player i�s belief about h�m conditional on her history h�i , given

that the �ctitious history htm is drawn from �
n at the beginning of the game and the players

take �k in the subsequent periods. We have

Pr�
n;�k (h�m j h�i ) =

Pr�
k

(h2;�m j htm; r) Pr� (r j htm) Pr�
n

(htm)

Pr�
k �
h2;�i j hti; ri

�
Pr� (ri j hti) Pr�

n
(hti)

=
Pr�

k

(h2;�m j htm; r) Pr� (r j htm)P
~htm;~r�i

Pr�
k
�
h2;�i j ~htm; ri; ~r�i

�
Pr�

�
ri; ~r�i j ~htm

�
Pr�

n
�
~htm j hti

� Pr�n (htm)
Pr�

n
(hti)

:

48



By consistency of (�; �), for su¢ ciently large n, we have

(1� �) �
�
htm j hti

�
� Pr�

n

(htm)

Pr�
n
(hti)

= �n
�
htm j hti

�
� 1

1� ��
�
htm j hti

�
for all htm and h

t
i. Moreover,

(1� �) �
�
~htm j hti

�
� Pr�n

�
~htm j hti

�
= �n

�
~htm j hti

�
� 1

1� ��
�
htm j hti

�
for each ~htm and h

t
i.

Fix such a su¢ ciently large n, and de�ne

�� (h�m j h�i ) = lim
k!1

Pr�
n;�k (h�m j h�i ) :

Since the belief system � is consistent, we have

lim
k!1

Pr�
k �
h2;�m j htm; r

�
= �(h2;�m j htm; r)

Hence, for each h�m and h
�
i , we have

�� (h�m j h�i ) =
� (h2;�m j htm; r) Pr� (r j htm) Pr�

n

(htm j hti)P
~htm;~r�i

�
�
h2;�i j ~htm; ri; ~r�i

�
Pr�

�
ri; ~r�i j ~htm

�
Pr�

n
�
~htm j hti

�
=

�
(1� �)2 � (h�m j h�i ) ;

1

(1� �)2
� (h�m j h�i )

�
:

That is, �� satis�es (20).

Third, we recall that the "-sequential equilibrium correspondence is upper-hemicontinuous

in " in the product topology (Fudenberg and Levine, 1983). Recall that supp"(�) is

the support of on-path period-1 recommendations, while
S
t supp

t
"(�) includes o¤-path rec-

ommendations. Hence, by upper-hemicontinuity, we have
T
">0 supp"(�) � supp(�) �T

">0

S
t supp

t
"(�). By Lemmas 10 and 11, we have

T
">0 supp"(�) = supp(�) =

T
">0

S
t supp

t
"(�),

and supp(�) is a product set.
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Finally, we prove that supp(�) = A1 whenever int
�T

i2I
�Wi \ u (A1)

�
6= ;. We �rst

show that supp(�) is a �xed point of the operator S.

Lemma 12 supp(�) = S (supp(�)) :

Proof. As S
�
�A
�
� �A for every product set �A, it su¢ ces to show that supp(�) � S (supp(�)).

Fix a 2 supp(�), and let � be an equilibrium strategy such that a 2 supp (� (;)) (which

exists by Lemma 11 and upper-hemicontinuity). Let ��i be the conditional distribution of

i�s opponents�actions in period 1 given recommendation ai. By incentive compatibility in

period 1,

(1� �)ui (ai; ��i) + �wi (aijai) � max
âi2Ai

f(1� �)ui (âi; ��i) + �wi (âijai)g ; (21)

where wi (a0ijai) is player i�s expected continuation payo¤ from playing a0i when she is recom-

mended ai in period 1 under �. By de�nition of supp(�), ��i 2 �(supp(�)). In addition,

player i�s opponents only play actions in supp(�) on- and o¤-path. Hence,

wi (aijai) � max
ai2Ai;�a�i2 �A�i

ui (ai; �a�i) :

In addition, player i�s history after she deviates to âi in period 1 is consistent with her

opponents�equilibrium strategies, so sequential rationality of player i implies that

wi (âijai) � min
�̂�i2�( �A�i)

max
ai2Ai

ui (ai; ��i)

Therefore, (21) implies that (10) holds. Hence, ai 2 Si (supp(�)) for all i 2 I, so a 2

S (supp(�)).

As S is monotone and supp(�) is a �xed point of S, it follows that supp(�) � An for all

n, and hence supp(�) � A1. The following lemma therefore completes the proof.

Lemma 13 If int
�T

i2I
�Wi \ u (A1)

�
6= ;, then A1 � supp(�):
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Proof. Fix v 2int
�T

i2I
�Wi \ u (A1)

�
6= ;, and let � 2 �(A1) be such that u (�) = v and

� (r) > 0 for all r 2 A1. Let ���i be a solution to the problem

min
�̂�i2�(A1)

max
ai2Ai

ui (ai; ��i) :

Let �"�i be the following full-support (within A1) approximation of ���i: �"�i = (1� ")���i+

"
P

a�i2A1�i
a�i

jA1�ij . Since v 2int
�T

i2I
�Wi

�
, there exists " > 0 such that, for each i 2 I, we

have

vi > max
ai2Ai

ui
�
ai; �

"
�i
�
+
1� �
�

max
r2A1;ai2Ai

fui(ai; r�i)� ui(r)g : (22)

In addition, choose " small enough such that, for each player i, some best response to �"�i is

included in A1i : this is always possible, as every best response to ���i is included in A1i .

We now construct an equilibrium strategy �� with supp (�� (;)) = A1. The construction

mirrors the proof of Lemma 1.

The mediator follows an automaton strategy whose state is identical to a subset of players,

J � I. If J = ;, then the mediator recommends �. If there exists i with J = fig, then

the mediator recommends r�i to players �i according to �"�i, and recommends some best

response to �"�i that lies in A1i to player i. If jJ j � 2, then for each i 2 J , the mediator

recommends some best response to �"�i that lies in A1i , while she recommends r�J to the

other players �J according to a�J

jA1�J j
. The state transits as follows: if the current state is J

and players J 0 deviate, then the state transits to J [ J 0.

Player i�s strategy is to follow the recommendation ri;t in period t. She believes that

the mediator�s state is ; if she herself has never deviated, and believes that the state is fig

if she has deviated.

Since the mediator�s recommendation has full support within A1, player i�s belief is

consistent. Given this belief, if player i has deviated, it is optimal for her to always play a

static best response to �"�i, since the mediator always recommends �
"
�i in state fig. Given

that deviations by player i are punished in this way, (22) implies that player i has a strict in-

centive to follow her recommendation ri at any recommendation pro�le r 2 A1. Hence, she
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has a strict incentive to follow her recommendation when she believes that r�i is distributed

according to Pr�
�
(r�ijri).

9.5 Proof of Proposition 5

Consider the following �ve-player game with common discount factor � = 2
3
. Player 5 has

one action and her utility is always equal to �u1(a). Player 1 has two actions f11; 21g and

players 2 and 4 have three actions respectively: ai 2 f1i; 2i; 3ig for each i 2 f2; 4g. Finally,

player 3 has four actions a3 2 f13; 23; 33; 43g.

When player 3 takes 13, then the payo¤ matrix for players 1 and 2 is represented as

follows, regardless of player 4�s actions:

12 22 32

11 0; 1 K; 5 K; 1

21 �2; 0 K; 0 K; 4

In addition, player 3�s payo¤ is 0 and player 4�s payo¤ is 0, regardless of (a1; a2; a4). Here,

K is a large number.

When player 3 takes 23, 33, or 43, then the payo¤s are determined by the following matrix,

regardless of (a1; a2):

14 24 34

23 0; 1; 0; 0 K; 0; K;K K; 0; K;�K

33 1; 1; 0; 0 K; 0; K;�K K; 0; K;K

43 1; 1; 0; 0 K; 0; K;�K K; 3; K;K

Note that each player�s minmax payo¤ is equal to zero.

Suppose that the Pareto weight is � = (0; 0; 0; 0; 1): that is, we want to maximize player

5�s payo¤. We show that player 5�s best payo¤ is strictly less than zero with mediated perfect

monitoring , while her best payo¤ equals zero with some private monitoring structure.
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Proposition 7 There exists K such that int
�T

i2IWi \ u(A)
�
6= ; and (v1; v2; v3; v4; 0) =2

Emed(�) for all (v1; v2; v3; v4), and yet there exists a private monitoring structure p such that

(v1; v2; v3; v4; 0) 2 E(p; �) for some (v1; v2; v3; v4).

9.5.1 Mediated Perfect Monitoring

Since u5(a) = �u1 (a), it su¢ ces to show that there exists � > 0 such that, for su¢ ciently

large K, we have

(1� �)E
" 1X
t=1

�t�1u1(at)

#
> �

in every equilibrium with mediated perfect monitoring.

We take K su¢ ciently large so that int
�T

i2IWi \ u(A)
�
6= ;. For the sake of con-

tradiction, suppose that such an � does not exist: Emed(�) includes a payo¤ pro�le v with

v1 = 0. Since Emed(�) is equal to the set of (possibly weak) sequential equilibrium payo¤s

with int
�T

i2IWi \ u(A)
�
6= ; (see the proof of Lemma 6), it su¢ ces to show that the set of

(possibly weak) sequential equilibrium payo¤s, denoted by Eweakmed (�), cannot contain v with

v1 = 0.

Note that (v1; v2) = (0; 1) is not in Eweakmed (�) for any (v2; v3; v5). Since (0; 1; 0; 0; 0) is an

extreme point in the feasible set, we have to recommend (11; 12; 13; a4) or (a1; a2; 23; 14) with

probability one. However, (11; 12; 13; a4) requires a high continuation payo¤ for player 2

since, if she deviates to 42 from 12, her gain is 4. On the other hand, (a1; a2; 23; 14) requires

a high continuation payo¤ for player 4 since, if she deviates to 14 from 24, her gain is K.

By feasibility, we have to guarantee a positive continuation payo¤ for player 1. Hence,

(v1; v2) = (0; 1) is not in Eweakmed (�).

Since Eweakmed (�) is closed (by the usual argument with product topology) and (0; 1) is an

extreme point, there exists �� > 0 such that, given v1 < ��, we should have v2 < 1� ��.

Let Pr(a) be the probability that the players take an action pro�le a in period 1 in the

equilibrium. Player 1�s payo¤ is bounded from below by

(1� �) fPr(23) Pr(24 or 34 j 23)K + Pr(33) + Pr(43)g ;
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since from period 2 on she can guarantee the payo¤ of 0 by taking 11. Hence, we need to

have Pr(33) = Pr(43) = 0. Given that Pr(33) = Pr(43) = 0, we should have Pr(23) = 0 as

well. To see why, suppose otherwise. Then, we should have Pr(24 or 34 j 33) = 0, that is,

Pr(14 j 23) = 1. Hence, player 4�s deviation gain from 14 to 24 is no less than

K Pr(23 j 14) � K Pr(14 j 23) Pr(23) = K Pr(23):

Therefore, so that player 4 does not deviate, we need to guarantee the payo¤ of 1��
�
K Pr(23).

By feasibility, we need to guarantee a positive payo¤ to player 1. This is a contradiction.

In total, we should have Pr(23) = Pr(33) = Pr(43) = 0.

Given Pr(23) = Pr(33) = Pr(43) = 0, let us focus on the payo¤ matrix given a3 = 13:

12 22 32

11 0; 1 K; 5 K; 1

21 �2; 0 K; 0 K; 4

Player 1�s payo¤ is bounded from below by (1� �) f1� Pr(12)gK. Hence, we should have

Pr(12) = 1

Given a2 = 12, player 2�s deviation gain when she takes 42 is

Pr(11 j 12)4� Pr(21 j 12)0;

and her deviation gain when she takes 52 is

�Pr(11 j 12)0 + Pr(21 j 12)4:

On the other hand, given a1 = 11, player 1�s deviation gain is zero. Given a1 = 21, her

deviation gain is

Pr (12 j 11) 2:
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Let p = Pr(11). Since Pr(12) = 1, Pr(11 j 12) = p and Pr(21 j 12) = 1� p. The smallest

continuation payo¤ w2 that we need to guarantee player 2 is

1

2
max f4p; 4� 4pg = max f2p; 2� 2pg ;

while the continuation payo¤ that we need to guarantee player 1 is8<: 0 after a1 = 11 is recommended;

1 after a1 = 21 is recommended:

Hence, the continuation payo¤s after a1 2 f11; 21g, denoted by w(11) and w(21), should

satisfy the following:8>>><>>>:
pw2(11) + (1� p)w2(21) � max f2p; 2� 2pg ;

w1(11) � 0;

w1(21) � 1:

Note that player 1�s payo¤ is no less than

p�w1(1) + (1� p) f(1� �) (�2) + �w1(21)g :

Hence, w1(1) needs to be su¢ ciently close to 0 or p is close to zero. However, if p is close

to zero, then we should have w1(21) close to 1 and w2(21) close to 2. By feasibility, this is

impossible. Therefore, w1(1) should be close to 0. The symmetric argument shows that

w1(21) is su¢ ciently close to 1.

In addition, recall that there exists �� > 0 such that, given v1 < ��, we should have

v2 < 1� ��. Hence, after a1 = 11, we should have w2(11) < 1� ��. Hence, the �rst constraint

implies

p (1� ��) + (1� p)w2(21) � max f2p; 2� 2pg :
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For p � 1
2
, this is equivalent to

p (1� ��) + (1� p)w2(21) � 2� 2p;

or

w2(21) �
1

1� p (2� 3p+ p��) :

For su¢ ciently small ��, the left hand side is decreasing in p. Hence, we should have

w2(21) � 1 + ��:

By feasibility, for su¢ ciently large K, this means that w2(11) is su¢ ciently large, which is a

contradiction. A symmetric argument shows that p > 1
2
leads us to a contradiction as well.

9.5.2 Private Monitoring

With the following private monitoring, (0; 1; 0; 0; 0) 2 E(�; p): Players 1, 2, 3, and 5 observe

the other players�actions and their own payo¤s perfectly. Player 4 cannot observe anything

but her own payo¤.

On the equilibrium path, in period 1, players take (11; 12; 13; 14) and (21; 12; 13; 14) with

probabilities 1
2
and 1

2
, respectively (that is, player 1 mixes 11 and 21 with probabilities 12 and

1
2
and the other takes 1i). From period 2 on, player 3 takes 23 if player 1 took 11 in period

1, and she takes 33 if player 1 took 21. Players 1, 2, and 4 take (11; 12; 14) with probability

one.

O¤the equilibrium path, all players�deviation are ignored, except for player 1�s deviation

in period 1 and player 4�s deviation in period t � 2. If player 1 deviates in period 1 (or player

4 deviates in period t � 2), then in each period � � 2 (or in each period � � t+ 1,) players

1 and 2 takes 11 and 12 with probability one, player 3 mixes 23 and 33 with probabilities 1
2

and 1
2
respectively, i.i.d. across periods, and player 4 mixes 24 and 34 with probabilities 1

2

and 1
2
respectively, i.i.d. across periods. Note that this is a static Nash equilibrium.
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Let us verify the players� incentives: Player 3 takes a static best response. Players

1 and 2 take a static best response from period 2 on, on and o¤ the equilibrium path.

Consider player 4�s incentive from period 2 on. In period 1, player 4�s payo¤ is constant at

0 regardless of her actions. Hence, player 4 in period 2 believes that player 1 mixed 11 and

21 with probabilities 12 and
1
2
in period 1, and so player 3 takes 23 and 33 with probabilities

1
2
and 1

2
respectively in period 2. Since player 4�s payo¤ is constant as long as she takes

14, on the equilibrium path, player 4 in period t believes that player 3 takes 23 and 33 with

probabilities 1
2
and 1

2
respectively in period t. Hence, instantaneous deviation gain is zero

while she will be minmaxed from the next period once she deviates. Hence, player 4 has the

incentive to follow the equilibrium from period 2 on. Since player 4�s deviation in period

1 does not change player 4�s payo¤ or information, player 4 has the incentive to follow the

equilibrium in period 1 as well.

Hence, we are left to verify players 1 and 2�s incentives in period 1. For player 1, recalling

that � = 2
3
, we have

payo¤ of taking 11 = (1� �) 0 + � � 0|{z}
after 11, player 3 takes 23 with probability one

= (1� �) (�2) + � � 1|{z}
after 21, player 3 takes 33 with probability one

= payo¤ of taking 21:

Hence, the equilibrium is incentive compatible for player 1. For player 2,

payo¤ of taking 12 = (1� �)
�
1

2
� 1 + 1

2
� 0
�
+ � � 1|{z}

whether player 3 takes 23 or 33, player 2 obtains 1

� (1� �)
�
1

2
� 5
�
+ � � 0

= payo¤ of taking 22

= (1� �)
�
1

2
� 1 + 1

2
� 4
�
+ � � 0

= payo¤ of taking 32.
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Hence, the equilibrium is incentive compatible for player 2.

9.6 Proof of Corollary 1

Since u (A) is convex and v > u, there exists v0 2 u (A) and " > 0 such than v�2" > v0 > u.

Taking ��1 = maxi2I di
v0i�ui+di

and applying Proposition 6 yields v0 2 Emed(�) for all � > ��1.

Thus, for every � > ��1, there exists v (�) 2 Emed(�) such that v � " > v (�) > u.

Let ��2 = maxi2I di
"+di

and let �� = max
�
��1; ��2

	
. Then, for every � > ��, the following is an

equilibrium: On-path, the mediator recommends a correlated action pro�le that attains v.

If anyone deviates, play transitions to a sequential equilibrium yielding payo¤ v (�). Such

an equilibrium exists as v (�) 2 Emed(�) for � > �� � ��1. Finally, since this punishment

results in a loss of continuation payo¤ of at least " for each player, the mediator�s on-path

recommendations are incentive compatible for � > �� � ��2.

References

[1] Abreu, D., P.K. Dutta, and L. Smith (1994), �The Folk Theorem for Repeated Games:
a NEU Condition,�Econometrica, 62, 939-948.

[2] Abreu, D., D. Pearce, and E. Stacchetti (1990), �Toward a Theory of Discounted Re-
peated Games with Imperfect Monitoring,�Econometrica, 58, 1041-1063.

[3] Amarante, M. (2003), �Recursive Structure and Equilibria in Games with Private Mon-
itoring,�Economic Theory, 22, 353-374.

[4] Athey, S. and K. Bagwell (2001), �Optimal Collusion with Private Information,�RAND
Journal of Economics, 32, 428-465.

[5] Awaya, Y. and V. Krishna (2014), �On Tacit versus Explicit Collusion,�mimeo.

[6] Ben-Porath, E. and M. Kahneman (1996), �Communication in Repeated Games with
Private Monitoring,�Journal of Economic Theory, 70, 281-297.

[7] Bergemann, D. and S. Morris (2013), �Robust Predictions in Games with Incomplete
Information,�Econometrica, 81, 1251-1308.

[8] Cherry, J. and L. Smith (2011), �Unattainable Payo¤s for Repeated Games of Private
Monitoring,�mimeo.

58



[9] Compte, O. (1998), �Communication in Repeated Games with Imperfect Private Mon-
itoring,�Econometrica, 66, 597-626.

[10] Forges, F. (1986), �An Approach to Communication Equilibria,� Econometrica, 54,
1375-1385.

[11] Forges, F. (2009), �Correlated Equilibrium and Communication in Games,�Encyclope-
dia of Complexity and Systems Science, edited by R. Meyers, Springer: New York.

[12] Forges, F., J.-F. Mertens, and A. Neyman (1986), �A Counterexample to the Folk
Theorem with Discounting,�Economics Letters, 20, 7.

[13] Fuchs, W. (2007), �Contracting with Repeated Moral Hazard and Private Evaluations,�
American Economic Review, 97, 1432-1448.

[14] Fudenberg, D. and D. Levine (1983), �Subgame-Perfect Equilibria of Finite- and
In�nite-Horizon Games,�Journal of Economic Theory, 31, 251-268.

[15] Fudenberg, D., D. Levine, and E. Maskin (1994), �The Folk Theorem with Imperfect
Public Information,�Econometrica, 62, 997-1039.

[16] Green, E.J. and R.H. Porter (1984), �Noncooperative Collusion under Imperfect Price
Information,�Econometrica, 52, 87-100.

[17] Kandori, M. (1991), �Cooperation in Finitely Repeated Games with Imperfect Private
Information,�mimeo.

[18] Kandori, M. (2002), �Introduction to Repeated Games with Private Monitoring,�Jour-
nal of Economic Theory, 102, 1-15.

[19] Kandori, M. and H. Matsushima (1998), �Private Observation, Communication and
Collusion,�Econometrica, 66, 627-652.

[20] Kandori, M. and I. Obara (2010), �Towards a Belief-Based Theory of Repeated Games
with Private Monitoring: An Application of POMDP,�mimeo.

[21] Levin, J. (2003), �Relational Incentive Contracts,� American Economic Review, 93,
835-857.

[22] MacLeod, B.W. (2003), �Optimal Contracting with Subjective Evaluation,�American
Economic Review, 93, 216-240.

[23] Mailath, G.J., S.A. Matthews, and T. Sekiguchi (2002), �Private Strategies in Finitely
Repeated Games with Imperfect Public Monitoring,�Contributions in Theoretical Eco-
nomics, 2.

[24] Mailath, G.J. and L. Samuelson (2006), Repeated Games and Reputations, Oxford Uni-
versity Press: Oxford.

59



[25] Miyahara, Y. and T. Sekiguchi (2013), �Finitely Repeated Games with Monitoring
Options,�Journal of Economic Theory, 148, 1929-1952.

[26] Myerson, R.B. (1986), �Multistage Games with Communication,� Econometrica, 54,
323-358.

[27] Phelan, C., and A. Skrzypacz (2012), �Beliefs and Private Monitoring,�Review of Eco-
nomic Studies, 79, 1637-1660.

[28] Phelan, C. and E. Stacchetti (2001), �Sequential Equilibria in a Ramsey Tax Model,�
Econometrica, 69, 1491-1518.

[29] Rahman, D. (2012), �But Who Will Monitor the Monitor?,�American Economic Re-
view, 102, 2767-2797.

[30] Rahman, D. (2014), �The Power of Communication,�American Economic Review, 104,
3737-51.

[31] Rahman, D. and I. Obara (2010), �Mediated Partnerships,�Econometrica, 78, 285-308.

[32] Sekiguchi, T. (2002), �Existence of Nontrivial Equilibria in Repeated Games with Im-
perfect Private Monitoring,�Games and Economic Behavior, 40, 299-321.

[33] Stigler, G.J. (1964), �A Theory of Oligopoly,�Journal of Political Economy, 72, 44-61.

[34] Sugaya, T. and A. Wolitzky (2014a), �Characterization of Strict Equilibrium Payo¤s in
Repeated Games with Mediated Perfect Monitoring,�mimeo.

[35] Sugaya, T. and A. Wolitzky (2014b), �Perfect Versus Imperfect Monitoring in Repeated
Games,�mimeo.

[36] Tomala, T. (2009), �Perfect Communication Equilibria in Repeated Games with Im-
perfect Monitoring,�Games and Economic Behavior, 67, 682-694.

60



Online Appendix: Proof of Proposition 4

The following preliminary result is useful: We show that a best response to the other players�
strategy is included in the support:

Lemma 14 For each i 2 I, if ��i 2 �
�
supp�i (�)

�
, then a static best response to ��i,

denoted by BRi(��i), is included in suppi (�).

Since supp (�) has a product structure by Lemma 10, this lemma implies that the support
of (BRi; ��i) is included in supp(�).
Proof. Since the "-sequential equilibrium correspondence is upper-hemicontinuous in ", the
proof of Lemma 11 implies that there exists an equilibrium �full such that �full(;) = supp(�).
Again, by the upper-hemicontinuity, it su¢ ces to show that, if ��i 2 �

�
supp�i (�)

�
,

then a static best response BRi(��i) is included in suppi;" (�) for each " > 0. To this end,
for each ��i 2 �

�
supp�i (�)

�
and BRi(��i), consider the following recommendation �: In

period 1, the mediator draws two states ! = 0 and ! = 1 with probabilities 1 � � and
�, respectively. In state ! = 0, the mediator recommends actions according to �full. In
state ! = 1, the mediator recommends (BRi(��i); ��i) in period 1, and then from period 2
on, the mediator �resets�the history and recommends actions according to �full: formally,
�(htm) = �

full(~ht�1m ) with
�
(r1; a1); ~h

t�1
m

�
= htm.

For each " > 0, for su¢ ciently small � > 0, this is an "-sequential equilibrium for the
following reason: For each � > 0, for su¢ ciently small � > 0, since �full has full support,
players �i in period 1 believe that the state is ! = 0 with probability no less than 1 � �.
Hence, the deviation gain is of order �. From period 2 on, following the recommendation is
optimal given !. On the other hand, for player i, it is optimal to follow the recommendation
conditional on ! in each period.
Given this preliminary result, let us prove Proposition 4. Since we focus on the case

with two players, whenever we say players i and j, we assume they are di¤erent: i 6= j.
The monitoring structure p constructed below will involve perfect monitoring of actions

together with a particular ex ante correlating device. As the mediator can always do any
subsequent talking on the players�behalf, it is immediate that Etalk (�; p) � Emed (�). We
must show that any payo¤vector v 2 Emed (�) is also in Etalk (�; p). Let �v be an equilibrium
strategy with a mediator that attains v.
The following lemma allows us to focus on the recommendation schedule with uniform

full support:

Lemma 15 For each " > 0, there exist � and � > 0 such that � is an "-sequential equilib-
rium,

�(htm)(a) > � for each h
t
m and a 2 supp(�); (23)

and kE� [(1� �)
P

t u(at)]� vk < ".

61



Since " is arbitrary and the "-sequential equilibrium correspondence is upper-hemicontinuous
in ", it su¢ ces to show that, for each " > 0, we can replicate such � as an "0-sequential equi-
librium of the game with the initial correlation and cheap talk for each "0 > ".
Proof. From �v, we create a new equilibrium which has full support within supp(�) in
the initial period as follows. Since the "-sequential equilibrium correspondence is upper-
hemicontinuous in ", the proof of Lemma 11 implies that there exists an equilibrium �full

such that �full(;) = supp(�). Given � > 0, suppose that the mediator has two possible
states ! 2 f0; 1g. The state is drawn at the beginning of the game and �xed for the rest of
the game: She draws ! = 0 with probability 1� � and draws ! = 1 with probability �. In
state ! = 0, the mediator recommends action pro�les according to �v while she recommends
actions pro�les according to �full in state ! = 1. Let �� denote such a recommendation
schedule. Note that �� is an equilibrium.
From ��, we create a new "-sequential equilibrium which has full support within supp(�)

every period as follows. In period 1, the mediator starts recommendation according to
��. After each period, with probability � > 0, the mediator �resets�the history and starts
over with ��. Let � denote this recommendation schedule. We can see � as the same
recommendation schedule as �� with the discount factor � being replaced with (1� �) �.
Hence, for each " > 0, for su¢ ciently small � > 0, � is an "-sequential equilibrium.
In addition, since �(htm)(a) � ���(;)(a) and �� has full support within supp(�), with � �

�mina ��(;)(a), we have (23). Moreover, with a su¢ ciently small �, we have kE� [(1� �)
P

t u(at)]� vk <
".
We now replicate "-sequential equilibrium � with (23) as an "0-sequential equilibrium of

the game with the initial correlation and cheap talk for each "0 > ".
Let ��j be the minmax strategy of player j with support restricted to supp(�):

min
�j2�j(supp(�))

max
ai2Ai

ui(ai; �j):

Let �fullj be a full support perturbation of ��j , and let BRi be a best response against �
full
j .

Note that the support of
�
BRi; �

full
j

�
is included in supp(�).18

Given
�
BRi; �

full
j

�
, it is useful to see the recommendation schedule with � after on-path

history at = (a� )t�1�=1 as follows:

�(at) =
X
i2I
pi
�
BRi; �

full
j

�
+ (1� p1 � p2) ~�(at):

That is, with probability pi, the recommendation is
�
BRi; �

full
j

�
, and with probability 1 �

p1 � p2, the mediator draws the recommendation so that the total recommendation is the
same as �(at):

~�(at) (r) =
�(at)(r)�

P2
i=1 pi1fBRi=rig�

full
j (rj)

1� p1 � p2
:

18This follows from Lemma 14 if the best response to �fullj is unique. Otherwise, we take BRi so that it
is upper-hemicontinuous with respect to the perturbation of ��j .
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Since � has uniform full support (23), we can take pi > 0 for each i and ~�(at) (r) > 0 for
each r 2 supp(�). Moreover, as p1; p2 ! 0, when player i receives ri;t 2 suppi(�) after at,
she believes that the distribution of rj is ~�(at) (rjjri).
Given this de�nition, we construct a recommendation schedule which replicates � with

initial correlation and cheap talk.
Intuitively, the mediator makes at-contingent recommendations for each possible at =

(a� )
t�1
�=1. In particular, we de�ne a state !t, an at-contingent recommendation rt (at), and

another at-contingent recommendation rpunishi;t (at) for each player i as follows: In the initial
period t = 1, the mediator draws !t 2 f0; 1; 2g with the following probabilities: !t = 0, 1,
and 2 with probability 1 � p1 � p2, p1, and p2, respectively. In addition, she draws rt(at)
according to ~�(at) while she draws rpunishi;t (at) according to �fulli (that is, player i punishes
player j).
From period t � 2, if there exists a unique player i who has deviated in the previous

periods, then !t = j forever. Otherwise, !t = 0, 1, and 2 with probability 1�p1�p2, p1, and
p2, respectively. In addition, she draws rt(at) according to ~�(at) while she draws r

punish
i;t (at)

according to �fulli . Formally, we say that player i has deviated if there exist � � t� 1 and a
unique i such that (i) for each � 0 < � , we have a� 0 = r� 0(a�

0
) if !� 0 = 0 and an;� 0 = r

punish
n;� 0 (a�

0
)

if !� 0 = n 2 f1; 2g (no deviation happened until period � � 1) and (ii) ai;� 6= ri;� (a� ) with
!� = 0 or ai;� 6= rpunishi;� (a� ) with !� = i (player i deviates in period �).
Intuitively, if !t = 0, then rt(at) is the instruction for the players while if !t = i 2 f1; 2g,

then the mediator recommends rpunishi;t (at) to player i to punish player j. On the other
hand, player j takes rj;t(at) given !t = i, rather than BRj on equilibrium path. This is
"0-sequentially rational for the following reason: given !t 6= j, player j believes that !t = 0
with a high probability for su¢ ciently small p1; p2 > 0 since �(at) satis�es the uniform full
support (23).
We now construct a method for the mediator to send the information about��

!t; rt
�
at
�
; rpunish1;t

�
at
�
; rpunish2;t

�
at
��

at2At�1

�1
t=1

in the initial period. The key features to establish is that (i) player i does not know the
instruction for the other players, that (ii) before player i reaches period t, player i does not
know her own recommendations for periods � � t (otherwise, player i would obtain more
information than the original equilibrium and so might want to deviate), and that (iii) no
player wants to deviate (in particular, if player i deviates in actions or cheap talk, then the
state will be !t = j and she will be minmaxed for a su¢ ciently long time).
To this end, without loss, let Ai = f1i; :::; nig with ni = jAij be player i�s action set.

For each t and at, the mediator draws a random variables pij(a
t) i.i.d. uniformly from

f1; :::; Nninjg with a large N to be determined. De�ne

rii;t(a
t) = ri;t(a

t) + pij(a
t) (modNninj): (24)
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Intuitively, rii;t(a
t) is the �encoded instruction�of ri;t (at), and to obtain ri;t(at) from rii;t(a

t),
player i needs to know pij(a

t). The mediator gives pij(a
t) to player j so that player i does not

know ri;t(at) until period t. In this proof, in general, the subscript of the variable represents
who owns the information and the superscript represents about whose recommendation the
variable is about. In period t, player j sends pij(a

t) by cheap talk.
On the other hand, the mediator directly tells rpunishi;t (at) to player i. For su¢ ciently

small p1; p2 > 0, since �(at) satis�es the uniform full support (23), until period t comes,
player i believes that !t = i with a small probability. Hence, knowing r

punish
i;t (at) does not

change player i�s incentive much (and we are considering "0-sequential rationality).
In order to incentivize player i to tell the truth, the equilibrium should embed the mech-

anism so that if player i tells a lie, then she will be punished. Intuitively, this will be done
as follows: imagine that player j receives N �boxes�n 2 f1; :::; Ng for each period t. One
box is unlocked and includes rii;t(a

t), while all the others are locked. Let mj
j;t(a

t) be the
index of the unlocked box for period t and history at. Only player j knows mj

j;t(a
t).

Player i, on the other hand, receives N keys (in the formal de�nition,
�
pij;t(n; a

t)
�N
n=1
).

For n = mj
j;t(a

t) (the key corresponding to the empty box), pij;t(n; a
t) corresponds to pij(a

t) 2
f1; :::; Nninjg. On the other hand, for other n 6= mj

j;t(a
t), pij;t(n; a

t) corresponds to the
passcode (included in f1; :::; Nninjg). The correct passcode pij;t(n; at) opens the locked box
n if and only if !t 6= j.
Player i is asked to send

�
pij;t(n; a

t)
�N
n=1
. Suppose that player i tells a lie. Since she does

not know mj
j;t(a

t), most likely she sends a wrong passcode for some n 6= mj
j;t(a

t). Since we
make sure that the wrong passcode cannot open the box n, player j will believe that !t = j
(and so player i will be minmaxed). Hence, if player i tells a lie, then she will be punished
for the current period.
So that she will be punished for a su¢ ciently long time, we need to add another com-

plication. The information that player i has,
�
pij;t(n; a

t)
�N
n=1
, is not exactly equal to the

passcode, but this passcode is encoded by the mediator. The key to decode
�
pij;t(n; a

t)
�N
n=1

in order to get the true passcode is given to player j. In addition, if the current state is
!t = j, then player i also receives the key to decode

�
pij;t+1(n; a

t+1)
�N
n=1

for the next period.
Suppose that player i tells a lie in period t. As explained above, it will create !t = j with

a high probability even if !t = 0. If the true state is !t = 0, then player i needs player j�s
key to decode

�
pij;t+1(n; a

t+1)
�N
n=1

in order to send the correct passcode for the boxes in the
next period. However, player j, who believes that !t = j, believes that player i has the key.
Hence, player j does not send the key if she believes that !t = j. Hence, player i cannot
send the correct passcode for long periods with a high probability, and will be minmaxed.
Let us formalize the above construction: The mediator draws mj

j;t(a
t) from the uniform

distribution over f1; :::; Ng i.i.d. for each player j, each period t, and each at. Moreover, the
mediator draws four independent random variables qjj;t(n; a

t), qjj;t(n; !t = j; a
t), qjj;t(n; !t 6=

j; at), and qij;t(n; !t 6= j; at) from the uniform distribution over f1; :::; Nninjg i.i.d. for each
i 2 f1; 2g, each n 2 f1; :::; Ng, each period t, and each at.

64



qjj;t(n; a
t) corresponds to the boxes. qjj;t(n; !t = j; a

t) is the key to decode
�
pij;t+1(n; a

t+1)
�N
n=1
,

which is shared with players i and j given !t = j. On the other hand, if !t 6= j, then player
j has the true key qjj;t(n; !t 6= j; at) while player i receives a dummy key qij;t(n; !t = j; at).
In addition, the mediator draws

�
qij;t(n; a

t)
	Nninj
n=1

uniformly with the constraint

qij;t(n; a
t) 6= qjj;t(n; at) for at least one n 2 f1; :::; Nninjg with n 6= m

j
j;t(a

t) (25)

i.i.d. for each i 2 f1; 2g, each period t, and each at. This qij;t(n; at) is the passcode that will
be used if !t = j, which cannot open at least one box n.
Given qjj;t(n; !t = j; a

t), qjj;t(n; !t 6= j; at), and qij;t(n; !t 6= j; at), we de�ne

qj;!j;t (n; a
t) =

�
qjj;t(n; !t 6= j; at) if !t 6= j;
qjj;t(n; !t = j; a

t) if !t = j
(26)

while

qi;!j;t (n; a
t) =

�
qij;t(n; !t 6= j; at) if !t 6= j;
qjj;t(n; !t = j; a

t) if !t = j:
(27)

Player j observes qj;!j;t (n; a
t) while player i observes qi;!j;t (n; a

t). That is, if and only if !t = j,

players i and j share the same key to decode
�
pij;t(n; a

t)
�N
n=1
:

qj;!j;t (n; a
t) = qi;!j;t (n; a

t): (28)

On the other hand, for each period t and at, we de�ne
�
pij;t(n; a

t)
�N
n=1

as follows: In period
1,

pij;1(n; ;) =

8<:
pij;1(a

t) if n = mj;t(a
t) and !t 6= j;

qjj;t(n; a
t) if n 6= mj;t(a

t) and !t 6= j;
qij;t(n; a

t) if !t = j:

That is, if !t 6= j, then the passcodes for the boxes n 6= mj
j;t(a

t) open the boxes (that is,
pij;1(n; ;) = qjj;t(n; a

t) if n 6= mj
j;t(a

t) and !t 6= j). On the other hand, if !t = j, then
qij;t(n; a

t) 6= qjj;t(n; at) by (25) and cannot open at least one box.
On the other hand, in period t � 2, then we de�ne

pij;t(n; a
t) =

8<:
pji (a

t) + qj;!j;t�1(n; a
t�1) if n = mj;t(a

t) and !t 6= j;
qjj;t(n; a

t) + qj;!j;t�1(n; a
t�1) if n 6= mj;t(a

t) and !t 6= j;
qij;t(n; a

t) + qj;!j;t�1(n; a
t�1) if !t = j:

(29)

Intuitively, in period t+1, player i knows pij;t+1(n; a
t+1) and is asked to send pij;t+1(n; a

t+1)�
qj;!j;t (n; a

t) to player j. As mentioned, pij;t+1(n; a
t+1) is the encoding of player i�s passcode.

By (26) and (27), player j in period t believes that player i needs to know the key to decode
pij;t+1(n; a

t+1), qj;!j;t (n; a
t), in period t + 1 only if !t 6= j. Hence, if and only if player j
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interprets !t 6= j, player j sends qj;!j;t (n; at) to player i at the end of period t. Therefore, if
player i tells a lie and creates a situation where player j cannot open a box and interprets
!t = j in period t, then player i cannot receive the information about q

j;!
j;t (n; a

t). This is
costly since player i cannot decode pij;� (n; a

� ) and player j will interpret !� = j with a high
probability in the subsequent periods � = t+ 1; :::.
Let us formalize the above argument: From qjj;t(n; a

t) and qij;t(n; a
t), we de�ne Qj;t(n; at)

recursively as follows: For the initial period,

Qjj;1(n; ;) =
�

0 if n = mj
j;1(a

t);

qjj (n; ;) if n 6= mj
j;1(a

t):

For the latter periods, we recursively de�ne

Qjj;t(n; a
t)

=

8<:
Qj;t(n; a

t) if n = mj
j;t(a

t) and !t�1 6= j;
Qj;t(n; a

t) + qjj;t(n; a
t) if n 6= mj

j;t(a
t) and !t�1 6= j;

Qj;t(n; a
t)� qjj;t�1(n; at�1) + qij;t�1(n; at�1) + q

j
j;t(n; a

t) if !t�1 = j

with modNninj. Note that we have

Qjj;t(n; a
t) =

t�1X
�=1:

n6=mj;� (a
� )

�
1f!� 6=jgq

j
j;� (n; a

� ) + 1f!�=jgq
i
j;� (n; a

� )
	
+ qjj;t(n; a

t)

=
tX

�=1:
n6=mj;� (a

� )

�
pij;� (n; a

� )� qj;!j;��1(n; a��1)
	
by (29) (30)

with modNninj if n 6= mj
j;t(a

t�1) and !t 6= j. As will be seen below, player i is required to
send pij;� (n; a

� )� qj;!j;��1(n; a��1) in each period � ; and in period t, player j interprets !t = j
if and only if (30) does not hold with player i�s mistake. That is, (30) corresponds to the
intuitive explanation of the passcode opening the box.
Let us now de�ne the equilibrium: The mediator sends0B@

0B@ rii;t(a
t); rpunishi;t (at) ;

mi
i;t(a

t);
�
Qii;t(n; a

t); qi;!i;t (n; a
t)
�Nninj
n=1

;�
pij;t(n; a

t); qi;!j;t (n; a
t)
�Nninj
n=1

1CA
at2At�1

1CA
1

t=1

to player i at the beginning of the game. (Recall that superscript denotes the owner of the
information, so each subscript is i.)
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In period 1, �rst, player i sends
�
pij;1(n; ;)

�Nninj
n=1

to player j by cheap talk. Let
�
p̂ij;1(n; ;)

�N
n=1

be player i�s message. Player j, who knows mj
j;1(;), will calculate

p̂ij;1(;) = p̂ij;1(n; ;) for n = m
j
j;1(;):

From p̂ij(;), player j calculates

r̂j;1(;) = rjj;1(;)� p̂ij;1(;) (modNninj).

Moreover, if there exists n 6= mj
j;1(;) with

qjj;1(n; ;) 6= p̂ij;1(n; ;);

then player j will have !̂1 = j. Otherwise, !̂1 6= j.
Second, given these variables r̂j;1(;) and !̂1, player j takes r̂j;1(;) if !̂1 6= j and rpunishj;1 (;)

if !̂1 = j. Finally, player j sends
�
qj;!j;1 (n; ;)

�Nninj
n=1

to player i by cheap talk if and only if
!̂1 6= j.
Recursively, in period t, given realized at, player i sends the message as follows. Player j

in the previous period sent
�
qj;!j;t�1(n; a

t�1)
�Nninj
n=1

if and only if !̂t�1 6= j. If player i receives
the message, then player i calculates

�pij;t(n; a
t) = pij;t(n; a

t)� qj;!j;t�1(n; at�1): (31)

Otherwise, player i calculates

�pij;t(n; a
t) = pij;t(n; a

t)� qi;!j;t�1(n; at�1): (32)

Then, player i sends
�
�pij;t(n; a

t)
�Nninj
n=1

to player j by cheap talk. Let
�
p̂ij;t(n; a

t)
�Nninj
n=1

be
player i�s message. Player j, who knows mj

j;t(a
t), will calculate

p̂ij;t(a
t) = p̂ij;t(n; a

t) for n = mj
j;t(a

t):

From p̂ij;t(a
t), player j calculates

r̂j;t(a
t) = rjj;t(a

t)� p̂ij;t(at) (modNninj). (33)

Moreover, if there exists n 6= mj
j;t(a

t) with

Qj;t(n; a
t) 6=

tX
�=1:

n6=mj;� (a
� )

p̂ij;� (n; a
� ); (34)

then player j will have !̂t = j. Otherwise, she has !̂t 6= j.
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Second, given these variables r̂j;t(at) and !̂t, player j takes r̂j;t(at) if !̂t 6= j and rpunishj;t (at)

if !̂t = j. Finally, player j sends
�
qj;!j;t (n; a

t)
�Nninj
n=1

to player i by cheap talk only if !̂t 6= j.
We �rst check player i does not have more information about the opponent�s recommenda-

tion or future recommendations. Recall that qjj;t(n; a
t), qjj;t(n; !t = j; a

t), qjj;t(n; !t 6= j; at),
and qij;t(n; !t 6= j; at) are i.i.d. across players and periods. Moreover, except for (25),�
qij;t(n; a

t)
	Nninj
n=1

is uniformly distributed, and i.i.d. across players and periods. Hence, for
su¢ ciently large N , player i cannot update the other player�s information  

mj
j;t(a

t);
�
Qjj;t(n; a

t); qj;!j;t (n; a
t)
�Nninj
n=1

;�
pji;t(n; a

t); qj;!i;t (n; a
t)
�Nninj
n=1

!
at2At�1

!1
t=1

:

Hence, player i cannot update the information about !t.
In addition, since player i cannot update the information about pji;t(n; a

t), player i does
not know the future recommendation ri;t(at) by (24). Moreover, for each � > 0, for suf-
�ciently small p1; p2 > 0, after each history, player i believes that !t = 0 with probability
no less than 1 � �. Hence, knowing rpunishi;t (at) does not update player i�s belief about the
future recommendation by more than �. Therefore, player i does not know her own future
recommendations. Moreover, since pij;t(n; a

t) is independent of rj;t(at), by (24), player i
cannot update the information about the opponent�s recommendation rj;t(at).
Let us check player i�s incentive to tell the truth about

�
�pij;t(n; a

t)
�Nninj
n=1

. Suppose that
player i has told the truth until period t�1. For each � > 0, for su¢ ciently small p1; p2 > 0,
after each history, player i believes that !t = 0 with probability no less than 1��. If player
i tells the truth in period t (and follow instructions and tells the truth in the subsequent
periods), then (28), (30), (31), (32), and (34) imply that !̂t = 0 if !t = 0, and player j
takes rj;t according to (33). On the other hand, with a high probability, !t = 0 and so
player i takes an action according to (33) with j and i reversed. By (24), therefore, players
are taking actions according to ~� with a high probability. Again, with a su¢ ciently small
p1; p2 > 0, we have ~� and � su¢ ciently close to each other.
On the other hand, if player i tells a lie in at least one element of

�
�pij;t(n; a

t)
�Nninj
n=1

, then
for su¢ ciently large N , (34) implies that !̂t = j with a high probability. Moreover, if player

i creates a situation where !t = 0 but !̂t = j, then player j will not send
�
qj;!j;t (n; a

t)
�Nninj
n=1

.
Then, by (28), player i cannot know qj;!j;t (n; a

t). By (30), (31), and (32), for su¢ ciently large
N , with a high probability, player j will have (34) for subsequent periods regardless of player
i�s continuation strategy. That is, player j will have !̂� = j and player i will be minmaxed
for a su¢ ciently long time with a high probability. Hence, for each "0 > ", for su¢ ciently
large N , it is "0-sequentially rational not to tell a lie in the �rst message.
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Second, if player i deviates in actions in period t, then !t0 = j for t0 > t. To avoid being
minmaxed, player i needs to create a situation

Qj;t0(n; a
t0) =

t0�1X
�=1:

n6=mj;� (a
� )

p̂ij;t(n; a
t0) (35)

by (34). On the other hand, by (30), we have

Qjj;t0(n; a
t0) =

t0�1X
�=1:

n6=mj;� (a
� )

�
1f!� 6=jgq

j
j;� (n; a

� ) + 1f!�=jgq
i
j;� (n; a

� )
	
+ qjj;t0(n; a

t0):

By (29), with !t0 = j, player i does not observe q
j
j;t0(n; a

t0) even if she knows qj;!j;t0�1(n; a
t0�1).

Hence, for su¢ ciently large N , with a high probability, player i cannot create a situation
(35). Hence, regardless of player i�s continuation strategy, player j will have !̂� = j for a
su¢ ciently long time with a high probability. Hence, for each "0 > ", for su¢ ciently large
N , it is "0-sequentially rational not to deviate.
Finally, player i is indi¤erent between sending qj;!j;t (n; a

t) correctly or not, since it does
not a¤ect player j�s actions. Therefore, this is an "0-sequential equilibrium.
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