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Abstract: This paper applies two structural econometric models - the fully non-
parametric model of Hortacsu (2002), and the semi-parametric model of Fevrier,
Preget and Visser (2002) - to Polish treasury bill auction data. The paper has two
main aims: �rstly, to compare the performance of discriminatory and uniform-price
auctions on the Polish market, and secondly, to evaluate the mutual (in)consistencies
of predictions from the two econometric models. I conclude that both of the models
considered suggest that the current setup, which uses a discriminatory auction,
performs better than a uniform-price auction would, and that both models agree on
this conclusion. The number of cases in which predictions from the two auctions are
inconsistent is small, though in part this is due to the weakness of the conclusions
implied by the Hortacsu model.

As of yet, there are no compelling theoretical models o¤ering an answer as to
which auction format is best suited for auctioning shares or treasury-bills. This
theoretical ambiguity is mirrored by observing actual auction-mechanism choices
across the world: the survey by Brenner, Galai and Sade (2006) covers 48 countries
of which 24 use discriminatory price, 9 uniform-price, and further 9 use both. Such
variation suggests that the superiority of one auction-format over another is an
empirical matter, and results may be country-speci�c. Though there are a number
of structural econometric models analysing the performance of discriminatory and
uniform auctions,2 each of these models has been run on a separate dataset. Hence
the degree to which results are model-, rather than data-driven remains an open
question.
In this paper I use a dataset on Polish treasury-bill auctions to compare two struc-

tural econometric models. The models I compare are Hortacsu (2002), originally run
on Turkish auctions, and Fevrier,Preget and Visser (2002), which was initially run
on French data. These two models di¤er both in terms of the economic assumptions
that underlie them, as well as the econometric estimation methods that are used:
Hortacsu�s auction model is based on a private-value assumption, and his estima-
tion procedures are fully non-parametric. Fevrier et al. on the other hand build

�This paper is based on chapter of my D.Phil thesis. I would like to thank my supervisor
Paul Klemperer, as well as Steve Bond, Ian Jewitt and Thees Spreckelsen for their comments and
criticisms. Financial support from the ESRC and RES is also gratefully acknowledged.

2For example Hortacsu (2002) for Turkey, Fevrier & al. (2002) and Armantier & Sbai (2006)
for France, Kastl (2006) for Czech Republic and Kim & Ryu (2006) and Kang & Puller (2008)
for Korea.
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an auction model assuming pure common values, and develop a semi-parametric
estimation methodology.
The two main aims of this paper are to, �rstly, analyse the Polish dataset using

two aforementioned models to determine which auction type is revenue superior, and
secondly, to evaluate the mutual consistency of the results that these two models
generate. Given the diverging theoretical and methodological assumptions of the
two models analysed, if the conclusions from both models are in agreement, that
would provide an intuitively compelling reason thinking that the conclusions are
data-driven, and not just modelling artefacts. My results suggest that the current
auction setup, which uses discriminatory-price auctions, performs no worse than
would a uniform-price system. For my application of the Fevrier et al. model, I
�nd that the discriminatory-price auction performs better overall, on both security
types. However, in my application of the Hortacsu model, I �nd signi�cant revenue
di¤erences in favour of the discriminatory-price auction in only 10% of my sample,
though in no portion of the sample is the uniform-price auction revenue-superior.
Thus the results from both model types turn out to be qualitatively consistent.3

During the writing of this paper the Polish Ministry of Finance mentioned that
they were seriously considering switching from discriminatory to uniform-price auc-
tions, and were interested any academic work that might advise them on this mat-
ter. While my work is not explicitly prepared with policy advice in mind, it might
nonetheless be a useful starting point. My conclusions, which suggest that the
current system using discriminatory auctions is performing at least as well as the
alternative would, indicate that if a uniform-price system were to be implemented,
other modi�cations than just the �auction format�might be necessary to obtain
superior revenue results.4

In Section 1 I discuss the main di¤erences between the discriminatory and uniform-
price auction rules, and in Section 2 I present a generalisation of Wilson�s (1979)
share auction model, and solve it out under the two di¤ering sets of assumptions
from Hortacsu and Fevrier et al. Section 3 describes the institutional setting of the
Polish market for treasury bills, and describes the auction participants.5 In section
4, I discuss how to apply Hortacsu�s model to the data, and present the results from
estimating his model.6 :7 Section 5, in turn, discusses the estimation of Fevrier et al.
model, and presents the results. Comparison of the results from the two models with
each other, and past literature, are is carried out in section 6. Section 7 concludes.

1. Description of the Uniform and Discriminatory Pricing Rules

Both the discriminatory and uniform-price auction rules are pricing rules for auc-
tions for multiple items. Frequently the total amount of goods for sale is �xed, but
this amount is in�nitely divisible, and hence each unit in�nitesimally small. In this

3That is, both models conclude that discrimnatory-price performs no worse than uniform-price,
but the magnitudes in revenue-dominance by the discriminatory auction in those cases when it is
�signi�cantly superior�to uniform price, di¤er across the two models.

4Changing rules for participation, for example, could be one such potential modi�cation.
5The feature of �topup auctions�, which is a part of the Polish institutional setup, is discussed

in the next Chapter.
6Sections 8.2 to 8.1 discuss possible extensions of the Hortacsu methodology, in response to

some practical di¢ culties in applying Hortacsu�s method in its basic form.
7A discussion of how data from topup auctions can be used to test the validity of estimates

from Hortacsu�s model has been carried out in Chapter 3 of Marszalec (2011) .
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context, a �bid�submitted by an auction participant is in fact a function, mapping
from all possible quantities to prices, or vice versa. In most practical applications of
either pricing rule, the auctioneer usually pre-speci�es a grid over the set of prices
and quantities, and allows the bidders to submit their demands on this grid. For
example, the minimum increment on quantity could be 100 bonds, and the degree of
precision is specifying a price could be £ 0.01 to £ 100 of face-value. Thus rather than
continuous demand functions, bidders in these type of auction submit price-quantity
pairs, specifying what amount of the good they are willing to buy, at what price.
After receiving all the participant bids, in both auction types, the auctioneer

then orders the individual bids in decreasing price order, and picks a cut-o¤ price
- usually called the �stop-out price� - in a way that equates the bidders�demand
with the aggregate supply. What di¤ers across the two auction rules, are prices paid
by the winning bidders, on the quantities that they do win. In the uniform-price
auction, as the name suggests, all winning bidders pay the same per-unit price on all
the items they win, and this price equals to the stop-out price. In the discriminatory
auction, each accepted bid is paid at full face value, so di¤erent bidders will end up
paying di¤erent prices; indeed, in the case when the same bidder submits multiple
winning bids, the price on each of those will di¤er. A graphical representation of this
pricing di¤erence (when demands are approximately continuous) is show in Figure
1.

Figure 1: Payments under Uniform-Price and Discriminatory Auction Rules

From the auctioneer�s point of view, the total revenue from a uniform price auction
is depicted by the shaded rectangle in the left-hand pane of Figure 1: this is simply
the total quantity �q multiplied by the stop-out price pc: In the discriminatory auction
(right-hand pane of the Figure), the revenue equals the q̂ � pc rectangle, plus the
shaded triangular area, which depicts the additional revenue (in excess of stop-out
price) on all inframarginal accepted bids.
By visually comparing the two areas, it seems obvious that the revenue from

discriminatory price auction is higher, and many people who hear about these two



4

rules for the �rst time question the need for a comparison at all. Yet there is more
to this matter than is shown on Figure 1, because it is highly unlikely that the
same set of bidders would submit the same individual demand functions under both
rules: the incentives for bidding di¤er signi�cantly across the two rules, hence we
should in fact expect di¤erent bidding functions to be submitted. In the uniform-
price auction, the incentives for shading (i.e. bidding below value) are relatively low,
since only the marginal winning bid is paid �at full face price�, and all inframarginal
accepted bids are paid at a strictly lower price. In the discriminatory auction,
since each accepted bid is paid in full, the bidders need to shade carefully at each
portion of their demand curve: any (winning) bid submitted at a price equal to (or
very close to) the bidder�s true valuation will earn zero (or minimal) pro�t. Thus
incentives to shading are stronger in discriminatory auctions, hence we would expect
more aggressive bidding in the uniform price auction. The relevant comparison is
then between the stop-out price under the uniform-price rule, and the �average
weighted price�under discriminatory pricing, and the result of this comparison is
not intuitively obvious. There is also no current economic theory that would allow
for an analytical comparison of the revenue and optimal bidding under these two
auction rules, hence data is needed to provide us with a practical answer. In this
vein, the next section outlines the economic theory that underpins the econometric
models which I use to analyse my data, and provide such an empirical comparison.

2. Economic Theory on Share Auctions

Both econometric models analysed in this paper base on the auction-theoretic
model of Wilson (1979). Here I present a generalised version of Wilson�s model,8

and show how each of the two methodologies extends this model to �t their particular
set of assumptions.
Assume there are n � 2 risk-neutral bidders participating in an auction for known

aggregate quantity of Q treasury bills. Each bidder i observes a private signal, si;
and has a (marginal) valuation function of the form v (q; si; s�i) ; where q denotes
the demanded quantity, and s�i = fs1; ::; si�1; si+1; :::; sng is the vector of signals of
i0s rivals. While a bidder does not observe the signals of his rivals, we assume that
he knows the distribution they are drawn from, as well as n; the total number of
bidders. Importantly, at this stage of the model we do not need to assume bidder
symmetry, nor any speci�c parametric dependence between the bidders�signals.
Each bidder�s strategy is a function of the price, p; and the bidder�s individual sig-

nal, si; I denote this bidding function by yi (p; si) : To solve the model, the strategies
are restricted to be di¤erentiable, strictly decreasing functions. The market-clearing
price (�stop-out price�) pc is de�ned as the price where:

nX
j=1

yj (p
c; sj) = Q

Equivalently :

qi (p
c; si) = Q�

X
j 6=i

yj (p
c; sj)

The �rst equation states that at pc; aggregate demand equals aggregate supply.
The second equation re-states this situation from bidder i0s perspective: for him,

8Notation here mirrors that of Hortacsu (2002).
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the stop-out price equates his individual demand function, with his residual supply.
Since each bidder only observes his own signal, the stop out price is random from the
individual bidders viewpoint. However, since I assumed the bidders know the distri-
bution of their rivals�signals, they can infer the distribution of the stop-out price,
conditional on their own information and submitted demand. This distribution is
de�ned as follows:

H (pjyi (p)) = Pr (pc � p) (1)

= Pr

 
yi (p) � Q�

X
j 6=i

yj (p
c)

!
(2)

Each bidder is then faced with an optimisation problem: to pick a demand function
yi (p) that maximises the expected surplus at every p;conditional on the bidders�own
signal and (if applicable) the other bidders�signals that can be inferred at that price.
The optimisation problem is thus:

max
yi(p)

Z 1

0

 Z yi(p)

0

Es�ijp;si
�
v (q; si; s�i)� y�1i (q; si)

�
dq

!
dH (p; yi (p)) (3)

This optimisation programme can then be solved by using calculus of variations
to obtain an Euler equation for estimation or other analysis.
From this description, it is evident that there are two key components in Wilson�s

model which drive the auction outcomes: the speci�cation of the valuation function,
and the distribution of the stopout price, conditional on bids. To �close�the model
and apply it to data, we will need to specify a parametrisation for the valuation
function, and means of recovering the H-distribution from the data. The latter
step is particularly complicated, since the H-distribution itself depends on optimal
bidding strategies, and usually will not have a closed-form characterisation.9 Given
this limitation, I cannot construct a likelihood function for H (and consequently the
whole model), and so maximum-likelihood modelling will not be feasible. The next
two sections present two di¤erent methods of meeting these econometric challenges.

2.1. Hortacsu�s model - private values
The main model presented by Hortacsu (2002)10 makes the assumption of sym-

metric bidders, pure private values and identically and independently distributed
signals. These assumptions allow me to re-write the individual valuation function
as: vi (q; si; s�i) = v (q; si) : each bidder�s valuation now depends on his own signal
only, and every bidder�s signals are drawn from the same distribution. Consequently,
the optimisation programme in (3) becomes:

max
yi(p)

Z 1

0

 Z yi(p)

0

�
v (q; si)� y�1i (q; si)

�
dq

!
dH (p; yi (p)) (4)

9At this time, we are not aware of any auction �share�model in which an analytical expresesion
is derived for H, in a non-trival case (i.e. more than 2 bidders).

10This paper was subsequently revised, extended and published as Hortacsu and McAdams
(2010). For the purpose of my analysis, however, the main econometric methodolgy did not change
between these two versions of the paper.
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Solving this programme gives an Euler equation (necessary condition) of the form:

v (yi (p) ; si) = p+
H (p; yi (p; si))
@
@p
H (p; yi (p; si))

(5)

This equation (implicitly) de�nes the bidder�s bidding function, and the set of all
bidders�functions constitute a Bayesian Nash equilibrium of the auction game. The
expression suggests at each point where H is strictly positive (i.e. at any price above
the lower bound of the support), the bidder will under-report his true valuation,
shading it by the H(p;yi(p;si))

@
@p
H(p;yi(p;si))

: The arguments and proofs showing that this model

is non-parametrically identi�ed from the data are supplied in Section 2.2 of Hortacsu
(2002), and are thus not re-produced here.
Two further observations need to be mentioned here. Firstly, equation (5) above

is a necessary condition for solving the optimisation programme, but it does not
guarantee uniqueness. Consequently, even if I recover a valuation function using
this equation, it might not be the only one that rationalises my data. Secondly,
this equation was derived under the assumption of continuous bidding functions -
if there is a �nite number of units for sale, the bidder�s strategy would also be a
(�nite) vector of prices rather than a continuous function.
Since actually submitted bid-schedules are �nite price-quantity pairs, we need to

construct a discrete analogue to equation (5). To construct this analogue, Hortacsu
uses the framework of Nautz (1995), which assumes that the price grid is discrete,
while the quantity is continuous. Prices on the grid are ordered as p0 < p1 < ::: <
pk+1; and each bidders submits a demand schedule ŷi : fqi0 � yi1 � ::: � yi(k+1)g;
one quantity for each price. The stop-out price in Nautz�framework is then de�ned
as the smallest price at which total demand is just short of total supply. Analogously
to the continuous model, in Nautz�s setup I de�ne a distribution H (pk; ŷi) which
describes the probability that the stop-out price is below pk, conditional on bidder
i submitting the bid-vector ŷi: Given these de�nitions, the intuitive analogue of (5)
becomes:

vi (yik; si) = pk +
H (pk�1; ŷi) (pk � pk�1)
H (pk; ŷi)�H (pk�1; ŷi)

(6)

This is the equation I will use in my estimation of individual valuations. While
this equation is not precisely correct in the case when not all bidders submit bids
at each point in the price grid,11 in my data this equation provides more sensible
estimates.12

2.2. Fevrier, Preged and Visser�s model - common values
In line with Wilson�s (1979) original model, Fevrier et al (2002) assume pure

common values. This means that the true value of treasury bills is exactly the
11The corrected equation is derived in Appendix 8.2 of Hortacsu.
12The �precisely correct�formulation for recovering v when not all bidders submit bids at each

price involves an equation simialr to the discretised Euler-equation, with an extra term, which
takes into account the �missing steps�, and also links consecutive steps of the v-function. In this
case, the steps of the v-functions are obtained from a system of linear equations.
However, this addtional term features a derivative, @H

@yki
; which given the limited variation in

my data, cannot be precisely estimated. Consequently, this theoretically �more correct�method
generates erratic predicitons in this dataset. Hortacsu (2002) �nds that in cases where @H

@yki
can

be estimated well, the di¤erences from the two methodologies are �negligibly small�, and hence the
use of equation 5 should not be problematic in practice.
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same to all bidders, so that vi (q; si; s�i) = V , for all bidders i. The common
value has a distribution function FV (w) = Pr (V � w) : All bidders are assumed
to be symmetric, and each of them receives an independent signal, the distribution
of which depends on the realisation of V ; this conditional distribution is denoted
by FSjV (sjw) = Pr (Si � sjV � w) :Thus signals are IID, conditional on the true
realisation of V. The realisation of each bidder�s signal is private information, and
not observed by his rivals or the seller, but the two distributions, FV and FSjV are
common knowledge.
Fevrier�s derivation of the Euler condition proceeds di¤erently than that of Hor-

tacsu�s. To avoid using y�1i , the inverse bidding function, in the formulation of the
optimisation problem, Fevrier et al re-write the �payment� from a discriminatory
auction, as follows. Observe that since yi (p; si) is monotonic decreasing, there is a
unique �p which is the largest price at which yi is non-negative. Then for any p � �p;
the following equality holds:Z yi(p;si)

0

yi (q; si) dq = yi (p; si) � p+
Z �p

p

yi (u; si) du

Substituting this, into equation (3), and recalling that the common value is the
same for all bidders, the optimisation programme becomes:

max
yi(p;si)

Z 1

0

 Z yi(p)

0

Es�ijp;si;V

�
(V � p) yi (p; si)�

Z �p

p

yi (u; si) du

�
dq

!
dH (p; yi (p) ; V )

(7)

Note that the expectations operator and the H-density now both condition on V;
this is relevant because the individual signals, si; have distribution which depends
on V. Using this to �nd the Euler condition, Fevrier et al obtain:

Es�ijp;si;V

�
(V � p) @H (p; yi (p; s) ; V )

@p
�H (p; yi (p) ; V )

�
= 0 (8)

The H-density and its derivative are evaluated at y = yi (p; si) : Since H is non-
negative, and @H

@p
> 0 this equation, analogously to equation (5), suggests that the

bidder participating in a discriminatory auction will again shade his bid. A dis-
cussion of the identi�cation properties of this model are presented in Appendix D
of Fevrier et al. (2004), where the authors show that the model is parametrically
identi�ed, but concede that it is (most probably) not non-parametrically identi�ed.
To facilitate estimation, Fevrier et al. re-write their Euler-equation as

Esi;sjf(n� 1)[EV jS (V jSi = si; Sj = sj)� p] � 1pc�p�Epc [(p� pc) 1pc�p]g = 0 (9)

In the above equation 1pc�p is the indicator function, taking the value of 1 when
pc � p, and zero otherwise. This condition must be satis�ed by any optimal
bidding function, on the entire support of the stop-out price density. The advantage
of formulating the necessary condition as (9) rather than (8) is that it doesn�t depend
on the H-density, which in itself can be tricky to estimate due to its dependence on
the equilibrium bidding strategies themselves.
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3. Description of the Polish Treasury Bill Auction System

My dataset contains information on Polish 52-week treasury bill and 2-year bond
auctions, covering the period May 2004 to June 2007 for 52-week bills, and Septem-
ber 2003 to June 2007 for 2-year bonds. The raw auction dataset, obtained from the
Ministry of Finance (MoF henceforth), has been augmented by adding secondary-
market yields for both securities.13 During the time period covered by my data, the
Polish economy was experiencing a period of steady growth, with relatively little
�nancial instability.
Both securities analysed are zero-coupon "pure discount securities". The 52-week

bill is the MoF�s most important short-term security, primarily used for liquidity
management. However, an additional function of the 52-week bill is to provide the
basis for calculating the annual coupons on longer-term (10- and 15-year) variable-
coupon bonds. The Ministry of Finance auctions o¤, on average, 1 bn PLN (roughly
£ 175 mln) of these bills weekly. According to a Ministry representative, the two-
year zero-coupon bonds were in the past primarily used to balance the �average
duration�of government debt, but have declined in signi�cance over time.14 Two-
year bonds are auctioned monthly, with roughly 2.3 bn PLN ( £ 400 mln) on average,
per auction15.
Bonds and treasury bills have been sold via discriminatory auction in Poland

since 1991, with the institutional design drawing heavily on the French system.
Initially participation was open to members of the public, but participation rules
were modi�ed in 2002 and a �primary dealer�system was implemented. To obtain
a �primary dealer�status, a bidding institution (e.g. bank or brokerage house) must
apply for a licence from the Ministry of Finance, and satisfy the MoF that they are
indeed a viable primary bidder. This procedure includes a contest among all the
applicants, and the evaluation criteria are announced by the MoF in advance. Once
the licence has been granted, the dealers must satisfy certain �activity rules�to be
eligible for a licence renewal.16 In my dataset, I observe 19 di¤erent primary dealers
- not all present throughout the whole sample.
Bidders express their demands within the auction by submitting price-quantity

pairs, with prices being quoted to the precision of 0.01 PLN per unit of face value,
and quantity expressed as the total amount of the securities�face value. Each 52-
week bill has face-value of 10 000 PLN, while the two-year bonds have a value of
1000 PLN each; to maintain consistency, my dataset has re-scaled all of the �face
prices�to 100. The minimum quantity for each bid is 100.000 PLN, and if a bidder
wishes to participate in a given auction, his total demand must exceed 1 million,
which is usually less than 1% of aggregate supply.
The supply of securities at each auction is announced in advance, though the MoF

is permitted to withdraw some of the securities if demand is lacking - in practice

13This data was also obtained from the MoF.
14Since the beginning of the 2008 credit-crunch, the Ministry has introduced new shorter-term

securities (5 and 13 weeks), while interest in thet two-year bond has waned further.
15This �gure has steadily declined over our sample period - the average from the �rst �ve auc-

tions is 2.7 bn PLN, while the last �ve average 1.7 bn PLN. This re�ects the declining signi�cance
of the two-year bond.

16The licencing period is one year at a time. One of the activity rules requires that each licence
holder must win at least 5% of the aggregate supplied amount of bonds, during each quarter. This
�gure applies across all bond maturities, and each maturity has a di¤erent �weight�in contributing
to the 5% requirement.
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Table 1: Auction summary statistics, by security type

52 Week 2 Year

Cover 2.7(1.0) 2.7 (1.0)
Submitted bids 103.6 (26.4) 144.5 (36.8)
Satis�ed bids 46.8 (24.1) 59.1 (26.1)
Bidders 12.3 (1.0) 12.8 (1.8)
Winners 7.6 (2.2) 8.8 (2.0)

Bids per bidder 8.4 (2.2) 11.5 (3.1)
Maturity (days) 364.0 (N/A) 785.5 (50.4)
Supply (mPLN) 828.2 (246.7) 2155.7 (655.8)

Means reported (st.dev in brackets).

this occurs very rarely.17 An additional feature of the Polish treasury-bill auctions is
the possibility for the Ministry to organise a top-up auction, shortly after the main
auction has �nished. The legal framework permits the MoF to o¤er extra 20% of
base-auction supply in the top-up auction, at the weighted average price obtained
in the main auction.18 ;19 Though top-up auctions are permitted in both 52-week
and 2-year auctions, the MoF has never used this opportunity on the 52-week bills,
while roughly 40% of the 2-year bond auctions are followed by a top-up phase. The
econometric models considered in this paper do not take into account the existence
of top-up auctions. As of yet, there are no theoretical models I am aware of which
would explicitly model the e¤ect of top-up auctions, though Chapter 3 of Marszalec
(2011) takes a step towards taking the top-up phase �seriously�, by showing that it
may in�uence the econometric results found in this paper.
The periods spanned by my data contain information on 103 of 52-week bill, and

43 2-year bond auctions;20 18 of the 2-year auctions are followed by a top-up stage.
The dataset records all the price-quantity pairs actually submitted by the bidders
at the auction, as well as the stop-out price (and hence the �nal allocation of supply
to bidders). Some summary statistics on auctions for the two types of securities are
provided in Table 1.
While the cover ratio is quite low,21 this doesn�t necessarily follow from �a low

degree of competition�, which is how Krawczyk (2006) interprets similar �gures. It
is more likely that bidders are realistic about the kind of quantities they can expect
to win, there is little uncertainty about supply, and the economic environment in
Poland was highly stable, so little is gained by submitting excessively optimistic

17In my data, all 52-week auctions sell exactly the announced supply, and over 95 percent of
2-year bond auctions sell precisely the announced amount. The ratio of sold-to-announced bonds
varied much more in the mid- and late 1990s, when the �nancial system in Poland was overall
more volatile.

18The allocation of supply in the to-up auction is based on the proportions allocated to each
bidder in the main auction.

19The Polish top-up auctions are analogous to ONC2-type �non-competitive�bids, discussed in
Fevrier & al. (2002).

20I have data on earlier 52-week bills auctions as well, but the secondary market prices were not
available for dates before May 2004.

21The �cover ratio�is measured as a ratio of submitted demand divided by announced supply.
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Table 2: Top-up Auction Statistics

Base Auctions Top-Up Auctions

Cover 2.7(0.7) 4.2(3.1)
Cover 2.7 (0.7) 4.2 (3.1)

Participants 12.7 (1.9) 7.2 (3.1)
Winners 10.4 (3) 7.2 (3.1)

Supply (mPLN) 2516.7 (633.6) 423.7 (196.8)

Means reported (st.dev in brackets).

demand schedules. We see from the table that roughly 45% of submitted bids are
met (fully or in part) in the 52-week auctions, while around 41% are accepted in
2-year auctions. The number of participants in both kinds of auctions looks very
similar, though the 2-year auctions produce one more winner on average. This
�nding is not surprising, given that many of the same bidders participate in both
types of auctions. There are, however, bidders on each maturity (52-week and 2y)
who only concentrate in bidding on one type of security, though overall these e¤ects
do not appear to be large. The number of bids per bidder is above 8 for 52-week
bills, and over 11 for 2-year bonds, so it appears sensible to use economic models in
which bidders submit �demand functions�for mutliple items (or shares), rather than
single-step models (with unit demands).
Some summary data on the topup auctions is presented in Table 2. In this table,

the standard deviation �gures are highly misleading, since the data in the topup
auctions is heavily skewed: the cover ratio is never less than 1, but is as high as 10
in one auction; thus whenever a topup auction occurs, it is fully subscribed (and
usually highly over-subscribed). Roughly 70% of base-auction winners participate
in the topup auction on average - those bidders that do not participate are usually
the smaller bidders. On average, the topup auction supply was 17% of the base-
auction supply, though this average is (again) not very representative: in 12 out of
the 18 topup auctions, the MoF o¤ered the full allowed 20% additional supply.

3.1. Ex-ante arguments for common v.s. private values
Looking at the institutional description and statistical summary of the Polish

treasury- bill market, it is not clear whether �private values�or �common values�is
the correct theoretical paradigm. Fevrier et al (2002) justify the �common value�
assumptions by arguing that under the �dealer system�, bidders in the treasury auc-
tions are re-selling to the same secondary market. Given that Poland�s institutions
closely resemble those of France, Fevrier�s argument could be carried over. Con-
versely, Hortacsu suggests that �private values�are applicable in Turkey since many
bidders participating in the auctions face institutionally regulated �liquidity require-
ments�, and the exact state of individual liquidity reserves is private information.
There is no corresponding legislation in Poland - liquidity reserves of primary bidders
are not regulated.22 However, there are other sources of �private information�which

22While pension funds are required by law to hold a certain percentage of their assets in
government-backed securities, these funds do not participate in the auction directly; they can,
however, submit customer-bids via a primary dealer.
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could justify using Hortacsu�s model on Polish data. For example, primary dealers
usually meet with their customers prior to the auction to discuss, in advance, what
kind of bids to submit on the customer�s behalf. Since for these bids the transaction
price between the dealer and customer are �xed in advance, at least a portion of
each dealer�s demand is based on information particular him. Hence a private-values
approach could also be justi�ed.
Discussions with the dealers themselves do did not yield a consensus as to what

the correct paradigm should be - if anything, the picture appears even more complex
that my dichotomy suggests.23 The dealers admit that usually 50-80% of bids that
are submitted are in fact forwarded customer bids - but sometimes the dealers change
these bids at their own risk.24 Furthermore, it is possible that customers perform
�order splitting�in order to hide some of their private information from the dealers
- so the same client may submit di¤erent portions of his demand curve through
di¤erent dealers. In this context, it is (even theoretically) hard to say whether
private, or common, values apply: even if each bank serves the same customer pool,
each dealer may be observing a di¤erent part of each customer�s demand. It is
important to note that these customer bids do not �t in exactly with the notion
of the �secondary market�as used by Fevrier - these customers submit bids before
the auction, rather than requesting the securities ex-post. Furthermore, in addition
to the larger customers, each bank has a pool of small �private individual�clients,
for whom order splitting is not necessary - this also points towards a private-value
component.
As of yet, there doesn�t exist an econometric methodology that would allow to

formally test for common values against private values in the kind of data I have.25

Similarly, I am not aware of any complete �auction for shares�model which would
allow both private and common value components to be present at the same time.
In this paper I will remain agnostic as to which paradigm is �true� - but I will
evaluate as to whether the predictions of the two models are consistent with each
other. If they do, the theoretical disagreement will have limited signi�cance to the
practitioner.

3.2. Description of bidders
The generalised shares-auction model presented in Section 2 does not need as-

sumptions on bidder symmetry. Both of the models I analyse assume independence,
and while Hortacsu�s model, prima facie, does not invoke symmetry,26 Fevrier�s
derivation hinges crucially on such an assumption. Since signals are not observed
in my data, I cannot directly test these assumptions, but looking at reduced-form
statistics of the bidders could give us an idea. A per-bidder summary of selected

23For this purpose, interviews with 8 of the primary dealers were carried out - this included the
4 largest ones, and 4 smaller dealers.

24For example, if the customer requests a given quantitiy at a price that the dealer thinks is too
high, the dealer may reduce the price he actually submits on this bid, and keep some proportion
of the �savings�for himself. The risk that the dealer is taking is that the modi�ed bid may not be
accepted at all in a case when the original bid would have been accepted. In this case, the dealer
is still contract-bound to provide his client with the appropriate amount of securities.

25Hortacsu & Kastl (2008) develop a test for common values in a �shares�type auction, but that
test is speci�c to their data format. Unfortunately, few datasets contain the kind of information
that is necessary to apply the Hortacsu & Kastl test.

26But there is an implicit reliance on symmetry in Hortacsu�s generation of the H-function. See
Section 8.1 for a modi�cation that considers asymmetry.
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Table 3: Bidder statistics on 52 Week Bills

Name Active in Total Bids % Demand Satis�ed % won if active % won overall

2 103 1487 25.97 11.6 11.4
9 103 1308 27.7 11 11.3
4 101 1012 31.95 12.2 11.2
11 101 464 27.43 9.6 9.6
10 102 1149 22.57 8.5 9
5 102 1090 26.16 8.3 8.8
13 93 490 13.7 7.9 7.6
6 103 1016 25.48 7.9 7.5
12 100 612 26.61 8.1 7.3
7 101 266 12.09 6.4 6
3 102 1049 16.27 5 4.7
1 103 492 13.66 4.4 4.7
15 22 108 7.98 2.7 0.7
14 34 121 6.22 1 0.4
16 1 3 1.67 1.7 0

Total amount of 52-week bills sold was 85.3 bnPLN.

statistics is provided in Tables 3 and 4.
There are a few caveats to interpreting this table. Since primary dealer status

is not permanent, some bidders participate if fewer auctions than others due to
late entry.27 Secondly, not all bidders participate equally (some not at all) in both
types of auction. Keeping these points in mind, there still appears to be much
heterogeneity among bidders. For 52-week auctions, even if I look at all the bidders
who participate in 100 auctions or more, the average percentages won vary a lot, for
example, bidder 4 wins on average 12.2% of the aggregate supply if he participates
in an auction, while bidder 1 wins only 4.4%. While it would not be surprising to �nd
a discrepancy of this magnitude within a single auction (and maintain assumptions
of symmetry), the fact that the discrepancy persists (on average) across 100 auctions
suggests that asymmetries may be signi�cant.
A similar pattern can be seen in the columns for 2-year bonds - e.g. bidder 9 wins

16.1% of bills in auctions where he participates, while bidder 11 only wins 3.0%.
While these reduced-form statistics do not necessarily tell us that the bidders�signals
are from di¤erent distributions, they do seem imply a degree of asymmetry, hence
I will check, where possible, whether including asymmetries signi�cantly changes
results from the symmetric model.28

27For example, bidder 20 enters late, and only into 2y bond auctions, while bidder 19 is present
in early 2y auctions, but later exits.

28This will be possible when using the Hortacsu method, but not in the FPV model.



13

Table 4: Bidder Statistics on 2 Year Bonds

Name Active in Total Bids % Demand Satis�ed % won if active % won overall

9 42 853 42.2 16.1 17.9
12 42 468 35.4 15.2 14.3
4 41 459 27.5 11.4 12.8
5 42 715 22.3 9.5 11
6 42 546 23.9 9.3 9.6
13 42 605 34.4 6.5 7
2 42 402 13.9 6.4 7
10 40 496 14.3 7 6.9
3 41 498 17.7 7.6 6.3
1 42 571 16.1 5.9 5.8
11 42 211 7.9 3 3.2
14 15 57 18.2 2.4 0.8
16 14 32 4 1.7 0.5
7 19 45 2 0.8 0.4
15 12 66 6.3 0.9 0.3
8 8 25 1.8 1.2 0.3
18 7 11 16.4 2.8 0.4
20 1 2 15 12.7 0.1
19 3 5 0 0 0

Total amount of 2-year bonds sold was 90.5 bnPLN.

4. An Application of the Hortacsu Model

Hortacsu�s approach to estimating discriminatory auctions is fully non-parametric
- his analysis does not make any assumptions about the shape of the distributions
which bidder�s signals, or values, follow. The advantage of this approach is that
any conclusions the model produces cannot be criticized as being driven by such
parametric assumptions. A signi�cant disadvantage of this method, however, is that
it will not allow me to explicitly solve for optimal bidding strategies in a uniform-
price auction. To generate any kind of comparability between the two auction
types, I will thus have to use strong assumptions as to bidders�behaviour in the
uniform price auction, given their valuations. In particular, I will assume that the
bidders bid �truthfully�, in the sense that they submit the valuations which I recover
via equation (5) as their actual bids in a uniform-price auction. As Ausubel and
Cramton (2002) have shown, in most circumstances this assumption is not valid,
and even in uniform-price auctions some shading will be present. However, truthful
bidding in a uniform-price auction provides us with an upper bound on the revenue
we can expect from such an auction; with optimally calculated (shaded) bidding
functions, the equilibrium price could be lower than the truthful-bidding price, but
not higher.29 Hence I will have a (one-sided) bound on the uniform-price revenue,

29Kastl(2006) shows that this statement is not, strictly speaking, correct - and that it is possible
that bidders in an uniform-price auction would submit bids above their true valuation. The Kastl
argument, for a bidder i, is the following: "Suppose my valuation at qk is vk (qk), but it is unlikely
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against which to compare the discriminatory auction: if the discriminatory weighted
average price is above the truthful-bidding price, then we should conclude that the
discriminatory auction is revenue-dominant.30 In the converse case, we cannot tell:
even if the truthful bidding equilibrium is at a higher price than the discriminatory
price equilibrium, it might still be the case that e¤ects of shading (demand reduction)
would depress uniform-price auction revenue.

4.1. Simulating the Distribution of the Stopout Price
The intuitive idea behind Hortacsu�s resampling approach to constructing H fol-

lows naturally from the use of Bayesian equilibrium in solving the economic model
and the underlying assumptions of statistical independence. Since in a Bayesian
equilibrium each bidder �knows�the strategy of all of his opponents (conditional on
the signal they receive), he can calculate the aggregate demand of all his opponents
for every possible combination of their signals - thus also his own residual supply,
and the stop-out price, conditional on that particular set of signals and his own
demand curve. Furthermore, since the signal distributions are assumed to be com-
mon knowledge, each possible combination of signals can be weighted appropriately,
whereby the distribution of the stop-out price can be obtained - this is H, as de�ned
in equation(2). In the setting of the problem, this approach is feasible for the bid-
ders, but not feasible for the econometrician: we don�t know which distribution the
signals are drawn from, nor can we calculate (in this case) the relationship between
the signals and the bidding functions.
Hortacsu proposes a resampling (bootstrap) estimator which allows us to construct

H, without having to make any parametric assumptions. Since I have assumed pri-
vate values, each bidder�s submitted demand curve is a function of his signal only,
so given independence of signals, the independence of submitted demand schedules
follows immediately. Furthermore, since these demand schedules were actually sub-
mitted in the �true�auction, they should constitute equilibrium strategies (under
the stated assumptions). From the point of view of calculating a stop-out price, the
only information I need is every bidder�s (submitted) demand function - the signals
themselves are only instrumental. I can then simulate the distribution of the stop-
out price by repeatedly re-drawing an appropriate number of demand curves and
running a discriminatory auction and recording its stop-out price. If I repeat this
procedure su¢ ciently many times then, given the IID assumptions, the distribution

that the stop-out price occurs at this step. Then I might as well submit a pk > v (qk) ; and make
it more likely that I do win qk shares in case the stop-out price is in fact v (qk)". In short, this
way the bidder feels that he is less likely to be rationed if he bids more aggressively.
Intuitively, we would expect that such agressive bidding would be most prevalent at price-

quantity combinations which are unlikely to be marginal. Kastl�s data-based examples show that
over-bidding does indeed occur, but only at the �rst step. In Kastl�s data this may be signi�cant,
since bidders submit step-functions consisting of only 2.3 steps on average.
In my data, bidders submit much more �steps�in their bid functions, and the quantities submitted

by bidders at their �rst few steps are miniscule. The likelihood that these bids would be marginal is
very small. Thus it is unlikely that �over-bidding�would occur at the stopout price in the uniform-
price auction. Finally, the MoF has commented that on 52w auctions, it often does not ration the
marginal bidder - and rather accepts his bid in full (even if this increases aggregate supply by a
little, ex-post). For all these reasons, it is we would not expect Kastl�s argument to apply in my
data to a signi�cant extent.

30The two relevant prices that are compared here are the uniform-price auction �stop-out price�,
and the discriminatory auction �weighted average price�(which is di¤erent, and higher than, the
discriminatory price stop-out price).
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of the simulated stop-out prices will tend to the true distribution H.31 Since the H-
distribution is conditional on each individual bidder�s submitted demand schedule,
and the equilibrium strategies are speci�c to each auction, we need to generate a sep-
arate H-function for each bidder, in each auction. The full procedure for obtaining
one such H-distribution is as follows:

� 1. Fix an auction (say l), and a bidder (say i). Find nl - the number of bidders
in auction l.

� 2. For auction l, draw, with replacement, (nl � 1) actual submitted bid sched-
ules.

� 3. Aggregate these bids together, and use them to construct a residual supply
function for bidder i.

� 4. Intersect the simulated residual-supply function with bidder i�s actual sub-
mitted demand schedule, and record the equilibrium stop-out price.

� 5. Repeat steps 2 to 4 B times to generate a sample of B simulated stop-out
prices.

� 6. Use the simulated stop-out prices to generate a histogram and a �cumulative
histogram�- this generates H.

In the above algorithm, B denotes the number of �bootstrap repetitions�- and I
would expect to obtain a more accurate shape for H as B increases. Figure 2 below
graphically shows the representation of this re-sampling procedure, with B =10. An
example of a simulated H-distribution is given below, in Figure 3, with B set to 10
000.
The left-hand panel depicts the bidder�s submitted demand curve, and the simu-

lated density at each price at which he submitted a bid. These densities have been
aggregated in the right-hand panel, and show the cumulative density - H(pjy).
It is apparent from the sketch of the re-sampling procedure that it may cause

complications when I proceed to use H to back-out individual valuations. From
equation 5, we see that for the FOC to be de�ned everywhere, h(:) = dH(:)

dp
must be

non-zero everywhere. This implies that we should observe some �simulated density�
at every point in the support of H - so each price should (at least once) appear as
the stop-out price of a simulated auction. However, we might expect some very low,
or very high, prices never to feature as stop-out prices: at very low prices there may
always be excess demand, while at high prices there may always be excess supply.
If so, there may be a range of prices over which H is 0, and a range of prices all for
which H is 1 - on both of these intervals, h=0, whereby the FOC in equation 5 is not
de�ned. A similar situation may occur if some bidder(s) submit bid-schedules with
a group of prices and quantities very close to each other. Despite repeated sampling,
it is possible that the simulated residual supply never intersects with the relevant
section of the bidder�s submitted bid-schedule, and so some prices are never �hit�in

31The relevant theorems for showing the consistency of this bootstrap estimator can be found
in Hortacsu (2002), Appendix 8.4
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Figure 2: Illustration of the Hortacsu procedure for simulating H(pjy)

equilibrium . Both of these problems are illustrated in Figure 4: Here we see that
for very low prices, H is �at (so h = 0), and there is also a �at portion in H on the
interval p2 [95:44; 95:64]:

This zero-density problem is not explicitly discussed in Hortacsu (2002), whence
there is no indication as to how the author would deal with this issue. One alternative
is to attempt to modify the density estimator in a way that makes the zero-density
problem less likely - this is discussed in Appendix A. Another viable approach is
to use interpolation to calculate a valuation for those quantities where I �nd zero
density, based on correctly inferred valuations near by. The method of interpolation
that I select will, however, in�uence the conclusions of my later analysis, so I need to
pick a method which does not make (too) strong assumptions, while not weakening
the conclusions of my analysis. The method I use is the following: if at a given
price-quantity pair (p; q) the density h(p) is zero, I look for the largest q0 < q; and
I set v (q) = v (q0) : In other words, I assume that the marginal valuation remains
the same between q�and q:32 The two main reasons for selecting this procedure is
that �rstly, it preserves monotonicity. Given that the solution to my economic model
assumes monotonic equilibrium bid-functions, assuming that valuations are (weakly)
monotonic seems appropriate.33 Secondly, this assumption is likely to make my
conclusions stronger, rather than weaker, in the following sense: we know that the
Hortacsu method will only give me an upper-bound on uniform-price revenue, and

32We have made the additional assumption that if the p at which zero-density occurs is so high
that there is no q0 < q for which a value estimate exists, we assume that v (q) = 100; that is, value
equals the maximum possible value of the bills.

33Indeed, if we were to pick an imputation method which induces non-monotonicity, we would
need a convincing argument as to why that model should hold, and how it could generate a
monotonic equilibrium bid function.
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Figure 3: Example of a simulated H(pjy) distribution

this method of imputation is likely to bias the bidders�value function upwards. The
upward bias in individual valuations will carry over to an upward bias in the uniform-
price best-case revenue. If even given this bias, I �nd that the discriminatory auction
is revenue-dominant, this conclusion is unlikely to be driven by my assumptions on
interpolation. Thus I am less likely to �nd that the discriminatory auction revenue
dominates - but if I do reach this �nding, I should be relatively con�dent that it is
not an artifact of my interpolation method.34

A second potential worry from Hortacsu�s re-sampling method of generating H is
that it does not guarantee that H/h is monotonic. If this monotonicity fails, then it
is possible that the recovered valuations will not be monotonic either. This would
imply complications for calculating the counterfactual revenue from truthful bidding
in the uniform price auction: observe that the FOC gives a valuation conditional
on �cumulative�, not �marginal�, demands. Thus at a certain per-unit price, the
bidder may want to buy a both a quantity q1 and a quantity q2 > q1; but not any
amount in between. When I aggregate non-monotonic valuation functions across
bidders to obtain the aggregate demand function, I may �nd that it intersects the
(perfectly inelastic) supply curve more than once. While this feature is unappealing,
the assumptions made in de�ning the stop-out price in Section 2.1, following Nautz
(1995), gives a natural way of selecting as to which intersection to pick as the stop-
out price: this will be the lowest price at which aggregate demand just falls short of
aggregate supply.

34If we used the a converse method of interpolation (i.e. biasing v down whenever there is zero
denisty), then we would be more likely to ��nd� a signi�cant di¤erence between discriminatory
and unifrom-price outcomes. However, these may be an artifact of the interpolation, since the
uniform-price upper-bound is now biased downwards.
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Figure 4: Example of the �zero-density�problem

4.2. Inference in the Hortacsu Model
Since in the Hortacsu method no �parameters� are estimated per-se, inference

is done through creating �error bounds�around the inferred quantities of interest.
The two which are of most interest are the individual valuations (at pre-speci�ed
quantities), and the upper bound on the stop-out price in a uniform auction. Error
bounds on both are calculated through simulation, though the methods used are
di¤erent.
To calculate standard errors on individual valuations, Hortacsu uses a �jack-knife-

then - bootstrap� of Efron (1992). The variation in individual values is obtained
by calculating a series of �perturbed�H-distributions, and then re-calculating the
individual values (vi�s) based on these perturbed distributions. The �perturbation�
is obtained by excluding, in turn, each of the participating bidders from the stage of
simulating H. That is, we re-calculate H based on drawing the re-sampled demand
functions from all bidders except (say) bidder 1; then we do the same, but exclude
bidder 2, and repeat this re-calculation until each bidder has been excluded once.
This will give me a set of nl di¤erent H-functions, and consequently nl re-calculated
valuations at for each (actually submitted) quantity. Using the notation of Hortacsu,
let v̂lB (yik) be the estimated marginal valuation for bidder i at quantity yik in the l-th
auction, based on an H-distribution obtained through B replications of the bootstrap
procedure. Then the variance estimate will be:

V arjackknife (v̂B (yik)) =
nl

nl � 1

nlX
j=1

 
v̂lB(j) (yik)�

1

nl

nlX
i=1

v̂lB(j) (yik)

!2

with vlB(j) (yik) denoting the estimate of i�s marginal valuation at yik based on
an H-distribution which was simulated from re-samples which did not contain the
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submitted bidding-functions of bidder j.35 This gives me a standard deviation es-
timate for each step in the valuation function, for each bidder and each auction.
An example of recovered valuation-function and its associated error bounds (� 2
standard deviations) is shown in Figure 5, for bidder 3 in auction 21 .

Figure 5: Bid-function, with corresponding v(p) function, and con�dence-intervals

To obtain error bounds on the stop-out price from a uniform auction, I simulate
a series of uniform-price auctions by re-drawing the estimated valuation functions
within each auction - according to an algorithm exactly analogous to that used in
Section 4.1 to estimate H. Thus for each auction l; I draw nl recovered valuation
functions (for that auction),36 and use those valuations to obtain a stop-out price. I
repeat this procedure 10 000 times, and use the data to �nd the simulated standard
deviation, and �simulated/empirical�95% con�dence intervals. I can perform this
same calculation for the discriminatory price revenue, and the revenue-di¤erence (for
each auction), which will allow us to see directly which auction is revenue-dominant.

4.3. Results from the basic Hortacsu model
The complete per-auction results from estimating Hortacsu�s model are presented

in Appendix B in Chapter 2 of Marszalec (2011)37. A subset of these results, cov-
ering 5 of the 103 auctions on 52-week bills are presented in Table 5. In this table

35The essence of this procedure is to simulate the impact of the presence of bidder j on the
H-distribution of bidder i, and hence on the inferred values of bidder i. Repeating this procedure
gives us a set of value estimates at each step - and we use these to calculate the poinhtise varaince.

36This is equivalent to randomly drawing the appropriate number of participants, within each
auction, and having them play one round of the auction, assuming that their bidding and valuation
functions remain unchanged.

37The full results are also available from the author upon request.
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columns 2 to 4 show revenues obtained based on the �actually submitted�demand
functions, and the inferred valuations therefrom - these results have �no variance�
as they are obtained based on a single iteration of the auction only. The columns
on simulated revenues have been obtained using 10 000 re-samples of bidding and
valuation functions (for each auction), and the standard errors are calculated based
on these re-samples. Thus columns 5 to 7 depict the �simulated�counterparts of
columns 2 to 4; here the standard deviation is presented in parentheses next to the
estimate itself, and the simulated 95% con�dence interval is shown in square-braces,
below the estimate.

Table 5: Per-auction results for Hortacsu Model

No. DP UP RevDi¤ DP Sim UP Sim RevDi¤ Sim
1 93.58 93.48 0.10 93:58(0:02)

[93:55;93:61]

93:50(0:10)
[93:40;93:67]

0:08(0:09)
[�0:06;0:18]

2 93.43 93.42 0.00 93:42(0:01)
[93:40;93:44]

93:41(0:02)
[93:35;93:44]

0:02(0:02)
[�0:00;0:06]

3 93.46 93.46 -0.01 93:45(0:01)
[93:42;93:47]

93:47(0:06)
[93:39;93:52]

�0:01(0:05)
[�0:05;0:03]

4 93.51 93.51 0.00 93:50(0:01)
[93:48;93:52]

93:50(0:02)
[93:47;93:55]

�0:00(0:01)
[�0:03;0:02]

5 93.58 93.55 0.03 93:57(0:01)
[93:55;93:60]

93:57(0:20)
[93:53;93:63]

0:00(0:20)
[�0:03;0:04]

Means reported. St.dev in parentheses, simulated 95 % CI in square brackets below.

Numbers in columns 2 to 4 are realised results, columns 5 to 7 are simulated.

Particular attention needs to be paid to the �standard-deviation��gures that I have
estimated, since they may be misleading. In Hortacsu (2002), Table 3, standard
deviations are provided as a �guide� to the signi�cance of the revenue di¤erence
- the �rule of thumb� (RoT) being that any di¤erence larger than two standard
deviations is �signi�cant at 95% level�. Though Hortacsu �nds deviations of 14%
on average, none of these are �signi�cant�, using his rule of thumb. In the two Figures
(6 and 7) I compare the behaviour of this �rule of thumb�relative to the �simulated�
95% con�dence intervals for the sample of 52-week bills. The revenue di¤erence is
calculated by subtracting the uniform price revenue from the discriminatory price
revenue. If, at a given auction number, the �zero�intercept is within the con�dence
bound, I cannot reject revenue equivalence; if the whole con�dence interval is above
zero, discriminatory price is revenue-dominant (and uniform price is dominant in
the converse case).
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Figure 6: Per-auction revenue di¤erences for 52w bills in the Hortacsu model, with
ROT con�dence intervals

Figure 7: Per-auction revenue di¤erences for 52w bills in the Hortacsu model, with
simulated con�dence intervals
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Both �gures have the same scaling, and it is clear that Figure 6 which depicts
�rule of thumb� con�dence intervals shows much wider con�dence intervals than
the simulated intervals in Figure 7 - the large standard deviations in Figure 6 are
driven by a small number of large (simulated) revenue di¤erences, which in turn
makes it hard to reject �revenue equivalence�. Another feature of these con�dence
intervals - more evident from Table 6, than from the �gures - is that the simulated
con�dence intervals are asymmetric, while those assumed by the �rule of thumb�are
not. Overall, however, the revenue di¤erences appear to be very small, and visually
it may be di¢ cult to tell which auction format dominates and how many times.
Thus a summary of the per-auction revenues is given in Table 6.
The �gure reports average prices of two kinds: realised and simulated. The �re-

alised�DP-price for an auction is calculated by using exactly those bidding functions
that bidders submitted when the auction took place - the �realised�UP-price is then
calculated by using the valuation functions of these same bidders, obtained using
the Hortacsu method. Since these prices are calculated from a single iteration of the
auction, they have no variance. The �simulated�prices are obtained by randomly
re-sampling the appropriate number of bidding and valuation functions (within each
auction), and then calculating the relevant prices. The standard deviations are from
these re-sampled data.
In terms of realised prices it appears that the results from 52-week auctions

strongly favour the discriminatory auction, in that it revenue-dominates in 83 cases,
as opposed to the uniform-price�s dominance in 20 auctions only. There is less
di¤erence between the two auctions in the sample of 2-year bond auctions, with
discriminatory-price dominating 24 times, compared to the uniform-price�s 18. Note
that on both maturities, the average price di¤erences across the whole sample are
very small: in the case of the 52-week bills, the DP average price is higher by 0.009%
and for 2-year bonds the UP upper bound is roughly 0.02% above the discriminatory-
price revenue. In the case of 2-year bonds, the results on the UP upper bound being
above the DP-price are driven by a handful of auctions, in which uniform-price
does signi�cantly better than discriminatory-price. This explains the discrepancy
between the discriminatory-price being dominant in a larger number of auctions,
but the uniform-price upper-bound being higher than the discriminatory-price on
average.

Table 6: Per-auction summary for Hortacsu model

52 Weeks 2 years

Number of Auctions 103 42

DP Realised Price 94.79 89.08
UP Realised Price 94.78 89.10
DP Simulated Price 94.79 (1.16) 89.08 (2.21)
UP Simulated Price 94.79 (1.17) 89.46 (2.52)

Realised Rev. Dominance DP: 83 / UP: 20 DP: 24 / UP: 18
Rev. Dominance - RoT DP: 8 / UP: 1 DP: 0 / UP: 0

Rev. Dominance - Empirical Bounds DP: 15 / UP: 0 DP: 1 / UP: 0
Means reported (st.dev in brackets).
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Table 7: Revenue Sequence Comparison: Hortacsu Model

52 Weeks 2 years Pooled
Number of Auctions 103 42 145
Face Value total 85.30 90.54 175.84
DP Revenue total 80.85 (0.00) 80.65 (0.00) 161.50 (0.00)
UP Revenue total 80.85 (0.02) 80.99 (0.43) 161.85 (0.43)

Revenue Di¤erence total -0.00 (0.02) -0.35 (0.43) -0.35 (0.43)
Simulated CI for Rev. Di¤. [-0.08 : 0.01] [-1.16 : 0.00] [-1.16 : 0.01]

Amounts in bnPLN.

Means reported (st.dev in brackets).

Looking at simulated results, when following the �rule of thumb�methodology, as
Hortacsu does, I �nd that the discriminatory price is signi�cantly revenue-dominant
in 8 of the 52-week bill auctions, while the uniform-price revenue-dominates only
in one; for the remaining 94 auctions I cannot reject revenue equivalence. In the
sample of 2-year bonds, the RoT method never rejects revenue-euqivalence. When
using simulated 95% con�dence intervals, however, I �nd that the results become
(slightly) more favourable for the discriminatory auction: for 52-week bills it is now
dominant in 15 auctions (while uniform-price never is), and I also reject revenue-
eqivalence in favour of the discriminatory auction in one of the 2-year auctions.
To test for overall revenue dominance across the sample, I also simulated 10

000 repetitions of the �sequences�of auctions for each maturity. To obtain such a
sequence, I simulate revenue once for each auction and aggregate across all auctions -
this constitutes one re-sample, and is then repeated to obtain a sample of sequences.
The results are given in 7.
Since we have seen from Table 6 that revenue-di¤erences are very small on average,

it is unsurprising that Table 7 cannot reject revenue equivalence across the whole
sample, for both bond maturities. When interpreting these results, it is essential to
remember that the uniform-price estimates are �best-case�estimates, which do not
take account of any possible shading that bidders may perform under those auction
rules. Since the con�dence intervals on both auction-type revenues (and the revenue
di¤erence) are small, it would only take a small degree of shading in equilibrium to
render the uniform-price auction revenue-inferior much more widely.

4.3.1. The zero-density problem and Non-monotonicity
The setup of Wilson�s share auction model in section 2 doesn�t assume monotonic-

ity of the marginal valuation function - only the equilibrium bidding schedule is as-
sumed monotonic.38 It appears sensible to require that marginal valuations should
be monotonic and (at least weakly) decreasing - this appears to be a standard as-
sumption of multi-object auctions. For Hortacsu�s model, there is an additional
reason why monotonic marginal valuations are attractive: they ensure that there is
only one �equilibrium�in the uniform-price auction with truthful bidding. Unfortu-
nately my inferred valuation functions are rarely monotonic over the whole support.
Most commonly, however, the monotonicity violations occur at low demanded quan-
tities/ high submitted bids - these are the points at which H (and h) are particularly

38In Wilson�s original setup there is an implicit assumption of constant marginal valuation.
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badly estimated.
Even if individual valuation schedules are not monotonic, it possible that the ag-

gregated valuation function would be, which would still allow me to �nd a unique
stop-out price in the uniform auction. However, out of 145 auctions, I �nd 3
cases in which the aggregation does not help, and the aggregate valuation func-
tion crosses aggregate supply more than once. A larger number of auctions manifest
aggregate valuation functions which are not monotonic, but in those cases the non-
monotonicity occurs at lower (aggregate) values of q, hence �far away� from the
stop-out price/quantity. In particular, for aggregate demands close to Q, (50% to
150% of Q) the valuation function is usually monotonic39 - and hence usually the
truthful-bidding stop-out price is unique. These types of results appear to be close
in spirit to the general idea of Hortacsu�s model. Since H is generated by simulation
at the submitted sets of prices, irrespective of the quantity bid (at this price), the
number of points in the support of H will be quite large. But many of these prices
(especially very high and very low ones) are far o¤ from what could (reasonably)
be expected to be the stop-out price - and in fact when I simulate H, I �nd that
indeed at these prices are rarely �hit�. So h is very sensitive at these price points,
and can induce large variation in the inferred v. But at prices which are closer to
the stop-out price, H is estimated more precisely, and variation in H/h is smoother.
Thus even if non-monotonicity manifests at the aggregate level, it doesn�t appear to
in�uence the stop-out price.

5. An Application of the Fevrier, Preget and Visser Model

In this section I illustrate how FPV combine the theoretical solution to their
auction model from Section 2.2, with additional statistical assumptions, to complete
a model that can be applied to data. Let l be the subscript for variables speci�c to
the l-th auction out of a total of L auctions, so l 2 f1; :::; Lg: In general, it does
not seem sensible to assume that each auction is exactly identical - the number of
bidders, Nl, may vary across auction, as may other auction-speci�c characteristics
- which I denote by Zl: FPV assume that the pairs of random variables (Nl; Zl) ,
for l = 1; :::; L are independently and identically distributed. Next, assume that the
true value of the bonds in the l-th, Vl; is independent of Nl; but dependent on Zl:
Conversely, an individual i�s signal in auction l, Sil is independent of Nl; though
it does depend on both Vl and Zl: Conditional on Zl; the realisations of the t
true values, V1; :::; Vl; are assumed independent. Furthermore, FPV assume that
the signals Sil; :::,SiL are independent conditional on (Vl; Zl) ; and also that Sil is
independent of Sil0 conditional on Zl and Zl0, for all l 6= l0:
To model the distributions of V and S which satisfy the above assumptions, FPV

assume a parametric framework. This allows them to restrict their attention (in
estimation) to a �nite-dimensional vector of parameters, which characterises the dis-
tributions of interest, rather than modelling these distributions non-parametrically.
Thus denote the distribution of Vl; conditional on Zl = z as FV jZ (:jz; �1) ; where
�1 is the set of parameters characterising the distribution. Analogously, denote
the distribution of Sil; conditional on Vl = v and Zl = z as Fs::: (:::�2) ; with �2
denoting parameters speci�c to this distribution. Given these two distributions, I
can recursively derive the distribution of the signal Sil itself, conditional only on

39There is one exception, in 145 auctions.
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Z = z - denote this FsjZ (::�), with � = (�1; �2)
0 : I assume that the true value of the

parameters describing my data is �0; and it is these parameters I wish to estimate.
Notice that thus far, we are still unable to estimate the model - the values of

interest (the signals) are not directly observed. The next step in solving the FPV
model is to link the Sil to quantities we can observe (or measure) from the data. To
this end, I assume that each bidder has an optimal bidding strategy of q (p; s; n; zj�)
- this denotes the quantity which the bidder demands at price p, in an auction where
his signal is s, auction-speci�c covariates take the value z, and the true parameters
equal �0: Recall that in Section 2.2, we have assumed that the equilibrium bidding
functions are strictly monotonic - this means they admit an inverse, x�1 (p; s; n; zj�) :
Given this notation, de�neG (qjn; z; p) as the distribution function of the equilibrium
demand, conditional on Z=z, V=v. Using this de�nition, and the assumptions on
the dependence structures of V; S and Z:

G (qjn; z; p) = Pr
�
q
�
p; Sil; Nl; Zl; �

0
�
� qjNl = nl; Zl = zl

�
= Pr

�
q
�
p; Sil; nl; zl; �

0
�
� qjNl = nl; Zl = zl

�
= Pr

�
Sil � q�1

�
p; Sil; nl; zl; �

0
�
� qjZl = zl

�
= 1� FSjZ

�
q�1
�
p; Sil; nl; zl; �

0
�
jz; �0

�
The argument from the �rst line to the second follows from conditioning on Nl =

nl; step from second to third line follows from strict monotonicity of the optimal
strategy q (the �nal step follows by de�nition of FSjZ).
We thus have a connection between the distribution of (equilibrium) demands and

the distribution of signals. Since I observe individual bidder�s bids, and these are
assumed to be part of their equilibrium demands, I can use this data to construct a
non-parametric estimate of the distribution function G. I follow FPV in doing this
non-parametrically using kernel-density estimation:

Ĝ (qjn; z; p) =

PL
l=1K

�
n�nl
hN
; z�zl
hZ

�
1
nl

Pnl
i=1 1(xilp�x)PL

l=1K
�
n�nl
hN
; z�zl
hZ

� (10)

where K (:; :) is a multivariate kernel, hN is the bandwidth parameter associated
with the number of bidders, and hZ is a vector of bandwidths (one for each per-
auction covariates to be modelled).
Now that I have an empirical connection between the F and G distributions, I

need to re-write equation 9 in terms of G, which will make the Euler equation a
function of only the data and the �; the parameters I wish to estimate:

0 = Efw (Nl; Zl) � (Nl � 1) � 1[P 0l �p]�

� [E[VljS1l = F�1SjZ
�
1� Ĝ (q1lpjnl; zl; p) jzl; �; ::::

�
; :::;

Snll = F
�1
SjZ

�
1� Ĝ (q1nlpjnl; zl; p) jzl; �; ::::

�
; Nl = nl; Zl = zl]� p)g�

� E[w (Nl; Zl)
�
p� P 0l

�
� 1[P 0l �p]]g
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The corresponding empirical moment is described by:

mt

�
q1lpt ; :::; qnLLpt;n1; :::; nL; p

0
1; :::; p

0
L; z1; :::; zL; pt; �

�
=
1

L

LX
l=1

w (nl; zl) � (nl � 1) � 1[P 0l �p]�

� fE[VljS1l = F�1SjZ
�
1� Ĝ (q1lpjnl; zl; p) jzl; �; ::::

�
; :::;

Snll = F
�1
SjZ

�
1� Ĝ (q1nlpjnl; zl; p) jzl; �; ::::

�
; Nl = nl; Zl = zl]� pg

� 1

L

LX
l=1

w (nl; zl) �
�
pt � p0l

�
� 1[P 0l �p]

This is a moment condition that I can use for GMM estimation, and in theory
should be satis�ed for any p2 [0;1); giving a continuity (i.e. in�nity) of moment
conditions. In practice, we perhaps should not expect the submitted bids to satisfy
this condition for any p in this interval - in fact, bidders may have a better �guess�
as to the subset of prices to which they are responding, and the Euler equation may
behave erratically if I pick a price that is wildly di¤erent from the observed stop-out
prices.40 I follow FPV to evaluate these moment condition at the actual stop-out
prices, estimate � by minimising the sum of weighted squared moments:

�̂ = Argmin
�

TX
t=1

m2
t

�
q1lpt ; :::; qnLLpt;n1; :::; nL; p

0
1; :::; p

0
L; z1; :::; zL; pt; �

�
where w (n; z) is the weighting function. This gives me T=145 moment conditions.

5.1. Parametric Speci�cation of the FPV model
Having shown how the H-distribution can be replaced by the G-distribution, I now

need to explicitly select a parametric speci�cation for FV jZ and FSjV Z ; and relate
these to my G-distribution. FPV have picked these distributions in a way that
allows them to analytically calculate the equilibrium in a uniform-price auction,
thus enabling a direct comparison between the performance of the discriminatory
and uniform-price auctions, and I follow their design. The distribution of the true
value, conditional on auction-speci�c covariates Zl = zl; and the parameter vector �l
is assumed to follow a distribution that is a combination of the gamma and Weibull
distributions:

Fvjz (vjzl; �) =
Z v

0


u
�1
��

� (�)
u
(��1) exp (��u
) du

where � (:) is the gamma function, and �l = (1; zl)�� and �l = (1; zl)��: Here �
and � are x-by-1 vectors, so that �l and �l can vary from auction to auction. When

40Note that even this consideration does not get rid of the continuity of moment conditions that
exist.
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 = 1; the above distribution collapses into gamma distribution, with parameters
�l and �l: On the other hand, if � = 1; the distribution collapses into a Weibull
distribution with the parameters 
 and �l:
To close the model, FPV assume the signal distribution, conditional on Vl = v;

to follow the exponential distribution, parametrised by 
 :

FSjV Z (sjv; zl; 
) = 1� exp (�sv
)

Given these assumptions, FPV can calculate (analytically) the expected value,
E (Vljs1) as:

E[VljS1l = F�1SjZ

�
1� Ĝ (q1lpjnl; zl; p) jzl; �; ::::

�
; :::;

Snll = F�1SjZ

�
1� Ĝ (q1nlpjnl; zl; p) jzl; �; ::::

�
; Nl = nl; Zl = zl] =

=
�
�
nl + �l +

1



�
� (nl + �l)

 
�l +

nlX
i=1

�l

 
1

Ĝ
1
�l (xilpjnl; zl; p)

� 1
!!� 1




(11)

we now have a complete econometric model, which can be applied to the data.41

The key contribution of FPV�s mode is that given the parametric assumptions, we
can compute the optimal bidding strategies in a uniform-price auction, and hence
also obtain an analytical expression for the stop-out price. Supposing that the true
values of the gamma-exponential con�guration are �0 =

�
�0; �0; 
0

�
; we have:

p0�uniforml =
1

1 + 1

0

EfVljS1l = s1l; :::; Snl = snl; Zl = zlg (12)

=
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0

�
�
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Replacing the true parameter values by their estimated counterparts, I obtain:

\puniforml =
1

1 + 1

̂

�
�
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1

̂

�
� (nl + �̂l)

 
�̂l +

nlX
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�̂l

 
1

Ĝ
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� 1
!!� 1


̂

From equation (12) we see that the uniform stop-out price is a constant fraction of
the (true) common value. Furthermore, since the FPV speci�es that 
 is �xed across
all auctions, the stop-out price will always be the same fraction of the valuation. The
FPV paper provides no justi�cation as to why 
 should be a constant, while � and
� vary across auctions - though most likely this was done primarily for convenience
and a lower computational burden. In my estimation, covariates will also be included
in the 
�vector.

5.2. Inference and Practical Issues with Estimation of the FPV Model
The FPV estimator presented here belongs to a class of two-step estimators, as dis-

cussed by Newey andMcFadden (1989): the �rst stage consists of the non-parametric
estimation of the G-distribution, while the second stage covers the actual GMM es-
timation of the � parameters, given the G-distribution that has been previously

41The derivation is presented in FPV (2002), appendix C.
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calculated. The calculation of standard errors on the estimated parameter �̂ is
highly involved, and the formulas are not discussed here - the relevant derivations
are in the appendix of Fevrier et al (2002).
In addition to testing for the signi�cance of the parameters in the gamma-exponential

con�guration, I will simulate con�dence bounds around stop-out price in the uni-
form price auction, analogously to what I did in Section 4.2 for Hortacsu�s model.
For each auction l, I will draw nl of the recovered individual signals, calculate the Vl
from these signals, and consequently the stop-out price. I will repeat the procedure
10 000 times for each auction, and hence obtain the appropriate standard deviations
and �simulated/empirical�error bounds. Finally, I repeat the procedure to evaluate
the uniform-price auction over the whole sample: I simulate each auction l once, for
l 2 [1; 145]; and aggregate the uniform-price revenues. I repeat this sequence 10 000
times, and compute the standard deviations and simulated con�dence intervals.
Before proceeding to present the results of my estimation, the issue of scaling

needs to be mentioned. From Section 5.1 we know that the gamma-exponential
con�guration gives E (V 
) = �

�
; but if we are expecting V to be near 100, and 


to be (much) larger than 1, the di¤erence in scaling of � and � will be very large.
Formally, the FPVmodel is �exible enough to accommodate scaling changes,42 but in
practice, the magnitudes that (certain) scaling imposes on the estimated parameters
is beyond the numerical precision of the estimation software. For example, in FPV�s
results the � parameters are of the order 10�24, which is beyond the numerical
precision of Matlab. My estimation will thus proceed by �rst re-scaling the data to
unity (i.e. face value of bonds is 1, rather than 100), carrying out the estimation
and inference, and �nally re-scaling the simulation results back by 100, for easier
comparability with the results from Hortacsu�s model.43

The per-auction covariates that I include in my zl vector include the secondary
market price (for both security types) and the maturity of the security, calculated
in days from day of issue until maturity (for 2 year bonds). Since the 52-week bills
all have the same maturity, the maturity regressor is not included in the model
for the 52-week security, and a measure of �in�ation expectations 1 year ahead�is
included instead. I do not include nominal yield among my regressors, since both of
the analysed securities pay no coupon. Thus my zl vector is of dimensions 1� 2 for
both security types. For the kernel function, I follow FPV in using a multiplicative
Epanechnikov kernel, so that K

�
n�nl
hN
; z�zl
hZ

�
= K1

�
n�nl
hN

�
�K1

�
z�z1l
h1Z

�
�K1

�
z�z2l
h2Z

�
;

with K (u) = 0:75 (1� u2) 1juj�1: Bandwidths are selected using the same rule-of-
thumb as in FPV, such that:

hzi = 2:214
� (zi)

L
1
7

5.3. Results from the FPV Model
For the estimation of the parameters for the FPV model, I ran a separate estima-

tion for each security type.44 The reason for this is twofold. Firstly, the available

42That is, there is a one-to-one mapping from parameters in a model estimated with un-scaled
data, and one with scaled data.

43This same approach was used by Castellanos & Oviedo (2006), who apply the FPV model
to Mexican data.

44The estimation was done in Matlab, and the optimization module SolvOpt of Kuntsevich &
Kappel (1997) was used as a component of the overall estimation prodcedure.
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Table 8: FPV Estimated Parameters - 52 Week Bills

� � 


Constant 622.3? (0.4097) 547.4e3? (186.1e3) 0.8866 (0.9905)
Secondary Market Price -235.9? (0.5886) -488.7e3? (179.9e3) 159.4? (1.104)
In�ation Expectations 1,131.9? (0.3829) -28.7e3? (6.230e3) -47.3? (0.6099)

Estimates reported (std.error in brackets).

Denoted with ? if di¤erence from 0 rejected at 95% con�dence level.

Table 9: FPV Estimated Parameters - 2 Year Bonds

� � 


Constant 9,9967.7? (0.0004) 7,808.1e5? (3,024.5e5) 0.1627 (4.417)
Secondary Market Price -159.4? (0.001) -9,026.6e5? (3,458.4e5) 60.5? (4.417)

Maturity 1,155.8? (0.001) 0.7636e5? (0.2968e5) -0.0305? (0.0008)

Estimates reported (std.error in brackets).

Denoted with ? if di¤erence from 0 rejected at 95% con�dence level.

covariates for the estimation vary for the two security types: while on 2-year bonds
�maturity�is a relevant variable, this is not the case for 52-week Bills.45 For 52-week
bills, I have included a covariate for �in�ation expectations one year ahead�instead,
since this is relevant for the pricing of zero-coupon bonds.46 So for each kind of
security, I estimate a model with an intercept and two covariates.47 Secondly, given
that the two securities di¤er in the role they play in an investors�portfolios, there
is no a-priori reason to expect the same parameters to hold across both types.
While FPV assume 
 to be a constant, my formulation allows 
 to vary according

to the same auction-level covariates at � and �: The assumption of a constant 

implies that bidders �shade�by exactly the same proportion in each auction, and
from an econometric point of view, such an assumption is not necessary (nor is such
a restriction suggested by the underlying economic theory).
For the 52-week bill sample, automatic bandwidth selection picked h52weekn = 3:71;

h52weekseconary-price = 0:278; and h
52week
in�ation = 0:712; while for the 2-year bonds the bandwidths

were: h2yearn = 2:32; h2yearseconary-price = 0:0249; and h
2year
maturity = 65:37:

Parameter estimates from my model are presented in Tables 8 and 9.
All parameters in the �� : and �� vectors are signi�cantly di¤erent from zero, for

45The reason why �maturity�varies across acutions for 2-year bonds is that usually four auctions
are held for the same �line�of bond. So while nominally all these bonds are classi�ed as 2-year
securities, the e¤ective maturity in certain auctions is less. In practice, the �rst set of bonds issued
in a given line has a maturity of 2 years, the second issue a maturity of 1 year 11 months, etc.
For 52-week bills, the maturity is the same in all auctions, and hence doesn�t provide any

explanatory power on this subset of data.
46In FPV�s paper, the in�ation expectations are not included, since all the securities they

consider are interest-bearing, and the yield variable is included in the model.
47The data on secondary market prcies was obtained from the Polish Ministry of Finance, and

the data on in�ation expectations was supplied by Reuters.
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both 52-week bills and 2-year bonds. For the 
�vector, only the constant tests as
insigni�cant for both security types - other elements of the 
 vector are signi�cant.
Similarly to previous papers using the FPV methodology, such as Fevrier et al.
(2002) and Castellanos and Oviedo (2006), the average value of 
 is signi�cantly
larger than 1.48 Based on these parameters, I can simulate per-auction revenues
from the two auction formats, as well as the inferred common value. Examples of
this are given in Table 10

Table 10: Per-auction results for Fevrier Model

No. DP UP Val RD DPSim UPSim ValSim RDSim
1 93.58 88.6 96.96 4.98 93:58(0:02)

[93:55;93:61]

88:6(0)
[88:59;88:6]

96:96(0)
[96:95;96:96]

4:98(0:02)
[4:96;5:01]

2 93.43 88.22 96.59 5.21 93:42(0:01)
[93:4;93:44]

88:22(0)
[88:21;88:22]

96:59(0)
[96:59;96:6]

5:21(0:01)
[5:19;5:22]

3 93.46 87.76 96.16 5.7 93:45(0:01)
[93:42;93:47]

87:76(0)
[87:76;87:77]

96:16(0)
[96:15;96:17]

5:69(0:01)
[5:66;5:71]

4 93.51 88.47 95.33 5.04 93:5(0:01)
[93:48;93:52]

88:47(0)
[88:47;88:47]

95:33(0)
[95:33;95:33]

5:03(0:01)
[5:01;5:05]

5 93.57 88.98 95.82 4.59 93:57(0:01)
[93:55;93:6]

88:98(0)
[88:98;88:99]

95:82(0)
[95:81;95:82]

4:59(0:01)
[4:57;4:61]

Means reported. St.dev in parentheses, simulated 95 % CI in square brackets below.

Columns 2 to 5 show realised results, columns 6 to 9 are simulated.

RD denotes "revenue di¤erence"

A complete summary of the per-auction results is relegated to the Appendix C
in Chapter 2 of Marszalec (2011)49, while (weighted) average performance of both
auction types is summarised in Table 11.
Analogously to Table 6, the �realised�prices and values are calculated based on a

single iteration of the auction, using bidding functions exactly as submitted in the
actual auction - the bidders� signals from this single iteration are used to obtain
the UP-price, and the common value. Simulated prices and values were obtained by
randomly re-sampling (within each auction) the bidding functions and signals for
the bidders in that auction, and hence �nding the relevant prices and the common
value.
The discriminatory auction performance is exactly the same as in the Hortacsu

model, as in both cases this auction is treated the same way. Estimates of the
average price from the uniform-price auction are now lower than the discriminatory
price revenue for both 52-week and 2-year securities, with the average (expected)
valuation being higher than the expected revenue from both types of auction, as
we would expect. On 52-week bills, the discriminatory auction is revenue-dominant
in all auctions when looking at both realised and simulated prices. For the 2-year
bonds, discriminatory auction revenue-dominates in 41 cases on both realised and

48The average 
 across all 52-week bill auctions is 38.0 with standard error of 1.8; the average
across all 2-year bond auctions is 30.5 with standard error 0.3. In both cases, t-test for 
 = 1
reject with p-values less than 0.0005.

49The full results are also available from the author upon request.
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Table 11: Per-auction summary for the FPV Model

52 Weeks 2 years
Number of Auctions 103 42
DP Realised Price 94.84 89.14
UP Realised Price 92.91 87.00
Realised Value 96.04 89.86

DP Simulated Price 94.83 (1.12) 89.13 (2.16)
UP Simulated Price 92.91 (2.53) 87.00 (2.29)
Simulated Value 96.04 (1.27) 89.86 (2.23)

Realised Rev. Dominance DP: 103 / UP: 0 DP: 41 / UP: 1
Rev. Dominance - RoT DP: 103 / UP: 0 DP: 41 / UP: 1

Rev. Dominance - Empirical Bounds DP: 103 / UP: 0 DP: 41 / UP: 1
Means reported (st.dev in brackets).

Table 12: Revenue Sequence Comparison, FPV Model

52 Weeks 2 years Pooled
Number of Auctions 103 145 248
Face Value total 85.30 90.54 175.84
DP Revenue total 80.85 (0.00) 80.65 (0.00) 161.50 (0.00)
UP Revenue total 79.10 (0.00) 78.75 (0.00) 157.86 (0.00)
Value Total 81.85 (0.00) 81.33 (0.00) 163.19 (0.00)

Revenue Di¤erence total 1.75 (0.00) 1.89 (0.00) 3.64 (0.00)
Simulated CI for Rev. Di¤. [1.75 : 1.75] [1.89 : 1.90] [3.64 : 3.65]

Amounts in bnPLN.

Means reported (st.dev in brackets).

simulated prices, against the uniform-price auction�s dominance in 1 auction only.
Notably, in the FPV model results the dominance conclusions are not much altered
depending on whether I use the �rule of thumb�or �simulated con�dence intervals�.
The reason for this is that the in�uence of re-sampling in the FPVmodel is very small
(i.e. the variance of the simulated uniform-price revenue is small), while the average
revenue di¤erence is (relatively) large - so even if there was slight �asymmetry�in
the precise con�dence intervals, this appears insigni�cant.
Given the estimated parameters, I can also estimate revenue results aggregated

over time, just as I did for the Hortacsu model. The results are presented in Table
12.
This table con�rms the intuition from Table 11 that on the Polish data, the

discriminatory price auction brings (signi�cantly) higher revenue. On 52-week bills,
the revenue di¤erence is 1.75 bnPLN (i.e. 2.2%), while on 2-year bonds it is 1.89
bnPLN (approximately 2.3%). The discriminatory auction also appears to be very
e¤ective at extracting value from the bidders: on 52-week bills, the bidders�surplus
is only 1.22% of their valuation, and even less on 2-year bonds, reaching 0.83%.
Even though this surplus is small, it is still positive, suggesting that bidders manage
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to account for winners�curse, and don�t persistently overbid. Given these estimates,
the FPV model suggests that for the Polish setting, the discriminatory price auction
out-performs the uniform-price auction.

6. Interpretation and Comparison

Since the two models that I am analysing are not directly comparable (i.e. they
are not nested as sub-cases of some more general model and/or one another), all the
comparisons I can perform are inherently �reduced-form�: I can compare the output
from the simulations in both models. For this comparison, I use results from the
basic version of Hortacsu�s model - as can be seen in the Appendix A, the basic
results are robust to sensible perturbations.50

Firstly, while my revenue di¤erences obtained from the Hortacsu model are much
smaller than Hortacsu (2002) himself obtains, I can still reject revenue-equivalence in
a few auctions, while Hortacsu (2002) can never reject this hypothesis. Given that my
�interpolation�procedure for backing-out v (q) is biased to over-estimate v; and thus
favour the uniform-price auction, the fact that the discriminatory auction is revenue
dominant (in almost all the cases when I can �nd dominance) would strongly favour
the discriminatory auction. In many auctions where the uniform-price revenue is
above discriminatory price revenue, the variance in revenue di¤erence is too large
to register the di¤erence as �signi�cant�.
My results in the FPV model suggest realised revenue-di¤erences which are two

orders of magnitude larger than those in the Hortacsu model, and in these also
favour the discriminatory price auctions. While in the Hortacsu model the �realised
price�results suggest higher average revenues in the uniform-price auction, this is not
the case for the FPV model. We should bear in mind, however, that the Hortacsu
uniform-price results are calculated on the basis of �truthful bidding�, and hence
an upper bound - the fact that it is only slightly above the DP-price (and not
statistically signi�cantly so) suggests that the discriminatory-price auction is in fact
doing well.
I also �nd that the distinction between using the �rule of thumb�or simulated

con�dence intervals matters in the Hortacsu model, but not in FPV. Part of the
reason for this is the asymmetry of the Hortacsu con�dence-intervals - the simu-
lated con�dence intervals in the FPV model are more symmetric. Additionally, the
revenue di¤erence is much larger in the �rst place in the FPV model (relative to the
standard errors), so even if there is (slight) asymmetry, it will not matter as much.
In terms of revenue, the degree of agreement between the two methodologies

depends on which indicator I use. Looking at realised revenues, the two methods
disagree in 35 out of 145 auctions, which is just under 25%. When looking at
simulation results, I need to distinguish between when the two models �disagree�
and when they are mutually inconsistent. To �x terminology, say that the results

50The results change slightly if I model bidder asymmetries - and in this case they become more

favourable to the discriminatory-price auction.
When smoothing of the H-functions is performed, the changes are also slight, but favour the

uniform-price auction. The results appear to change a lot if I introduce moving�average type
expectations. Both of these modi�cations, however, generate some problems for the functioning of
the model itself. For details, refer to Sections 8.1 and 8.3.
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Table 13: Summary of mutual consistency of Hortacsu and FPV models

Realised Revenues Rule of Thumb Simulated CI
Conclusions Di¤er 35 137 129

Conclusions Inconsistent 35 1 0

from the two models �di¤er�if they don�t suggest the same dominance outcome, and
say that the results are �inconsistent�if their conclusions are opposite. The di¤erence
here is how I treat the cases when either model can�t produce a de�nite dominance
conclusion.51 A summary of the disagreement counts is presented in Table 13. While
the two models disagree frequently, the main reasons for this is the large number of
auctions for which the Hortacsu model cannot decide on revenue dominance. The
number of auctions where the models are mutually inconsistent is tiny: this occurs
only once,52 when looking at dominance results generated using the �rule of thumb�.
Thus conclusions from these two models are not in con�ict. Firstly, in those cases

where both FPV and Hortacsu predict superiority of the discriminatory auction,
there�s is nothing to con�ict. In the remaining cases, the truthful-bidding equilib-
rium in the Hortacsu model may sometimes give more revenue than discriminatory
auction, but in the vast majority of cases the revenue di¤erence is not signi�cantly
di¤erent from zero. For the one case that the Hortacsu model shows the UP-price
upper bound as �signi�cantly above�the DP-price, how close to �truthful bidding�
bidders would actually bid in the uniform-price auction is an open question.
A complete summary of average prices and revenues is provided in Table 14.

Curiously, for 52-week bills, the average discriminatory auction price is above the
secondary-market equivalent, though by only a miniscule amount. This result is
driven by a handful of small bids at very high prices - these constitute roughly 10%
of all submitted bids. Potentially, this may also be a data problem: �rstly, the MoF
did not report wether the secondary market prices were bid or ask quotes, and since
the margin is so small, this could be enough to explain the di¤erence. Secondly, from
discussions with the banks bidding in these auctions, it emerged that the secondary-
market prices for 52-week bills are particularly inaccurate, since the liquidity on
these bonds is very low, and most of them are kept to term:53 However, the �common
value�estimated using the FPV model is above both the discriminatory price, as
well as all the uniform-price upper-bound in the Hortacsu model - so overbidding
due to winners�curse is unlikely.
In the Hortacsu case, the uniform-price upper-bound is below the discriminatory-

price revue on the 52-week bills, and slightly above on the 2-year bonds and the
pooled dataset. For the cases where the uniform-price bound out-performs the dis-
criminatory price, the di¤erence is very small, which would suggest that the dis-
criminatory auction is still very e¤ective at revenue-extraction. These �ndings are

51So if one model cannot decide revenue dominance, while the other can, I say that they "di¤er"
on this particular auction. On the other hand, if one model suggests that UP dominates DP, while
the other says that DP dominates UP, I say that these conclusions are "inconsistent".

52For auction 38, which took place on 2nd of July, 2005.
53Despite the fact that the secondary market is illiquid, all dealers are required (by contract)

to quote prices for all maturities of bonds that they hold - even if there are (actually) no bonds
for sale at this �market price�. The illiquidity is particularly important on 52-week bills, but less
so for the 2-year bonds.
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Table 14: Summary of mutual consistency of Hortacsu and FPV models

52 weeks 2 years Pooled
Number of Auctions 103 42 145
Realised DP Price 94.79 89.08 91.85

Realised Market Price 94.78 89.56 92.09
Hortacsu Realised UP 94.78 89.10 91.86
FPV Realised UP 92.91 87.00 89.87
FPV Realised Value 96.04 89.86 92.86
Simulated DP Price 94.79 (1.16) 89.08 (2.21) 91.85 (3.36)

Hortacsu Simulated UP Price 94.79 (1.17) 89.46 (2.52) 92.04 (3.36)
FPV Simulated UP Price 92.91 (2.53) 87.00 (2.29) 89.87 (3.04)
FPV Simulated Value 96.04 (1.27) 89.86 (2.23) 92.86 (3.36)

Simulated DP Total Revenue 80.85 (0.00) 80.65(0.00) 161.50 (0.00)
Hortacsu Simulated Total UP Revenue 80.85 (0.02) 80.99 (0.43) 161.85 (0.43)
FPV Simulated Total UP Revenue 79.1 (0.00) 78.75 (00) 157.86 (0.00)
FPV Simulated Total Value 81.85 (0.00) 81.33 (0.00) 163.19 (0.00)
Secondary Market Total Value 80.84 81.09 161.93

Means reported (st.dev in brackets).

Total revenues & values in bnPLN.

Table 15: Summary of Past Results on T-bill models

Author(s) Method Country Result
Hortacsu (2002) H Turkey DP better by 14%, not signi�cant
Kastl (2006) H-type Cz. Rep UP price may exceed "truthful bidding"

Kang & al. (2008) H Korea DP better by 0.1%, signi�cant
FPV (2002) FPV France DP Better by 2%, signi�cant

Castellanos & al. (2006) FPV Mexico UP better by 2%, signi�cant
Armantier & al. (2006) other ? France UP better by 4.8%, signi�cant

This Paper H Poland DP signi�cantly better in 11% of data
This Paper FPV Poland DP better by 2.2 %, signi�cant

? The model used by Armantier & Sbai is parametric and includes risk aversion.

supported by the FPV model, where the margin between the estimated common
value, and the discriminatory (average) price is small.
The conclusions of my paper, as compared with the past literature on the subject

is described in Table 15 - the table indicates the direction of revenue superiority,
and whether the results were statistically signi�cant.
As already remarked, Hortacsu�s results show large revenue superiority for dis-

criminatory price, but it is not statistically signi�cant. The Kastl (2006) results
are only tangentially related to my results, since his paper is unable to calculate
the performance of a discriminatory-price auction. However, the results of Kang
and Puller (2006) mirror closely my application of the Hortacsu model: the revenue
di¤erences are much smaller than in Hortacsu, but (overall) more signi�cant. One
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caveat that needs to be considered here is that Kang and Puller benchmark both
the uniform-price and discriminatory-price auction against the common benchmark
of a �multi-unit Vickrey auction�- so the comparison is not �direct�as it is in my
case.54 Similarly to my analysis, Kang and Puller also use simulated con�dence-
intervals, rather than standard-deviations only, which assists them �nding signi�cant
di¤erences.55

All of the other applications of the FPV model, or other semi-parametric models,
yield conclusions of signi�cant di¤erences. The magnitude of my estimated revenue
di¤erences are similar to those of Castellanos and Oviedo (2006), who directly apply
the FPV model to Mexican data; however, the direction of dominance is reversed.
There is a disagreement between the FPV and Armantier and Sbai (2006) papers,

which both use French data. The cause of this disagreement may follow from the
di¤erent economic models that underlie the econometrics. While the FPV estima-
tion is based on Wilson�s (1979) economic model, the economic theory behind the
structural model in Armantier and Sbai (2006) builds on that of Wang and Zen-
der (2002). The implementation of the model with risk-aversion and asymmetry
is complex since the equilibrium cannot be solved for �exactly�, and hence must be
numerically approximated. Given the signi�cant computational and programming
burden of this modi�cation, I have not tested the Armantier and Sbai model on my
data.
Overall, however, the magnitudes of revenue di¤erences from my application of

the two models are not wildly di¤erent from other (statistically signi�cant) results
obtained in other countries, suggesting that the performance of these models is
relatively stable. Hence their mutual comparison can be considered meaningful.
When interpreting the results from both models, it is also essential to emphasise

the limitations. In particular, the results tell us that the discriminatory auction per-
forms no worse than the uniform-price auction, and very likely is revenue-dominant,
if all other aspects of my reference market are kept �xed. Thus from the MoF�s view-
point, switching to uniform-price auctions would be unattractive, and could lead in
up to 2.2% increase in debt-servicing costs (as suggested by the FPV model).
If a switch of auction method were enacted, it is possible that other factors aspects

of the auction setup would also be changed. For example, Back and Zender (2001)
mention that collusion may be more easily sustained under uniform-price rules -
and the MoF might want to change the market rules to reduce likelihood of such
outcomes. Within the current legislative framework, one tool readily available is
more active management (restriction) of supply.56 A more radical remedy would be
to change the participation rules in the auction - for example, by making a larger
number of dealer licences available (at lower administrative cost), or abolishing the
dealer system altogether. In this last case, a particularly strong e¤ect may manifest
if new bidders (i.e. ones that did not bid as �clients�before) enter the market, in

54The reason for a comparison of this type is that Kang & Puller observe (over di¤erent time-
periods) data from uniform-price and discriminatory auctions, for Korea. Since the Hortacsu model
doesn�t admit an �optimal bidding for either auction type, thir alternative is to use an auction where
�truthful bidding�is optimal - the Vickrey auction satis�es this condition.

55The use of simulated con�dence-intervals in this paper was implemented before the publica-
tion of the Kang & Puller (2006) paper - so this modi�cation appears to have been arrived at
independently in these two papers.

56In Back & Zender�s (2001) model, endogenous supply selection eliminates the �collusive
seeming�equilibria.
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addition to the �disaggregation�of client demands. Any of these variations on the
auction setup would reduce the direct applicability of my analysis.

7. Conclusions

This paper has applied two structural econometric models of share auctions to a
dataset of Polish treasury-bill auctions. To my knowledge, this is the �rst consistent
application of the Hortacsu and FPVmodels in the Polish context, as well as the �rst
time that these two models have been directly compared on a single dataset. Both
models suggest that the discriminatory-price setup, currently used, is not revenue-
dominated by the uniform-price auction. In the FPV model, the discriminatory
auction had a revenue advantage of roughly 2.2%, and was statistically signi�cant
in all but one of individual auctions, and also statistically signi�cant on the whole
revenue sequence. While the Hortacsu model didn�t con�rm revenue-dominance for
the discriminatory auction on aggregate, such dominance was nonetheless found on
11% of individual auctions. Although there was widespread disagreement among the
(simulated) predictions of the two models, these were driven largely by the weakness
of the conclusions available from he Hortacsu model, which only gives us a one-sided
revenue bound for the uniform-price auction. The degree of outright inconsistency
was tiny, and in terms of realised-price based comparisons, the discrepancies were
moderate, covering 25% of the auctions. It thus appears that both models are
useful in analysing the treasury-bill market, despite using di¤ering theoretical and
econometric assumptions.
It could also be argued that using two di¤erent methodologies on the same dataset

has reduced the likelihood that my conclusions are model-driven. Both models
suggest that on the Polish data, the discriminatory-price auction performs (at least
weakly) better than uniform-price, and there is nothing inherent in the setup of
either model that pre-disposes them to favour one auction type over the other.
Thus when we �let the data speak�, it is telling us that discriminatory-price auctions
are revenue-superior.
In terms of policy advice, my research would recommend keeping the current

system, if it is auction revenue that is of primary importance to the MoF. However,
given the �exible mandate of the MoF on treasury-bill auctions, combined with the
possibility of new participation rules, if the auction setting changes together with a
change in auction rules, my results should be interpreted with caution.
Future work in this area will attempt to procure data on 5- and 10-year bonds

also, since these constitute a much larger, and more liquid, market than either of
the two zero-coupon papers considered in this paper. Those bonds are also coupon-
bearing, hence could exhibit di¤erent auction behaviour from the data used thus
far. Such augmentation would also be particularly useful for checking the in�uence
of the (accuracy of) secondary-market prices on the behavior of the FPV model.
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8. Appendix A: Extensions of the Hortacsu Model

This appendix explores three kinds of possible modi�cations to the Hortacsu
model. The modi�cations concern the modelling of bidder asymmetries, trying to
deal with the zero-density problem by using kernel smoothing, and �nally, imple-
menting di¤erent kind of modelling of bidder expectations.

8.1. Accounting for Asymmetry
The basic resampling algorithm speci�ed in section 4.1 re-draws the bidding func-

tions of each bidder with equal probability. It is thus possible (say) that drawing 11
re-sampled bidding functions might give us six times the bids of bidder 1 and �ve
times those of bidder 5. If all bidders indeed are symmetric, this is not a problem,
but as Section 3.2 suggested, there appear to be di¤erences in the size of bidders
present. Even if we end up drawing the relative right amount of each bidders�bid-
ding functions across all re-samples, we might still often get �wrong proportions�of
di¤erent types of bidders within an individual auction.
To see if correcting for asymmetry is important in my data, I can modify the

re-sampling procedure to always draw �the right proportion�of each kind of bidder.
For this purpose, I classify each of the bidders into one of three groups, based on
their average �proportion of bids satis�ed�. I then modify the re-sampling algorithm
from in the following way:

� Fix an auction l - for this auction, �nd nl; the total number of bidders, and
na; nb and nc - the numbers of bidders in each of groups A, B and C, respec-
tively. Fix a bidder index, i.

� Let m be the group to which bidder i belongs; draw nm � 1 bids from the set
of bids submitted in group m, and draw exactly nk for all groups k other than
m.

Using the modi�ed procedure will always draw the correct proportions of each
bidder type. A similar modi�cation can be made when simulating the average stop-
out price in the uniform price auction - so that again I have the correct proportions of
each bidder type participating. The Figure 8 below compares the inferred valuation
functions for bidder 10, in auction 5; the standard valuation function is in RED, while
the BLUE one has been obtained by taking asymmetry into account. The di¤erences
in the shape of these two curves are slight, and there is no persistent valuation �shift�
is visible (for most pairs of compared valuation functions, the functions intersect at
least once).
I have re-run the whole estimation procedure using these modi�ed re-sampling

routines, and results are reported in Table 16.57

Comparing this with Table 6, we see that the average realised revenue from
discriminatory-price auctions has remained unchanged (up to 2 decimal points).
Looking at realised prices, for 52-week bills,the conclusions are unchanged with dis-
criminatory price-being dominant in 80 auctions, but for 2-year bonds discriminatory
auction is revenue dominant in two fever auctions than before. Simulated uniform-
price revenues on 52-week bills have decreased slightly compared to the �symmetric�

57Full listing of per-auction results is available from the author on request.
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Figure 8: E¤ects of incorporating �asymmetries�into resampling

Table 16: Per-auction summary for Hortacsu model, with asymmetries

52 Weeks 2 years
Number of Auctions 103 42
DP Realised Price 94.79 89.08
UP Realised Price 94.78 89.10
DP Simulated Price 94.79 (1.16) 89.08 (2.21)
UP Simulated Price 94.78 (1.17) 89.24 (2.21)

Realised Rev. Dominance DP: 83 / UP: 20 DP: 26 / UP: 16
Rev. Dominance - RoT DP: 15 / UP: 0 DP: 2 / UP: 0

Rev. Dominance - Empirical Bounds DP: 26 / UP: 0 DP: 3 / UP: 0
Means reported (st.dev in brackets).

benchmark, while for 2-year bonds the uniform-price revenue has decreased propor-
tionately much more. Though on 2-year bonds the uniform-price bound is still above
discriminatory-price revenue, the margin is only 0.27%. Overall, on simulated rev-
enues it appears that incorporating asymmetry into the resampling procedure has
favoured the discriminatory auction. The number of cases in which this auction is
dominant for the 52-week bills has increased both when using the �rule of thumb�
(from 8 to 15), or empirical error bounds (from 15 to 26). Similarly, the �rule-of-
thumb�results for the 2-year bonds are now more favourable for the discriminatory
price auction (up from 0 to 2), when I use empirical error bounds, the number of
auctions in which discriminatory auction dominates has gone up from 24 to 26. Thus
on a per-auction basis, modelling asymmetries reinforces the superior performance
of the discriminatory price-auction, relative to uniform-price.
The �revenue sequence�results in Table 17 below show that on aggregate, asym-
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Table 17: Revenue Sequence Comparison: Hortacsu Model with Asymmetries

52 Weeks 2 years Pooled
Number of Auctions 103 42 145
Face Value total 85.30 90.54 175.84
DP Revenue total 80.85 (0.00) 80.65 (0.00) 161.50 (0.00)
UP Revenue total 80.85 (0.01) 80.80 (0.20) 161.65 (0.20)

Revenue Di¤erence total 0.00 (0.01) -0.15 (0.19) -0.15 (0.19)
Simulated CI for Rev. Di¤. [-0.03 : 0.01] [-0.50 : 0.01] [-0.50 : 0.02]

Amounts in bnPLN.

Means reported (st.dev in brackets).

metries have changed little. On aggregate, I sill cannot reject revenue equivalence
of the two auction types.

8.2. Smoothing of the H-distribution

The simplest way to introduce some density to those parts of H which are pre-
viously ��at� (i.e. where h is zero) is to introduce kernel smoothing. Smoothing
is widely used in non-parametric density estimation, and discussed in for example
Pagan and Ullah (1999). In my context, to obtain smoothed estimates of H, I can
take a set of re-sampled stop-out prices - call this set {p�j} - and then go through
each price in the support of H, applying the following formula to each step:

f (pi) =
1

B � �K

BX
j=1

K

�
pi � p�j
�K

�
(13)

where K is the kernel function, and �k is the bandwidth. Hortacsu�s original pro-
cedure is nested in this approach - the kernel function is just the indicator function
K
�
p�pj
�k

�
= 1� p�pj

�k

�
=0
; with �k = 1: When a non-degenerate kernel is used, a �hit�

on a stop-out price of p� also generates a bit of density to on prices close to p�: So if
previously there was a set of prices which were clustered closely together, but only
one of them would be hit in equilibrium, smoothing would disperse a bit of density
to the other points also, which would solve non-existence problem of the valuation
function at these points.
There are two reasons to expect kernel smoothing to be of limited use in my

context. Firstly, if I use a kernel which has �nite support (e.g. Epanechnikov),
it is unlikely that I will get much of an improvement in estimating prices which
are at the extreme ends of the support: if at these points there was no density
to begin with, then even if I �smooth�the small amounts that are present in this
part of the distribution, I should not expect much of a change. The second worry
is more fundamental: if I do get some density at points where there previously
were none, this addition is �arti�cial�in the sense that now I have density in places
where, according to the economic foundations of my model, there shouldn�t be any.
What amount of density is added will depend on the parametrisation (shape) of
my kernel smoother, and this may drive the shape of the v-functions. Since the
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density estimate features as the denominator of Euler equation, small variations in
this density may have a very large impact to the valuation inferred at this point.
There is no reason to expect that smoothing would induce monotonicity - so at the
points where I previously couldn�t �construct�an inferred valuation, I may be able
to do so now, but the estimate I get can behave badly.
To check the impact of kernel-smoothing on my results, I applied formula 13

to my estimates, and used the normal kernel with automatic optimal bandwidth
selection.58 The left-hand panel in Figure 9 below shows an example of a smoothed
compared to unsmoothed estimates of H, while the right-hand panel compares the
resultant valuation functions.

Figure 9: The e¤ect of smoothing H(pjy)

In the LHS of the �gure, we see that the smoothed distribution (BLUE) has �xed
the zero-density problem of the standard distribution (RED) around the interval
[96.45, 96.65] - where the cumulative density was previously �at, it is now (very
slightly) sloping upwards. The e¤ects of this can be seen in the RHS of the �gure
- the values corresponding to the unsmoothed distribution (in red) have had to use
my �interpolation�assumption over this interval, and hence the valuation function
is �at - the valuation function corresponding to the smoothed distribution (in blue)
has used equation 5 to back-out the valuation function at these points, and is thus
not �at. However, the amount of �smoothed�density over this range is small, and
hence the estimates of v are erratic and very large.
The smoothing doesn�t always help: there are some points in the middle of the

support of H where I previously had zero density, and smoothing has not �xed this.

58Matlab was used to perform these calculations.
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Table 18: Per-auction summary for Hortacsu model with Smoothed H

52 Weeks 2 years
Number of Auctions 103 42
DP Realised Price 94.79 89.08
UP Realised Price 94.81 89.50
DP Simulated Price 94.79 (1.16) 89.08 (2.21)
UP Simulated Price 94.85 (1.21) 89.58 (2.73)

Realised Rev. Dominance DP: 78 / UP: 25 DP: 24 / UP: 18
Rev. Dominance - RoT DP: 6 / UP: 0 DP: 1 / UP: 0

Rev. Dominance - Empirical Bounds DP: 10 / UP: 0 DP: 0 / UP: 0
Means reported (st.dev in brackets).

Also, smoothing does little to in�uence H at the extremes of the price distribution.59

When I compare the zero-density point ratios with and without smoothing (overall)
I �nd that the improvement is signi�cant. Using non-smoothed H�s, I get �zero
density�in roughly 30.9% of points in the support of H, while using smoothing I
�nd zero-density in 15.3% of points. Thus alleviates the zero-density problem, but
does not completely eliminate it. As expected, smoothing is of little help at the
edges of the support of H - where there is no density to �smooth over�in the �rst
place.
The conclusions with respect to revenue-dominance have changed slightly by using

smoothed densities, as can be seen from Table 18. Looking at realised prices, the
discriminatory-price auction does worse on the 52-week bills: number of cases when
it is dominant has gone down from 83 to 78. There is no change on the 2-year bond
sample. Looking at simulated prices, the uniform-price auction now does better, and
this slight increase in the average uniform-price stop-out price is due to the e¤ect
shown on Figure 9. Some previously �monotonised�parts of the v-function that were
�marginal�have, due to smoothing, shifted upwards - hence a higher stop-out price.
However, the in�uence is minor. The improved performance of the uniform-price
auction is re�ected in the per-auction dominance numbers on the 52-week sample:
discriminatory price is revenue-dominant only 6 times using the RoT criterion (down
from 8 cases previously), and only 10 times using simulated con�dence intervals
(down from 15 cases). Curiously, there is no corresponding shift on the 2-year bond
sample: for the 2-year bonds, I can reject revenue-equivalence only in one case using
the RoT and not at all using simulated con�dence intervals.
Looking at revenue sequences, as shown in Table 19, we still cannot reject revenue

equivalence on either individual security type using the �rule of thumb�. However,
when looking at simulated con�dence intervals, both on the 2-year and the pooled
sample, the un�rom-price revenue is above discriminatory-price, though the margin
is still very small, at 0.32%. It thus appears that smoothing the H-distribution
favours the uniform-price auction, however, this improvement can be attributed to
an artifact of the model: the smoothing induces numerous signi�cant (upwards)
non-monotonicities in the individual valuation functions in those places where I had
previously used a monotonic interpolation which was already chosen in such a way

59Figures showing these two results are not shown here, but available upon request.



42

Table 19: Revenue Sequence Comparison: Hortacsu Model with Smoothed H

52 Weeks 2 years Pooled
Number of Auctions 103 42 145

Face Value 85.30 90.54 175.84
DP Revenue 80.85 (0.00) 80.65 (0.00) 161.50 (0.00)
UP Revenue 80.91 (0.04) 81.11 (0.26) 162.02 (0.26)

Revenue Di¤erence -0.06 (0.04) -0.46 (0.26) -0.52 (0.26)
Simulated CI for Rev. Di¤. [-0.15 : 0.00] [-1.00 : -0.01] [-1.06 : -0.06]

Amounts in bnPLN.

Means reported (st.dev in brackets).

as to bias the results in favour of the uniform-price auction. Sometimes the re-
sampling algorithm picks valuation functions in a way that makes such a portion of
the valuation curve �marginal�, and this pushes up the stop-up price compared to
before.

8.3. Moving-Aaverage - Type Expectations
One response to solving the zero-density problem follows from questioning the

�precise� validity of Bayesian equilibrium as applied to the auction itself. While
Bayesian equilibrium assumes that each bidder responds optimal to the �true�dis-
tribution of opponents�valuations in the current auction, in practice the bidders
may not possess such accurate information - in fact, they might be responding to
some �compound�distribution of current and past rival valuations. A way of trying
to implement this line of argument is to introduce some pooling of auctions into the
resampling procedure. I can do this by expanding the set of �eligible bidders�from
whose demand functions I draw at the re-sampling stage; I can re-write step 2 of
my resampling procedure from section 4.1 as:

� 2a. Draw, with replacement, (nl � 1) actual demand bid schedules from auc-
tions l; (l � 1) ; . . . , (l � k)

In this context, the variable �k�speci�es how many steps back I want to �pool�; in
a very loose sense, this parameter can be seen �moving-average�order of the bidder�s
expectations. Pooling of this sort has been used by Kastl (2006), since his data
was originally too sparse per-auction to allow a good simulation of H based on bids
submitted in a single auction only. In this section, I will use k=3, since this gives
me (approximately) the same number of observed bid-functions to re-sample as in
Hortacsu�s Turkish context.
The reason I might expect that this modi�cation alleviates the zero-density prob-

lem follows from the fact that the prices at which bidders submit their bids vary
across auctions. Thus if I pool the bid functions across a number of auctions,we
would expect a �denser�collection of bid across most parts of the support of the price
distribution. Due to this, I should expect the re-sampled residual-supply curves to
intersect with the current bidder�s demand function at a wider range of prices than



43

before, so some prices which were never hit before may now appear as stop-out prices
at least occasionally.
Overall, this method is almost as successful as kernel smoothing in reducing the

number of zero-density points in the support of H: using the standard procedure,
30.9% of relevant points have zero density - using the MA-resampling procedure, this
number falls to approximately 17 %. When I compare the values recovered using
H as simulated here, and the original one,we �nd that the di¤erences in inferred
valuations are large - much larger than obtained via kernel smoothing. The reason
for this is twofold: �rstly, for those points where I previously had zero density, I
used �monotonicity�arguments to �interpolate�the value function. Now that some
of these points have a non-zero density, I can use equation 5 to back-out values at
these points - but this sometimes leads to (additional) violations of monotonicity
and hence deviates a lot from the standard inferred marginal valuation, at this point.
The e¤ect here is exactly analogous to that caused by the smoothing of H.
Secondly, and more worryingly, some of this discrepancy may be due to bias:

if the auctions that we are pooling across are �not very similar�, then the MA-
based re-sampling procedure will generate a biased estimate of H. In particular,
if the price trend is upwards over time, then the MA-procedure will bias the new
H-distribution to be �rst-order-stochastically-dominanted (FOSD�d) by the single-
auction based one (conversely if the price trend is downwards ). An example of
this is provided in �gure 10, where in each �gure the left-hand pane shows the H-
distribution obtained from single-auction resampling in RED, and the one obtained
via MA-type resampling in BLUE, while the right-hand pane shows the MA-window
plotted on top of the weighted stop-out price over time.

Figure 10: Example of FOSD in the case of MA-type resampling

From the two above �gures we indeed see that if the price trend is upwards, the
MA-procedure generates an H-distribution that FOSD�d by the single-auction equiv-
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Table 20: Results of Kastl�s regression-based test

52 weeks 2 years Pooled
q(t-1) q(t-1) q(t-1)

Constant 114.1 (1.5) 106.7 (1.2) 112.0 (1.1)
Regression Coe¢ cient 11.1 (10.5) 20.6 (8.1) 14.2 (7.8)

R2 0.0009 0.013 0.0019
N 1237 512 1749

Estimates reported (st.error in brackets).

alent. A quick check of this intuition could be carried out, for example, by running a
series of one-sided Wilcoxon tests, with the �alternative hypothesis�implying FOSD
according to whether the price trend (over the 4 periods) has been increasing or
decreasing. Running this testing procedure on the simulated distributions generates
rejection (in the expected direction) on roughly 50% of the distributions at the 95%
con�dence level.60

If there is intertemporal dependence between the distribution of bidders�signals
across auctions, that will undermine my estimates for two reasons. Firstly, the
assumption of independent and identically distributed signals will not hold, whereby
the arguments for bootstrap consistency (when estimating H) would no longer apply
and the whole estimation theory would be invalid. Secondly, if such intertemporal
dependence induces anything like a �common value�element, or a¢ liation, to my
bidders valuations, then the assumptions underlying my revenue estimates from the
uniform auction are no longer appropriate, and would need to be modi�ed (as in,
for example, Hortacsu (2002), Section 6.2).
Kastl (2006), who uses pooling in the context of a model very similar to Hortacsu

(2002), applies a test for intertemporal dependence. Since the tests I am interested in
are applied to the bidders�individually observed signals, I must �rst estimate them
using additional assumptions on top of Hortacsu�s methodology. The assumption
Kastl makes is that the value is linear and separable in both signal and quantity, in
particular:

vi (qijsi) = si + �qi

From this assumption, � (common for all bidders) can be estimated by using
the �rst two recovered valuations for each bidder, and once � has been estimated
the si can be calculated. Subsequently, Kastl regresses q̂l�1i on sli, and looks at
the signi�cance of the regression coe¢ cient as an indicator if independence; if the
coe¢ cient is insigni�cant, we cannot reject independence. In Kastl�s sample, the
test fails to reject.61

I performed the same tests as Kastl, and the results are summarised in Table 20,
below.
We see that the test based on lagged won quantities does not reject independence

on the 52-week sample, or on the pooled sample of 52-week and 2-year data; it

60Detailed results available upon request.
61Kastl also applies a second test to his data, to evaluate whether a­ iation is present or not.

However, his test relies on the uncertainty of supply, which is not a feature of my data - hence I
omit the application of this test.
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Table 21: Per-auction summary for Hortacsu model, with MA3 Expectations

52 Weeks 2 years
Number of Auctions 100 39
DP Realised Price 94.84 88.94
UP Realised Price 95.53 91.25
DP Simulated Price 94.83 (1.16) 88.93 (2.23)
UP Simulated Price 95.70 (3.05) 92.41 (7.86)

Realised Rev. Dominance DP: 29 / UP: 71 DP: 8 / UP: 31
Rev. Dominance - RoT DP: 5 / UP: 8 DP: 0 / UP: 5

Rev. Dominance - Empirical Bounds DP: 9 / UP: 43 DP: 1 / UP: 22
Means reported (st.dev in brackets).

Table 22: Revenue Sequence Comparison: Hortacsu Model with MA Expectations

52 Weeks 2 years Pooled
Number of Auctions 100 39 139

Face Value 85.30 90.54 175.84
DP Revenue 78.05 (0.00) 74.38 (0.00) 152.43 (0.00)
UP Revenue 78.76 (0.31) 77.30 (1.94) 156.05 (1.96)

Revenue Di¤erence -0.71 (0.31) -2.91 (1.94) -3.62 (1.96)
Simulated CI for Rev. Di¤. [-1.34 : -0.30] [-10.15 : -1.21] [-10.84 : -1.78]

Amounts in bnPLN.

Means reported (st.dev in brackets).

does, however, reject independence on the sample of 2-year data only. These results
suggest that I should be particularly cautious in interpreting the 2-year results.
However, there are good reasons to have strong reservations about the importance
of this test in the �rst place: the assumption of linear valuations is arbitrary and
restrictive, and may in fact be driving the test results. It also does not sit very well
with the (otherwise) non-parametric methodology of the Hortacsu model. Finally,
the assumption to use the �rst two recovered valuations may be cause severe bias
in the Polish context. Bearing in mind these caveats, I present the results based on
MA-type expectations in table21:62

This table suggests a very large departure from the results of section 4.3. In terms
of realised prices, the uniform-price auction is now dominant in 71 of the 52-week
bill auctions (up from 20 previously), and in 31 of the 2-year bond auctions (up from
18). Whereas previously simulated per-auction dominance statistics only favoured
uniform-price auctions once, now this auction type is more often dominant using
both the RoT criterion as well as simulated con�dence intervals. The results from
simulated revenue-sequences are presented in Table 22.
In terms of simulated revenue sequences, the uniform-price upper bound now is

revenue-dominant on all samples, with the revenue di¤erence being 0.09% on 52-week
bills and 3.9% on 2-year bonds (and 2.4% on the pooled sample). The fact that

62Per-auction comparison results can be obtained from the author on request.
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revenue di¤erences are bigger in 2-year bonds than on 52-week bills is consistent with
other incarnations of the Hortacsu model. However, the usefulness of the precise
results themselves is dubious. Given the results from Kastl�s test, we should have
most faith in results from the 52-week sub-sample, but even here the conclusions
are contaminated by the H-functions being mis-estimated by pooling bidders across
auctions (due to the moving-average formulation). These problems are su¢ ciently
severe to signi�cantly undermine the validity of the results from this section.
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