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ABSTRACT. The firm size distribution exhibits important regularities across coun-
tries, time and levels of aggregation. To date, attempts to explain these regularities
have assumed either exogenous heterogeneity or exogenous idiosyncratic shocks.
In this paper we pursue an alternative line of analysis, starting with fundamental
ideas from the theory of the firm and examining their aggregate implications in a
competitive setting with sequential production and symmetric costs. Key stylized
facts for the firm size distribution are replicated in equilibrium, despite the absence
of any intrinsic heterogeneity.
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1. INTRODUCTION

While the size distribution of business firms varies over time and space, as well as
with the measure of size adopted and the level of aggregation, it also shows sig-
nificant regularities. For example, the distribution almost always exhibits a high
degree of skewness and a long right hand tail. Aggregated data covering firms from
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all sectors of the economy suggests that the tail obeys a power law, while for manu-
facturing firms the tail is somewhat lighter, and well approximated by either a log-
normal or gradually truncated lognormal. Such regularities were first documented
and analyzed in detail by Gibrat [18], and have since been studied extensively.2

The problem of developing a consistent and nontrivial theory of the size distribution
of business firms has attracted the interest of many economists. In developing such
a theory, one of the main difficulties is to obtain a distribution having the features
observed in the data without already imposing these characteristics as assumptions.
For example, the elegant model of Lucas [31] predicts a Pareto distribution for firm
size, but only after assuming a Pareto distribution for managerial talent. Similarly,
Cabral and Mata [9] develop a model based on financial constraints that matches
certain features of the data, but the source and distribution of these constraints is
exogenous to the model.

An alternative approach to the study of firm size distributions is to model individ-
ual firm size dynamics via exogenous, idiosyncratic shocks. This line of work be-
gins with Gibrat [18], who assumes proportional, scale independent firm growth to
obtain a lognormal distribution in cross-section. His work was followed by contri-
butions from Simon and Bonini [40], Luttmer [32], Rossi-Hansberg and Wright [38]
and others, and is closely connected to research on power laws for other variables
such as productivity, city sizes or wealth [14, 5, 16].

In this paper we develop a third line of analysis, without any form of exogenous
heterogeneity, stochastic or otherwise. We introduce a model of decentralized pro-
duction that draws on some of the foundational ideas from the modern theory of
the firm and examines their aggregate implications in a competitive equilibrium
setting. The model is populated with infinitely many ex-ante identical price tak-
ing firms, only some of which choose to be active in equilibrium. The resulting firm
size distribution replicates a number of regularities described above, despite the fact
that all agents are ex-ante identical and no idiosyncratic shocks are present. Instead
all ex-post heterogeneity is generated purely through profit maximizing behavior
coordinated by price signals.

2See, for example, Simon and Bonini [40], Stanley et al. [41], Axtell [3], Cabral and Mata [9], Gupta
et al. [22] and Rossi-Hansberg and Wright [38].
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One benefit of this approach is that it connects the theory of the firm size distribution
with some of the fundamental topics from the theory of the firm; in particular, op-
timal firm size, optimal firm boundaries and the make-or-buy decision. This make-
or-buy decision involves a trade off that sits at the heart of organizational economics
and the theory of the firm: While markets can and do coordinate production, the ex-
istence of frictions associated with search, contracting and other trading activities
impose a cost on market participants. On the other hand, when firms eschew the
market (i.e., make rather than buy) they are confronted with internal coordination
costs associated with imperfect information, costly monitoring, loss of incentives
and so on. In other words, both forms of coordination are costly, and the choice of
firm boundaries (and hence firm size) requires optimal choices in the face of these
costs.3

In the model developed below we study these choices from an aggregate perspec-
tive. A single final good is produced through the sequential completion of a large
range of tasks, or stages of production. The total number of firms involved in imple-
menting these tasks and their size and location in the production chain is endoge-
nous. A nondegenerate distribution of firms arises from the fact that, in equilibrium,
upstream and downstream firms face different trade offs in terms of their make-or-
buy decision. In particular, equilibrium prices imply that the relative marginal cost
of backwards integration into input production is lower for downstream firms than
for upstream firms.

In essence, the force behind this differential is the fact that coordination is costly.
The presence of market frictions means that while firms can mitigate internal coor-
dination costs by trading inputs, they cannot offset them entirely. One way to view
this is that each shift downstream along the stages of production requires not only
additional direct costs but more coordination in aggregate (whether implemented
internally or through the market). Hence aggregate costs associated with produc-
tion up to a given stage rise faster than in proportion to the range of tasks needed to
reach that stage. This leads to a growing marginal cost associated with market trans-
actions as the product moves downstream. As a consequence, the profit maximizing
size for downstream firms is larger. These ideas are clarified in section 5.

1.1. Related Literature. The modern theory of optimal firm size begins with the
work of Coase [10], who argued that firms exist because there are transaction costs

3See, e.g., [10, 28, 44, 21, 23, 25, 34, 36]. The literature review below gives more details.
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associated with using the market, and hence entrepreneurs and managers can some-
times coordinate production at a lower cost within the firm. On the other hand,
firms do not expand without limit due to “diminishing returns to management.”
The boundary of the firm is then determined by the point at which the cost of or-
ganizing another productive task within the firm is equal to the marginal cost of
acquiring a similar input or service through the market [10, p. 395].

Many researchers have expanded on and clarified these ideas. At a fundamental
level, most of their theories relate to frictions associated with bounded rationality
and imperfect information. For example, bounded rationality and uncertainty pre-
vent firms from writing complete contracts over the goods and services they wish
to trade. This leads to the threat of hold-up and ex-post bargaining, increasing the
relative cost of market based transactions (e.g., Klein et al. [28], Williamson [44],
Grossman and Hart [21], Hart and Moore [23]).

Imperfect information and bounded rationality also drive the kinds of internal coor-
dination costs that increase with firm scope, such as the informational cost of coor-
dinating specialists (Becker and Murphy [4]), private information, agency problems
and costly monitoring (Jensen and Meckling [27], Holmstrom and Milgrom [25],
[34]), costs of communication, bureaucracy and hierarchy (Milgrom and Roberts
[36], Geanakoplos and Milgrom [15], Meagher [35]) and so on.4

This paper differs from the preceding line of work in two respects. First, rather
than investigating microfoundations or studying the unified theory of the firm, we
take features such as transaction costs and internal coordination costs as given. In
this sense our paper is not intended as a contribution to the theory of the firm per
se. Rather, we seek to analyze the aggregate implications of these phenomena in
equilibrium.5 Second, the great majority of the formal literature investigates firm
decisions in a setting with a small number of firms—usually one or two. Such a

4The literature is large and we cite only representative examples. Thoughtful surveys and addi-
tional references can be found in Bresnahan and Levin [8], Gibbons [17], Lafontaine and Slade [29]
and Aghion and Holden [1].

5Why is aggregate analysis important? Consider the effect of an exogenous decrease in transaction
costs, say, perhaps as the result of a new technology. In a model of bilateral firm interaction, this will
affect the actions of the two firms in the model, which is where the analysis ends. In reality, however,
this change in firm behavior will affect prices, which will affect the choices of other firms in the
production chain, which will feed back into prices and so on. By capturing and resolving these
equilibrium effects, it becomes possible to uncover aggregate implications of the theory of the firm,
and through them study the structure of production and consequent firm size distribution.
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setting is inappropriate for modeling the firm size distribution. In our paper the
number of firms is endogenous and often large.

There are contributions from the theory of the firm literature that treat make-or-buy
decision problems in an equilibrium setting with a large number of firms, and hence
come closer to the environment that we study. A prominent example is Grossman
and Helpman [19]. In the spirit of Coase [10] and Grossman and Hart [21], search
frictions and contractual incompleteness make market based trade in intermediate
goods expensive, and these costs must be weighed against the extra governance
costs associated with integration. In equilibrium, production takes place either in
vertically integrated firms or in pairs of specialized companies. While the paper pro-
vides careful microfoundations of different coordination costs, the fact that there are
only three distinct firm types (vertically integrated firms, specialist input producers
and specialist final good producers) makes the model less suitable for investigating
the firm size distribution.

A more sophisticated picture of fragmentation of production and supply chains
can be found in recent work on outsourcing and international trade. For example,
Costinot [11], Grossman and Rossi-Hansberg [20] and Costinot et al. [12] all con-
sider sequential production over a continuum of tasks with a large number of firms.
In particular, Costinot et al. [12] shares many features with our model, including
sequential production, competitive behavior and a potentially sophisticated pattern
of vertical specialization. On the other hand, it differs in the sense that the hetero-
geneity observed in equilibrium (where rich countries specialize on downstream
production) is driven to some extent by intrinsic heterogeneity (countries have ex-
ogenous technological characteristics). This is a natural assumption for the authors,
since, as with other papers on international trade, the primary interest is in the impli-
cations of cross-country variation for patterns of trade and production. As discussed
above, the model in this paper assumes no heterogeneity in technological or any
other characteristics.

More details on the structure of our model can be found in section 2. Section 3
gives our definition of equilibrium and our fundamental existence and uniqueness
results. In section 4 we introduce a recursive perspective, which leads to compu-
tational techniques and additional insights on the nature of equilibrium prices and
allocations. Section 5 considers implications for the structure of the value chain and
the distribution of firms. Section 6 concludes.
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FIGURE 1. Recursive allocation of production tasks

2. THE MODEL

We begin by studying production of a single unit of a final good. Our focus is on
a linearly ordered production chain, where the good is produced through the se-
quential completion of a large number of processing stages. On an intuitive level
we can think of movement from one processing stage to the next as requiring a sin-
gle specialized task. At the same time, to provide a sharper marginal analysis, we
model the processing stages as a continuum. In particular, the stages are indexed
by t ∈ [0, 1], with t = 0 indicating that no tasks have been undertaken and t = 1
indicating that the good is complete.

2.1. The Production Chain. Allocation of tasks among firms takes place via sub-
contracting. The subcontracting scheme is illustrated in figure 1. In this example, an
arbitrary firm—henceforth, firm 1—receives a contract to sell one unit of the com-
pleted good to a final buyer. Firm 1 then forms a contract with firm 2 to purchase
the partially completed good at stage t1, with the intention of implementing the
remaining 1 − t1 tasks in-house (i.e., processing from stage t1 to stage 1). Firm 2
repeats this procedure, forming a contract with firm 3 to purchase the good at stage
t2. In the example in figure 1, firm 3 decides to complete the chain, selecting t3 = 0.
At this point, production unfolds in the opposite direction (i.e., from upstream to
downstream). First, firm 3 completes processing stages from t3 = 0 up to t2 and
transfers the good to firm 2. Firm 2 then processes from t2 up to t1 and transfers the
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good to firm 1, who processes from t1 to 1 and delivers the completed good to the
final buyer.

In what follows, the length of the interval of stages carried out by firm i is denoted
by `i. We refer to `i as the “range” or “number” of tasks carried out by firm i.
Figure 2 serves to clarify notation.

t3 = 0 t0 = 1t1t2

`3 `2 `1

firm 1firm 2firm 3

`i = range of tasks carried out by firm i

ti = upstream boundary of firm i

FIGURE 2. Notation

Notice that by construction each firm chooses only its upstream boundary, treating its
downstream boundary as given. In essence, it chooses how far to integrate ”back-
wards” into input production. The benefit of this formulation is that it implies a
recursive structure for the decision problem for each firm: In choosing how many
processing stages to subcontract, each successive firm will face essentially the same
decision problem as the firm above it in the chain, with the only difference being
that the decision space is a subinterval of the decision space for the firm above. As
shown in section 4, this recursive structure provides powerful tools for the study of
equilibrium.

2.2. In House Production Costs. We study allocation of tasks in the presence of
what Coase [10] referred to as “diminishing returns to management”, that is, rising
costs per task when a firm expands the range of productive activities implemented
within its boundaries and coordinated by its managers. Rising costs per task can
be thought of as driven by the expanding informational requirements associated
with larger planning problems, leading to progressively higher management costs,
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incentive problems and misallocation of resources.6 As in Becker and Murphy [4,
p. 1142], we represent these ideas by taking the cost of carrying out ` tasks in-house
to be c(`), where c is increasing and strictly convex. Thus, average cost per task rises
with the number of tasks performed in-house. We also assume that c is continuously
differentiable, with c(0) = 0 and c′(0) > 0. These assumptions imply that c is strictly
increasing.7

2.3. Transaction Costs. Diminishing returns to management makes in-house pro-
duction expensive, favoring small firms and external procurement. However, as
pointed out by Coase [10] and reiterated by many authors since, there is a counter-
vailing force that acts against infinite subdivision of firms: the existence of transac-
tion costs associated with buying and selling through the market. One example is
the cost of negotiating, drafting monitoring and enforcing contracts with suppliers.
(Suppose for example that contracts are complete but not free.) Other commonly
cited transaction costs include search frictions, transaction fees, taxes, bribes and
theft associated with transactions, bargaining and information costs, and the costs
of assessing credit worthiness and reliability [10, 44, 37, 7].

Here we follow Arrow [2] in simply regarding transaction costs as a wedge between
the buyer’s and seller’s prices. (Our convention is that the phrase “transaction
costs” refers only to transactions that take place through the market, rather than
within the firm.) In our model it matters little whether the transaction cost is borne
by the buyer, the seller or both (see footnote 12 below). Hence we assume that the
cost is borne only by the buyer. In particular, when two firms agree to a trade at face

6Influential studies based on this assumption include Coase [10], Lucas [31] and Becker and Mur-
phy [4]. For Coase, diminishing returns to management were driven by the huge informational
requirements associated with large planning problems, leading to “mistakes” and misallocation of
resources. The challenges associated with coordinating production through top down planning were
emphasized by Hayek [24], who highlighted the difficulty of utilizing knowledge not held in its to-
tality by any one individual. Later authors have identified additional causes of high average man-
agement costs in larger firms, such as free-riding, shirking and other incentive problems. See the
literature review in section 1.1 for details.

7The cost function c is assumed to already represent current management best practice, in the
sense that no further rearrangement of management structure or internal organization can obtain a
lower cost of in-house production. Also note that the cost of carrying out ` tasks ` = s− t depends
only on the difference s− t rather than s directly. In other words, all tasks are homogeneous. While
extensions might consider other cases, our interest is in equilibrium prices and choices of firms in the
base case where tasks are ex-ante identical.
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value v, the buyer’s total outlay is taken to be δv, where δ > 1. The seller receives
only v, and the difference is paid to agents outside the model.8

3. EQUILIBRIUM

The next step is to define a notion of equilibrium for the production chain. In doing
so we assume throughout that all firms are ex-ante identical and act as price takers,
and that active firms are surrounded by an countably infinite fringe of competitive
firms ready to step in on the buyer or seller side should it be profitable to do so.
There are no fixed costs or barriers to entry and production involves no uncertainty.
As a result, no firm makes strictly positive profits and no holdup or other ex-post
opportunistic behavior occurs.

3.1. Definition of Equilibrium. Throughout the paper, an allocation is just a non-
negative sequence ` := {`i}i∈N ∈ R∞

+ . An allocation implicitly defines a division of
tasks across firms, with `i being the range of task implemented by the i-th firm (see
figure 2). An allocation ` is called feasible if there exists some number n such that

∑∞
i=1 `i = ∑n

i=1 `i = 1. Feasibility means that the entire production process is com-
pleted with only finitely many firms. Finiteness of the allocation is fundamental in
our model because production will not take place unless the number of active firms
is finite.

If `i = 0 then firm i is understood to be inactive. To simplify notation we always
assume that firms enter in order, starting with firm 1. In particular, if ` is feasible
and n firms are active then `i > 0 for i ≤ n and `i = 0 for i > n. This assumption
confers no special privileges on earlier firms and costs no generality in our results,
as we can always relabel firms as required.

As price takers, firms are confronted by a price function, which is function p from
[0, 1] toR+. The value p(t) is interpreted as the price of the good at processing stage
t. Given the price function and the allocation we can compute the profits of the i-th
firm. Recalling the notation in figure 2, this firm enters a contract to sell the good
at stage ti−1 and purchase at stage ti. It undertakes the remaining `i tasks in house.

8Our proportional representation δv models those transaction costs that tend to rise with the face
value of the transaction, such as insurance, contracts, sales taxes, trade credit, currency hedging,
search costs, bribes and so forth. In reality firms also face other transaction costs that are more
naturally thought of as constant in face value (such as transportation). For the sake of simplicity, we
ignore these additive costs.
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Its total costs are given by the sum of its processing costs c(`i) and the gross input
cost δp(ti). Since transaction costs are incurred only by the buyer (see section 2.3),
profits are

p(ti−1)− c(`i)− δp(ti).

To exclude trivial cases, we will call a price function p nontrivial if, for every s ∈
(0, 1], it can support a chain of firms that produce the good up to stage s while each
receiving nonnegative profit. In other words, there exists an allocation ` such that

∑n
i=1 `i = s and

p(ti−1)− c(`i)− δp(ti) ≥ 0 for i = 1, . . . , n.

Here {ti} is the transaction stages corresponding to `, defined by t0 = s and ti+1 =

ti − `i+1. In essence, the meaning is that p(s) is large enough to support production
up to stage s. At a lower price one firm will always lose money, and hence such a
price cannot be observed in equilibrium.

Definition 3.1. Let E be the set of all pairs (p, `), where p is a nontrivial price func-
tion and ` is a feasible allocation. An equilibrium for the production process is a pair
(p, `) ∈ E such that

1. p(0) = 0,
2. p(ti−1)− c(`i)− δp(ti) = 0 for i = 1, . . . , n, and
3. given any other feasible allocation `′ 6= `, we have

p(t′i−1)− c(`′i)− δp(t′i) ≤ 0 for all i = 1, . . . , n′

with strict inequality for at least one i.

In conditions 2 and 3, n and n′ are the finite number of active firms implicit in the
definition of feasible allocations ` and `′. The sequence of transaction stages {ti} is
used in the definition just to simplify notation, and has the usual meaning t0 = 1
and ti+1 = ti − `i+1. In other words, {`i} and {ti} satisfy the relationship shown in
figure 2. The relationship between {`′i} and {t′i} is analogous.

Condition 1 is a zero profit condition for suppliers of initial inputs (e.g., raw materi-
als). In particular, the value p(0) is the revenue of firms that supply the initial inputs
to production. The zero profits condition in this sector implies that p(0) is equal to
the cost of producing these inputs. To simplify notation, we assume that this cost is
zero, and hence p(0) = 0.
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Condition 2 states that all active firms make zero profits. Free entry and the infinite
fringe of competitors rule out positive profits for incumbents, since any incumbent
could be replaced by a member of the competitive fringe filling exactly the same role
in the production chain. Moreover, profits are never negative in equilibrium, since
firms can freely exit. Zero profits also mean that no active firm has an incentive to
exit.

Condition 3 has two main implications. To understand them, observe first that
whenever condition 3 holds we must have

(1) p(s)− c(s− t)− δp(t) ≤ 0

for any pair s, t with t ≤ s ≤ 1. Since active firms achieve zero profits, this means
that no active firm has an incentive to deviate in terms of either location or number
of stages processed in house. In particular, all active firms are maximizing profits.

The second implication of condition 3 is stability of the equilibrium against entry
by non-incumbents, either individually or as a coalition. In particular, provided
that they act as price takers, any alternative chain of firms would find at least one
firm with strictly negative profits. Such a chain cannot function as a noncooperative
equilibrium. Moreover, since all other firms would make nonpositive profits, the
total sum of profits would be negative. This rules out the formation of a coalition
based on side payments.

3.2. Existence and Uniqueness. In this section we show that exactly one equilib-
rium exists for this economy and provide an explicit representation. To begin we
define p∗ as a function on [0, 1] by

(2) p∗(s) := min

{
∞

∑
i=1

δi−1c(`i) : {`i} ∈ R∞
+ and

∞

∑
i=1

`i = s

}
.

The domain of the minimization problem is not finite dimensional because it is not
obvious a priori that an optimal sequence will have only finitely many positive val-
ues, or, even if this is the case, what the number of nonzero values will be. In fact,
since the domain is infinite dimensional, some degree of effort is required to show
that a solution exists. However, it turns that a solution does exist under our assump-
tions, and that the minimizer is unique:

Proposition 3.1. For each s ∈ [0, 1], the value p∗(s) in (2) is finite and well defined, and
the minimizer ` = {`i} exists and is unique. Moreover, {`i} is decreasing and has only
finitely many nonzero entries.
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The proof is deferred to section 7. To understand what p∗(s) represents, let p be
any price function and let ` be any allocation that produces s, in the sense that

∑n
i=1 `i = s. Let the transaction stages {ti} be defined from ` in the usual way.9 If

all firms make zero profits then p(ti−1) = c(`i) + δp(ti) for i = 1, . . . , n. Iterating on
this equation gives

p(t0) = c(`1) + δc(`2) + . . . + δn−1c(`n) + δn p(tn).

Since t0 = s and tn = 0, if we assume as in the definition of equilibrium that p(0) =
0, then we have p(s) = c(`1) + δc(`2) + . . . + δn−1c(`n), which is the expression
that we’re minimizing in (2). Hence the value p∗(s) in (2) can be thought of as the
minimal cost of producing s when all firms make zero profits. In other words, it
is the solution to a planner problem where the planner cannot avoid transaction
costs. Not surprisingly, it also yields an equilibrium for our model. In fact it is the
only equilibrium. These facts are clarified in our next result. In the statement of the
theorem, p∗ is the function defined in (2) and `∗ is the minimizer in (2) when s = 1.
E is as specified in definition 3.1.

Theorem 3.2. There exists exactly one equilibrium in E and that equilibrium is (p∗, `∗).

The proof is in section 7. In all of what follows, the equilibrium number of firms
corresponding to `∗ is denoted by n∗. That n∗ is finite follows from proposition 3.1.10

From the first order conditions for (2), we see that, at the equilibrium allocation
`∗ = {`∗i }, active firms that are adjacent satisfy

(3) δ c′(`∗i+1) = c′(`∗i ).

In other words, the marginal in-house cost per task at a given firm is equal to that
of its upstream partner multiplied by gross transaction cost. This expression can
be thought of as a “Coase-Euler equation,” which determines inter-firm efficiency
by indicating how two costly forms of coordination (markets and management) are
jointly minimized in equilibrium.

The preceding discussion gives us the price of a single unit of the final good in ques-
tion. The final good market is also competitive, and p∗(1) is the amount the most
downstream producer must be compensated in order to make zero profits. Assum-
ing the production process described above can be replicated any number of times

9That is, t0 = s and ti+1 = ti − `i+1. As in figure 2 but replacing t0 = 1 with t0 = s.
10The proof of this fact depends on our assumption that c′(0) > 0.
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without affecting factor prices, p∗(1) is also the long run equilibrium price in the
market for the final good. Note that, in view of (2), we have p∗(1) = ∑n∗

i=1 δi−1c(`∗i ).

Example 3.1. Let c have the exponential form c(`) = eθ`− 1. Note that c(0) = 0 and
c′(0) > 0 as required. From the Coase-Euler equation (3) we have `i+1 = `i− ln δ/θ.
Using this equation, the constraint ∑n∗

i=1 `i = 1 and some algebra, it can be shown
(cf., lemma 7.13) that the equilibrium number of firms is

(4) n∗ =
⌊

1/2 + (1 + 8θ/ ln δ)1/2/2
⌋

,

where bac is the largest integer less than or equal to a.

In (4), observe that n∗ is decreasing in δ. This is not surprising, since higher transac-
tion costs encourage less use of the market and more in-house production. In other
words, firms get larger. Since the number of tasks does not change, larger firms
implies less firms.

At the same time, n∗ is increasing in θ. To see why, observe that θ = c′′(`)/c′(`),
so θ parameterizes curvature of c, and hence the intensity of diminishing returns to
management. More intense diminishing returns to management encourages greater
use of the market, and hence a larger number of smaller firms.

4. A RECURSIVE VIEW

Macroeconomics has been revolutionized by the application of recursive methods
to the study of dynamic competitive economies [30, 42]. Recursive methods lend
themselves to simple computation and shine new light on the equilibria. While the
model considered in this paper is not dynamic, it does have a recursive structure
(recall section 2.1). It turns out that, by exploiting this structure, it becomes possi-
ble to adapt many of the fundamental recursive methods developed in the field of
economic dynamics to the equilibrium problem treated in section 3.

4.1. The Price Function as a Fixed Point. As a first step, we introduce an operator
T that maps a given function p : [0, 1]→ R+ to Tp via

(5) Tp(s) = min
t≤s
{c(s− t) + δp(t)} for all s ∈ [0, 1].

Here and below, the restriction 0 ≤ t in the minimum is understood. The opera-
tor T is analogous to a Bellman operator. Under this analogy, p corresponds to a
value function and δ to a discount factor. At the same time, in the standard dynamic
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programming setting, the fundamental theory is driven by contraction mapping ar-
guments, which in turn depend on the assumption that the discount factor is strictly
less than one. Here, however, the “discount factor” δ is strictly greater than one, and
T in (5) is not a contraction in any obvious metric. Indeed, Tn p diverges for many
choices of p, even when continuous and bounded. For example, if p ≡ 1, then
Tn p = δn1, which diverges to +∞.

Nevertheless, it turns out that there exists a domain on which T is very well-behaved.
The restricted domain in question is the set of convex increasing continuous func-
tions p : [0, 1] → R such that c′(0)s ≤ p(s) ≤ c(s) for all 0 ≤ s ≤ 1. We denote
this set of functions by P . In the statement of the next theorem, p∗ is as usual the
equilibrium price function defined in (2).

Theorem 4.1. Under our assumptions the following statements are true:

1. The operator T defined in (5) maps P into itself.
2. T has exactly one fixed point in P , and that fixed point is p∗.
3. For all p ∈P we have Tk p→ p∗ uniformly as k→ ∞.

In fact, as the proofs show, the convergence in part 3 of the theorem occurs in finite
time from every element of P . Moreover, a uniform upper bound on the number of
iterations necessary can be calculated from the primitives. In particular, if we let

s̄ := sup{s ∈ (0, 1] : c′(s) ≤ δc′(0)},
then p ∈P implies Tk p = p∗ whenever k ≥ 1/s̄.

Two equilibrium price functions are shown in figure 3, computed by iterating with
T from initial condition p = c. In both cases we use the exponential cost function
from example 3.1 with θ = 10. The dashed line corresponds to δ = 1.02, while the
solid line is for δ = 1.2. Not surprisingly, when transaction costs rise so do prices.11

4.2. Implications for the Price Function. One important implication of theorem 4.1
is that p∗ is an element of P , and hence by definition is increasing, convex and
satisfies certain other properties. Following essentially the same procedure used
in the literature on recursive economic dynamics, we can extend and strengthen

11At each step of the iteration, we calculated Tp(s) on a grid of 500 points si ∈ [0, 1]. We then
constructed an approximation to Tp using piecewise linear interpolation over the grid {si} and com-
puted values {Tp(si)}. We then set p equal to the resulting piecewise linear function and moved to
the next iteration.
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FIGURE 3. Equilibrium price functions when c(`) = eθ` − 1

these results. For example, continuous differentiability of p can be established by
a simple variation on the approach routinely used to prove differentiability of the
value function [6]. The next proposition summarizes what we know.

Proposition 4.2. The equilibrium price function p∗ is the unique function in P satisfying

(6) p∗(s) = min
t≤s
{c(s− t) + δp∗(t)} for all s ∈ [0, 1].

In addition, p∗ is strictly convex, strictly increasing, continuously differentiable, and satis-
fies c′(0)s ≤ p∗(s) ≤ c(s) for all s ∈ [0, 1].

The first statement in the proposition is that the equilibrium price function defined
in (2) satisfies—and in fact is essentially defined by—the recursive expression in
(6). To interpret this expression, recall from section 2.1 that each firm treats its
downstream boundary s as given, while its upstream boundary t is a choice vari-
able. Since t appears only in the firm’s costs, the problem of profit maximization
is equivalent to cost minimization. If t is chosen to minimize costs, then profits
are p(s)−mint≤s {c(s− t) + δp(t)}. Thus (6) tells us that a firm with downstream
boundary s makes exactly zero profits when it chooses its upstream boundary opti-
mally. Since p∗ is continuous and strictly convex, as is c, the set of upstream bound-
aries that attains zero profits for the firm will be a singleton, and buying at any other
location will incur a loss.12

12Equation (6) also helps us to understand why it matters little whether we place transaction costs
on just the buyer side, just the seller side, or both. For example, suppose now that, in addition to
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Regarding the second statement in proposition 4.2, the fact that p∗ is strictly increas-
ing is not surprising, giving that c is itself strictly increasing. The strict convexity
of p∗ is more subtle, and is discussed in detail in section 5.1. The intuition behind
the upper bound p∗(s) ≤ c(s) is that a single firm can always implement the entire
process up to stage s, at cost c(s). This is an upper bound on what the equilib-
rium allocation will deliver. The intuition behind the lower bound p∗(s) ≥ sc′(0)
is as follows: Observe that since c is strictly convex, average cost per task c(`)/`
decreases as ` gets smaller. If we consider the situation when transaction costs are
zero (i.e., δ = 1), this property will encourage firms to enter without limit. If there
are n firms involved in producing up to stage s, each producing the small quantity
s/n, then, since δ = 1, the aggregate cost of producing to stage s is just n c(s/n),
and n c(s/n) = s c(s/n)/(s/n)→ sc′(0) as n→ ∞. Hence sc′(0) can be viewed as a
lower bound for costs and therefore prices.

4.3. A Recursive Approach to Allocations. The equilibrium allocation `∗ can also
be calculated using recursive methods. To do so, we introduce the ”choice” func-
tions

(7) τ∗(s) := arg min
t≤s

{c(s− t) + δp∗(t)} and λ∗(s) := s− τ∗(s).

By definition, τ∗(s) is the cost minimizing upstream boundary for a firm that is
contracted to deliver the good at stage s and faces the equilibrium price function p∗.
Similarly, λ∗(s) is the cost minimizing range of in-house tasks given p∗. The next
figure illustrates:

0 1

upstream downstream

sells at sbuys at τ∗(s)

range of tasks = λ∗(s)

That these functions are well-defined and single-valued follows from the convexity
and continuity results on p∗ established in proposition 4.2. The function λ∗ is plotted
for δ = 1.2 and δ = 1.02 in figure 4. Other parameters are the same as for figure 3.

the existing buyer side transaction cost, the seller face a transaction costs parameterized by γ. In
particular, the seller receives only fraction γ < 1 of any sale. The profit function then becomes
π(s, t) = γp(s)− c(s− t)− δp(t). Minimizing over t ≤ s and setting profits to zero yields p(s) =

mint≤s{c(s− t)γ−1 + δγ−1 p(t)}, which is analogous to (6). Nothing substantial has changed, since
δ/γ > 1, and since c/γ inherits from c all the properties of the cost function stated in section 2.2.
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FIGURE 4. Optimal range of in-house tasks as a function of s

We see that λ∗(s) increases with production stage s, and that a rise in transaction
costs leads to a pointwise increase in λ∗(s), so that larger transaction costs means
larger firms at all stages of the production chain. We return to both points later on.

Consider the following recursive approach to constructing an efficient production
chain. By definition, firm 1 sells the completed good at stage s = 1. Hence its
optimal range of tasks is λ∗(1), and, assuming a suitable partner is available, it buys
at 1− λ∗(1). By definition this is equal to τ∗(1). In other words, τ∗(1) is the optimal
upstream boundary for firm 1. If we repeat this process for firm 2, we find that
firm 2’s optimal range of tasks is λ∗(τ∗(1)), and its optimal upstream boundary
is τ∗(τ∗(1)). Continuing in this way produces an allocation of tasks across firms.
Formally, the allocation is defined by

(8) t0 = 1, ti := τ∗(ti−1) and `i := λ∗(ti−1).

It remains however to determine the relationship between this allocation and the
equilibrium allocation `∗. Not surprisingly, it turns out that they are the same. The
next proposition has the details.

Proposition 4.3. The allocation {`i} defined recursively in (8) is identical to `∗.

In other words, implementing the recursive procedure described above produces
the equilibrium allocation of firms. Figure 5 shows firm boundaries computed in
this way. The top subfigure shows the price function and firm boundaries when
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FIGURE 5. Firm boundaries for δ = 1.02 (top) and δ = 1.2 (bottom)

δ = 1.02 and c is as in the previous figures. The boundaries are represented by
vertical bars. The bottom subfigure shows the same information when δ = 1.2.

4.4. Marginal Conditions. We can develop some additional insights on the behav-
ior of firms by examining the marginal conditions associated with the equilibrium.
For example, note that, in view of the convexity and differentiability results ob-
tained in proposition 4.2, interior solutions to (7) are characterized by the first order
condition

(9) δ(p∗)′(τ∗(s)) = c′(s− τ∗(s)).

This condition formalizes a fundamental marginal condition that formed the essence
of Coase’s theory of the firm, and has provided intuition for much of the subsequent
research. That is, “a firm will tend to expand until the costs of organizing an extra
transaction within the firm become equal to the costs of carrying out the same trans-
action by means of an exchange on the open market. . . ” (Coase, [10, p. 395]).

The next theorem collects some useful results about τ∗ and λ∗.

Theorem 4.4. Both τ∗ and λ∗ are increasing and Lipschitz continuous everywhere on [0, 1].
Moreover, for s ∈ (0, 1), the derivative of p∗ satisfies

(10) (p∗)′(s) = c′(λ∗(s)).
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Equation (10) follows from p∗(s) = mint≤s {c(s− t) + δp∗(t)} and the envelope the-
orem. The monotonicity of τ∗ and λ∗ is not entirely obvious from our assumptions.
It implies that firms will make different choices depending on their location in the
production chain. We return to this point below.

4.5. Comparative Statics. Variations in transaction costs shift equilibrium outcomes
monotonically in the directions intuition suggests. In particular, a rise in transaction
costs causes prices to rise, the size of firms to increase, and the equilibrium number
of firms to fall. For completeness we state and prove these results in section 7 (see
proposition 7.12).

5. THE DISTRIBUTION OF FIRMS

In this section we study the implications of the model for the structure of industry
equilibrium and the size distribution of firms.

5.1. The Structure of the Equilibrium. One aspect of the equilibrium evident in
figure 5 is that, in terms of the range of tasks that they implement, downstream
firms are larger than upstream firms. This is a robust feature of the equilibrium, as
can be seen from (3). Indeed, since c′ is increasing and δ > 1, for (3) to hold we must
always have `∗i+1 < `∗i for any pair of adjacent active firms i and i + 1. In fact, as
discussed below, the same monotone relationship holds for other, more traditional,
measures of firm size.

To gain a better understanding of this monotone relationship in terms of the choice
problem faced by firms, consider the first order condition (9), which can be ex-
pressed here by saying that a firm with downstream boundary s chooses ` to solve
δ(p∗)′(s− `) = c′(`). By proposition 4.2, the equilibrium price function p∗ is strictly
convex, and hence (p∗)′(s− `) is strictly increasing in s. It follows that the optimal
choice of ` is also strictly increasing in s. (Strict convexity of p∗ is important here
because if p∗ was linear then the optimal choice of ` wouldn’t depend on s.) Larger
values of s are closer to the final good. Hence the fact that downstream firms are
larger than upstream firms is a direct consequence of the strict convexity of p∗.

Why is the equilibrium price function always strictly convex? On the surface, strict
convexity is driven by strictly diminishing returns to management, which implies
that costs and hence prices rise at a rate greater than proportional to the range of
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tasks accomplished. However, division of tasks between firms mitigates diminish-
ing returns to management—in effect, substituting market coordination for costly
in-house coordination. In the extreme case where transaction costs are absent, firms
will enter without limit, with each successive subdivision of task further reducing
industry-wide production costs. In fact the limiting price function as δ→ 1 is linear
in s, as described in section 4.2. On the other hand, provided that δ > 1, this limit is
not attained, and p∗ is strictly convex.

To summarize, strictly diminishing returns to management and strictly positive
transaction costs together imply that the full ”social” cost of production (i.e., the
combination of direct production costs and transaction costs) to a given stage in-
creases in more than proportion to the range of tasks, which in turn drives the strict
convexity of p∗ we observe in equilibrium, and hence the rising marginal cost of
sourcing through the market as we move from upstream to downstream. As a re-
sult, downstream firms choose to implement a large range of tasks in house. This
in turn generates the monotone relationship `∗i+1 < `∗i between the i-th firm and its
upstream partner.

5.2. Other Measures of Firm Size. The same monotone relationship between up-
stream and downstream firms observed in the sequence {`∗i } also holds for other,
more tangible, measures of firm size. To begin, consider value added, which for firm
i is given by vi := p∗(ti−1)− p∗(ti). Observe that `∗i+1 > `∗i can also be written as
ti − ti+1 < ti−1 − ti. Since p∗ is increasing and convex, it follows that vi+1 < vi. In
other words, value added shares the monotone relationship between upstream and
downstream possessed by {`∗i }.

To make a prediction regarding firm size in terms of employees, we need to move
beyond our reduced form specification of costs. As a simple case, let m be the num-
ber of employees in a given firm, and suppose that the production function in terms
of range of tasks is ` = f (m) where f is strictly increasing and strictly concave with
f (0) = 0. It follows that, for a given range of tasks `, the required number of em-
ployees is m = f−1(`). For the sake of simplicity, suppose that costs are proportional
to employees. That is, c(`) = wm = w f−1(`) for some wage rate w. It is straight-
forward to verify that c satisfies the assumptions we imposed on it above. In this
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setting, the number of employees in firm i is just mi = c(`i)/w. Strict monotonicity
in the sequence {mi} is then inherited from the sequence {`i}.13

5.3. The Firm Size Distribution. It is clear from the proceeding discussion that the
model considered in this paper generates a nondegenerate firm size distribution,
whether firm size is measured by range of tasks, value added or employment. The
same is true of revenue. It remains to see how realistic these distributions are relative
to what economists have learned from the data. In this section we recall some of the
most important facts concerning the firm size distribution and compare them to the
predictions from the model.

Several observed features of the firm size distribution have remained stable over
time and space. For example, it has been well documented that firm size distribu-
tions are almost always heavily skewed, with a long right tail. Typically the median
is significantly larger than the mean. Moreover, this is true regardless of whether
size is measured by employment, assets or revenue, and independent of whether
we consider individual industries or aggregate data [40, 3, 38, 41, 22, 26].

The firm size distribution generated by our model matches these basic features. For
example, figure 6 shows the distribution of firms by value added (top), employment
(middle) and revenue (bottom) when c(`) = exp(10`2)− 1 and δ = 1.01. The equi-
librium number of firms under this parameterization is 336. (In the calculation of
employment we adopt the set up discussed in the previous section and set w = 1.)
Skewness and a long right tail are clearly evident in figure 6. The mean is more
than four times the median in all of these measures at the same parameter set, while
Pearson’s skewness coefficient is close to 2. Alternative parameterizations change
these values but produce qualitatively similar results.

It is also of interest to compare the tail properties of these distributions with those
found in the data. The tail of the observed firm size distribution is most often mod-
eled either with some variation on the lognormal distribution [18, 9, 22] or a power
law [40, 3, 32, 33]. Recent work has shown that tail properties vary significantly
across industries and countries, albeit with some interesting regularities [38, 22].
For manufacturing firms, the size of the right hand tail is typically smaller than
would be suggested by the lognormal distribution [41, 22]. This can be seen in the
Zipf plot in figure 7, which compares size against rank for the set of North American

13While it is beyond the scope of the present paper to investigate these predictions empirically,
we note that indices of downstreamness do exist in the literature. See, for example, [13].
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FIGURE 6. Distribution of firms sizes

manufacturing firms reporting positive revenue in 2012 in the Compustat database.
The vertical axis is revenue in 2012 US dollars and the horizontal axis is the rank of
the firm reporting that revenue (rank i indicates i-th largest firm). Both axes are log
scaled. The lognormal approximation shows samples from a lognormal distribution
fitted to the firm data using maximum likelihood.14

In figure 8 the same figure is generated, but now for data simulated from our model.
The parameters are the same as for figure 6. Thus the data is identical to the last
panel of figure 6, except that it is rescaled so that the largest observation has the
same value as the largest observation in the empirical data set. This scaling has no
effect on the shape of the Zipf plot. Comparing figures 7 and 8, we see that the
data sets share a number of characteristics, being close to lognormal for medium to

14Here manufacturing firms are those with Standard Industrial Classification codes in the range
2000–3999. We include all firms reporting positive revenue in the sample, a total of 2,118 firms
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FIGURE 7. Empirical Zipf plot for SIC 2000–3999 firms

smaller firms, but with the largest firms about one order of magnitude smaller than
predicted by the fitted lognormal.15

6. CONCLUSION

This paper examines some fundamental ideas from the theory of the firm and their
aggregate implications in terms of the structure of production and the firm size dis-
tribution. Despite the lack of intrinsic heterogeneity or exogenous shocks, the model
generates an equilibrium firm size distribution that replicates a number of stylized
facts. The distribution is nondegenerate, with a multitude of small firms and rela-
tively few large firms. The distribution is highly skewed, with a long right-hand tail.
The distribution as a whole is well represented by a gradually truncated lognormal
distribution. This fits well with past observations and data from the manufacturing
sector.

The paper also connects three important strands of the economics literature. First,
we connect the theory of the firm size distribution with the modern theory of the

15Further improvements in fit would presumably require a model with additional realistic fea-
tures, such a varying capital intensities, plus some understanding of horizontal integration. The
significance of human and physical capital intensities for firm size distributions was emphasized by
Rossi-Hansberg and Wright [38].
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FIGURE 8. Zipf plot for simulated data

optimal size of business firms. Second, by framing decision problems of firms in a
recursive manner, where each successive firm faces the same decision as the previ-
ous firm in the chain but on a reduced subset of the stages of production, we connect
the equilibrium problem with the theory of recursive methods for economic dynam-
ics. This allows us to exploit a variety of standard recursive methods to compute and
investigate the structure of the equilibrium.

As a byproduct of the analysis of the firm size distribution, we also recover Coase’s
key insight on the boundaries of firms, but now in the form of a first order con-
dition rather than a purely verbal description. This holds out the possibility that
the trade-off associated with the make-or-buy decision can be investigated from a
new perspective, where the equilibrium impact of changes to policy or technology
show up in the marginal costs and benefits of integration as quantified by the first
order condition. The model also generates a strong prediction regarding the rela-
tionship between upstream and downstream firms. In particular, firm size increases
with downstreamness as a result of increasing marginal costs of transactions as the
semi-processed good moves from upstream to downstream.

The recursive techniques for characterizing and computing equilibrium introduced
in this paper are likely to have applications in other fields involving sequential pro-
duction, such as international trade, or production chains with failure probabilities
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and other frictions. In addition, the model presented above is a baseline model in
all dimensions, with perfect competition, perfect information, identical firms and
homogeneous tasks. These assumptions can be weakened. The effect of altering
contract structures and supply possibilities could also be investigated. For example,
it might be possible to develop a recursive approach to generalizations including
multiple upstream partners. Such topics are left to future research.

7. PROOFS

This section collects all proofs. We start by focusing on the properties of the operator
T defined in (5). Existence of a fixed point in P can be established using well-
known order-theoretic or topological fixed point results. Here we pursue a more
direct proof, which simultaneously yields existence, uniqueness and convergence.

7.1. Preliminaries. Our first result shows that T preserves convexity.

Lemma 7.1. If p ∈P , then Tp is strictly convex.

Proof. Pick any 0 ≤ s1 < s2 ≤ 1 and any α ∈ (0, 1). Let ti := arg mint≤si
{δp(t) +

c(si − t)} for i = 1, 2, and t3 := αt1 + (1− α)t2. Given that ti ≤ si we have 0 ≤ t3 ≤
αs1 + (1− α)s2, and hence

Tp(αs1 + (1− α)s2) ≤ δp(t3) + c(αs1 + (1− α)s2 − t3).

The right-hand side expands out to

δp[αt1 + (1− α)t2] + c[αs1 − αt1 + (1− α)s2 − (1− α)t2].

Using convexity of p and strict convexity of c, we obtain Tp(αs1 + (1 − α)s2) <

αTp(s1) + (1− α)Tp(s2), which is strict convexity Tp. �

Lemma 7.2. Let p ∈P and let tp and `p be the optimal responses, defined by

(11) tp(s) := arg min
t≤s

{δp(t) + c(s− t)} and `p(s) := s− tp(s).

If s1 and s2 are any two points with 0 < s1 ≤ s2 ≤ 1, then

(1) both tp(s1) and `p(s1) are well defined and single-valued.
(2) tp(s1) ≤ tp(s2) and tp(s2)− tp(s1) ≤ s2 − s1.
(3) `p(s1) ≤ `p(s2) and `p(s2)− `p(s1) ≤ s2 − s1.
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Proof. Since t 7→ δp(t) + c(s1 − t) is continuous and strictly convex (by convexity of
p and strict convexity of c), and since [0, s1] is compact, existence and uniqueness of
tp(s1) and `p(s1) must hold. Regarding the claim that tp(s1) ≤ tp(s2), let ti := tp(si).
Suppose instead that t1 > t2. We aim to show that, in this case,

(12) δp(t1) + c(s2 − t1) < δp(t2) + c(s2 − t2),

which contradicts the definition of t2.16 To establish (12), observe that t1 is optimal
at s1 and t2 < t1, so

δp(t1) + c(s1 − t1) < δp(t2) + c(s1 − t2).

∴ δp(t1) + c(s2 − t1) < δp(t2) + c(s1 − t2) + c(s2 − t1)− c(s1 − t1).

Given that c is strictly convex and t2 < t1, we have

c(s2 − t1)− c(s1 − t1) < c(s2 − t2)− c(s1 − t2).

Combining this with the last inequality yields (12).

Next we show that `1 ≤ `2, where `1 := `p(s1) and `2 := `p(s2). In other words,
`i = arg min`≤si

{δp(si − `) + c(`)}. The argument is similar to that for tp, but this
time using convexity of p instead of c. To induce the contradiction, we suppose that
`2 < `1. As a result, we have 0 ≤ `2 < `1 ≤ s1, and hence `2 was available when `1

was chosen. Therefore,

δp(s1 − `1) + c(`1) < δp(s1 − `2) + c(`2),

where the strict inequality is due to the fact that minimizers are unique. Rearranging
and adding δp(s2 − `1) to both sides gives

δp(s2 − `1) + c(`1) < δp(s2 − `1)− δp(s1 − `1) + δp(s1 − `2) + c(`2).

Given that p is convex and `2 < `1, we have

p(s2 − `1)− p(s1 − `1) ≤ p(s2 − `2)− p(s1 − `2).

Combining this with the last inequality, we obtain

δp(s2 − `1) + c(`1) < δp(s2 − `2) + c(`2),

contradicting optimality of `2.17

16Note that t1 < s1 ≤ s2, so t1 is available when t2 is chosen.
17Note that 0 ≤ `1 ≤ s1 ≤ s2, so `1 is available when `2 is chosen.
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To complete the proof of lemma 7.2, we also need to show that tp(s2) − tp(s1) ≤
s2 − s1, and similarly for `. Starting with the first case, we have

tp(s2)− tp(s1) = s2 − `p(s2)− s1 + `p(s1) = s2 − s1 + `p(s1)− `p(s2).

As shown above, `p(s1) ≤ `p(s2), so tp(s2)− tp(s1) ≤ s2 − s1, as was to be shown.
Finally, the corresponding proof for `p is obtained in the same way, by reversing the
roles of tp and `p. This concludes the proof of lemma 7.2. �

Recall the constant s̄ defined in section 4.1, existence of which follows from the con-
ditions in section 2 and the intermediate value theorem. Regarding s̄ we have the
following lemma, which states that the best action for a firm subcontracting at s ≤ s̄
is to implement all stages up to s (i.e., to start at stage 0).

Lemma 7.3. If p ∈P , then s ≤ s̄ if and only if mint≤s {δp(t) + c(s− t)} = c(s).

Proof. First suppose that s ≤ s̄. Seeking a contradiction, suppose there exists a t ∈
(0, s] such that δp(t) + c(s− t) < c(s). Since p ∈P we have p(t) ≥ c′(0)t and hence
δp(t) ≥ δc′(0)t = c′(s̄)t. Since s ≤ s̄, this implies that δp(t) ≥ c′(s)t. Combining
these inequalities gives c′(s)t + c(s− t) < c(s), contradicting convexity of c.

Suppose on the other hand that inft≤s {δp(t) + c(s− t)} = c(s). We claim that s ≤ s̄,
or, equivalently c′(s) ≤ δc′(0). To see that this is so, observe that since p ∈ P we
have p(t) ≤ c(t), and hence c(s) ≤ δp(t) + c(s− t) ≤ δc(t) + c(s− t), for all t ≤ s.

∴
c(s)− c(s− t)

t
≤ δc(t)

t
∀ t ≤ s.

Taking limits we get c′(s) ≤ δc′(0) as claimed. �

Lemma 7.4. Let p ∈ P and let `p be as in (11). If s ≥ s̄, then `p(s) ≥ s̄. If s > 0, then
`p(s) > 0.

Proof. By lemma 7.2, `p is increasing, and hence if s̄ ≤ s ≤ 1, then `p(s) ≥ `p(s̄) =
s̄− tp(s̄) = s̄. By lemma 7.3, if 0 < s ≤ s̄, then `p(s) = s− tp(s) = s > 0. �

Lemma 7.5. If p ∈P , then Tp is differentiable on (0, 1) with (Tp)′ = c′ ◦ `p.

Proof. Fix p ∈ P and let tp be as in (11). Fix s0 ∈ (0, 1). By [6], to show that Tp is
differentiable at s0 it suffices to exhibit an open neighborhood U 3 s0 and a function
w : U → R such that w is convex, differentiable, satisfies w(s0) = Tp(s0) and dom-
inates Tp on U. To exhibit such a function, observe that in view of lemma 7.4, we
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have tp(s0) < s0. Now choose an open neighborhood U of s0 such that tp(s0) < s for
every s ∈ U. On U, define w(s) := δp(tp(s0)) + c(s− tp(s0)). Clearly w is convex
and differentiable on U, and satisfies w(s0) = Tp(s0). To see that w(s) ≥ Tp(s)
when s ∈ U, observe that if s ∈ U then 0 ≤ tp(s0) ≤ s, and

Tp(s) = min
t≤s
{δp(t) + c(s− t)} ≤ δp(tp(s0)) + c(s− tp(s0)) = w(s).

As a result, Tp is differentiable at s0 with (Tp)′(s0) = w′(s0) = c′(`p(s0)). �

Lemma 7.6. Let p ∈ P and let tp and `p be as defined in (11). If p is a fixed point of T,
then δ c′(`p(tp(s))) = c′(`p(s)) for all s > s̄.

Proof. Since p is a fixed point of T it follows from lemma 7.5 that p is differentiable
and p′(s) = c′(`p(s)). Moreover, since s > s̄, lemma 7.3 implies that tp(s) > 0,
and hence the optimal choice in the definition of tp(s) is interior. Thus the first
order condition associated with the definition holds, which is δp′(tp(s)) = c′(`p(s)).
Combining these two equalities gives lemma 7.6. �

Lemma 7.7. The operator T defined in (5) maps P into itself.

Proof. Let p be an arbitrary element of P . To see that Tp(s) ≤ c(s) for all s ∈ [0, 1],
fix s ∈ [0, 1] and observe that, since p ∈ P implies p(0) = 0, the definition of
T implies Tp(s) ≤ δp(0) + c(s + 0) = c(s). Next we check that Tp(s) ≥ c′(0)s
for all s ∈ [0, 1]. Picking any such s and using the assumption that p ∈ P , we
have Tp(s) ≥ inft≤s{δc′(0)t + c(s − t)}. By δ > 1 and convexity of c, we have
δc′(0)t + c(s − t) ≥ c′(0)t + c(s − t) ≥ c′(0)t + c′(0)(s − t) = c′(0)s. Therefore
Tp(s) ≥ inft≤s c′(0)s = c′(0)s.

It remains to show that Tp is continuous, convex and monotone increasing. That Tp
is convex was shown in lemma 7.1. Regarding the other two properties, let `p and
tp be as defined in (11). By the results in lemma 7.2, these functions are increasing
and (Lipschitz) continuous on [0, 1]. Since Tp(s) = δp(tp(s)) + c(`p(s)), it follows
that Tp is also increasing and continuous. �

Lemma 7.8. If p, q ∈P , then Tn p = Tnq whenever n ≥ 1/s̄.

Proof. The proof is by induction. First we argue that T1p = T1q on the interval [0, s̄].
Next we show that if Tk p = Tkq on [0, ks̄], then Tk+1p = Tk+1q on [0, (k + 1)s̄].
Together these two facts imply the claim in lemma 7.8.
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To see that T1p = T1q on [0, s̄], pick any s ∈ [0, s̄] and recall from lemma 7.3 that
if h ∈ P and s ≤ s̄, then Th(s) = c(s). Applying this result to both p and q
gives Tp(s) = Tq(s) = c(s). Hence T1p = T1q on [0, s̄] as claimed. Turning to the
induction step, suppose now that Tk p = Tkq on [0, ks̄], and pick any s ∈ [0, (k + 1)s̄].
Let h ∈P be arbitrary, let `h(s) := arg mint≤s{δh(t) + c(s− t)} and let th(s) := s−
`h(s). By lemma 7.4, we have `h(s) ≥ s̄, and hence th(s) ≤ s− s̄ ≤ (k + 1)s̄− s̄ ≤ ks̄.
In other words, given arbitrary h ∈ P , the optimal choice at s is less than ks̄. Since
this is true for h = Tk p, we have

Tk+1p(s) = min
t≤s
{c(s− t) + δTk p(t)} = min

t≤ks̄
{c(s− t) + δTk p(t)}.

Using the induction hypothesis and the preceding argument for h = Tkq, this is
equal to

min
t≤ks̄
{c(s− t) + δTkq(t)} = min

t≤s
{c(s− t) + δTkq(t)} = Tk+1q(s).

We have now shown that Tk+1p = Tk+1q on [0, (k + 1)s̄]. The proof is complete. �

Lemma 7.9. The operator T has one and only one fixed point in P .

Proof. To show existence, let n ≥ 1/s̄ and fix any p ∈ P . In view of lemma 7.8, we
have Tn(Tp) = Tn p. Equivalently, T(Tn p) = Tn p. In other words, Tn p is a fixed
point of T. Regarding uniqueness, let p and q be two fixed points of T in P , and let
n ≥ 1/s̄. In view of lemma 7.8, we have p = Tn p = Tnq = q. �

Our next step is to show that the unique fixed point of T in P is precisely the min-
imum value function defined in (2). In the statement of the result, tj

p is the j-th
composition of tp with itself, and t0

p is the identity.

Lemma 7.10. Let p be the unique fixed point of T in P , and let tp and `p be as defined in
(11). Let p∗ be as defined in (2). If s is any point in [0, 1], then

(13) p∗(s) = p(s) =
∞

∑
i=1

δi−1c(`i),

where the allocation {`i} in (13) is defined by `i := `p(ti−1
p (s)) for all i.

Proof. Pick any s ∈ [0, 1]. To see that the second equality is valid, observe from
repeated applications of the fixed point property p = Tp and the definitions of tp
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and `p that

p(s) = c(`p(s)) + δp(tp(s))

= c(`p(s)) + δc(`p(tp(s))) + δ2p(t2
p(s))

...

= c(`p(s)) + δc(`p(tp(s))) + · · ·+ δn−1c(`p(tn−1
p (s))) + δn p(tn

p(s)).

for any n. Adopting the notation from the statement of the lemma, we can write this
as

p(s) =
n

∑
i=1

δi−1c(`i) + δn p(tn
p(s)) for all n ∈ N.

We next show that tn
p(s) = 0 for sufficiently large n. To see this, observe that, in view

of lemma 7.3, we have tp(z) = 0 whenever z ≤ s̄. Hence we need only prove that
tn

p(s) ≤ s̄ for some n. Suppose that this is not true. Then, since `p is increasing, since
`p(s̄) = s̄ and since tn

p(s) > s̄ for all n, we must have `p(tn
p(s)) ≥ `p(s̄) = s̄ for all

n. On the other hand, tn
p(s) > s̄ for all n also implies that `p(tn

p(s)) → 0 as n → ∞.
Contradiction.

For i ≥ n we also have `i = 0. Since p(0) = 0 (recall the definition of P) we have

p(s) =
n

∑
i=1

δi−1c(`i) + δn p(tn) =
n

∑
i=1

δi−1c(`i) =
∞

∑
i=1

δi−1c(`i).

This completes our proof of the second equality in (13).

Now we turn to the first equality in (13). To simplify notation, let ti := ti
p(s). By

the definition of {`i} and {ti} we have ∑∞
i=1 `i = ∑∞

i=1(ti−1 − ti) = t0 = s. As we’ve
just shown that p(s) = ∑∞

i=1 δi−1c(`i), it follows from the definition of p∗(s) that
p∗(s) ≤ p(s). Thus it remains only to show that p(s) ≤ p∗(s) also holds.

To establish this, we will show that our allocation {`i} computed from tp and `p

is the minimizer in (2). For (2), given the convexity of c, the Karush-Kuhn-Tucker
(KKT) conditions for optimality are necessary and sufficient. The conditions are
existence of Lagrange multipliers α ∈ R and {µn} ⊂ R such that

(14) δi−1c′(`i) = µi + α, µi ≥ 0 and µi`i = 0 for all i ∈ N.

To see that this holds, let n̄ be the largest n such that `n > 0, let α := c′(`1), and
let µi := 0 for i = 1, . . . , n̄ and µi := δi−1c′(0) − α for i > n̄. We claim that



31

({`i}, α, {µi}) satisfies the KKT conditions. To see this, observe that by repeatedly
applying lemma 7.6 we obtain

(15) δn̄−1 c′(`n̄) = δn̄−2 c′(`n̄−1) = · · · = δ c′(`2) = c′(`1) = α.

Now take any i ∈ {1, . . . , n̄}. Since µn = 0, the first equality in (14) follows from (15)
and the second is immediate. On the other hand, if i > n̄, then `i = 0, and hence
δi−1c′(`i) = δi−1c′(0) = µi + α, where the last equality is by definition. Moreover,
µi`i = 0 as required. Thus is remains only to check that µi = δi−1c′(0)− c′(`1) ≥ 0
when i > n̄. Since i > n̄, it suffices to show that δn̄c′(0) ≥ c′(`1). In view of (15),
this claim is equivalent to δn̄c′(0) ≥ δn̄−1 c′(`n̄), or δc′(0) ≥ c′(`n̄). Regarding this
inequality, recall the definition of s̄ as the largest point in (0, 1] satisfying c′(s̄) ≤
δc′(0). From lemma 7.3 we have `n̄ ≤ s̄. Since c′ is increasing, we conclude that
δc′(0) ≥ c′(`n̄).

This completes the proof that the allocation {`i} defined in the statement of lemma 7.10
is a minimizer in (2). Hence p(s) ≤ p∗(s). We have already shown that the reverse
inequality holds, and hence the first equality in (13) also holds. �

The next result serves mainly to summarize implications and notation.

Corollary 7.11. Let s be any point in [0, 1] and let

(16) p∗(s) := min

{
∞

∑
i=1

δi−1c(`i) : {`i} ∈ R∞
+ and

∞

∑
i=1

`i = s

}
.

If λ∗ and τ∗ are as defined in (7) then

(17) p∗(s) = min
t≤s
{c(s− t) + δp∗(t)} = c(λ∗(s)) + δp(τ∗(s)).

Moreover, if we define {`i} and {ti} by

(18) t0 = s, `i = λ∗(ti−1) and ti = ti−1 − `i

then there exists a finite n ∈ N such that tn = 0, and p∗(ti−1) = c(`i) + δp∗(ti) for
i = 1, . . . , n. Finally, the allocation {`i} is the unique minimizer in (16).

Proof. That p∗(s) = mint≤s{c(s− t)+ δp∗(t)} follows immediately from lemma 7.10,
which tells us that Tp∗ = p∗. The second equality in (17) is immediate from the def-
initions of λ∗ and τ∗. Moreover, since p = p∗ in lemma 7.10, it follows that `p =

λ∗ and tp = τ∗, and hence the “recursive” allocation {`i} defined in lemma 7.10
by `i := `p(ti−1

p (s)) for all i is the same allocation defined in (18). As shown in
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lemma 7.10, this allocation is the minimizer in (16). In the proof of lemma 7.10 it is
also shown that tn = 0 for some finite n.

Finally, to see that the minimizer is unique, consider the functional F on the linear
space of nonnegative sequences R∞

+ defined by F(`) = F({`i}) = ∑∞
i=1 δi−1c(`i).

Let L be the set of ` ∈ R∞
+ such that F(`) < ∞. Evidently any minimizer lives in L.

From strict convexity of c it is easy to show that L is a convex set and F is a strictly
convex function on L. Hence the minimizer is unique. �

7.2. Proofs for Main Results. We are now ready to prove the claims stated in main
section of the paper.

Proof of proposition 3.1. All claims in the proposition follow from corollary 7.11. �

Proof of theorem 3.2. Let p∗ and `∗ be as in the statement of the proposition. Let n∗

be the smallest n ∈ N such that tn = 0 (for existence see corollary 7.11). Let {t∗i }
be defined by t∗0 = 1 and t∗i = t∗i−1 − `∗i . The claim is that (p∗, `∗) is the unique
equilibrium in E in the sense of definition 3.1.

That (p∗, `) ∈ E follows directly from the definitions. That p∗(0) = 0 is immediate
from (16). That p∗(t∗i−1) = c(`∗i )+ δp∗(t∗i ) for i = 1, . . . , n∗ is shown in corollary 7.11.
Regarding the third part of the definition of equilibrium, let `′ be any other feasible
allocation. By corollary 7.11, the function p∗ satisfies p∗(s) = mint≤s{c(s − t) +
δp∗(t)} for all s, and hence, at any given i, the inequality p(t′i)− c(`′i)− δp(t′i+1) ≤ 0
must hold. In fact, since c and p∗ are strictly convex (see lemma 7.1), the minimizer
in mint≤s{c(s− t)+ δp∗(t)} is always unique, and hence p(t′i)− c(`′i)− δp(t′i+1) < 0
at any i where the allocations and transaction stages are not equal. Since `′ 6= `∗,
this must be true at some i. Hence (p∗, `) is an equilibrium as claimed.

Now let’s consider uniqueness. First consider two equilibria in E with the same
price functions p but distinct allocations. By applying condition 3 of the definition
to each of the two allocations, it must be that one firm makes negative profits in
at least one of these allocations. This contradicts condition 2 of the definition (zero
profits). In other words, two equilibria with the same price function must have the
same allocation. Hence it suffices to show that if p is an equilibrium price function
(i.e., if (p, `) is an equilibrium for some feasible allocation `), then p = p∗.

To this end, let p be an equilibrium price function. Fix s ∈ [0, 1]. By the definition
of equilibrium, p is nontrivial, so there exists an allocation ` such that ∑n

i=1 `i =
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s and p(ti−1) ≥ c(`i) + δp(ti) for i = 1, . . . , n. Iterating on this inequality gives
p(s) ≥ c(`1) + δc(`2) + δ2c(`3) + · · · . It now follows from (16) that p(s) ≥ p∗(s).
For the reverse inequality, let {`i} and {ti} be as defined in (18). By corollary 7.11
we have p∗(s) = ∑n

i=1 δi−1c(`i). On the other hand, since p is an equilibrium price
function, the inequality in (1) holds for all t, s with t ≤ s. In particular, p(ti−1) ≤
c(`i) + δp(ti) for i = 1, . . . , n. Iterating on this inequality from i = 1 gives p(s) =

p(t0) ≤ ∑n
i=1 δi−1c(`i). In other words, p(s) ≤ p∗(s). �

Proof of theorem 4.1. That T maps P to itself was shown in lemma 7.7. That T has a
unique fixed point in P was shown in lemma 7.9. That this fixed point is equal to
p∗ was shown in lemma 7.10. The claim that Tn p = p∗ for all n ≥ 1/s̄ follows from
the preceding result and lemma 7.8. �

Proof of proposition 4.2. The first claim in the proposition follows from the previously
established fact that p∗ is the unique fixed point of T in P . Since p∗ ∈ P and the
image under T of any function in P is strictly convex (lemma 7.1), we see that
p∗ = Tp∗ is strictly convex. Letting p = p∗ in lemma 7.5, we see that p∗ is dif-
ferentiable, with (p∗)′(s) = c′(λ∗(s)). Since c and λ∗ are continuous, the latter by
lemma 7.2, and since c′(s) > 0 for all s, the equation (p∗)′(s) = c′(λ∗(s)) implies
that p∗ also continuously differentiable and strictly increasing. Finally, the bounds
c′(0)s ≤ p∗(s) ≤ c(s) are immediate from p∗ ∈P . �

Proof of proposition 4.3. This claim follows directly from corollary 7.11 when we set
s = 1 in the latter. �

Proof of theorem 4.4. We have already shown that (p∗)′(s) = c′(λ∗(s)). The claimed
properties on τ∗ and λ∗ are immediate from lemma 7.2. �

7.3. Comparative Statics. As discussed in section 4.5, a rise in transaction costs
causes prices to rise, the size of firms to increase, and the equilibrium number of
firms to fall. Here is the formal statement:

Proposition 7.12. If δa ≤ δb, then p∗a ≤ p∗b , `a
i < `b

i for all active firms and n∗b ≤ n∗a .

Here p∗a is the equilibrium price function for transaction cost δa, p∗b is that for δb, and
so on. Compare the upper and lower panels in figure 5 to see a these results in a
simulation.
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Proof of proposition 7.12. Let δa ≤ δb. Let Ta and Tb be the corresponding operators.
We begin with the claim that p∗a ≤ p∗b . It is easy to verify that if p ∈ P , then
Ta p ≤ Tb p pointwise on [0, 1]. Since Ta and Tb are order preserving (i.e., p ≤ q
implies Tp ≤ Tq), this leads to Tn

a p ≤ Tn
b p. For n sufficiently large, this states that

p∗a ≤ p∗b . Next we show that the number of tasks carried out by the most upstream
firm decreases when δ increases from δa to δb. Let `a

i be the number of task carried
out by firm i when δ = δa, and let `b

i be defined analogously. Let n = n∗a . Seeking a
contradiction, suppose that `b

n > `a
n. In that case, convexity of c and (3) imply that

c′(`b
n−1) = δbc′(`b

n) > δac′(`a
n) = c′(`a

n−1).

Hence `b
n−1 > `a

n−1. Continuing in this way, we obtain `b
i > `a

i for i = 1, . . . , n. But
then ∑n

i=1 `
b
i > ∑n

i=1 `
a
i = 1. Contradiction.

Now we can turn to the claim that n∗b ≤ n∗a . As before, let n = n∗a , the equilibrium
number of firms when δ = δa. If `b

n = 0, then the number of firms at δb is less than
n = n∗a and we are done. Suppose instead that `b

n > 0. In view of lemma 7.3, we
have δac′(0) ≥ c′(`a

n). Moreover, we have just shown that `a
n ≥ `b

n. Combining these
two inequalities and using δb > δa, we have δbc′(0) ≥ c′(`b

n). Applying lemma 7.3
again, we see that the n-th firm completes the good, and hence n∗b = n∗a . �

Lemma 7.13. If c(`) = eθ` − 1, then the equilibrium number of firms is given by (4).

Proof. Let n = n∗ be the equilibrium number of firms and let r := ln(δ)/θ. From
δc′(`n+1) = c′(`n) we obtain `i+1 = `i − r, and hence `1 = `n + (n− 1)r. It is easy to
check that when c(`) = eθ` − 1, the constant s̄ defined above is equal to r. Applying
lemma 7.3 we get 0 < `n ≤ r. Therefore (n− 1)r < `1 ≤ nr. From ∑n

i=1 `i = 1 and
`1 = `n +(n− 1)r it can be shown that n`1− n(n− 1)r/2 = 1. Some straightforward
algebra now yields−1+

√
1 + 8/r < 2n ≤ 1+

√
1 + 8/r. The expression for n = n∗

in (4) follows. �
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