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Abstract
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study information aggregation by the price–how close the equilibrium prices
are to the full information prices–when the search frictions are small. We
identify circumstances under which prices fail to aggregate information well
even when the search frictions are small. We trace this to a strong form of
the winner’s curse that is present in the sequential search model. The failure of
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1 Introduction

This paper analyzes a sequential search model with asymmetric information of the
common value variety. The main objective is to understand how the combina-
tion of search activity and information asymmetry affects prices and welfare. We
specifically study the extent of information aggregation by the price–how close the
equilibrium prices are to the full information prices–when the search frictions are
small. Roughly speaking, we conclude that information is aggregated less well in the
sequential search model than it is in a standard common value auction. In fact, when
the search frictions are small, the equilibrium prices may be entirely independent of
the common value of the transaction, even when there are exceedingly informative
signals. We trace this failure of information aggregation to a stronger form of the
winner’s curse that is present with sequential search. The stronger winner’s curse is
a central insight of this paper. We also look at the efficiency perspective and relate
the extent of potential inefficiencies to the informativeness of the signal technology
available to the uninformed. In the analysis leading to these results, we develop a
simple measure for the relative informativeness of signals that is finer than what has
been used in the related literature.

The searching agent–the buyer–samples sequentially trading partners–sellers–
for a transaction that involves information asymmetry. For each sampled seller, the
buyer incurs a sampling cost. The buyer has private information about a parameter
(type) w ∈ {1, 2, · · · ,m} that determines the sellers’ cost, cw, where c1 < · · · < cm.
Upon being sampled, a seller observes a noisy signal of the cost but not the buyer’s
search history. Then the buyer and that seller bargain over the price. The outcome
of the bargaining is affected by the seller’s belief that results from updating the com-
mon prior over the buyer’s type with the information contained in being sampled
and in the observed signal. This induces the buyer to search for sellers who would
receive a favorable signal in order to trade at a lower price. The strength of this
incentive and hence the resulting search intensity generally vary across the different
types of the buyer and this feeds back into the sellers’ beliefs. The equilibrium
concept is perfect Bayesian equilibrium. Each agent’s behavior is optimal given the
behavior of others, and sellers’ beliefs are Bayesian updates of the prior given the
signals and the understanding of the buyer’s equilibrium behavior. The effect of the
buyer’s equilibrium search behavior on sellers’ beliefs and, hence, on the price, is
the main element that distinguishes the nature of price formation and information
aggregation in this search environment from that in a related auction environment.

Although our model is not formulated with a specific application in mind, it
provides a general model for a number of important scenarios in economics. One
concrete scenario is that of procurement by an individual (the buyer) who needs a
repair service and searches among potential providers (the sellers). Another scenario
is that of a loan market: The buyer is a potential borrower who seeks funding for
an investment of uncertain quality and the sellers are potential lenders. Finally, our
model also captures the standard examples of “lemons markets,” that is, sales of
objects of uncertain quality by an informed seller. For this interpretation, we have
to only reverse the roles of what we call buyer and sellers.

While this model depicts a single searcher looking for a single transaction, it is
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isomorphic to a two-sided search and matching model where instead of one buyer
there is a population of buyers each of whom behaves like the buyer in our model.
Upon completing their transactions, buyers exit the market, and the market is
kept in steady state by constant flows of new buyers whose types are distributed
independently according to the prior distribution.1 This matching model would not
require a different analysis, simply a straightforward translation of the notation and
prose to the language of two-sided matching models.

Information aggregation by prices is a central problem of the economic theory of
markets.2 In the context of the present model, the price aggregates the information
contained in the sellers’ signals perfectly if the price equals the true cost; the price
does not aggregate any information if it is independent of the true cost. We show
that, when the sampling cost is small, the extent of information aggregation by the
equilibrium price depends on a simple measure of the informativeness of the signal
technology. Let Fw denote the distribution of the signal x on a common support [x, x]
when the buyer is of type w ∈ {1, 2, · · · ,m}. Low realizations of the signal indicate
a higher likelihood of the low cost type–the likelihood ratio fw/fw+1 is decreasing.
We present a simple pairwise measure of relative informativeness λw,w0 , w < w0,
which is related to the rate of change of the likelihood ratio fw(x)

fw0 (x)
near x. We show

that equilibrium prices aggregate the information perfectly when the sampling cost
becomes negligible if and only if λw,w+1 =∞ for all w. This is a stronger condition
than the existence of unboundedly informative signals, limx→x fw(x)/fw+1(x) =∞
for all w. If signals are only boundedly informative, that is, limx→x fw(x)/fw+1(x) <
∞ for all w, the result is complete pooling–the buyer trades at the same price
independent of her type and no information is aggregated at all. This is also the case
when there are unboundedly informative signals, that is, limx→x fw(x)/fw+1(x) =∞
for all w, but λ1,m = 0. A range of intermediate situations lies between these two
extremes and exhibit imperfect information aggregation.

Generically, in a sense that is made precise later, the limit equilibrium price
schedule in the case of unboundedly informative signals has the form depicted in
Figure 1. That is, the set of types is partitioned into “pools” of adjacent types.
If type w is in a pool to itself, it means that, when the buyer is of type w, the
information is aggregated perfectly (in the limit) and the expected equilibrium price
pw is equal to cw. If a pool contains several types, information is not aggregated
perfectly when the buyer is of one of these types and pw = E[cost | type is in pool
with w]. The exact configuration in terms of the number of pools and their sizes is
determined by the λ measures mentioned above and any such shape between perfect
aggregation and complete pooling is possible. The failure of prices to aggregate the
information perfectly is caused by the incentives for higher cost buyer types to mimic
the search behavior of lower cost types, which diminishes the informative value of
signals.

1The large market analog of our model is one of Akerlof-style idiosyncratic uncertainty about
individual buyers’ types.

2The term “information aggregation” is used here to describe the collection of information that is
dispersed among the sellers and the reflection of this information in prices. This is of course related
to the question of whether the equilibrium prices are “pooling” or “separating,” and occasionally we
use these terms as well. However, the term “aggregation” emphasizes the coalescence of dispersed
information, which is the focus of our paper.
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Figure 1: Example with 10 types. Here, types {3, 4, 5} and types {7, 8, 9} are pooled,
while the others are separated.

Let us note in passing that the fact that much of what goes on can be traced
back to the simple and interpretable measure λ is an interesting insight in its own
right.

The basic features of the environment of the present search model resemble those
of a standard common value (procurement) auction. Although there are a number of
differences between the models, the crucial one is between the endogenous sampling
of sellers in the search model and the exogenously fixed set of bidders in the auction
model.3 We compare our results to their counterparts in a setting in which a buyer
conducts a procurement auction (with the same signal structure) and we look at the
case in which the number of bidders is large. Milgrom (1979) and Wilson (1977)
show that the equilibrium winning bid of a common value auction aggregates the
information perfectly (in the limit as the number of bidders increases indefinitely)
if and only if there are unboundedly informative signals. In contrast, as mentioned
above, perfect information aggregation in the search model requires a stronger con-
dition concerning the rate at which the informativeness of signals increases as x→ x.
Indeed, the equilibrium of the search model may exhibit complete pooling in the
limit even when there are unboundedly informative signals. In contrast, the auction
equilibrium never involves complete pooling in the limit, even when signals are only
boundedly informative. In other words, in the counterpart of the above diagram
for the auction, the schedule is always strictly increasing. In this sense, the search
model aggregates information more poorly than the corresponding auction model.
The reason for this difference is that, in the standard auction model, the number of

3This assertion will be discussed later.
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sellers/bidders is fixed and independent of the true cost, whereas in the search model,
this number is endogenous and dependent on the true cost. This exacerbates the
winner’s curse in the search model relative to its counterpart in the corresponding
auction model and impedes the aggregation of information by prices.4

We also consider the welfare implications. In our base model, trade is always
beneficial and always takes place. Hence, welfare coincides with the negative of the
accumulated search costs because the price is just a transfer. We evaluate welfare
in the limit as the sampling cost goes to zero. Generically, the limit equilibrium
is efficient, regardless of the exact form of the pooling regions in the above figure.
This is not an immediate consequence of the negligible sampling cost. In fact, this
is not the case in some non-generic cases that we discuss in the paper. In a variation
on the basic model introduced in Section 7, the volume of trade is also determined
endogenously. Here, imperfect aggregation of information might be translated to
an inefficient volume of trade, so even though the (limit) search cost is zero, the
allocation might be inefficient.

A key feature of the model and the environments it represents is the sellers’
inability to observe the buyer’s history. This is a natural assumption in many
important settings. For example, while lenders are aware that a borrower may
have applied for a loan elsewhere, they do not generally observe how many other
lenders a borrower has contacted before nor what happened in those prior meetings.
Obviously, this leaves out interesting environments in which significant parts of the
searcher’s history are observable.5

This paper is related to three bodies of work. One deals with the question of
information aggregation in the interaction of a large group of players. We have
already mentioned Milgrom (1979) and Wilson (1977) who address this question in
the context of a single unit auction. Feddersen and Pesendorfer (1997) and Duggan
and Martinelli (2001) consider information aggregation in the context of a voting
model, Smith and Sorenson (2000) consider it in the context of social learning,
Pesendorfer and Swinkels (1997) consider it in the context of a multi-unit auction.

Another related body of work deals with search with adverse selection, for exam-
ple, Inderst (2005); Moreno and Wooders (2010); and Guerrieri, Shimer and Wright
(2010). While these papers are not directly related to ours in terms of the model
and questions, they do have in common with our paper the idea that, in a search
model, the distribution of types is determined endogenously. For example, in In-
derst (2005) the distribution of types adjusts to sustain the Rothschild-Stiglitz best
separating outcome as an equilibrium, which would not necessarily be the case for
an arbitrary exogenous distribution of types.

There are a few papers in the intersection of these literatures. Wolinsky (1990)
and Blouin and Serrano (2001) show that, in a two sided search model with binary
signals and actions, information is not aggregated perfectly even as the frictions are
made negligible. Duffie and Manso (2007) and Duffie, Malamud, and Manso (2009)
characterize information percolation in markets where agents truthfully exchange
their information with each other whenever they are matched. However, in our
model the private information is idiosyncratic to each buyer, while those papers

4We discuss an auction model in which the number of bidders is endogenous in Section 8.
5The observability of the history is discussed further in Section 12.
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study private information about a market-wide state of nature.

A third body of the related literature concerns dynamic trade with adverse
selection. One strand studies the separation of quality types through differences
in preferences over the timing and probability of trade. Owing to a single crossing
condition, high quality types trade more slowly. It includes Evans (1989), Vincent
(1989), Deneckere and Liang (2006), and Hörner and Vieille (2009). Another strand
studies the effect of the gradual resolution of uncertainty through public signals,
especially Bar-Isaac (2003), Kremer and Skrzypacz (2007), and Daley and Green
(2012), expanding on Swinkels (1999). In contrast, in our model, types’ preferences
over the timing of trade are identical and we document the limited separability
of types through private signals. Zhu (2012) introduces a finite variation of our
model with recall and studies the resulting trading dynamics. Zhu applies the model
to opaque financial over-the-counter markets. Over-the-counter asset markets are
natural applications of our model, because these markets are typically characterized
by price determination through private bilateral negotiations.

2 The Model and Preliminary Analysis

2.1 The Setup

A single buyer samples sequentially among a large number of sellers in search for
a single transaction. The gross value for the buyer of transacting with one of the
sellers is u and she incurs a sampling cost s > 0 for each seller sampled. The set of
sellers is the interval [0, 1], and the buyer’s draws from this set are independent and
uniformly distributed.

All sellers have identical cost to provide the service. Their common cost depends
on the buyer’s type w ∈ W = {1, 2, · · · ,m} and is denoted by cw, with c1 <
c2 · · · < cm. The prior probability of type w is ρw. The ex-ante expected cost is
E [c] =

P
i∈W ρici. The buyer knows her type w but not the sellers. It is assumed

that u > cm, so that trade is efficient for all types of the buyer. We relax this
assumption later and study c1 < u < cm in Section 7.

Upon meeting the buyer, the seller obtains a signal x ∈ X = [x, x] from a
c.d.f. Fw that depends on the buyer’s type w and has a continuously differentiable
density fw strictly positive on (x, x). A lower signal value indicates a strictly higher
likelihood of lower types–the likelihood ratio fw(x)

fv(x)
is strictly decreasing in x on

(x, x) for all w < v. The distribution of the likelihood ratios is well behaved in
the following sense. First, the (maximal) expected likelihood ratio, E[ f1fm |w = 1] =R x̄
x

f1(x)
fm(x)

dF1 (x), is finite. Second, for all i < j,

lim
x→x

− d
dx

³
fi(x)
fj(x)

´
fi(x)
Fi(x)

exists, allowing it to be∞ as well. We do not view these two conditions as restrictive.
If they rule out anything, it would be a somewhat pathological case.

After a seller is sampled and observed the realization of the signal, bargaining
unfolds: Nature draws a price p ∈ [0, u] from a c.d.f. G that has a continuous density
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g strictly positive on [0, u]. Given the price, the seller decides first whether to accept
the price. If the seller accepts, then the buyer decides whether to accept as well.
Acceptance by both parties ends the game. Rejection by either party terminates
this match and the buyer continues sampling.

The “random proposals” bargaining model has been used in the related literature
by Wilson (2001) and Compte and Jehiel (2010). It provides a robust model of
bargaining with asymmetric information that avoids modeling complications, such
as off-path beliefs, tangential to our focus. We discuss this modeling choice and
alternative bargaining models in Section 10.

Before making the acceptance decision, the sampled seller observes both the
signal and the price, but does not observe anything else about the history of the
game. In particular, the seller does not observe how many other sellers the buyer has
sampled before. The buyer observes the price, and she knows her private history.
We assume that the buyer does not observe the seller’s signal. However, nothing
depends on this assumption.

A history of the process up to a certain point records the sequence of all signal
realizations, prices, as well as the acceptance decisions by the buyer and all the
sellers she has encountered up to that point. A terminal history is a history that
ends with a trade or an infinite history with no trade.6

A finite terminal history determines a terminal outcome
¡
nt, pt, xt, jt

¢
, where

pt, xt, jt are the price, signal, and the identity of the seller in the terminal trade,
and nt is the number of sellers sampled throughout.

Buyer type w’s payoff after a finite terminal history is

ub
¡
nt, pt, xt, jt, w

¢
= u− pt − nts;

the payoff after an infinite history is −∞.
Seller jt’s payoff from transacting with buyer type w is

pt − cw.

Payoffs are zero for all other sellers.
A pure strategy for seller j is an acceptance set of prices Aj (x) ⊂ [0, u] for each

signal value since the current signal is all the seller observes. A pure strategy for a
buyer with type w is an acceptance set for any history ϕ, denoted Bw (ϕ) ⊂ [0, u].

The profile (B,A) = ((Bw)w∈W , (Aj)j∈[0,1]) together with the prior over the set
of types W induce a distribution on the set of terminal histories and, hence, over
terminal outcomes. The expected payoff of the buyer is

Vw (B,A) = E
£
ub
¡
nt, pt, xt, jt, w

¢
|w;B,A

¤
= u−E

£
pt|w;B,A

¤
−sE

£
nt|w;B,A

¤
,

where the expectation is with respect to the said distribution.
We assume that the sampling costs are small enough such that

u ≥
Z u

cm

p
dG (p)

1−G (cm)
+

s

1−G (cm)
. (1)

6Formally, a history is a sequence [w, ji, xi, pi, α
S
i , α

B
i

t

i=1
], where ji is the identity of the i’th

seller sampled, xi and pi are the signal and the price realizations in the encounter with ji, and αSi
and αBi denote the acceptance decisions of the seller and the buyer at that encounter. The equality
αSi = αBi ="accept" may hold only if i = t and in such a case it is a terminal history.
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Thus, the buyer’s payoff is positive even if the sellers accept only prices that are
above cm.

Let Π(w|j, x;B,A) denote seller j’s belief that the buyer’s type is w, conditional
on the event that seller j is sampled and observes signal x, when the strategy profile
is (B,A).
Equilibrium. The solution concept is perfect Bayesian equilibrium consisting of a
strategy profile, B = (Bw)w∈W and A =(Aj)j∈[0,1] and probability Π(w|j, x;B,A)
such that: (i) after any history ϕ, Bw maximizes the expected payoff of the buyer of
type w given A. (ii) for any signal realization x, Aj(x) maximizes seller j’s expected
profit given B and Π(w|j, x;B,A). (iii) Π(w|j, x;B,A) is consistent with Bayesian
updating in an environment with atomless random variables.

2.2 Equilibrium Strategies and Beliefs

Buyer’s equilibrium strategy. Recall that, given a strategy profile (B,A), the
buyer’s interim expected payoff before any sampling takes place is Vw (B,A). If the
buyer’s acceptance strategy is optimal at all histories, then the expected continuation
payoff is stationary. This is because the distribution of price offers and signals in
the future and the acceptance decisions of sellers depend on neither the history of
the game nor on the number of periods. It follows that the buyer’s optimal decision
is to accept a price following any history if and only if p ≤ u − Vw (B,A).7 Thus,
Bw(ϕ) = [0, u− Vw (B,A)]. That is, the buyer’s equilibrium strategy is stationary
and described by a cutoff, u− Vw (B,A). Therefore, we omit the argument ϕ from
now on and write Bw(ϕ) = Bw.

Sellers’ equilibrium strategy. In equilibrium, a seller has a real decision to make
only for prices that are acceptable to some type of the buyer, p ∈ ∪Bw. LetW (p) =
{w| p ∈ Bw} be the set of types that accept price p and let E [c|j, x,W (p);B,A]
denote the expected cost of seller j conditional on: (i) being sampled, (ii) observing
signal x, and (iii) w ∈W (p) ⊆W , given the strategy profile (B,A). If W (p) 6= ∅,

E [c|j, x,W (p);B,A] =

P
w∈W (p))

Π(w|j, x;B,A)cwP
w∈W (p)

Π(w|j, x;B,A) . (2)

Optimality of Aj(x) for p ∈ ∪Bw requires that p ∈ Aj(x) if and only if p ≥
E [c|j, x,W (p);B,A]. In particular, if p > cm, then p ∈ Aj(x) for all x and all j.

Since Π(w|j, x;B,A) and, hence, E [c|j, x,W (p);B,A] are shown below to be
independent of j, it follows that for p ∈ ∪Bw the optimal acceptance strategy is
independent of j, and we denote it by A (x).8 If p /∈ ∪Bw, then any acceptance
decision is optimal. To simplify the exposition, we assume for p /∈ ∪Bw that,
if p < c1, then p /∈ A(x) for all x and, if p > cm, then p ∈ A(x) for all x. This
assumption has no consequences for the equilibrium outcome. Since all sellers use the

7Here and in the following, we ignore the multiplicity of optimal acceptance rules at prices at
which either the buyer or the seller is indifferent. Behavior at such prices is inessential because
such prices occur with zero probability.

8Aj might differ across sellers for p /∈ ∪Bw, but sellers’ acceptance decisions for such prices are
irrelevant.
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same strategy in equilibrium, we identify the strategy profile A with the individual
strategy A and will use A to denote the profile as well.

Equilibrium beliefs. Owing to the nature of the equilibrium strategies, the interim
probability Π(w|j, x,B,A) takes a particularly simple form. Let

nw (B,A) = E
£
nt|w;B,A

¤
,

the expected number of sellers that are sampled by type w. Then,

Π(w|j, x;B,A) = ρwfw (x)nw (B,A)
mP
i=1

ρifi (x)ni (B,A)
. (3)

We show that (3) is the natural extension of Bayes’ formula to the present environ-
ment in which any realization of x and any particular seller being drawn are both
zero probability events. Of course, conditioning on the realization of a signal from
an atomless distribution with a continuous density is entirely standard. Therefore,
if it were just the signal x, we could have simply stated the posterior using the
densities fw as in (3) without further comment.

Updating conditional on a particular seller being sampled is less standard. It
is analogous to the inference problem of players in games with population uncer-
tainty, which have been studied by Myerson (1998) and Milchtaich (2004).9 Their
approaches differ from each other but they give an identical answer in our model.
Myerson (1998) derives the posterior of the players about the state of the world con-
ditional on being called upon to play the game, by considering the limit of sampling
from a large but finite number of potential players. Milchtaich (2004) directly stud-
ies the conditional probabilities derived from a suitably defined stochastic process
on the continuum, using techniques developed in the theory of point processes. We
present next a simple argument in the spirit of Myerson’s approach, and we verify
this derivation using Milchtaich’s approach in the appendix.

Suppose there is a finite numberN of sellers but that behavior is described by sta-
tionary and symmetric acceptance strategies, B and A.10 Given these strategies, let
ψw = Pr [{(x, p) : p /∈ Bw ∩A (x)} |w] be the probability that an encounter between
buyer type w and a seller ends with disagreement. Note that nw (B,A) = 1

1−ψw .
If the buyer samples uniformly without replacement from N sellers with success
probability 1− ψw, then seller j is sampled with probability

Pr [j sampled|w; N ] =
1

N
+

N − 1
N

ψw

N − 1 + ...+
N − 1
N

N − 2
N − 1 ...

1

2
ψw

N−1

=
nw (B,A)

N

¡
1− ψw

N
¢
.

9 In these games, the number of players is uncertain and the uncertainty may depend on a state
of the world. Players infer about the state of the world from being called to play. The probability
that any particular player is drawn is zero because the potential number of players in these games
is unbounded.
10 In the appendix, we also allow the sellers’ strategies to be not symmetric.
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Therefore, the posterior probability conditional on seller j being sampled when there
are N sellers is

Pr [w|j sampled, x; N ] =
ρwfw(x)

nw(B,A)
N

¡
1− (ψw)

N
¢

mP
i=1

ρifi (x)
ni(B,A)

N (1− (ψi)
N)
−→
N→∞

ρwfw (x)nw (B,A)
mP
i=1

ρifi (x)ni (B,A)
.

Thus, (3) approximates the Bayesian Posterior in a large market.

Since the sellers’ posterior is independent of j, we will write from here on
Π(w|x;B,A) suppressing j. Thus, when conditioning on a signal realization, we
implicitly also condition on the event that a seller was sampled.

The compound likelihood ratio. Expression (3) can be written as

Π(w|x;B,A) =
ρw
ρm

fw(x)
fm(x)

nw(B,A)
nm(B,A)

m−1P
i=1

ρi
ρm

fi(x)
fm(x)

ni(B,A)
nm(B,A)

+ 1

.

The compound likelihood ratio ρi
ρj

fi(x)
fj(x)

ni(B,A)
nj(B,A)

between w = i and w = j is a product

of the prior likelihood ratio ρi
ρj
, the signal likelihood ratio fi(x)

fj(x)
, and the sampling

likelihood ratio ni(B,A)
nj(B,A)

. Since the compound likelihood ratio will appear repeatedly
in the derivations that will follow, it will be convenient to dedicate to it a special
symbol,

ηij (x;B,A) =
ρi
ρj

fi (x)

fj (x)

ni (B,A)

nj (B,A)
. (4)

Thus, Π(w|x;B,A) = ηwm(x;B,A)

1+
m−1

i=1
ηim(x;B,A)

and the expected interim cost defined in (2)

for W (p) =W is

E [c|x,W ;B,A] =

cm +
m−1P
i=1

ηim (x;B,A) ci

1 +
m−1P
i=1

ηim (x;B,A)

. (5)

Notice that ηij (x;B,A) and, hence, Π(w|x;B,A) and E [c|x,w ≥ 1;B,A] depend
on the strategies only through the ratios ni(B,A)

nj(B,A)
.

2.3 Equilibrium Behavior, Payoffs, and Equilibrium Existence

Given a strategy profile (B,A), denote the set of signal-price pairs that result in
trade given type w by

Ωw(B,A) = {(x, p) : p ∈ Bw ∩A (x)} .

To streamline the notation from now on we omit the arguments (B,A) and write Ωw,
nw, ηij , Vw, Π(w|x) and E [c|x,W (p)] with the understanding that these magnitudes
depend on the strategy profile.
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Given a set Q of signal-price pairs, Γw (Q) = (Fw ×G) (Q) denotes the probabil-
ity that an individual meeting between a seller and buyer type w yields a realization
(x, p) ∈ Q. Thus, the probability that an individual meeting between a seller and
buyer type w ends in trade is

Γw (Ωw) =

ZZ
(x,p)∈Ωw

g (p) fw (x) dp dx. (6)

The expected number of sampled sellers is

nw = E
£
nt|w

¤
=

1

Γw (Ωw)
. (7)

Therefore, type w’s expected search cost is

Sw = nws =
s

Γw (Ωw)
. (8)

The price conditional on trading is pw = E
£
pt|w

¤
, with

pw = E(x,p) [p| (x, p) ∈ Ωw, w] =
ZZ

(x,p)∈Ωw
pg (p)

fw (x)

Γw (Ωw)
dp dx. (9)

The interim expected payoff of the buyer is

Vw = u− pw − Sw. (10)

Lemma 1 In every equilibrium:

1. Vw is strictly decreasing in w.

2. Up to irrelevant differences,11 acceptance strategies are given by

Bw = [0, u− Vw] ,

A (x) =
m[
i=1

[E [c|x,w ≥ i] , u− Vi] .

A lower buyer’s type generates better signals and qualifies for lower prices, hence
the monotonicity of Vw. Given the monotonicity of Vw, the characterization of the
acceptance strategies follows from our previous discussion. The lemma is proved in
the appendix. From here on out, the proofs are in the appendix unless otherwise
specified.

In general, the sellers’ acceptance strategies are not cutoff strategies. For ex-
ample, if u − Vi < E [c|x,w ≥ i+ 1] for some type i, then there is a gap in the set
of equilibrium prices–no trade takes place at prices that are between u − Vi and
E [c|x,w ≥ i+ 1]. Type i+1 and those above may be willing to trade at such prices,
but sellers reject since transacting with those types at those prices involves a loss.
Figure 2 illustrates the acceptance strategies and the regions of mutually acceptable
prices.
11The “irrelevant difference” concern zero probability events and the description of sellers’ ac-

ceptance decisions for prices that all types of the buyer will reject.
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Figure 2: Acceptance strategies and the sets (Ωi)4i=1.

In the figure, Ω1 = Ω2, although buyer type 2 is willing to also accept prices in
the interval (u− V1, u− V2]. However, these prices are unacceptable to sellers since
they are below E [c|x,w ≥ 2]. The set Ω3 is the union of the two lower shaded areas
while the set Ω4 is the union of all three shaded areas.

The recursive structure of the sets Ωi that is evident from the figure is a general
implication of Lemma 1, that is,

Ω1 = {(x, p) : p ∈ [E [c|x,w ≥ 1] , u− V1]} (11)

Ωi+1 = Ωi ∪ {(x, p) : p ∈ [E [c|x,w ≥ i+ 1] , u− Vi+1]} . (12)

In particular, Ω1 = Ω2 = · · · = Ωm if Vm ≥ u−E [c|x,w ≥ 2].
The system (3), (7), (8), (9), (10), (11), and (12) fully determines the equilib-

rium. The sets Ωw determine the Vw’s and nw’s. The nw’s determine E [c|x,w ≥ i]
which together with the Vw’s determine the Ωw’s. A standard fixed-point argument
proves that this system has a solution and, hence, existence of an equilibrium.

Proposition 1 An equilibrium exists.

The proof in the appendix utilizes the notation introduced in the following sub-
section.

2.4 The Cutoff Signals ξi
There are cutoff signals x < ξ1 ≤ ξ2 ≤ · · · ≤ ξm ≤ x̄ such that a buyer having type
i trades only if x ≤ ξi. This subsection rewrites the description of the equilibrium
behavior provided above in terms of these cutoffs. This notation is not required for

11



the statement of the main results but is useful for the proofs of Proposition 1 and
subsequent results. The cutoffs are defined by

ξi =

½
x̄ if u− Vi > E [c|x̄, w ≥ i] ,

ξi−1 if u− Vi < E
£
c|ξi−1, w ≥ i

¤
,

and, otherwise, if E
£
c|ξi−1, w ≥ i

¤
≤ u− Vi ≤ E [c|x̄, w ≥ i], the cutoff ξi solves

u− Vi = E [c|ξi, w ≥ i] .

These cutoffs determine the set of mutually acceptable prices. If type i realizes
a signal x ∈ (ξj−1, ξj ], j ≤ i, trade takes place if the realized price p satis-
fies E [c|x,w ≥ j] ≤ p ≤ u − Vj or E [c|x,w ≥ j + 1] ≤ p ≤ u − Vj+1 or ... or
E [c|x,w ≥ i] ≤ p ≤ u− Vi. Thus,

Ωi = Ωi−1 ∪ {(x, p) : x ≤ ξi and p ∈ [E [c|x,w ≥ i] , u− Vi]} , (13)

with Ω0 = ∅. The trading probability of type i when following type ’s acceptance
strategy is

Γi (Ω ) =
X
j=1

Z ξj

x
(G (u− Vj)−G (max {E [c|x,w ≥ j] , u− Vj−1})) fi (x) dx, (14)

with V0 = u. Using the ξj ’s and (14) to rewrite Sw =
s

Γw(Ωw)
, the expected payoffs

(10) can be rearranged and written as

s =
iX

j=1

Z ξj

x

ÃZ u−Vj

max{E[c|x,w≥j],u−Vj−1}
(u− Vi − p) g (p) dp

!
fi (x) dx. (15)

3 Information Aggregation: Summary of Results

We study the extent to which information is aggregated into the equilibrium prices
when sampling costs are small. Aggregation is maximal if the price that each buyer
type pays is equal to its cost. Aggregation is minimal when all buyer types pay the
same price. Formally, consider a sequence of sampling costs

©
sk
ª∞
k=1

with

lim
k→∞

sk = 0,

and a sequence of equilibria
©¡
Bk, Ak

¢ª∞
k=1

associated with it. The superscript k
indicates magnitudes arising in equilibrium

¡
Bk, Ak

¢
. So, we use V k

w , S
k
w, n

k
w, E

k,
Ωkw, etc. Recall that S

k
w is the expected total search cost paid by type w and pkw is

the expected price. We denote their limits as

pw = lim
k→∞

pkw and Sw = lim
k→∞

Sk
w.

Here and elsewhere, when we speak about limits we mean over any subsequence for
which they exist. The following analysis investigates pw and Sw.
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3.1 Boundedly Informative Signals

In the case of boundedly informative signals,

lim
x→x

fi (x)

fi+1 (x)
<∞ ∀i ∈W , (16)

even the most favorable signal carries only limited information. In this case, when
the sampling cost is small, the outcome is complete pooling. In the limit equilibrium,
for every type of the buyer, the expected total search cost is zero, and the expected
price is equal to the ex-ante expected cost, E [c].

Proposition 2 Suppose that limx→x
fi(x)

fi+1(x)
<∞ for all i; then:

1. Sw = 0 ∀w ∈W ,

2. pw = E [c] ∀w ∈W.

The proof is in Section 4 below. The intuition is that the bounded likelihood ratio
implies that it is at most f1(x)

fm(x)
times more costly for the highest cost type w = m

to wait for the best signals as it is for the lowest cost type w = 1. As we show, the
search cost of the lowest type becomes negligible as sk becomes small. Therefore, the
expected search cost of a buyer having type m who mimics the acceptance strategy
of a type 1 is also negligible. Thus, these types must end up paying the same price
in the limit.

3.2 Unboundedly Informative Signals: Characterization

In the case of unboundedly informative signals,

lim
x→x

fi (x)

fi+1 (x)
=∞ ∀i ∈W , (17)

signals close to x separate any two types. The main result is that generically, the
limit equilibrium has the general form shown in Figure 1 in the introduction. That
is, the set of the buyer types is partitioned into “pooling regions” comprised of
adjacent types. All types in each pooling region pay the same expected price equal
to the expected cost of the types in the pool. In particular, if type w is in a region
by itself its expected price is cw. In addition, all types incur zero expected search
costs. To state this result formally, we introduce the following two ingredients.

First, for any pair of types (i, j), i < j, let

λij = lim
x→x

− d
dx

³
fi(x)
fj(x)

´
fi(x)
Fi(x)

; (18)

which may be any value in [0,∞]. Recall that, by assumption, this limit exists.
Observe that λij is a measure of informativeness–it captures the rate at which the
signal’s ability to distinguish type i from j normalized by the hazard rate fi

Fi
improves

as x → x. A larger λij means that this ability increases more sharply as x → x.
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For boundedly informative signals, that is, limx→x
fi(x)
fj(x)

< ∞, λij = 0; a λij > 0

requires limx→x
fi(x)
fj(x)

=∞. However, limx→x
fi(x)
fj(x)

=∞ is not sufficient for λij > 0.
The measure λ plays an important role in the characterization of equilibrium and
is one of the main innovations of this paper. It will be discussed in more detail in
Section 9. It is shown there that for every signal distribution that is in a specific
sense “generic,”

λij ∈ {0,∞} if i < j. (19)

Second, let a partitional configuration be a partition (I (r))Rr=1 ofW into adjacent
sets of consecutive types (“pools”), I (r) =

©
I (r) , I (r) + 1, · · · , Ī (r)

ª
, which start

at I (1) = 1 and I (r) = Ī (r − 1)+ 1. The expected cost conditional on a type from
a pool I ⊂W is E [c|w ∈ I] = i∈I ρici

i∈I ρi
.

Proposition 3 Suppose that limx→x
fi(x)
fi+1(x)

= ∞ for all i and λij ∈ {0,∞} for all
i < j. Let (I (r))Rr=1 be the partitional configuration defined by

Ī (r) =

½
I (r) if λI(r),I(r)+1 =∞,
max

©
i ∈W | λI(r),i = 0

ª
if λI(r),I(r)+1 = 0;

then:

1. Sw = 0 ∀w ∈W ,

2. p̄w = E [c|w ∈ I (r)] ∀w ∈ I(r), r ∈ {1, ..., R}.

That is, when λij ∈ {0,∞}, then the last element Ī (r) of a non-singleton “pool”
is the largest type such that λI(r),I(r)+1 = 0. The limit prices aggregate the infor-
mation perfectly in the sense that p̄w = cw for all w if and only if all the elements of
the partition are singletons. Thus, information is perfectly aggregated if and only if
λw,w+1 =∞ for all w.

If λ1,m = 0, then the partition has a single element, the entire type set W .
Hence, in the limit, there is complete pooling and the limit price is equal to the
ex-ante expected costs, p̄w = E [c] for all w.

Proposition 3 is proved in two stages over the following two sections. First,
we state and prove Proposition 4 that establishes the partitional structure of the
equilibrium without reference to the measure λ. Then in Section 5, we relate the
structure of the equilibrium partition to the informativeness measure λ and complete
the proof.

Proposition 4 If limx→x
fi(x)
fi+1(x)

= ∞ for all i, there is a partitional configuration

(I (r))Rr=1 such that

p̄I(r) = · · · = p̄Ī(r)−1 =

PĪ(r)−1
i=I(r) ρici + α(r)ρĪ(r)cĪ(r)PĪ(r)−1

i=I(r) ρi + α(r)ρĪ(r)

,

p̄Ī(r) = α(r)p̄I(r) + (1− α(r))cĪ(r),
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with α (r) = lim
k→∞

ΓĪ(r)(Ω
k
I(r)

)

ΓĪ(r)(Ω
k
Ī(r)

)
> 0 and

SI(r) = · · · = S Ī(r)−1 = 0,

S Ī(r)

(
= α(r)

h
cĪ(r) − p̄I(r)

i
if α(r) < 1,

≤ cĪ(r) − p̄I(r) if α(r) = 1.

Roughly speaking, if α(r) = 1, all types w ∈ I (r) trade at the same set of
signal-price combinations ΩkI(r) at a price equal to the expected cost conditional
on w ∈ I (r). If 0 < α (r) < 1, then type Ī (r) “mixes” between searching for
(x, p) ∈ ΩkI(r) and trading at a price close to its true cost. In the latter case,

“mixing” requires that the search cost for Ī (r) to find (x, p) ∈ ΩkI(r) are equal to
the expected price improvement, p̄I(r) − cĪ(r).

12 The proof of the proposition is in
Section 4 below.

4 Proofs of Propositions 2 and 4

This section provides a general characterization of the limit equilibrium outcome,
which is then used to prove Proposition 2, for boundedly informative signals, and
Proposition 4, for the unbounded case. Section 5 uses the λ measure to tighten this
characterization and complete the proof of Proposition 3.

Two observations are critical for the characterization. The first lemma says that
the set of signals [x, ξki ] after which type i < m trades shrinks to the bottom of the
support.

Lemma 2 lim
k→∞

ξki → x for all i < m.

This result is intuitive, since, when the search cost is lower, the buyer has a
stronger incentive to search for a seller who receives a lower signal. The proof is
not immediate, however, because the interim expected cost, and, hence, the search
incentive is determined endogenously.

The second lemma says that all types i ≥ j that end up with a trade from
Ωkj \Ωkj−1 pay in expectation the same price in the limit and this price is equal to
the expected cost of a seller who observes the cutoff signal ξkj .

Lemma 3 If Ωkj\Ωkj−1 6= ∅ for all k, then for all i ≥ j,

lim
k→∞

E
h
p| (p, x) ∈

³
Ωkj\Ωkj−1

´
, w = i

i
= lim

k→∞
Ek
h
c|ξkj , w ≥ j

i
.

If the informativeness of the signals is bounded, this Lemma is immediate from
the previous observation. This is because the set of signals such that (x, p) ∈
Ωkj \Ωkj−1 shrinks to x as k → ∞, so that the interim expected cost is essentially

12We say “mixing” since Ī (r) is using a pure strategy, so the “mixing” is purified by having an
appropriate set of signal and price realizations after which Ī (r) trades at prices close to cĪ(r).
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constant on [x, ξkj ]. The proof is not immediate if the informativeness of the signals
is unbounded.

Lemmas 2 and 3 imply a number of observations that are used in the subsequent
characterization results. The following corollary collects these observations.

Corollary 1 i. pj =
Pj

i=1 lim
Γj(Ωki \Ωki−1)

Γj(Ωkj )
limEk

£
c|ξki , w ≥ i

¤
;

ii. If lim
Γj(Ωkj−1)
Γj(Ωkj )

= 0, then Sj = 0. In particular, S̄1 = 0;

iii. If Sj > 0 and limx→x
fj(x)
fj+1(x)

=∞, then lim Γj+1(Ωkj )
Γj+1(Ωkj+1)

= 0 and Sj+1 = 0;

iv. If Sj+1 = 0 and lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

> 0, then lim pj+1 = lim pj, lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

= 1

and Sj = 0;

v. If lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

> 0 and lim pj+1 > lim pj, then Sj+1 > 0;

vi. If Sj = 0 and limx→x
fj(x)
fj+1(x)

<∞, then lim Γj+1(Ωkj )
Γj+1(Ωkj+1)

= 1 and Sj+1 = 0.

Proof of Corollary 1: (i) follows from

E
h
p| (p, x) ∈ Ωkj , w

i
=

jX
i=1

Γj
¡
Ωki \Ωki−1

¢
Γj

³
Ωkj

´ E
h
p| (p, x) ∈

³
Ωki \Ωki−1

´
, w = j

i
,

pj = E
h
p| (p, x) ∈ Ωkj , w = j

i
and Lemma 3.

(ii) lim
Γj(Ωkj−1)
Γj(Ωkj )

= 0 and (i) imply together pj = limEk
£
c|ξkj , w ≥ j

¤
. The

definition of ξj and Lemma 2 imply limV k
j ≥ u − limEk

£
c|ξkj , w ≥ j

¤
. Since also

limV k
j = u− pj − Sj , it follows that Sj = 0.
(iii)

Sj+1 = lim
sk

Γj+1

³
Ωkj+1

´ = lim Γj

³
Ωkj

´
Γj+1

³
Ωkj+1

´ sk

Γj

³
Ωkj

´ (20)

≥ lim
fj
¡
ξj
¢

fj+1
¡
ξj
¢ lim Γj+1

³
Ωkj

´
Γj+1

³
Ωkj+1

´Sj

where the inequality follows from Γj
³
Ωkj

´
≥ fj(ξj)

fj+1(ξj)
Γj+1

³
Ωkj

´
which is implied by

(14). Since Sj > 0, lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

> 0 would imply Sj+1 = ∞ in contradiction to
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the optimality of type (j + 1)’s behavior. Therefore, lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

= 0 and by (ii)

Sj+1 = 0.

(iv) Using (20), Sj+1 = 0 and lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

> 0 imply Sj = 0. Now,

V k
j+1 ≥ E(p,x)[u− p| (p, x) ∈ Ωkj , w = j + 1]− sk

Γj+1

³
Ωkj

´ ≥ V k
j −

sk

Γj+1

³
Ωkj

´ (21)

where the first inequality follows from the optimality of type j + 1’s strategy and
the second inequality follows from (u− p) ≥ V k

j for all p s.t. (p, x) ∈ Ωkj . Now,

(21) and lim sk

Γj+1(Ωkj )
= Sj/ lim

Γj+1(Ωkj )
Γj+1(Ωkj+1)

= 0 together imply limk→∞ V k
j+1 ≥

limk→∞ V k
j . Since Lemma 1 implies limk→∞ V k

j+1 ≤ limk→∞ V k
j , we have u −

pj+1 = limk→∞ V k
j+1 = limk→∞ V k

j = u − pj . Therefore, lim pj = lim pj+1and

lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

= 1.

(v) It may not be that Sj+1 = 0, since it would contradict (iv).
(vi) From (21),

V k
j+1 ≥ V k

j −
Γj

³
Ωkj

´
Γj+1

³
Ωkj

´ sk

Γj

³
Ωkj

´ . (22)

Using (14), we have

Γj

³
Ωkj

´
Γj+1

³
Ωkj

´ (23)

=

jP
i=1

R ξi
x (G (u− Vi)−G (max {E [c|x,w ≥ i] , u− Vi−1})) fj (x) dx

jP
i=1

R ξi
x (G (u− Vi)−G (max {E [c|x,w ≥ i] , u− Vi−1})) fj+1 (x) dx

≤ lim
x→x

fj(x)

fj+1(x)
<∞,

where the second inequality follows from the MLRP and limx→x
fj(x)
fj+1(x)

<∞. Now,
(22), (23) and limk→∞

sk

Γj(Ωkj )
= Sj = 0 together imply limk→∞ V k

j+1 ≥ limk→∞ V k
j .

Since Lemma 1 implies limk→∞ V k
j+1 ≤ limk→∞ V k

j , we have limk→∞ V k
j+1 = limk→∞ V k

j .
This means lim pj = lim pj+1 + Sj+1 ≥ lim pj , from Sj = 0 and p̄j+1 ≥ p̄j from

MLRP. Therefore, lim pj = lim pj+1, Sj+1 = 0 and lim
Γj+1(Ωkj )
Γj+1(Ωkj+1)

= 1. ¤

Proof of Proposition 2: From Parts (i), (ii), and (vi) of Corollary 1, pj =

limEk
£
c|ξk1, w ≥ 1

¤
and Sj = 0 for all j. From MLRP and from lim

Γj(Ωk1)
Γj(Ωkj )

= 1

for all j (from Part (vi)),

limEk
h
c|ξk1, w ≥ 1

i
≥ limEk

h
c|(x, p) ∈ Ωk1

i
=

mX
i=1

ρici.
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The inequality may not be strict since this would imply limEk
£
c|ξk1, w ≥ 1

¤
>

limE
£
p| (p, x) ∈ Ωk1, w = 1

¤
, contrary to Lemma 3. Therefore, pj = limEk

£
c|ξk1, w ≥ 1

¤
=Pm

i=1 ρici, as claimed. ¤
Proof of Proposition 4: The proof is an immediate application of Corollary

1. Let I (1) = 1 and Ī (1) be the smallest r ≥ 1 such that lim Γr+1(Ωkr)
Γr+1(Ωkr+1)

= 0. This

implies that, for r ≤ Ī (1), limEk
£
c|ξkr , w ≥ r

¤
= limEk

£
c|ξk1, r ≤ w ≤ Ī (1)

¤
. By

Corollary 1-(ii),(iii)&(iv) Sr = 0, for all r < Ī (1),
Γr+1(Ωkr)
Γr+1(Ωkr+1)

= 1 and p̄r+1 = p̄r,

and for all r < Ī (1)− 1. Using these observations and Corollary 1-(i)

pr =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
limEk

£
c|ξk1, 1 ≤ w ≤ Ī (1)

¤
for r < Ī (1)

lim
ΓĪ(1)(Ωk1)

ΓĪ(1) Ωk
Ī(1)

limEk
£
c|ξk1, 1 ≤ w ≤ Ī (1)

¤
+ lim

ΓĪ(1)(Ωk1)
ΓĪ(1) Ωk

Ī(1)

limEk
h
c|ξkĪ(1), w = Ī (1)

i for r = Ī (1)

Let α(1) = lim
ΓĪ(1)(Ωk1)

ΓĪ(1) Ωk
Ī(1)

. Obviously,

limEk
h
c|ξk1, 1 ≤ w ≤ Ī (1)

i
≥ limEk

h
c|(x, p) ∈ Ωk1

i
=

PĪ(1)−1
i=I(1) ρici + α(1)ρĪ(1)cĪ(1)PĪ(1)−1

i=I(1) ρi + α(1)ρĪ(1)

The inequality may not be strict since this would imply limE
£
p| (p, x) ∈ Ωk1, w = 1

¤
<

limEk
£
c|ξk1, 1 ≤ w ≤ Ī (1)

¤
, contrary to Lemma 3. Therefore,

pr =

PĪ(1)−1
i=I(1) ρici + α(1)ρĪ(1)cĪ(1)PĪ(1)−1

i=I(1) ρi + α(1)ρĪ(1)

for r < Ī (1)

Next observe that limEk
h
c|ξkĪ(1), w = Ī (1)

i
= cĪ(1). Therefore, p̄Ī(1) = α(1)p̄I(1) +

(1− α(1))cĪ(1).
Finally, u− cĪ(1) ≤ limVĪ(1) = u−pĪ(1)−S Ī(1) with equality if α(1) < 1. Substi-

tuting for p̄Ī(1) from above and rearranging, it follows that S Ī(1) ≤ α(1)
h
cĪ(1) − p̄I(1)

i
,

with equality α(1) < 1.
If Ī (1) < m, let I (2) = Ī (1)+1. By Corollary 1-(ii), SI(2) = 0. The construction

of the set {I (2) , · · · , Ī (2)} is identical to the construction above and so on for any
r > 1. ¤

5 Using λ to Characterize Pools

For the subsequent analysis, observe that, for i < j < ,

λi = lim
x→x

− d
dx

³
fi(x)
fj(x)

fj(x)
f (x)

´
fi(x)
Fi(x)

= lim
x→x

− d
dx

³
fi(x)
fj(x)

´
fi(x)
Fi(x)

fj (x)

f (x)
+ lim

x→x

− d
dx

³
fj(x)
f (x)

´
fj(x)
Fj(x)

Fi (x)

Fj (x)
.

(24)
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Therefore, if either λij > 0 or λi > 0 then λi = ∞, since both fj(x)
f (x) and

Fi(x)
Fj(x)

go
to ∞. For λi <∞, it is necessary that λij = λj = 0.

The following proposition shows how λij shapes the partitional configuration of
Propositions 4. It applies to any value of the λij ’s without the genericity qualifica-
tion.

Proposition 5 Let
©
I, · · · , Ī

ª
be any element of the partition described in Propo-

sition 4; then:

i. If I < i < Ī, then λIi = 0.

ii. λIĪ <∞.

iii. If Ī < m, then λI,Ī+1 > 0.

iv. If I = Ī, then λI,Ī+1 =∞.

Recall that ηkji(x) =
ρj
ρi

fj(x)
fi(x)

nkj
nki
. The following Lemma provides a key magnitude:

the (limit) search cost for a type q > I who mimics the acceptance strategy of type
I.

Lemma 4 (i) If I < q, then

lim
k→∞

sk

Γq(ΩkI )
≤ λIq

ĪX
j=I+1

(cj − cI) lim
k→∞

ηkjI(ξ
k
I )Ã

ĪP
j=I+1

ηkjI(ξ
k
I ) + 1

!2
(ii) If I < q ≤ Ī, then

lim
k→∞

sk

Γq(ΩkI )
≥ λIq(cq − cI) lim

k→∞

ηkqI(ξ
k
I )Ã

ĪP
j=I+1

ηkjI(ξ
k
I ) + 1

!2 .
The proof of Lemma 4 is relegated to the appendix.

Proof of Proposition 5. Consider a pool
©
I, · · · , Ī

ª
. By the definition of a

pool, lim
k→∞

ΓI ΩkI−1

ΓI ΩkI
= 0. In addition, for any q > Ī, lim

k→∞
Γq(ΩkĪ)
Γq(Ωkq)

= 0 and, for all

j ∈
©
I, · · · , Ī

ª
, lim
k→∞

Γj ΩkI

Γj(Ωkj )
> 0. It also follows from the definition of a pool that

lim
k→∞

ηkjI(ξ
k
I )

½
∈ (0,∞) if I < j ≤ Ī,
= 0 if j > Ī.

Thus, for any q ∈ {I + 1, · · · , Ī}, the right side fractions from Lemma 4 are
strictly positive,

0 < lim
k→∞

ηkqI(ξ
k
I )(cq − cI)Ã

ĪP
j=I+1

ηkjI(ξ
k
I ) + 1

!2 <∞.
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Parts (i) and (ii). If λIq > 0, for some I < q < Ī, then (31) from the proof of
Lemma 5 implies λIĪ = ∞. If λIĪ = ∞, then Lemma 4-(ii) implies lim

k→∞
sk

ΓĪ ΩkI
=

∞. This together with lim
k→∞

ΓĪ ΩkI

ΓĪ(ΩkĪ)
> 0 implies S Ī = ∞ hence lim

k→∞
V k
Ī
= −∞ —

contradiction. Therefore, λIĪ < ∞, proving Part (ii). Therefore, (31) implies that
λIq = 0 for any I < q < Ī, proving Part (i).
Part (iii). Suppose to the contrary that q > Ī and λIq = 0. Hence, by Lemma

4-(i), lim
k→∞

sk

Γq ΩkI
= 0, contradicting lim

k→∞

Γq ΩkI

Γq(Ωkq)
= 0.

Part (iv). From Lemma 4-(i)

lim
k→∞

sk

ΓI+1

³
ΩkI

´ ≤ λI,I+1 lim
k→∞

ηkI+1,I(ξ
k
I )(cI+1 − cI)³

ηkI+1,I(ξ
k
I ) + 1

´2 .

If λI,I+1 < ∞, then together with lim
k→∞

ηkI+1,I(ξ
k
I ) = 0 (which follows from I = Ī)

we have lim
k→∞

sk

ΓI+1 ΩkI
= 0. However, this contradicts lim

k→∞

ΓĪ(j)+1 Ωk
Ī(j)

ΓĪ(j)+1 Ωk
Ī(j)+1

= 0.

Therefore, λI,I+1 =∞. ¤
Proof of Proposition 3. By hypothesis, for all pairs λi,j ∈ {0,∞}. Given any
I (r), Proposition 5 implies that Ī (r) is the largest type such that λI(r),Ī(r) = 0, if
such a type exists. From Part (ii) of the Proposition, Ī (r) cannot be larger and
from Part (iii) of the Proposition it cannot be smaller. Thus, the partition is as
claimed. Now, Lemma 4-(i) implies that S̄Ī(r) = 0. Finally, the characterization of
S̄Ī(r) from Proposition 4 implies that α (j) = 1 whenever S̄Ī(r) = 0. Given α (j) = 1,
Proposition 4 implies that the limit prices are as claimed. ¤

For later references, we also state the following corollary for the case where
λ1,m = 0. In this case, for sufficiently small sampling costs, the behavior of the
buyer is independent of her type, in the sense that Ωkw is the same for all w. In
contrast to our other results, this is not a limit result but describes equilibrium
behavior for strictly positive sampling costs. Note that while the behavior for given
(p, x) is independent of the buyer’s type, the distribution of the price-signal pairs
is not. Thus, the buyer’s expected price and search costs are lower when her type
is lower. We use the corollary to argue that the failure of information aggregation
does not result from the buyer’s private information.

Corollary 2 If λ1,m = 0, then Ωk1 = Ω
k
2 = · · · = Ωkm for k sufficiently large.

6 The Intermediate Case with 0 < λij <∞
This section considers cases in which λij takes values in (0,∞). We start with the
case in which 0 < λi,i+1 < ∞ for all i. In this case, all pools contain exactly two
types. Contrary to the generic case of Proposition 3, here the expected search cost
may be positive.
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Proposition 6 Suppose that λi,i+1 ∈ (0,∞) for all i < m. For any i that is odd:

1. Search Cost. Si = 0 and

• If λi,i+1 ≤ ρi+1+ρi
ρi

, then Si+1 = λi,i+1
ρiρi+1

(ρi+ρi+1)
2 (ci+1 − ci).

• If λi,i+1 >
ρi+1+ρi

ρi
, then Si+1 =

1
λi,i+1

ρi
ρi+1

(ci+1 − ci).

2. Price. If i = m, p̄m = cm. Otherwise:

• If λi,i+1 ≤
ρi+1+ρi

ρi
, then p̄i =

ρici+ρi+1ci+1
ρi+ρi+1

= p̄i+1.

• If λi,i+1 >
ρi+1+ρi

ρi
, then p̄i = ci+

1
λi,i+1

(ci+1−ci) < ci+1− 1
λi,i+1

ρi
ρi+1

(ci+1−
ci) = p̄i+1.

Proof of Proposition 6: First, Proposition 5 implies that the pools are exactly
of size two

©
I (r) , Ī (r)

ª
, so I (r) is odd and Ī (r) is even. If m is odd, then the last

pool is a singleton. To see why, note that by Part (i), pools cannot be larger and by
Part (iv) pools cannot be smaller.

By Proposition 4, SI(r) = 0 for all r. Let

η̄ = lim
k→∞

ηkĪI(ξ
k
I ),

considering a convergent subsequence if needed.
By Lemma 4, the search cost of a type Ī = Ī (r) who mimics I = I (r) is

η̄(cĪ − cI)

(η̄ + 1)2
λI,Ī . (25)

Therefore, recalling that α = α(r) is used to denote the probability with which Ī
mimics I,

S Ī = α
η̄(cĪ − cI)

(η̄ + 1)2
λI,Ī . (26)

Note that,

p̄I =
ρIcI + αρĪcĪ
ρI + αρĪ

=
cI + η̄cĪ
1 + η̄

, (27)

where the first equality follows from Proposition 4 and the second equality follows
from Lemma 3. Therefore,

η̄ = α
ρĪ
ρI
. (28)

From Proposition 4, S Ī ≤ cĪ − p̄I . Upon substituting from (25) and (27),

η̄(cĪ − cI)

(η̄ + 1)2
λI,Ī ≤

cĪ − cI
1 + η̄

,

with equality if a < 1. Rearranging and substituting from (28),

λI,Ī ≤
αρĪ + ρI

αρĪ
.
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Thus, if λI,Ī ≤
ρI+ρĪ
ρĪ

, then α = 1 and, if λI,Ī >
ρI+ρĪ
ρĪ

, then α =
ρI

(λI,Ī−1)ρĪ
.

Substituting from (27) into (26) and then for α, we get the desired expressions. ¤

The Proposition implies that the ex-ante expected search cost
mP
i=1

ρiSi is small

when all λi,i+1 are either small or large, but not for intermediate values of λi,i+1. It
follows that welfare is not monotone in the informativeness of the signal technology
as measured by λi,i+1: Less informativeness leads to more efficiency.

The general case of λij ∈ [0,∞]. We know from Proposition 4 that equilibria
have a partitional structure. The boundaries between the pools are determined as
follows. Start with I (1) = 1. If λ1m = 0, then Proposition 5 implies that Ī (1) = m
and the characterization is complete. Otherwise, let ı̂ be the smallest type such that
λ1ı̂ > 0. If λ1ı̂ =∞, then Proposition 5 implies that Ī (1) = ı̂− 1. If 0 < λ1ı̂ <∞,
then either Ī (1) = ı̂ or Ī (1) = ı̂− 1. This is determined by comparing the cost for ı̂
of searching for ΩkI , lim

k→∞
sk

Γi ΩkI
, to the price gain, lim

k→∞
cı̂−Ek

£
c|ξk1, w ≥ 1

¤
. If ı̂ = 2,

then Lemma 4 completely pins down lim
k→∞

sk

Γi ΩkI
and it implies that Ī (1) = 2.13 If

ı̂ ≥ 3, the bounds from Lemma 4 are not tight and therefore do not say whether it is
Ī (1) = ı̂ or Ī (1) = ı̂− 1. However, in either case, given Ī (1) the next pool starts at
I (2) = Ī (1)+1, one looks again for the smallest type ı̂ ≥ I (2) such that λI(2),̂ı > 0
and the construction continues exactly as above. The endpoint Ī (2) is either equal
to ı̂2 or ı̂2 − 1. This construction is terminated when it reaches a pool that includes
type m.

As noted above, this characterization is incomplete because if 0 < λI(j),̂ı < ∞
and ı̂ ≥ I (j) + 2, then we have not identified the range of λI(j),̂ı for which Ī (j) = ı̂
as opposed to ı̂+1. It seems intuitively plausible that if λI(j),̂ı is large then Ī (j) =
ı̂ − 1 rather than ı̂, but we have not proved this conjecture. However, this gap in
our characterization seems small because it concerns special subcases that are not
generic.

7 Informativeness and the Efficiency of Trade

Because trade is always beneficial and always takes place in this model, the expected
surplus is fully determined by the expected search cost incurred by the buyer. We
know from Proposition 3 that generically Si = 0 for all i. It follows that the
limit equilibrium is efficient. We now modify the basic model in a minimal way
to introduce efficiency considerations regarding the volume of trade, that is, the
allocation.

For the points made by this subsection, it is sufficient to consider the case of two
types, m = 2. Suppose that the model is as before, except that the buyer’s value
of the transaction u now satisfies c1 < u < c2. Therefore, efficiency requires that
1 trades, but 2 does not. To accommodate the possibility of no trade, there is an
entry stage. The buyer decides once and for all in the beginning whether to start

13Lemma 4 completely pins down the search costs when λ12 <∞. This makes the characterization
in Proposition 6 possible.
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the search. If the search is initiated, the process continues until a transaction takes
place.

The analysis of this scenario is similar to the previous analysis, except for the
buyer’s entry decision. Let e = (e1, e2) denote the probabilities with which types
1 and 2 enter. A strategy profile (B,A, e) consists of the acceptance decision of
the buyer and the sellers, and the entry probabilities. A strategy profile is an
equilibrium if the standard optimality conditions hold–the ones posed above and
a new one regarding the entry decision. We consider non-trivial equilibria in which
either e1 > 0 or e2 > 0 (or both). Trivial equilibria with no entry always exist.

If entry is profitable for type 2, entry must be strictly profitable for type 1. So,
in any non-trivial equilibrium, it must be that e1 = 1 when s is sufficiently small.
Thus, the probability of type w after the decision to start the search but before any
signals are observed is

bρ1 (e2) = ρ1
ρ1 + e2ρ2

and bρ2 (e2) = e2ρ2
ρ1 + e2ρ2

. (29)

Again, we consider a sequence sk → 0 and a corresponding sequence of non-
trivial equilibria,

¡
Bk, Ak, ek

¢
. The outcome becomes efficient if type 1 enters for

sure, it’s expected search cost vanishes to zero, and the entry probability of type 2
becomes zero.

In equilibrium, trade takes place only at prices that do not exceed u, and, hence,
strictly below c2. Therefore, there can be no revealing transaction involving type 2.
Consequently, if 2 enters in equilibrium, it must be pooling with 1, i.e., Ωk2 = Ω

k
1

for all sk. Thus, in the limit as sk → 0, the equilibrium price must be equal
to the expected cost evaluated at probabilities limbρw ¡ek2¢. That is, given these
probabilities, the analysis is identical to Proposition 6, with bρw taking the place of
the original prior ρw. In particular, if λ12 = 0, the outcome is complete pooling on
the expected costs conditional on entry, bρ1c1 + bρ2c2, and ek2 stays strictly positive
in the limit. If λ12 = ∞, then there is complete separation. Thus, if type 2 were
to enter with strictly positive probability in equilibrium, its price would be close
to c2. Therefore, if λ12 = ∞, ek2 → 0. The proposition follows from the previous
arguments. The proof of Proposition 4 is therefore omitted.

Proposition 7 Suppose that u ∈ (c1, c2). Consider a sequence sk → 0 and a
corresponding sequence of non-trivial equilibria,

©
Bk, Ak, ek

ª
. The limit equilibrium

outcome is efficient if and only if λ12 =∞.

In the efficient outcome of this environment only type 1 trades. This outcome
is only achieved when the types are fully separated in the limit. In other cases,
inefficient trade involving type 2 takes place in equilibrium.

If λ12 = 0, the only inefficiency is excessive trade. If, however, λ12 ∈ (0,∞) then
the equilibrium also involves another inefficiency: if type 2 enters, it incurs search
cost, as described in Proposition 6.
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8 Comparison to Auctions: Sampling Curse vs. Win-
ner’s Curse

The literature on auctions addresses a closely related question concerning the extent
to which the equilibrium price in a common value auction reflects the information
contained in the bidders’ signals when the number of bidders is made arbitrarily
large (Wilson (1977) and Milgrom (1979)). In the auction version of our model, the
buyer/auctioneer faces n sellers in a procurement auction, where n is exogenous.
Each of the sellers gets a signal from the same distribution as above. They submit
bids simultaneously and the lowest bidder is selected for the transaction. Milgrom’s
result translated to an auction version of our model is that the equilibrium price of
the auction approaches the true cost when n→∞, if and only if limx→x

fi(x)
fi+1(x)

=∞.
That is, when there are signals that are exceedingly more likely when the true state
is i than when it is i+ 1.

The search model of the present paper differs from the auction environment in a
number of ways: the number of “bidders” is determined endogenously through the
sampling, the buyer/auctioneer has private information, and the bids are generated
randomly. However, the latter two differences are not significant. First, the exact
specification of the price determination component of our model is not crucial and
it can be changed to let sellers submit bids without essentially affecting the results
(see Section 10 below). Second, since the number of bidders in the auction is not
determined by the auctioneer, behavior is unaffected by the auctioneer’s private
information, and we may just as well assume that the auctioneer’s information is
the same in both models. Conversely, we could assume that the buyer does not
know its own type in our model without changing the results qualitatively, see the
discussion in the conclusion. The important difference between these two environ-
ments is that the number of sellers/bidders is exogenous in the auction environment,
whereas in the search environment it is determined endogenously by the informed
buyer/auctioneer.

To compare information aggregation across these two environments, we think
of the reduction of the sampling cost s in the search model as the counterpart of
increasing the number of bidders n in the auction. Under this analogy, the search
and auction environments differ with respect to information aggregation. When
limx→x

fi(x)
fi+1(x)

=∞ and s→ 0, the search equilibrium prices are not always near the
true cost, but only when further conditions on the informativeness of the signals–
involving the parameters λij–are met.

When λ1m = 0 (which includes the case of boundedly informative signals,
limx→x

fi(x)
fi+1(x)

< ∞ as a special case), the search equilibrium involves complete
pooling. Complete pooling never arises in the equilibrium of the auction. Even
when limx→x

fi(x)
fi+1(x)

<∞, the equilibrium price of the auction when n→∞ is par-
tially revealing: the expected winning bids of the different types are different but
do not coincide with the respective costs (see Lauermann and Wolinsky (2012) for
an analysis of the two-type case).

Thus, information aggregation is more difficult in the search environment than
in the standard auction environment. It is instructive to explain this difference from
the perspective of the winner’s curse. Suppose that there are just two buyer types,
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m = 2. In the auction environment, let Pr[1|winning, x] be the probability that a
bidder assigns to type 1, conditional on signal x and being the winner in a symmetric
equilibrium in which bids are strictly increasing in signals,

Pr[1|winning, x] =
ρ1f1 (x) [1− F1(x)]

n−1

ρ2f2 (x) [1− F2(x)]n−1 + ρ1f1 (x) [1− F1(x)]n−1

=

ρ1
ρ2

f1(x)
f2(x)

[1−F1(x)]n−1
[1−F2(x)]n−1

1 + ρ1
ρ2

f1(x)
f2(x)

[1−F1(x)]n−1
[1−F2(x)]n−1

,

which reflects the prior, ρ1ρ2 , the “signal effect”,
f1(x)
f2(x)

, and the “winner’s curse effect”,
[1−F1(x)]n−1
[1−F2(x)]n−1 . The smaller is

[1−F1(x)]n−1
[1−F2(x)]n−1 , the more significantly the winner’s course

effect reduces the probability of 1. If limx→x
fi(x)
fi+1(x)

=∞, the signal effect goes to∞
as x → x; the magnitude of the winner’s curse effect depends on the rate at which
x→ x as n→∞. If we focus on a sequence of signals {xn} at which the probability
of winning in a monotone equilibrium, [1 − F1(xn)]

n−1, exceeds some ε > 0, then
the winner’s curse effect is bounded away from 0 and the signal effect overwhelms it,
limn→∞

f1(xn)
f2(xn)

[1−F1(xn)]n−1
[1−F2(xn)]n−1 = ∞. It follows that, for large n, Pr[1|winning auction,

xn]≈ 1. That is, even after allowing for the winner’s curse, the winner is almost
certain that the buyer is of type 1.

In the search environment, the mere fact of being sampled already implies a
form of a winner’s curse. The posterior probability that a seller assigns to type 1
conditional on being sampled and observing signal x is

Pr[1|x] =
ρ1
ρ2

f1(x)
f2(x)

n1
n2

1 + ρ1
ρ2

f1(x)
f2(x)

n1
n2

.

which reflects a “signal effect” f1(x)
f2(x)

and a “sampling effect” n1
n2
. The latter is in

some sense the counterpart of the winner’s curse effect in the auction environment.
However, while in the auction environment the signal effect prevails over the winner’s
curse effect, here the sampling effect n1

n2
might offset the signal effect f1(x)

f2(x)
even when

limx→x
f1(x)
f2(x)

=∞. For example, if both 1 and 2 search until they generate a signal-
price pair (x, p) ∈ Ωk1, then n1

n2
= Γ2(Ω1)

Γ1(Ω1)
. Consider now a sequence sk → 0 and the

corresponding sequence of equilibria. An implication of our analysis14 is that, in

this case, limξk1→x
f1(ξ

k
1)

f2(ξ
k
1)

n1
n2
= limξk1→x

f1(ξ
k
1)

f2(ξ
k
1)

Γ2(Ω1)
Γ1(Ω1)

= limξk1→x
f1(ξ

k
1)

f2(ξ
k
1)

f2(ξ
k
1)

f1(ξ
k
1)
= 1. Thus,

Prk[1|ξk1]→ ρ1, implying that the expected cost remains near the ex-ante expected
cost (hence, away from the actual cost) even when the signal technology is very
informative.

In both the search and auction models, revelation of information requires signals
that make 1 exceedingly more likely to counteract the negative effect of the sam-
pling or the winner’s curse. However, the more substantial negative effect in the
search model requires that there are signals that separate 1 from 2 even in a more
pronounced way than in the large auction model.
14This follows from Lemma 3 together with Proposition 3.
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As noted above, whereas in the search model the number of “bidders” depends
endogenously on the buyer’s type, in the auction model the number of bidders
is exogenous and, hence, independent of the buyer’s type. One may think of an
alternative auction environment in which the buyer decides on the number of bidders,
incurring a cost per bidder. If the bidders do not observe how many bidders they
are competing against, such an auction model is closer to the search model in the
sense that the number of bidders depends on the buyer’s type, and bidders learn
some information from the mere fact of being selected. In fact, this can be thought
of as a simultaneous search model. In a companion paper, Lauermann and Wolinsky
(2012), we consider this scenario. In the case of boundedly informative signals, when
the sampling cost is negligible, that model has a partially revealing equilibrium like
the auction with a large commonly known n considered above. In addition, under
some conditions it also has complete pooling equilibrium like the search model of
the present paper.

9 More About λ

This section discusses further the measure λij and the claim that generically λij ∈
{0,∞}. An example illustrates the genericity notion and the result of Proposition
3. This measure plays a central role in the characterization. It is striking that this
simple magnitude has such a decisive role in determining the equilibrium.

First, we provide an alternative interpretation of λij . Using integration-by-parts,
it can be shown that λij can be also expressed as

λij = lim
x∗→x

Z x∗

x

µ
fi (x)

fj (x)
− fi (x∗)

fj (x∗)

¶
fi (x)

Fi (x∗)
dx.

That is, λij measures the expected improvement of the likelihood ratio
fi(x)
fj(x)

relative

to fi(x∗)
fj(x∗)

when sampling for a signal x ≤ x∗, as x∗ approaches x.

Next, let us turn to the genericity claim. Consider a continuum of signal distrib-
utions, (Fz)z∈[0,1], together with an atomless distribution on its parameter z ∈ [0, 1].
We assume the signal distributions are such that for all z < z0, limx→x

fz(x)
fz0(x)

= ∞,
and λzz0 exists. A finite sample of m independent draws of z ∈ [0, 1], with realiza-
tions {z1, · · · , zm}, defines a distribution over finite families of signal distributions,
with realizations {Fz1 , · · · , Fzm}. Without loss of generality, z1 < · · · < zm. We say
that a property is generic if the set of samples for which it holds has probability one.
In other words, our claim about the genericity of λij ∈ {0,∞} means that, for any
choice of (Fz)z∈[0,1] and for any atomless distribution on this set that is as described
above, the probability that a randomly selected finite sample of signal distributions
contains a pair of signal distributions

¡
Fzi , Fzj

¢
for which 0 < λij <∞ is zero.

Lemma 5 For a generic family of signal distributions,

λij ∈ {0,∞} ∀i < j. (30)

Proof: From (24) and the subsequent discussion, for i < j < ,

λi <∞⇒ λi,j = λj, = 0. (31)
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It follows immediately from (31) that, if λzz0 ∈ (0,∞), then λzz00 = 0, for all
z00 ∈ (z, z0) and λzz00 = ∞, for all z00 > z0. Therefore, for any parameter z ∈ [0, 1],
there is at most one parameter z0 > z such that λzz0 ∈ (0,∞) and at most one
parameter z00 < z such λz00z ∈ (0,∞). This implies the result. ¤
Example of a Signal Distribution. An example illustrates the genericity result
and Proposition 3. Consider a family of signal distributions, indexed by z ∈ [0, 1].
The common support of the distributions is (−∞, 0], and the distributions are de-
fined by their densities

fz (x) = (−x)−2z
ex

μz
,

with μz =
R 0
−∞ (−t)

−2z etdt. The likelihood ratios are

fz
fz0

= (−x)2(z0−z) μz0
μz
.

The signal is unboundedly informative: For z0 > z, the likelihood ratio satisfies
lim

x→−∞
fz(x)
fz0(x)

=∞. Moreover,

λz,z0 = lim
x→−∞

− (−x)2(z0−z)−1 2 (z0 − z)
(−x)−2zex

x
−∞(−t)

−2zetdt

.

Evaluating this limit shows that

λz,z0 =

⎧⎨⎩
∞ if z0 − z > 0.5,
1 if z0 − z = 0.5,
0 if z0 − z < 0.5.

Let {z1, · · · , zm} be a generic sample from [0, 1]m, with z1 < z2 < · · · < zm.
Suppose that for type w ∈ {1, 2, · · · ,m} the distribution of signals is given by fzw .
Genericity rules out that zw0 − zw = 0.5. Therefore, λw,w0 ∈ {0,∞} for all pairs
w < w0. Moreover, let ŵ be the lowest type such that zŵ− z1 > 0.5. Then, λ1,w = 0
for all w < ŵ, λ1,ŵ =∞, and λŵ,w = 0 for all w > ŵ.

By Proposition 3, when sampling costs are small, types w < ŵ are pooled at a
common price equal to E [c|w < ŵ] and types w > ŵ are pooled at a common price
equal to E [c|w ≥ ŵ], respectively.

10 Modeling Bargaining

The “random proposals” bargaining protocol employed in this paper has been used
in the related literature, for example, Wilson (2001), Compte and Jehiel (2010), and
Albrecht et. al. (2009).

This model can be criticized for the artificial character of the exogenously gen-
erated random proposals and for restricting the players to acceptance decisions. In
particular, this implies that players sometimes fail to strike a mutually beneficial
deal, even when there are commonly known gains from trade. Nevertheless, in its
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defense it should be noted that bargaining undoubtedly involves random elements,
which this model captures.

The main advantage of this bargaining protocol over others, however, is that
it is simple and that it avoids tangential modeling complications such as off-path
beliefs. Two alternative approaches in the literature are (i) to let the uninformed
market side make offers, or (ii) to let the informed market side make offers and
employ refinements to deal with the multiplicity problems; see Ausubel, Cramton,
and Deneckere (2002) for an overview of bargaining with asymmetric information.
Our results hold for these approaches as well, demonstrating the robustness of our
qualitative findings.

First, in an earlier version of this paper, we modeled the bargaining component as
a take-it-or-leave-it offer by the buyer. Since the buyer has private information, this
gives rise to multiplicity through the freedom of selecting off-path beliefs in perfect
Bayesian equilibria.15 In that version, equilibria that survive a certain refinement
that seems most convincing for the modeled situation16 give rise to same results we
derive in the present version of the paper. We also considered a variation on this
model, wherein the buyer offers a direct mechanism instead of a price, which the
seller accepts or rejects. This variation also gives rise to the same results, upon using
the same refinement. The adoption of the random proposals bargaining eliminates
the need to grapple with off-path beliefs and their refinement.

In another variation of the model that we have studied the sellers make the
offers. Here, to circumvent Diamond’s paradox,17 in each period the buyer samples
two or more sellers who observe the same signal and simultaneously offer prices. The
buyer then either trades with the seller who offered the lowest price or continues to
search. Apart from the modified bargaining component, all other details of the model
remain the same. Since the uninformed sellers make the offers, out-of-equilibrium
beliefs play no role and do not generate the multiplicity noted above. Because
multiple sellers sampled in each round observe the same signal, they play a one-shot
Bertrand game, which drives the prices to the expected costs conditional on the
buyer’s acceptance decision. The equilibrium outcomes of this version are the same
as the refined outcomes of the version in which the buyer makes all the offers and,
hence, give rise to the same results we derive with the random proposals model of this
paper. While the Bertrand version of the model shares with the random proposals
version the advantage of not needing a refinement, the assumption concerning the
sampling of multiple sellers in each round is maybe less attractive.

11 Discussion–Variations on the Model

This section collects remarks about possible variations and extensions of the model.
15For example, there is a trivial pooling equilibrium in which the buyer offers cm independently

of its type. The seller rejects any price offer below cm, because following such an offer a seller
believes that the buyer must be type m.
16We use the undefeated equilibrium refinement by Mailath, Okuno-Fujiwara, and Postlewaite

(1993).
17Diamond (1970)’s result that the combination of sequential search and positive sampling cost

may preclude equilibrium dispersion and search. In our model, if the buyer has no bargaining power
and if there is no competition between sellers, then the equilibrium price is monopolistic (equal to
u), regardless of the search cost.
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Two sided search and matching model. For simplicity of the exposition we
chose to present the model in the language of a single searcher. However, as al-
ready mentioned in the introduction, it is straightforward to embed this model in a
two-sided search and matching model. In that version, instead of one buyer there
is a population of buyers each of whom behaves like the buyer in our model. Upon
completing their transactions, buyers exit the market. The market is kept in steady
state by constant flows of new buyers whose types are distributed independently
according to the prior distribution. The interim probabilities in our model Π(w|x)
would coincide with the actual population distribution in the steady state equilib-
rium of the matching model. The analogy is complete. The matching model would
not require a different analysis but just translation of the description to the language
of those models.

The assumption that the types of the entering buyers are distributed indepen-
dently is important. It would make this model a two-sided search version of Akerlof
(1970)’s market in which the uncertainty pertains to each individual transaction as
opposed to uncertainty concerning a market-wide state as in the rational expecta-
tions literature.

Observable history. The sellers’ inability to observe the buyer’s history plays a
role in generating the search induced winner’s curse. Our central insight concerning
complete pooling when signals are not informative enough would not survive in its
sharp form if parts of the history of the buyer’s search history were observable to
sellers. Consider a scenario in which the limit equilibrium of our model involves
complete pooling. Suppose that sellers can observe the buyer’s time on the market
but not past signals or prices. This is a natural assumption for some situations
like labor markets where the duration of unemployment might be observable. It is
straightforward to see that a complete pooling outcome cannot be an equilibrium in
this case since it would necessarily involve longer search for higher cost buyer types.
This would imply that prices increase with time on the market, and hence, higher
cost types would end up paying higher expected price–even when sampling costs
vanish. Since a pooling outcome is ruled out and since lower cost types always do
better for the same reason they do in our model, it must be that in any equilib-
rium lower cost types pay lower expected prices. The actual characterization of the
equilibria of this model requires more work and is not carried out in this paper. Nev-
ertheless, the above argument establishes that, independent of the exact form of the
equilibrium, it necessarily involves some separation of types even with boundedly
informative signals. The fact that greater observability results in more separation is
not surprising. Intuitively, one expects that more information mitigates the adverse
selection.

Obviously there are interesting environments in which the searcher’s history is
largely unobservable, as we assume, and there are other interesting environments
in some of the searcher’s history is observable. The present model does not cover
the latter situations, whose analysis may be a worthwhile direction for continued
research.

Buyer does not know own type. The assumption that the buyer is informed
about the cost is not critical for our results. The critical assumptions are that the
costs are correlated across sellers and that sellers observe different signals. This
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can be formally illustrated most easily for the case where λ1,m = 0, with the help
of Corollary 2. In this case, for sufficiently small sk, any equilibrium in which the
buyer knows its type is also an equilibrium if the buyer does not know its type.
By Corollary 2, the acceptance strategy of the buyer is essentially independent of
its type and, hence, remains an equilibrium strategy if the buyer does not know
its type. “Essentially” here refers to the fact that although a higher type may be
willing to accept higher prices than a lower type, sellers reject these prices anyway,
making this difference of the acceptance strategies irrelevant.

Heterogenous valuations. This model assumes that the buyer’s valuation u is
known and independent of the cost type. The introduction of heterogeneity of
valuations would be an interesting extension that may facilitate further insights
into the welfare implications of the failure of information aggregation. In particular,
the failure of information aggregation may lead to unraveling of trade, since some
types of buyers with low costs who should trade may not find acceptable prices. As
explained in Section 7, efficiency considerations with respect to the volume of trade
can, however, already be generated in the present model by considering the case of u
falling inside the range of possible costs. We therefore did not include heterogeneity
of the buyer’s value in addition to the buyer’s private information about the sellers’
cost.

12 Conclusion

This paper introduced a model of trade with adverse selection in a sequential search
environment. A buyer has private information about the cost of a transaction and
sellers observe noisy signals. We studied the extent to which equilibrium prices
aggregate the information contained in the sellers’ signals when sampling costs are
small. First, if sellers’ signals are boundedly informative, prices are independent
of costs. Second, if sellers’ signals are unboundedly informative, the relationship
between prices and costs depends on the rate at which the informativeness of signals
increases in the tail of the signal distribution. This rate is summarized by a simple
measure λ. If informativeness increases too slowly–the pairwise λ are zero–prices
are independent of costs even with unboundedly informative signals. Prices equal
costs if and only if the informativeness increases very quickly–the pairwise λ are
infinite.

In the corresponding auction environment with a large number of bidders, prices
are never independent of costs, even if signals are boundedly informative. If signals
are unboundedly informative, prices equal costs without additional conditions. The
source of the difference is a stronger winner’s curse in the search model that owes to
the longer search duration of the bad types. When the search history is unobservable,
being sampled is bad news, potentially overwhelming the informative content of
signals entirely.

The potential failure of information aggregation has welfare consequences. It
might generate an inefficiently high volume of trade, and it gives rise to wasteful
search activities, which may be significant even when the one time sampling cost
is negligible. A natural extension of the model in which to further study welfare
consequences would be to allow for a two dimensional buyer’s type that captures
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heterogeneity with respect to the valuation as well. In such an extension, the failure
of information aggregation may lead to unraveling of trade: Some types of buyers
with low costs who should trade may not find acceptable prices.

A Appendix 1: Derivation of Interim Beliefs

In the body of the paper the interim beliefs

Π(w|x) = ρwfw (x)nwP
i∈W ρifi (x)ni

.

are as the limit of the posteriors from a sequence of finite models as the number of
potential sellers grows large. This appendix employs Milchtaich (2004)’s approach
for an alternative derivation that treats the uncertainty about the number of con-
tacted sellers as a point process on the continuum set of sellers. Besides its advantage
of operating directly within the model, this approach also facilitates derivation of
the conditional probabilities for the case of non-symmetric sellers’ strategies. For an
introduction to point processes and the definition of conditional probabilities that
is used here, see, for example, Daley and Vere-Jones (2008, especially Sections 9.1
and 13.1) and Milchtaich (2004).

Let Φ be the set of terminal histories in our model. Every terminal history ϕ ∈ Φ
is a sequence of the form ((w,

¡
ji, xi, pi, α

S
i , α

B
i

¢n
i=1
); see Footnote 2.1. Φw is the set

of terminal histories with state w. F is the Borel σ-algebra of Φ.
The set Ĵ = [0, 1] is the set of sellers and X = Ĵ ∪ {1, · · · ,m}, with Borel

σ-algebra BX . Each realization ϕ induces a simple counting measure ζ on BX as
follows. Let 1j (ϕ) = 1 if seller j is sampled in history ϕ and let 1w (ϕ) = 1 if the
state is w. The induced counting measure of a set A ∈ BX is

ζ (A) =
X
j∈A

1j (ϕ) +
X
w∈A

1w (ϕ) .

Let N be the set of all simple counting measures on BX and BN the Borel σ-algebra
on N .

Fix any strategy profile (B,A). This strategy profile and the chance moves
(buyer’s type, signal realizations, and price proposals) induce a probability measure
μ on Φ,F . The probability space (Φ,F , μ), in turn, defines a probability measure–
a point process–P on BN . Let Uw = {ζ ∈ N|ζ (w) = 1} ∈ BN , the event that the
state is w. We are interested in

Πj (w) = Pr [Uw|ζ (j) = 1] ,

the probability of w conditional on j being sampled. In the theory of point processes,
Π(·) (w) is referred to as a Palm probability, see Daley and Vere-Jones (2008, Chapter
13). The conditional probability Π(·) (w) is almost everywhere uniquely defined by
the requirementZ

Φ

⎛⎝ X
j∈J|1j(ϕ)=1

Πj (w)

⎞⎠μ (dϕ) =

Z
Φ

⎛⎝ X
j∈J|1j(ϕ)=1

1w (ϕ)

⎞⎠μ (dϕ) ∀J ∈ BX ;

(32)
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see Proposition 13.1.IV, Daley and Vere-Jones.

Lemma 6 If Π(·) (w) satisfies (32), then

Πj (w) =
ρwnwP
i∈W ρini

a.e. j ∈ [0, 1] .

Proof: First, suppose the seller’s acceptance strategies are symmetric to simplify
exposition. The (Lebesgue-)measure of a set J ∈ BX is λ (J) =

R
J dj. Rewriting the

right side of (32),Z
Φ
(

X
j∈J|1j(ϕ)=1

1w (ϕ))μ (dϕ) =

Z
Φw

|{j ∈ J : 1j (ϕ) = 1}|μ (dϕ)

= ρwE [n (ϕ) |ϕ ∈ Φw]λ (J)
= ρwnwλ (J) .

Thus, the right side of (32) depends on J only through its measure λ (J). Therefore,
Πj (w) must be constant for almost all j. Denote this constant by Π (w). Suppose
λ (J) > 0 and rewrite (32) further:

Π (w)

Z
Φ
|{j ∈ J : 1j (ϕ) = 1}|μ (dϕ) = ρwnwλ (J)⇔

Π (w)
X
i∈W

ρiniλ (J) = ρwnwλ (J)⇔

Π (w) =
ρwnwP

i∈{1,··· ,m} ρini
,

as claimed.

Asymmetric acceptance strategies. For any non-zero set of sellers, we define

qw (J) =
1

λ (J)

ZZZ
{(j,x,p):j∈J,p∈Aj(x),p∈Bw}

g (p) fw (x) dpdxdj,

the probability to trade conditional on sampling a seller j ∈ J and state w. For ε > 0,
let Jε be any set with Lebesgue measure λ (Jε) = ε. Abbreviate qεw = qw (Jε), q¬εw =
qw ([0, 1] \Jε) and define qw = limε→0 qεw, q

¬
w = limε→0 q¬εw , considering convergent

subsequences if necessary.

Condition (32) holds for all Jε. We multiply both sides by 1/λ (Jε) and take the
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limit as ε→ 0. The limit of the right side of (32)
λ(Jε)

is

lim
ε→0

1

λ (Jε)

Z
Φ

⎛⎝ X
j∈Jε|1j(ϕ)=1

1w (ϕ)

⎞⎠μ (dϕ) =

lim
ε→0

Ã
ρwq

ε
w +

ρw
λ (Jε)

∞X
n=2

nX
k=1

k

µ
n− 1
k − 1

¶
λ (Jε) q

ε
w [λ (Jε) (1− qεw)]

k−1 [(1− λ (Jε)) (1− q¬εw )]
n−k

+
ρw

λ (Jε)

∞X
n=2

nX
k=1

k

µ
n− 1
k

¶
q¬εw (1− λ (Jε)) [λ (Jε) (1− qεw)]

k [(1− λ (Jε)) (1− q¬εw )]
n−k−1

!

= ρw(
∞X
n=0

qw (1− q¬w)
n −

∞X
n=1

qwq
¬
w (1− q¬w)

n−1 n+ nw)

= ρw(
qw
q¬w
− qw

q¬w
+ nw) = ρwnw.

Following the first equality, n counts the total number of contacted sellers and k
counts those from Jε. The first two terms correspond to histories that end with the
buyer trading with a seller from Jε and the third term corresponds to those that
do not. The second equality follows from the fact that all terms involving k ≥ 2
converge to zero.

Take any number Π such that there is a sequence {Jεk }∞k=1 such that λ(Jεk ) =
εk > 0, limk→∞ εk = 0, and |Πj (w)−Π| ≤ 1

k for all j ∈ Jεk (there is a positive
measure of sellers with posteriors close to Π). Using the previous evaluation of the
limit of the right side of (32), limε→0

(32)
λ(Jε)

becomes

Π lim
k→∞

1

λ(Jεk )

Z
Φ
|{j ∈ Jεk |1j (ϕ) = 1}|μ (dϕ) = ρwnw.

Rewriting the left side of (32) analogous to the previous rewriting of its right side
shows that

lim
k→∞

Π
1

λ(Jεk )

Z
Φ
|{j ∈ Jεk |1j (ϕ) = 1}|μ (dϕ) = Π

X
i∈W

ρini.

Together,
Π =

ρwnwP
i∈W ρini

,

which implies that Πj (w) is equal to the same number for almost all j, as claimed.
¤

A similar argument establishes

Πj (w|x) =
ρwfw (x)nwP
i∈W ρifi (x)ni

,

for almost all j and x. The derivation of the posterior conditional on a signal
realization x ∈ [x, x̄] is entirely conventional, however, and so we omit its detailed
derivation.
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B Appendix 2: Proofs

B.1 Proof of Lemma 1 (preliminary characterization)

We have already established that the equilibrium strategies are for the buyer Bw =
[0, u− Vw] and for the seller A (x) = {p|p ≥ E [c|x,W (p)], where W (p) = {w|p ∈
Bw}. In other words,

A (x) =
m[
i=1

[E [c|x, {w|Vw ≤ Vi}] , u− Vi] (33)

To verify Part (i), suppose that Vw is decreasing for w ≤ j−1 and that Vj−1 > Vw
for all w > j − 1, but j 6= i = argmaxw>j−1 Vw. (This includes the case of j = 1 by
letting V0 = u). It follows from (33) and of Bw = [0, u− Vw] that

Ωi =

(
(x, p)|p ∈

j−1[
=1

[E [c|x,w ≥ ] , u− V ] ∪ [E [c|x,w ≥ j] , u− Vi]

)

SinceE [c|x,w ≥ ] and fi(x)
fj(x)

are increasing in x, we haveE(x,p) [p| (x, p) ∈ Ωi, w = j] ≤
E(x,p) [p| (x, p) ∈ Ωi, w = i] and Γj (Ωi) > Γi (Ωi), where the inequalities are strict if
i 6= j. Using (10) it follows that

Vi = u−E(x,p) [p| (x, p) ∈ Ωi, w = i]− s

Γi (Ωi)
≤ u−E(x,p) [p| (x, p) ∈ Ωi, w = j]− s

Γj (Ωi)
≤ Vj

where the first inequality follows from the previous inequalities and is strict if i 6= j
and the second from the possible suboptimality for buyer w = j of mimicking buyer
w = i. Therefore, Vj > Vw for all w > j.

Part (ii) follows from (33) and he monotonicity of Vw. ¤

B.2 Proof of Proposition 1 (existence)

Let N =
£
1, us

¤m. We define a mapping from N to itself whose fixed point is the
equilibrium number of expected searches for each type. Given n ∈ N , let

E [c|x,n] =
cm +

m−1P
i=1

ρi
ρm

fi(x)
fm(x)

ni
nm

ci

1 +
m−1P
i=1

ρi
ρm

fi(x)
fm(x)

ni
nm

.

Given n, payoffs {Vi (n)}mi=1 are defined iteratively as solutions to Equation (15),
that is,

s =
iX

j=1

Z ξj(n,Vi)

x

ÃZ u−Vj

max{E[c|x,n,w≥j],u−Vj−1}
(u− Vi − p) g (p) dp

!
fi (x) dx,

with ξi (n,Vi) = inf
©
x ∈

£
ξi−1 (n) , x̄

¤
|E [c|x,n] ≥ u− Vi

ª
and inf ∅ = x̄, ξ0 = x and

V0 = u. Inspection shows that a solution {Vi (n)}mi=1 to this system of equations
exists, is unique, and continuous in n. For example, for i = 1,

s =

Z ξ1(n,V1)

x

ÃZ u−V1

E[c|x,n,w≥1]
(u− V1 − p) g (p) dp

!
f1 (x) dx.
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Existence, uniqueness and continuity of V1 (n) follows because the right side is con-
tinuous and strictly decreasing in V1 and because it is strictly smaller than the left
side when V1 = u (it is zero, since then ξi = x) and strictly larger than the left side
if V1 = 0 (by Assumption (1)). Analogous arguments establish the claim for i > 1.

The payoffs {Vi (n)}mi=1 define {Ωi (n)}
m
i=1 iteratively, via Equation (13), that is,

Ωi = Ωi−1 ∪ {(x, p) : x ∈ [x, ξi], p ∈ [E [c|x,n,w ≥ i] , u− Vi (n)]} .

with Ω0 = ∅. Again, {Ωi (n)}mi=1 are uniquely defined and Γi (Ωi (n)) is continuous
in n. Finally, let

n̂i (n) =
1

Γi (Ωi (n))
.

The function n̂ (n) maps N into itself. In particular, n̂i (n) ≤ u
s for all i. To see

why, suppose that n̂i (n) > u
s . This implies Vi (n) < 0, by Equation (15). Then,

[x, x̄] × [cm, u] ⊂ Ωi (n). Hence, n̂i (n) ≤ 1
1−G(cm) . Assumption (1) implies in

particular that s
1−G(cm) ≤ u. Hence, n̂i (n) ≤ u

s , in contradiction to n̂i (n) >
u
s .

Since the set N is convex and compact and n̂ is a continuous function mapping
N into itself, n̂ has a fixed point. The values of Vw and Ωw that correspond to this
fixed points through the above construction constitute an equilibrium. ¤

B.3 Proof of Lemma 2 (Cutoff)

Proof of Lemma 2: We want to show that limk→∞ ξki → x for all i < m. Suppose
to the contrary that there is some subsequence for which

lim
k→∞

ξk1 = x̂ > x.

Step 1:

lim
k→∞

Ek [c|x̂, w ≥ 1] = lim
k→∞

Ek [c|x,w ≥ 1] ∀x ∈ (x, x̂) .

Proof of Step 1: From (15) and from u− V k
1 ≥ Ek

£
c|ξk1, w ≥ 1

¤
,

sk =

Z ξk1

x

ÃZ u−V k
1

Ek[c|x,w≥1]

³
u− V k

1 − p
´
g (p) dp

!
f1 (x) dx (34)

≥
Z ξk1

x

ÃZ Ek[c|ξk1 ,w≥1])

Ek[c|x,w≥1]

³
Ek
h
c|ξk1, w ≥ 1

i
)− p

´
g (p) dp

!
f1 (x) dx

Since the left side goes to 0 and since lim ξk1 = x̂ > x,

lim
k→∞

Ek [c|x̂, w ≥ 1] = lim
k→∞

Ek [c|x,w ≥ 1] ∀x ∈ (x, x̂) .

Step 2 :

Γ
³
Ωk1

´
= ∆k +

Z ξk1

x
g (ep(x))³Ek

h
c|ξk1, w ≥ 1

i
−Ek [c|x,w ≥ 1]

´
f (x) dx

where∆k = max
©
G
¡
u− V k

1

¢
−G(Ek [c|x̄, w ≥ 1] , 0

ª
and ep(x) ∈ ¡Ek [c|x,w ≥ 1] , Ek

£
c|ξk1, w ≥ 1

¤¢
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Proof of Step 2 : From (14) and a mean value theorem for integration

Γ
³
Ωk1

´
= max

n
G
³
u− V k

1

´
−G(Ek [c|x̄, w ≥ 1] , 0

o
+Z ξk1

x

h
G
³
E
h
c|ξk1, w ≥ 1

i´
−G (E [c|x,w ≥ 1])

i
f (x) dx

= ∆k +

Z ξk1

x

ÃZ Ek[c|ξk1 ,w≥1]

Ek[c|x,w≥1]
g (p) dp

!
f (x) dx

= ∆k +

Z ξk1

x
g (ep(x))³Ek

h
c|ξk1, w ≥ 1

i
−Ek [c|x,w ≥ 1]

´
f (x) dx

Step 3: Z ξk1

x

³
Ek
h
c|ξk1, w ≥ 1

i
−Ek [c|x,w ≥ 1]

´
f (x) dx (35)

=
mX
i=2

ρi
ρ1

nki
nk1
(ci − c1)

Z ξk1

x

∂
fi(x)

f1(x)

∂xÃ
mP
j=2

ηkj1(x) + 1

!2F (x)dx

and either (i) limk→∞
nki
nk1
= 0, for all i > 1, or (ii) there is some i > 1 such that

limk→∞
nki
nk1
=∞.

Proof of Step 3: Recall from (5)

E [c|x,w ≥ 1] =

mP
i=2

ρifi (x)nici

mP
i=2

ρifi (x)ni

=

c1 +
mP
i=2

ηi1(x)ci

1 +
mP
i=2

ηi1(x)

where the second equality is obtained by dividing through by ρ1f1 (x)n1 and recall-
ing that ηi1(x) =

ρifi(x)ni
ρ1f1(x)n1

. Integration by parts yieldsZ ξk1

x

³
Ek
h
c|ξk1, w ≥ 1

i
−Ek [c|x,w ≥ 1]

´
f (x) dx

=
h³
Ek
h
c|ξk1, w ≥ 1

i
−Ek [c|x,w ≥ 1]

´
F (x)

iξk1
x
−
Z ξk1

x

µ
−∂E

k [c|x,w ≥ 1]
∂x

¶
F (x)dx

=

Z ξk1

x

mP
i=2

∂ηki1(x)
∂x (ci − c1)Ã

mP
j=2

ηkj1(x) + 1

!2F (x)dx = mX
i=2

ρi
ρ1

nki
nk1
(ci − c1)

Z ξk1

x

∂
fi(x)

f1(x)

∂xÃ
mP
j=2

ηkj1(x) + 1

!2F (x)dx

By Step 1 the RHS of (35) goes to 0. Therefore, either (i) limk→∞
nki
nk1
= 0, for all

i > 1, or (ii) limk→∞
mP
j=2

ηkj1(x) =∞ which means that there is some i > 1 such that

limk→∞
nki
nk1
=∞. ¤
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Step 4: For all > 1, limk→∞
Γ (Ωk1)
Γ1(Ωk1)

∈ (0,∞).
Proof of Step 4: From Step 2

Γ
³
Ωk1

´
= ∆k +

Z ξk1

x
g (ep(x))³E hc|ξk1, w ≥ 1i−E [c|x,w ≥ 1]

´
f (x) dx

Since g is bounded and bounded away from 0, limk→∞
Γ (Ωk1)
Γ1(Ωk1)

∈ (0,∞) iff

lim
k→∞

∆k +
R ξk1
x

¡
E
£
c|ξk1, w ≥ 1

¤
−E [c|x,w ≥ 1]

¢
f (x) dx

∆k +
R ξk1
x

¡
E
£
c|ξk1, w ≥ 1

¤
−E [c|x,w ≥ 1]

¢
f1 (x) dx

∈ (0,∞)

From Step 3 this is equivalent to

lim

∆k +
mP
i=2

ηki1(ξ
k
1)(ci − c1)

R ξk1
x

∂
fi(x)
f1(x)

∂x

m

j=2
ηkj1(x)+1

2F (x)dx

∆k +
mP
i=2

ηki1(ξ
k
1)(ci − c1)

R ξk1
x

∂
fi(x)
f1(x)

∂x

m

j=2
ηkj1(x)+1

2F1(x)dx

∈ (0,∞). (36)

Recall from Step 3 that either (i) limk→∞
nki
nk1
= 0, for all i > 1, or (ii) ∃i > 1

such that limk→∞
nki
nk1
=∞. In both cases,

lim

R ξk1
x

∂
fi(x)
f1(x)

∂x

m

j=2
ηkj1(x)+1

2F (x)dx

R ξk1
x

∂
fi(x)
f1(x)

∂x

m

j=2
ηkj1(x)+1

2F1(x)dx

∈ (0,∞) (37)

This is because ∂
³
fi(x)
f1(x)

´
/∂x > 0 and is independent of k, lim ξk1 = x̂ > x and the

following arguments. In case (i) both the numerator and denominator are bounded
and bounded away from 0; in case (ii) dividing both the numerator and the denomi-

nator by the largest nki
nk1
yields expressions that are bounded and bounded away from

0.
Since each term in the numerator of (36) has a corresponding term in its denom-

inator whose ratio is in (0,∞), it follows that (36) holds and hence limk→∞
Γ (Ωk1)
Γ1(Ωk1)

∈
(0,∞). ¤
Step 5: limk→∞

nki
nk1
= 0, for all i > 1.
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Proof of Step 5: Since nki
nk1

=
Γ1(Ωk1)
Γi(Ωki )

≤ Γ1(Ωk1)
Γi(Ωk1)

, Step 4 implies limk→∞
nki
nk1
≤

limk→∞
Γ1(Ωk1)
Γi(Ωk1)

<∞ ruling out the possibility that ∃i > 1 such that limk→∞
nki
nk1
=∞.

Therefore, by Step 3, the remaining possibility is limk→∞
nki
nk1
= 0, for all i > 1. ¤

Step 6: limE
£
p| (p, x) ∈ Ωk1, w

¤
= c1 for all w = 1, · · · ,m and S1 = 0.

Proof of Step 6: lim nk1
nki

= ∞ implies limEk [c|x,w ≥ 1] = c1 for all x < x̄.

Therefore, limE
£
p| (p, x) ∈ Ωk1, w

¤
= c1 for w = 1, · · · ,m. Hence, limV k

1 = u− c1−
S1, where S1 = lim sk

Γ1(Ωk1)
. Recall that

lim
k→∞

Γ1

³
Ωk1

´
≥ lim

k→∞

Z ξk1

x

³
G
³
u− V k

1

´
−G

³
Ek [c|x,w ≥ 1]

´´
f1 (x) dx

=

Z x̂

x

¡
G
¡
u−

¡
u− c1 − S1

¢¢
−G (c1)

¢
f1 (x) dx

= F1 (x̂)
¡
G
¡
c1 + S1

¢
−G (c1)

¢
Suppose now to the contrary that S1 > 0. Then, F1 (x̂)

¡
G
¡
c1 + S1

¢
−G (c1)

¢
> 0

hence S1 = lim sk

Γ1(Ωk1)
≤ lim sk

F1(x̂)(G(c1+S1)−G(c1))
= 0 — contradiction. Therefore,

S1 = 0. ¤
Step 7: limk→∞ V k

i = u− c1, for all i.
Proof of Step 7: From optimality,

V k
i ≥ i’s payoff from mimicking 1 (accepting only p ∈ Bk

1 )

= u−E
h
p| (p, x) ∈ Ωk1, w = i

i
− sk

Γi
¡
Ωk1
¢

= u−E
h
p| (p, x) ∈ Ωk1, w = i

i
− sk

Γ1
¡
Ωk1
¢ Γ1 ¡Ωk1¢
Γi
¡
Ωk1
¢ .

Hence,

lim
k→∞

V k
i ≥ u− lim

k→∞
E
h
p| (p, x) ∈ Ωk1, w = i

i
− S1 lim

k→∞

Γ1
¡
Ωk1
¢

Γi
¡
Ωk1
¢ .

From Step 6 limE
£
p| (p, x) ∈ Ωk1, w

¤
= c1 for all w and S1 = 0. From Step 4,

lim
Γ1(Ωk1)
Γi(Ωk1)

<∞. Therefore, limk→∞ V k
i ≥ u−c1. Thus, since E

£
p| (p, x) ∈ Ωki , w

¤
≥

c1 for any w, we have limV k
i = u− c1, for all i. ¤

Step 8: lim nk1
nki

< 1.

Proof of Step 8: By Step 7, limk→∞ V k
i ≥ u − c1. Therefore, for sufficiently

large k, V k
i > u−Ek [c|x,W c ⊆ {2, · · · ,m}]. By (12), this implies Ωki = Ωk1 for all i.

Since the term
¡
G
¡
u− V k

1

¢
−G

¡
Ek [c|x,w ≥ 1]

¢¢
from (14) is decreasing in x (and

strictly decreasing on
£
x, ξk1

¤
), the MLRP implies that Γi

¡
Ωk1
¢
< Γ1

¡
Ωk1
¢
. Hence,

nk1
nki
=
Γi
¡
Ωk1
¢

Γ1
¡
Ωk1
¢ < 1. (38)
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¤
Steps 8 contradicts Step 5 implying that the initial supposition that limk→∞ ξk1 >

x is false. Therefore, limk→∞ ξk1 = x. Given this, an essentially identical proof
establishes limk→∞ ξk2 = x. From (15), u − V k

1 = Ek
£
c|ξk1, w ≥ 1

¤
and u − V k

2 ≥
Ek
£
c|ξk2, w ≥ 2

¤
, the counterpart of (34) for ξk2 is

sk =
2X

j=1

Z ξj

x

ÃZ u−V k
j

max{Ek[c|x,w≥j],u−V k
j−1}

³
u− V k

2 − p
´
g (p) dp

!
f2 (x) dx

≥
2X

j=1

Z ξ1

x

ÃZ u−V k
j

max{Ek[c|x,w≥j],u−V k
j−1}

³
u− V k

2 − p
´
g (p) dp

!
f2 (x) dx

+

Z ξk2

ξk1

ÃZ Ek[c|ξk2 ,w≥2]

Ek[c|x,w≥2]

³
Ek
h
c|ξk2, w ≥ 2

i
− p
´
g (p) dp

!
f2 (x) dx

Since lim sk = 0 and lim ξk1 = x, it follows that, if lim ξk2 = x̂ > x, then

lim
k→∞

Ek [c|x̂, w ≥ 2] = lim
k→∞

Ek [c|x,w ≥ 2] ∀x ∈ (x, x̂) .

The above proof for lim ξk1 = x can now be retraced verbatim by substituting w = 2
for w = 1 everywhere. Therefore, lim ξk2 = x and the same follows for all i < m. ¤

B.4 Proof of Lemma 3

Wewant to show that whenever Ωkj \Ωkj−1 6= ∅, then limE
h
p| (p, x) ∈

³
Ωkj \Ωkj−1

´
, w = i

i
=

limEk
£
c|ξkj , w ≥ j

¤
for all i ≥ j (where Ωk0 = ∅).

For j = m this is immediate. Consider j < m. Lemma 2 and the definition of
ξkj imply that, for any j < m and for k large enough, V k

j = u − Ek
£
c|ξkj , w ≥ j

¤
.

Hence,
E
h
p| (p, x) ∈

³
Ωkj\Ωkj−1

´
, w = j

i
≤ Ek

h
c|ξkj , w ≥ j

i
If fj(x)

fm(x)
< ∞ (signals are boundedly informative), then limEk

£
c|ξkj , w ≥ j

¤
=

limEk [c|x,w ≥ j] ≤ limE
h
p| (p, x) ∈

³
Ωkj\Ωkj−1

´
, w = j

i
, which establishes the

lemma.

Consider next the case of fj(x)
fm(x)

=∞. Recall that limEk
£
c|ξkj , w ≥ j

¤
= lim

cj+
m

i=j+1
ηkij(ξ

k
j )ci

1+
m

i=j+1
ηkij(ξ

k
j )
.

If lim ηkij(ξ
k
j ) = 0 for every i > j such that fj(x)

fi(x)
= ∞, then limEk

£
c|ξkj , w ≥ j

¤
=

limEk [c|x,w ≥ j] and the argument is as above. Suppose therefore that lim ηkij(ξ
k
j ) >

0 for some i > j such that fj(x)
fi(x)

=∞. This is possible only if lim nki
nkj
=∞. Suppose

now to the contrary that limE
h
p| (p, x) ∈

³
Ωkj\Ωkj−1

´
, w = j

i
< Ek

£
c|ξkj , w ≥ j

¤
.
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Since

E
h
p| (p, x) ∈ Ωkj , w = j

i
=
Γj

³
Ωkj−1

´
Γj

³
Ωkj

´ E
h
p| (p, x) ∈ Ωkj−1, w = j

i

+
Γj

³
Ωkj\Ωkj−1

´
Γj

³
Ωkj

´ E
h
p| (p, x) ∈

³
Ωkj\Ωkj−1

´
, w = j

i

and E
h
p| (p, x) ∈ Ωkj−1, w = j

i
≤ Ek

£
c|ξkj−1, w ≥ j − 1

¤
≤ Ek

£
c|ξkj , w ≥ j

¤
, it fol-

lows that
lim
k→∞

E
h
p| (p, x) ∈ Ωkj , w = j

i
< Ek

h
c|ξkj , w ≥ j

i
This together with V k

j = u−E
h
p| (p, x) ∈ Ωkj , w = j

i
−Sk

j and V
k
j = u−Ek

£
c|ξkj , w ≥ j

¤
imply

lim
k→∞

Sk
j = limEk

h
c|ξkj , w ≥ j

i
− lim

k→∞
E
h
p| (p, x) ∈ Ωkj , w = j

i
> 0.

Combining this observation with lim nki
nkj
=∞ we get

lim
k→∞

Sk
i = lim

k→∞
sknk1

nki
nkj
= lim

k→∞
Sk
j

nki
nkj
=∞.

Thus, limV k
i = −∞, which may not arise in equilibrium. Therefore, the hypoth-

esis limE
h
p| (p, x) ∈

³
Ωkj \Ωkj−1

´
, w = j

i
< limEk

£
c|ξkj , w ≥ j

¤
is false. Hence,

limE
h
p| (p, x) ∈

³
Ωkj\Ωkj−1

´
, w = j

i
= limEk

£
c|ξkj , w ≥ j

¤
as required. ¤

B.5 Proof of Lemma 4

To reduce the denseness of the notation, assume that I = i and Ī = . Since
lim ηkji(ξ

k
i ) ∈ (0,∞) if i < j ≤ and = 0 if j > , it follows that, for any x ≤ ξki

limEk [c|x,w ≥ i] = lim

ci +
mP

j=i+1
ηkji(x)cj

1 +
mP

j=i+1
ηkji(x)

= lim

ci +
P

j=i+1
ηkji(x)cj

1 +
P

j=i+1
ηkji(x)

= limEk [c|x, i ≤ w ≤ ]

(39)

Observe that lim
Γi(Ωki−1)
Γi(Ωki )

= 0 implies that, for any ε > 0, for k large enough

u−V k
i−1 = E

£
c|ξi−1, w ≥ i− 1

¤
≤ ci−1+ε, while Ek [c|x,w ≥ i] ≥ ci−ε. Therefore,

for j ≥ i and large k,

Γj

³
Ωki

´
=

Z ξki

x

Z Ek[c|ξki ,w≥i]

Ek[c|x,w≥i]
g(p)fj (x) dpdx+ Γj

³
Ωki−1

´
=

Z ξki

x
g (ep(x))³Ek

h
c|ξki , i ≤ w ≤

i
−Ek [c|x, i ≤ w ≤ ]

´
fj (x) dx+ εk

40



where εk captures both the omitted Γj
¡
Ωki−1

¢
and the change from Ek [c|x,w ≥ i]

to Ek [c|x, i ≤ w ≤ ]. It is important to observe that lim εk

Γj(Ωki )
= 0. This follows

from (39) and since by MLRP, for j ≥ i,
Γj(Ωki−1)
Γj(Ωki )

≤ Γi(Ωki−1)
Γi(Ωki )

→ 0.

Similarly, for large k,

Ek
h
p| (p, x) ∈ Ωki , w = i

i
=

Z ξki

x

Z Ek[c|ξki ,w≥i]

Ek[c|x,w≥i]
p
g(p)dp

Γi
¡
Ωki
¢fi(x)dx+Ek

h
p| (p, x) ∈ Ωki−1, w = i

i
=

Z ξki

x

Z Ek[c|ξki ,i≤w≤ ]

Ek[c|x,i≤w≤ ]
p
g(p)dp

Γi
¡
Ωki
¢fi(x)dx+ δk

where lim δk

Ek[p|(p,x)∈Ωki ,w=i]
= 0.

The optimality of i’s search implies

sk

Γi
¡
Ωki
¢ = ³Ek

h
c|ξki , w ≥ 1

i
−Ek

h
p| (p, x) ∈ Ωki , w = i

i´
.

Let q > i.Multiplying both sides by
Γ1(Ωki )
Γq(Ωki )

Fi(ξki )
Fi(ξki )

, we have

sk

Γq
¡
Ωki
¢ (40)

=
Fi
¡
ξki
¢

Fi
¡
ξki
¢ Γi ¡Ωki ¢
Γq
¡
Ωki
¢ ³Ek

h
c|ξki , w ≥ 1

i
−E

h
p| (p, x) ∈ Ωki , w = i

i´
=

Fi
¡
ξki
¢

Fi
¡
ξki
¢ Γi ¡Ωki ¢ ¡Ek

£
c|ξki , w ≥ 1

¤
−E

£
p| (p, x) ∈ Ωki , w = i

¤¢
Γq
¡
Ωki
¢ .

The denominator of (40)

1

Fi
¡
ξki
¢Γq ³Ωki ´ (41)

=

Z ξki

x
g (ep(x))³Ek

h
c|ξki , i ≤ w ≤

i
−Ek [c|x, i ≤ w ≤ ]

´ fq (x)

Fi
¡
ξki
¢dx+ eεk

where where eεk divided by the first term goes to 0 as k →∞.
The numerator of (40)

1

Fi
¡
ξki
¢Γi ³Ωki ´³³Ek

h
c|ξki , w ≥ 1

i
−E

h
p| (p, x) ∈ Ωki , w = i

i´´
(42)

=

Z ξki

x

Z Ek[c|ξki ,i≤w≤ ]

Ek[c|x,i≤w≤ ]

h
Ek
h
c|ξki , i ≤ w ≤

i
− p
i
g(p)dp

fi(x)

Fi
¡
ξki
¢dx+ δk

=
1

2

Z ξki

x
g
³eep(x)´³Ek

h
c|ξki , i ≤ w ≤

i
−Ek [c|x, i ≤ w ≤ ]

´2 fi(x)

Fi
¡
ξki
¢dx+ eδk
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where eδk divided by the first term goes to 0 as k →∞.
To keep the expressions more compact, let us adopt the shorthand

∆Ek(ξki , x) = Ek
h
c|ξki , i ≤ w ≤

i
−Ek [c|x, i ≤ w ≤ ]

Now, observe that

1

2

Z ξki

x

³
∆Ek(ξki , x)

´2 fi(x)

Fi
¡
ξki
¢dx (43)

=
1

2

"³
∆Ek(ξki , x)

´2 Fi(x)

Fi
¡
ξki
¢#ξki

x

−
Z ξki

x
∆Ek(ξki , x)

µ
−∂E

k [c|x, i ≤ w ≤ ]

∂x

¶
Fi(x)

Fi
¡
ξki
¢dx

=

Z ξki

x
∆Ek(ξki , x)

P
j=i+1

∂ηkji(x)

∂x (cj − ci)Ã P
j=i+1

∂ηkji(x) + 1

!2 Fi(x)

Fi
¡
ξki
¢dx

=
X
j=i+1

Z ξki

x
∆Ek(ξki , x)

ηkji(x)(cj − ci)

⎛⎜⎝−−∂
fi(x)
fj(x)

∂x
fi(x)

Fi(x)

⎞⎟⎠
Ã P
j=i+1

ηkji(x) + 1

!2 fj (x)

Fi
¡
ξki
¢dx

where the first equality follows from integration by parts, the second uses limEk [c|x,w ≥ i] =

lim

"Ã
ci +

P
j=i+1

ηkji(x)ci

!
Á

Ã
1 +

P
j=i+1

ηkji(x)

!#
, the third follows from

∂ηkji(x)

∂x =

ρj
ρi

nkj
nki

∂
fj(x)

fi(x)

∂x =
ρj
ρi

nkj
nki

⎛⎝−∂
fi(x)

fj(x)

∂x Á
³
fi(x)
fj(x)

´2⎞⎠ = ηkji(x)

⎛⎝−∂
fi(x)

fj(x)

∂x
fj(x)
fi(x)

⎞⎠.
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Substituting (43) into (42) and then the resulting expression and 41 into (40),

lim
sk

Γq
¡
Ωki
¢ (44)

= lim

P
j=i+1

R ξki
x g

³eep(x)´∆Ek(ξki , x)
ηkji(x)(cj−ci)

j=i+1
ηkji(x)+1

2

⎛⎜⎝−
∂

fi(x)
fj(x)

∂x
fi(x)

Fi(x)

⎞⎟⎠ fj(x)

Fi(ξki )
dx+ eδk

R ξki
x g (ep(x))∆Ek(ξki , x)

fq(x)

Fi(ξki )
dx+ eεk

= lim

P
j=i+1

R ξki
x g

³eep(x)´∆Ek(ξki , x)
ηkji(x)(cj−ci)

j=i+1
ηkji(x)+1

2

⎛⎜⎝−
∂

fi(x)
fj(x)

∂x
fi(x)

Fi(x)

⎞⎟⎠ fj(x)
fq(x)

fq(x)

Fi(ξki )
dx

R ξki
x g (ep(x))∆Ek(ξki , x)

fq(x)

Fi(ξki )
dx

≤ lim
X
j=i+1

ηkji(ξ
k
i )(cj − ci)λiqÃ P

j=i+1
ηkji(ξ

k
i ) + 1

!2
R ξki
x g

³eep(x)´∆Ek(ξki , x)
fq(x)

Fi(ξki )
dxR ξki

x g (ep(x))∆Ek(ξki , x)
fq(x)

Fi(ξki )
dx

The second equality follows from the negligibility of eδk and eεk relative to the other
terms and multiplication by fq(x)

fq(x)
. The inequality follows from

lim−
∂

fi(x)

fj(x)

∂x
fi(x)
FI(x)

fj (x)

fq (x)
≤ −

∂
fi(x)

fq(x)

∂x
fi(x)
FI(x)

= λiq,

from (24). Notice that lim ηkji(x)(cj − ci)

Ã P
j=i+1

ηkji(x) + 1

!−2
can be pulled out of

the integral since it is converging to a positive number. Therefore,

lim
sk

Γq
¡
Ωki
¢ = λiq lim

X
j=i+1

ηkji(ξ
k
i )(cj − ci)Ã P

j=i+1
ηkji(ξ

k
i ) + 1

!2

where the removal of g (ep(x)) and g
³eep(x)´ follows from g being bounded and

bounded away from 0. This establishes Part (i) of the lemma.
Part (ii) of the lemma is established by the following argument. From the first
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and third lines of (44), for any q ≤ ,

lim
sk

Γq
¡
Ωki
¢ ≥ lim

R ξki
x g

³eep(x)´∆Ek(ξki , x)
ηkqi(x)(cq−ci)
m

j=i+1
ηkji(x)+1

2

⎛⎝−
∂

fi(x)
fq(x)

∂x
fi(x)

Fi(x)

⎞⎠ fq(x)

Fi(ξki )
dx

R ξki
x g (ep(x))∆Ek(ξki , x)

fq(x)

Fi(ξki )
dx

= lim
ηkqi(x)(cq − ci)λiqÃ P
j=i+1

ηkji(x) + 1

!2
R ξki
x g

³eep(x)´∆Ek(ξki , x)
fq(x)

Fi(ξki )
dxR ξki

x g (ep(x))∆Ek(ξki , x)
fq(x)

Fi(ξki )
dx

= lim
ηkqi(x)(cq − ci)λiqÃ P
j=i+1

ηkji(x) + 1

!2

The first inequality is because the RHS is just the q-th element out of the sum
P

j=i+1

on the RHS of the third line of (44). The rest follows from

⎛⎝−
∂

fi(x)
fq(x)

∂x
fi(x)

Fi(x)

⎞⎠→ λiq just

as in (44) above. ¤
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