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Abstract

This note presents three results on repeated games. First, players can be better o¤

with imperfect private monitoring than with perfect monitoring, even in the presence of

a mediator who can condition her recommendations on the entire history of actions and

recommendations. Second, the folk theorem holds with mediated perfect monitoring

without any full-dimensionality conditions, so private monitoring cannot improve on

mediated perfect monitoring when players are patient. Third, if the mediator can

condition her recommendations on actions only, then even patient players can bene�t

from private monitoring.

Preliminary. Comments Welcome.

1 Introduction

Intertemporal incentives can only be provided when actions are monitored. The purpose of

this note is to examine whether it is always the case that the strongest possible intertemporal

incentives can provided when monitoring is perfect, or alternatively if individuals can some-

times bene�t from imperfections in monitoring. While our contribution is purely conceptual,

this question seems potentially relevant for understanding the role of information-sharing
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institutions in settings where repeated game modeling is prevalent, such as long-distance

trade (Milgrom, North, and Weingast, 1990; Greif, Milgrom, and Weingast, 1994), collusion

(Stigler, 1964; Harrington and Skrzypacz, 2011), organizational economics (Baker, Gibbons,

and Murphy, 1994; Levin, 2003), and contemporary international trade (Maggi, 1999; Bag-

well and Staiger, 2004). In particular, we argue that there should be no general theoretical

presumption that perfect monitoring is preferable to imperfect monitoing for proving incen-

tives in repeated games settings like these.

An obvious way in which imperfect monitoring can help players in a repeated game is

that it can give them a way to correlate their actions: if players 1 and 2 observe a signal

that player 3 does not observe, they can threaten to hold player 3 below her usual one-

shot minmax payo¤, and can thus give her stronger incentives than is possible with perfect

monitoring (Fudenberg and Tirole, 1991; Gossner and Hörner, 2010). We rule out this e¤ect

by assuming that with perfect monitoring the players have access to a mediator, who stands

in for the players� ability to observe the outcomes of arbitrarily complicated correlating

devices (Forges, 1986; Myerson, 1986).1

As it turns out, a critical distinction is whether we allow a general dynamic mediator,

who can condition recommendations on the full history of actions and recommendations,

or a Markov mediator, who can condition recommendations only on actions (the Markov

mediator is so called because it can be replaced each period by a new mediator who knows

only the publicly observable history of actions). The key di¤erence between the two kinds

of mediator is that with a dynamic mediator, players�continuation play may fail to be com-

mon knowledge, which breaks the recursive structure of perfect monitoring repeated games,

whereas with a Markov mediator this recursive structure is preserved. In our view, allowing

a dynamic mediator may be appropriate if the players can design an information-sharing

institution to help them play the game, while a Markov mediator is a more appropriate

stand-in for �naturally occurring�correlating devices, such as the phases of the moon used

to coordinate bidding in the �electrical conspiracy�documented by Smith (1961).

We present three results. First, players can do better with imperfect private monitoring

1With imperfect monitoring, a mediator can aggregate information in addition to correlating play. As

we only allow a mediator with perfect monitoring, this issue does not arise here.
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than with perfect monitoring, even with a dynamic mediator. Second, the folk theorem holds

with perfect monitoring and a dynamic mediator without any full-dimensionality conditions,

so patient players cannot do (much) better with imperfect monitoring than with perfect

monitoring and a dynamic mediator (and the rate of convergence is 1��, so players need only

be moderately patient). Third, even patient players can do better with imperfect monitoring

than with perfect monitoring and a Markov mediator. Taken together, our results show

that there should be no general presumption that perfect monitoring outperforms imperfect

private monitoring in repeated games.

One way of interpreting our results is in the light of previous attempts to establish a

recursive upper bound on the equilibrium payo¤ set in repeated games with private monitor-

ing by adding opportunities for communication or correlation to these games (Renault and

Tomala, 2004; Tomala, 2009; Cherry and Smith, 2011). Our �rst result implies that even

the equilibrium payo¤ set with perfect monitoring and dynamic mediation does not provide

such a bound in general. However, a tighter bound may be possible for patient players or

for speci�c classes of games.

Finally, we note that examples by Kandori (1991), Sekiguchi (2002), andMailath, Matthews,

and Sekiguchi (2002) show that players can bene�t from imperfect monitoring in �nitely re-

peated games. However, in their examples this conclusion relies on the absence of a dynamic

mediator, and is thus ultimately traceable to the possibilities for correlation opened up by

private monitoring. We illustrate this in Section 6 below. The broader point that players

can bene�t from �less�monitoring of each other�s actions in games has also been made in

various settings, including by Myerson (1991, Section 6.7), Bagwell (1995), Kandori and

Obara (2006), and Fuchs (2007); the basic idea that information can be bad for incentives

has been known at least since Hirshleifer (1971).

2 Model

The stage game is G =
�
I; (Ai)i2I ; (ui)i2I

�
, where I = f1; : : : ; ng is the set of players, Ai is

the �nite set of player i�s actions, and ui : A! R is player i�s payo¤ function. Players have

common discount factor �. The solution concept is sequential equilibrium. We compare
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the following information structures.

2.1 Mediated Perfect Monitoring

In period t = 1; 2; : : :, the game proceeds as follows.

1. Given the mediator�s history htm = (m� ; a� )
t�1
�=1 with h

1
m = f;g, the mediator sends a

private message mi;t 2 Mi to each player i, where Mi is an arbitrary �nite set. Let

H t
m be the set of the mediator�s period t histories.

2. Given player i�s history hti =
�
(mi;� ; a� )

t�1
�=1 ;mi;t

�
with h1i = mi;1, player i takes an

action ai;t 2 Ai. All players and the mediator observe action pro�le at 2 A. Let H t
i

be the set of player i�s period t histories.

A strategy of the mediator�s is a map �m :
S1
t=1H

t
m ! �(M). The mediator is

Markov if �m (H t
m) depends only on (a� )

t�1
�=1 for all H

t
m. A strategy of player i�s is a map

�i :
S1
t=1H

t
i ! �(Ai).

Note that the de�nition of sequential equilibrium depends on whether we treat the me-

diator as a �machine�who cannot tremble or as a �player�who can. In the �machine�

interpretation, sequential rationality is imposed (and beliefs are de�ned) only at histories

consistent with the mediator�s strategy. In the �player�interpretation, sequential rationality

is imposed everywhere, and the mediator is treated like any other player in the de�nition of

sequential equilibrium. We adopt the �machine�interpretation throughout, but all our re-

sults also hold with the �player�interpretation: the only change would be a slight alteration

to the proof of Theorem 1.

2.2 Private Monitoring

In period t = 1; 2; : : :, the game proceeds as follows. Given player i�s history hti =

(ai;� ; zi;� )
t�1
�=1 with h

1
i = f;g, player i takes an action ai;t 2 Ai. Signal zt = (zi;t)i2I 2 Z is

drawn from distribution p (zja). Player i observes zi;t. Again, H t
i is the set of player i�s

period t histories, and a strategy of player i�s is a map �i :
S1
t=1H

t
i ! �(Ai).
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Note that player i does not observe her payo¤s each period. The standard interpretation

is that � represents the probability of the game�s continuing, and that payo¤s are received

when the game ends. This assumption is made purely for ease of exposition. In particular,

both of our private monitoring examples may be modi�ed so that players receive payo¤s

each period.

3 Private Monitoring Versus Perfect Monitoring with

Dynamic Mediation

Our �rst example shows that private monitoring (without mediation) can outperform perfect

monitoring with a dynamic mediator.

Player 1 (row player) and player 2 (column player) play a repeated game with common

discount factor � = 1
6
. The stage game is as follows.

L M R

U 2; 2 �1; 0 �1; 0

D 3; 0 0; 0 0; 0

T 0; 3 6;�3 �6;�3

B 0;�3 0; 3 0; 3

We show that with perfect monitoring with a dynamic mediator there is no sequential equi-

librium where the players�per-period payo¤s sum to more than 3, while there can be such a

sequential equilibrium with private monitoring.2 The idea is that player 1 can be induced

to play U in response to L only if action pro�le (U;L) is immediately followed by (T;M)

with high probability. With perfect monitoring, player 2 always �sees (T;M) coming�after

(U;L), and will therefore deviate to L. With private monitoring, player 2 may not know

whether (U;L) has just occurred, and therefore may be unsure of whether the next action

pro�le will be (T;M) or (B;M), which gives him the necessary incentive to play M .

2In fact, the same is true for Nash equilibrium. This is a second point of contrast with the examples

of Kandori (1991), Sekiguchi (2002), and Mailath, Matthews, and Sekiguchi (2002), which work only for

sequential equilibrium.
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3.1 Perfect Monitoring with Dynamic Mediation

As the players�stage game payo¤s from any pro�le other than (U;L) sum to at most 3, it

follows that the players�per-period payo¤s may sum to more than 3 only if (U;L) is played

in some period t with positive probability. For this to occur in equilibrium, player 1�s

expected continuation payo¤ from playing U must exceed her expected continuation payo¤

from playing D by more than 1, her instantaneous gain from playing D rather than U . Now,

player 1 can guarantee herself a continuation payo¤of 0 by always playingD, so her expected

continuation payo¤ from playing U must exceed 1. This is possible only if the probability

that (T;M) is played in period t+1 when U is played in period t exceeds the number p such

that
1

6
[p (6) + (1� p) (3)] + 1

6

�
1

6
+
1

62
+ � � �

�
| {z }

1
5

(6) = 1;

or

p =
3

5
:

In particular, there must exist a period t + 1 history ht+12 of player 2�s such that (T;M) is

played with probability at least 3
5
in period 1 conditional on reaching ht+12 . But, at such a

history, player 2�s payo¤ from playing M is at most

3

5
(�3) + 2

5
(3) +

1

5
(3) = 0;

while, noting that player 2 can guarantee himself continuation payo¤ 0 by playing 1
2
L+ 1

2
M ,

player 2�s payo¤ from playing L is at least

3

5
(3) +

2

5
(�3) + 1

5
(0) =

3

5
:

Therefore, player 2 will deviate at such a history, so no such equilibrium can exist.

3.2 Private Monitoring

Consider the following imperfect private monitoring structure. Player 1 always observes

an uninformative signal ;. There are two possible private signals for player 2, m and r.

Conditional on any action pro�le in which player 1 plays U , signalm obtains with probability

1. Conditional on any other action pro�le, signals m and r obtain with probability 1
2
each.
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We now describe a strategy pro�le under which the players�payo¤s sum to 23
7
� 3:29.

Player 1�s strategy: In each odd period t = 2n + 1 with n = 0; 1; :::, player 1 plays
1
3
U + 2

3
D. Let a1(n) be the realization of this mixture. In the even period t = 2n+ 2, if the

previous action a1(n) = U , then player 1 plays T ; if the previous action a1(n) = D, then

player 1 plays B.

Player 2�s strategy: In each odd period t = 2n + 1 with n = 0; 1; :::, player 2 plays L.

Let y2(n) be the realization of player 2�s private signal. In the even period t = 2n+2, if the

previous private signal y2(n) = m, then player 2 plays M ; if the previous signal y2(n) = r,

then player 2 plays R.

We check that this strategy pro�le, together with any consistent belief system, is a

sequential equilibrium.

In an odd period, player 1�s payo¤ from U is the solution to

v = 2 +
1

6
(6) +

1

62
v:

On the other hand, her payo¤ from D is

3 +
1

6
(0) +

1

62
v:

Hence, player 1 is indi¤erent between U and D (and clearly prefers either of these actions

to T or B).

In addition, playing L is a myopic best response for player 2, player 1�s continuation play

is independent of player 2�s action, and the distribution of player 2�s signal is independent

of player 2�s action. Hence, playing L is optimal for player 2.

Next, in an even period, it su¢ ces to check that both players always play myopic best

responses, as in even periods continuation play is independent of realized actions and signals.

If player 1�s last action was a1(n) = U , then she believes that player 2�s signal is y2(n) = m

with probability 1 and thus that he will play M . Hence, playing T is optimal. If instead

player 1�s last action was a1(n) = D, then she believes that player 2�s signal is equal to m

and r with probability 1
2
each, and thus that he will play 1

2
M + 1

2
R. Hence, both T and B

are optimal.

On the other hand, if player 2 observes signal y2(n) = m, then his posterior belief that
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player 1�s last action a1(n) = U is
1
3
(1)

1
3
(1) + 2

3

�
1
2

� = 1

2
:

Hence, player 2 is indi¤erent among all of his actions. If player 2 observes y2(n) = r, then

his posterior is that a1(n) = D with probability 1, so that M and R are optimal.3

Finally, expected payo¤s under this strategy pro�le in odd periods sum to

1

3
(4)| {z }

player 1 plays U

+
2

3
(3)| {z }

player 1 plays D

=
10

3
;

and in even periods sum to

1

3
(3)| {z }

Pr(T;M)(6�3)

+
1

3
(3)| {z }

Pr(B;M)(3)

+
1

3
(3)| {z }

Pr(B;R)(3)

=
9

3
:

Therefore, per-period expected payo¤s sum to�
1� 1

6

��
10

3
+
1

6

�
9

3

���
1 +

1

62
+
1

64
+ : : :

�
=
23

7
:

4 The Folk Theorem with Perfect Monitoring and Dy-

namic Mediation

We now show that the folk theorem always holds with perfect monitoring and dynamic

mediation, with a rate of convergence of 1� �. Therefore, in contrast to our �rst example,

moderately patient players cannot signi�cantly bene�t from imperfect monitoring in the

presence of a dynamic mediator.

Fix a mediated perfect monitoring game. Let ui be player i�s correlated minmax payo¤,

given by

ui = min
��i2�(A�i)

max
ai2Ai

ui (ai; ��i) :

Let di be the greatest possible di¤erence in player i�s payo¤ resulting from a change in player

i�s action only, so that

di = max
a2A;a0i2Ai

ui (a
0
i; a�i)� ui (a) :

3These indi¤erences result because we have chosen payo¤s to make the example as simple as possible.

The example is generic.
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Let u = (u1; : : : ; un) and d = (d1; : : : ; dn). Recall that a payo¤ vector v 2 Rn is feasible if

v = u (�) for some � 2 �(A). Let F � Rn denote the set of feasible payo¤ vectors, and

let �F denote the interior of this set. Say that v is strictly individually rational if v > u.

Note that this is more permissive than the usual notion of strict individual rationality as it is

de�ned relative to correlated minmax payo¤s. Let E (�) denote the sequential equilibrium

payo¤ set.

Our result is the following.

Theorem 1 If a payo¤ vector v 2 �F satis�es

v � u+ 1� �
�
d; (1)

then v is a sequential equilibrium payo¤ vector. That is,�
v 2 �F : v � u+ 1� �

�
d

�
� E (�) :

With the caveat that it does not address the attainability of payo¤ vectors on the bound-

ary of F , Theorem 1 is substantially stronger than the folk theorem, as it explicitly gives a

discount factor su¢ cient for each feasible and strictly individually rational payo¤ vector to

be attainable in sequential equilibrium. In particular, the rate of convergence of E (�) to F

is 1� �. We nonetheless record the folk theorem as a corollary.

Corollary 1 (Folk Theorem) For every strictly individually rational payo¤ vector v 2 �F ,

there exists �� < 1 such if � > �� then v 2 E (�).

Proof. Take �� = maxi2I di
vi�ui+di

and apply Theorem 1.

The intuition behind Theorem 1 is that the mediator can recommend mixed actions

leading to the target payo¤ v with high probability, while recommending every action pro�le

with positive probability. Following a deviation by player i, the mediator can recommend

that i�s opponents minmax her forever, without alerting them to the fact that a deviation

occurred (in particular, i�s opponents believe that the �deviation�was in fact recommended

by the mediator, since the recommendation has full support). The key point is then that

i�s opponents are willing to minmax i forever, even though this may be very costly for them,
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because they never realize that a deviation has occurred and always expect to return to

getting payo¤ v in the next period.

Proof of Theorem 1. Fix a payo¤ vector v 2 �F satisfying (1). Let �v = 1
jAj
P

a2A u (a) be

the payo¤ vector that results when the players mix uniformly over all possible pure action

pro�les. Choose " > 0 small enough such that the payo¤ vector v� given by

v� =
v � "�v
1� "

is feasible; this is possible by the assumption that v 2 �F . Let �� 2 �(A) be such that

u (��) = v�.

Consider the following mediator�s strategy. There are n+1 states, a regular state R and

a punishment state for each player i, Pi. Begin in state R.

� In state R, recommend �� with probability 1 � ", and recommend each pure action

pro�le with probability "
jAj (that is, recommend (1� ")�

� +
P

a2A
"
jAja). If exactly

one player i does not follow her recommendation, go to state Pi. Otherwise, stay in

state R.

� In state Pi, recommend �̂�i to players �i, for some

�̂�i 2 arg min
��i2�(A�i)

max
ai2Ai

ui (ai; ��i) ;

and recommend âi to player i, for some

âi 2 max
ai2Ai

ui (ai; �̂�i) :

Stay in state Pi.

We check that it is optimal for players to obey the mediator�s recommendations.

We �rst claim that after any history of actions and private recommendations, each player

i either assigns probability 1 to the state being R or assigns probability 1 to the state being

Pi. More speci�cally, we claim that if player i has disobeyed the mediator more recently

than she last received a recommendation ai 6= âi, then she is certain that the state is Pi;

while if player i received a recommendation ai 6= âi more recently than she has disobeyed

the mediator (or if she has never disobeyed the mediator), then she is certain that the state
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is R. To see this, �rst note that if player i has never disobeyed the mediator then she

is certain the state is R, as all possible histories of recommendations and opposing actions

are on-path. Starting at a history hti where player i is certain the state is R, if player i

disobeys the mediator and is recommended âi in every period � = t+1; : : : ; t0, then player i

is certain the state is Pi at history ht
0
i . Starting from a history hti where player i is certain

the state is Pi, if player i is recommended ai 6= âi then player i learns that in fact that

state has never been Pi (as once the mediator enters state Pi she recommends âi forever,

and the mediator never trembles). This can only be because another player also disobeyed

the mediator in every period where player i disobeyed the mediator, and since trembles are

independent across information sets this implies that the current state is R with probability

1. Thus, we have shown that player i begins the game certain that the state is R, switches

from being certain that the state is R to being certain that the state is Pi whenever she

disobeys the mediator, and switches back to being certain that the state is R whenever she

is recommended an action ai 6= âi. This proves the claim.

It remains only to check that it is optimal for each player i to obey the mediator when

she is certain the state is R and when she is certain the state is Pi.

If player i is certain the state is R, her instantaneous gain from disobeying the current

recommendation is at most (1� �) di, while her loss in continuation payo¤ is

� (((1� ") v� + "�v)� ui) = � (v � ui) :

It follows from (1) that

(1� �) di � � (v � ui) ;

so obeying the current recommendation is optimal.

If player i is certain the state is Pi, then as we have seen she must have been recommended

âi (as at any history, receiving recommendation ai 6= âi convinces her that the state is

R). Thus, obeying the mediator is a myopic best response, and her continuation payo¤ is

independent of her current action, so obeying is optimal.
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5 Private Monitoring Versus Perfect Monitoring with

Markov Mediation

It may be sometimes more natural to assume that the mediator (if available) can condition

her recommendations only on actions and not on past recommendations. For example, this

will be the case if there is a di¤erent mediator every period, and the period t mediator knows

the publicly observable history of actions but not the private messages sent by the period

t � 1 mediator. More abstractly, the key feature of Markov mediation is that it preserves

common knowledge of continuation play, and thus preserves the recursive structure of the

repeated game.4

This section shows that restricting to Markov mediation is not without loss of general-

ity. In particular, with Markov mediation even patient players can bene�t from private

monitoring.

To see this, consider the following slight modi�cation of a well-known example due to

Fudenberg and Maskin (1986). There are four players. Player 1 picks a row, player 2 picks

a column, and player 3 picks a matrix. Player 4 is a dummy player. The payo¤ matrix is

as follows.
l r

T 1; 1; 1; 0 0; 0; 0; 100

B 0; 0; 0; 100 0; 0; 0; 100

l r

T 0; 0; 0; 100 0; 0; 0; 100

B 0; 0; 0; 100 1; 1; 1; 0

L R

Note that player 4�s payo¤ is high when the payo¤ of players 1, 2, and 3 is low, and vice

versa.

5.1 Perfect monitoring with Markov Mediation

Fudenberg andMaskin (1986) show that, without mediation, the equilibrium payo¤of players

1, 2, and 3 cannot be less than 1
4
. Their proof extends easily to the case with a Markov

mediator.
4With perfect monitoring, sequential equilibrium with a Markov mediator corresponds to Tomala�s (2009)

perfect communication equilibrium.
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For any mixed action � 2 �(A), let �i(1) be the probability attached to the �rst action

for player i 2 f1; 2; 3g (that is, to T , l, or L; we neglect the dummy player 4). Then there

must be a player i who faces �j(1) � 1
2
and �k(1) � 1

2
, or �j(1) � 1

2
and �k(1) � 1

2
, for j 6= i

and k 6= i; j. In the former case, playing the �rst action gives player i a payo¤ no less than
1
4
, while in the latter, playing the second action does so.

With a Markov mediator, the distribution of future paths of play depends only on the

public history of actions (a� )
t�1
�=1. Let v 2 R be the in�mum over all histories of actions and

all sequential equilibria of the (common) continuation payo¤ of players 1, 2, and 3. As the

current recommendation plan is common knowledge, at every history there is at least one

player i 2 f1; 2; 3g who can guarantee an instantaneous payo¤ of 1
4
. Hence,

v � (1� �)1
4
+ �v:

That is, v � 1
4
.

It follows that player 4�s equilibrium payo¤ cannot exceed 300
4
. Therefore, the sum of all

the players�payo¤s is no more than

1 + 1 + 1 +
300

4
= 78:

5.2 Private monitoring

We exhibit an information structure for which the sum of the players�payo¤s may be arbi-

trarily close to 100.

Each player i 2 f1; 2; 3g observes two signals, yi 2 fA;B;Og and zi 2 f0; 1g. Player 4

observes nothing.

The distribution of signal y is determined by player 3�s action, as follows.

1. If a3 = L, then with probability "2, all players observe yi = A; with probability "2, all

players observe yi = B; and with probability 1� 2"2, all players observe yi = O.

2. If a3 = R, then with probability "2, player 1 observes A, player 2 observes B, and

player 3 observes O; with probability "2, player 1 observes B, player 2 observes A, and

player 3 observes O; and with probability 1� 2"2, all players observe yi = O.
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Note that if player 3 plays R then players 1 and 2�s signals may be �miscoordinated.�

The distribution of signal z is given by:

1. If a1 = T and a2 = l, or if a1 = B and a2 = r, then all players observe zi = 1 with

probability ", and all players observe zi = 0 with probability 1� ".

2. Otherwise, all players observe zi = 0 with probability 1.

Note that players 1 and 2 must �coordinate� in order to generate a public signal z1 =

z2 = z3 = 1.

For each " > 0, we construct an equilibrium with payo¤s converging to 2"
1+2"

for players

1, 2, and 3 as � ! 1. By feasibility, player 4�s payo¤ converges to 100. We ignore player 4

throughout the construction.

Each player i 2 f1; 2; 3g has state si;t 2 fA;B;Og in period t. The initial state is

s1;1 = s2;1 = s3;1 = O. For each period t,

1. If si;t = O, then player i = 1 plays B, player i = 2 plays r, and player i = 3 plays L.

If yi;t = A, go to state si;t+1 = A. If yi;t = B, go to state si;t+1 = B. If yi;t = O, go

to state si;t+1 = O.

2. If si;t = A, then player i = 1 plays T , player i = 2 plays l, and player i = 3 plays L.

If zi;t = 0, go to state si;t+1 = A. If zi;t = 1, go to state si;t+1 = O.

3. If si;t = B, then player i = 1 plays B, player i = 2 plays r, and player i = 3 plays R.

If zi;t = 0, go to state si;t+1 = B. If zi;t = 1, go to state si;t+1 = O.

Intuitively, if player 3 deviates and plays R when s1;t = s2;t = s3;t = O, then the next

state might be (s1;t+1; s2;t+1) = (A;B) or (B;A). If the state reaches (s1;t+1; s2;t+1) = (A;B)

or (B;A), then players 1 and 2 miscoordinate forever, yielding payo¤ 0 for players 1, 2, and

3. Note that this �punishment�for player 3�s deviation is like the punishments underlying

Theorem 1: players 1 and 2 never learn that a deviation has occurred, so they minmax player

3 (and themselves) forever, while always believing that they are still on the equilibrium path.

We check that this strategy pro�le, together with any consistent belief system, is a

sequential equilibrium.
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Let vi(si) be player i�s equilibrium continuation value in state si, given by

vi(O) = (1� �) (0) + �
��
1� 2"2

�
vi(O) + "

2vi(A) + "
2vi(B)

�
;

vi(A) = (1� �) (1) + � ((1� ") vi(A) + "vi(O)) ;

vi(B) = (1� �) (1) + � ((1� ") vi(B) + "vi(O)) :

Solving this system of equations yields

vi(O) =
2�"2

1� � + �"+ 2�"2 :

vi(A) = vi(B) =
1� � + 2�"2

1� � + �"+ 2�"2 :

It is straightforward to check that players 1 and 2 do not have an incentive to deviate: In

state si;t = O, player 1 or 2 cannot control the instantaneous utility or transition probability.

In state si;t = A or B, conforming gives payo¤ vi(si;t), while deviating gives payo¤ �vi(si;t)

as it gives instantaneous utility 0.

For player 3, the only problematic state is s3;t = O, as in the other states she cannot

control the instantaneous utility or transition probability. When s3;t = 0, we can compare

player 3�s continuation payo¤ from L and R as follows.

1. With probability 1 � 2"2, the next state is s1;t = s2;t = s3;t = O regardless of a3, so

player 3�s continuation payo¤ is independent of a3.

2. With probability 2"2,

(a) With L, the next state is s1;t+1 = s2;t+1 = s3;t+1 = A or s1;t+1 = s2;t+1 = s3;t+1 =

B, so player 3�s continuation payo¤ is v3(A) = v3(B) = 1��+2�"2
1��+�"+2�"2 .

(b) With R, players 1 and 2 will be permanently miscoordinated: (s1;� ; s2;� ) = (A;B)

or (B;A) for all � > t. Player 3�s continuation payo¤ is 0.

Hence, player 3 will conform if

1� � � 2"2 1� � + 2�"2
1� � + �"+ 2�"2 :
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As the left hand side converges to 0 while the right hand side converges to 4"3

1+2"
, player 3 will

conform for high enough �. Finally, the players�equilibrium payo¤ is

vi(O) =
2�"2

1� � + �"+ 2�"2 !�!1
2"

1 + 2"
;

as desired.

5.3 Scope of the Example

In the above example, the sum of the players� equilibrium payo¤s is higher with private

monitoring than with perfect monitoring and Markov mediation. A natural question is

whether private monitoring can strictly Pareto dominate perfect monitoring with Markov

mediation. That is, letting EMarkov(�) be the equilibrium payo¤ set with perfect monitoring

and Markov mediation, and letting EMarkov = lim�!1EMarkov(�) be the limit equilibrium

payo¤ set, can we �nd for every � a monitoring structure and equilibrium such that the

equilibrium payo¤ v(�) converges to v such that vi > wi for all i 2 I and w 2 EMarkov?

The answer is no. Take a feasible payo¤ vector v that strictly Pareto dominates w 2

EMarkov(�) for some � < 1. Since v is feasible, for su¢ ciently large �, there exists a sequence of

action pro�les (a� )T�=1 with T <1 such that the average payo¤ from the sequence is equal to

v: 1��
1��T

PT
�=1 �

��1u(a� ) = v.5 In addition, EMarkov(�) is monotone by standard arguments,

so w 2 EMarkov(�0) for all �0 � �. Then, for su¢ ciently large �, the following strategy pro�le

is an equilibrium: play at in period t (modT ) unless there has been a unilateral deviation;

after a unilateral deviation, play the equilibrium whose payo¤ is w.

It is also natural to look for su¢ cient conditions for private monitoring not to outperform

perfect monitoring with Markov mediation. If there are only two players, or if the NEU

condition is satis�ed as in Abreu, Dutta, and Smith (1994), then the correlated minmax folk

theorem holds with perfect monitoring and Markov mediation: EMarkov = fv 2 F : v � ug.

Under these conditions, the limit equilibrium payo¤ set with private monitoring is a subset

of EMarkov.

5The proof is the same as Fudenberg and Maskin�s (1991) proof of the dispensability of public random-

ization, and so is omitted.
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6 Comparison with Kandori (1991), Sekiguchi (2002),

and Mailath, Matthews, and Sekiguchi (2002)

Kandori (1991), Sekiguchi (2002), and Mailath, Matthews, and Sekiguchi (2002) present

examples in which players bene�t from imperfect monitoring. This section shows that

in Kandori�s and Sekiguchi�s examples this conclusion relies on the absence of a dynamic

mediator. The same is true of Mailath, Matthews, and Sekiguchi�s examples, for similar

reasons.

Let NE(G) denote the set of stage game Nash equilibria of G. Condition 1 of Sekiguchi

(2002), which generalizes Kandori (1991), is as follows.

Condition 1 There exists a� 2 A nNE(G), �� 2 NE(G), and �p 2 �(A) such that

1. For each i, the support of �pi is a subset of the support of �
�
i .

2. For any i,

ui(�
�)� max

ai2Ai
ui(ai; �

p
�i) > max

ai2Ai
ui(ai; a

�
�i)� ui(a�):

Sekiguchi shows that in the undiscounted two-period repetition of G, there is a private

monitoring structure and a corresponding equilibrium in which a� is played in period 1 and

�� is played in period 2. By an argument similar to the proof of Theorem 1, the same is

true with perfect monitoring and dynamic mediation.

In particular, let

BR"i = fai 2 Ai : ui(ai; a��i) + " � ui(a�)g:

Consider the following mediator�s strategy.

� In period 1, recommend a� with probability 1� � and recommend
�
ai; a

�
�i
�
with prob-

ability �

jIjjBR"i j for each ai 2 BR
"
i and i 2 I.

� In period 2, if there was a unilateral deviation by player i to ai 2 BR"i in period 1,

recommend
�
BRi

�
�p�i
�
; �p�i

�
. Otherwise, recommend ��.
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Take " > 0 and � > 0 su¢ ciently small so that, for all i 2 I,

ui(�
�)� max

ai2Ai
ui(ai; �

p
�i) > max

ai2Ai
ui(ai; a

�
�i)� ui(a�) + 2�max

a
jui (a)j+ "; (2)

" >
2�

1� � maxa jui (a)j : (3)

It is straightforward to see that each player has an incentive to follow the recommendation

in period 2. Consider period 1. When a�i is recommended, player i�s payo¤ from following

the recommendation is at least

(1� �)ui(a�)� �max
a
jui (a)j+ ui(��):

When ai 2 BR"i is recommended, player i�s payo¤ from following the recommendation is at

least

ui(a
�)� "+ ui(��):

In either case, player i�s payo¤ from deviating to a0i 2 BR"i is at most

(1� �) max
ai2Ai

ui(ai; a
�
�i) + �max

a
jui (a)j+ max

ai2Ai
ui(ai; �

p
�i)

Hence, in either case, (2) implies that deviating to ai 2 BR"i is unpro�table. Finally, player

i�s payo¤ from deviating to a0i =2 BR"i when a�i is recommended is at most

(1� �) (ui(a�)� ") + �max
a
jui (a)j+ ui (��) ;

while her payo¤ from deviating to a0i =2 BR"i when ai 2 BR"i is recommended is at most

ui (a
�)� "+ ui (��) :

Hence, in the �rst case (3) implies that deviating to a0i =2 BR"i is unpro�table, while in the

second case such a deviation is clearly unpro�table.
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