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Abstract

We consider the problems of allocating objects to a group of agents and how much

agents should pay. Each agent receives at most one object and has nonquasi-linear

preferences. Nonquasi-linear preferences describe environments where payments influence

agents’ abilities to utilize objects or derive benefits from them. The “minimum price

Walrasian (MPW) rule” is the rule that assigns a minimum price Walrasian equilibrium

allocation to each preference profile. We establish that the MPW rule is the unique rule

satisfying strategy-proofness, efficiency, individual rationality, and no subsidy for losers.
Since the outcome of the MPW rule coincides with that of the simultaneous ascending

(SA) auction, our result supports SA auctions adopted by many governments.
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1 Introduction

1.1 Purpose

Since the 1990s, governments in numerous countries have conducted auctions to allocate a

variety of objects or assets including spectrum rights, vehicle ownership licenses, and land, etc.

Although auction revenues sometimes amount to government annual budgets, the announced

goals of many government auctions are rather to allocate objects “efficiently”, i.e., to agents

who benefit most from them.1 Agents benefiting more are willing to pay higher prices for

them, and thus would have more chances to win the objects in auctions. However, large-scale

auction payments would influence agents’ abilities to utilize objects or benefit from them,

thereby complicating efficient allocations. This article analyzes rules that allocate auctioned

objects efficiently even when payments are so large that it impairs agents’ abilities to utilize

them or realize their benefits. We investigate what types of allocation rules can allocate objects

efficiently in such environments.

1.2 Main Result

An allocation rule, or simply a rule, is a function that assigns to each preference profile

an allocation, which consists of an assignment of objects and agents’ payments. Each agent

receives one object at most. The domain of rules is the class of preference profiles. We assume

that preferences satisfy monotonicity, continuity, and “finite compensation”, which means that,

given an assignment, any change of assigned object is compensated by a finite amount of money.

We call such preferences “classical”. It is well-known that in this model, there is a minimum

price Walrasian equilibrium (MPWE),2 and that the allocation associated with the MPWE

coincides with the outcome of a certain type of auctions, called the “simultaneous ascending

(SA) auction”.3 Under SA auctions, bids on all objects start simultaneously, and the sale of

any object is not settled as long as new bids are made on some objects. We focus on the

rule that assigns an MPWE allocation to each preference profile. We refer to this rule as the

“minimum price Walrasian (MPW) rule”.

The MPW rule satisfies four desirable properties. First is (Pareto-)efficiency. An allocation

is efficient if no agent can be better off without either some other agent being made worse

off or the government’s revenue being reduced.4 Note that efficiency is evaluated based on

agents’ preferences. Thus, an efficient allocation cannot be chosen without information about

agents’ preferences. Since preferences are private information, agents may have an incentive

to behave strategically to influence the final outcome in their favor. Strategy-proofness is an

incentive-compatibility property, which gives a strong incentive for each agent to reveal his

true preferences. It says that for each preference profile, in the normal form game induced by

the rule, it is a (weakly) dominant strategy for each agent to reveal his true preference. The

1For example, frequency auctions in the United States were introduced to promote “efficient and intensive

use of the electromagnetic spectrum”. See McAfee and McMillan (1996, p.160).
2See Demange and Gale (1985).
3For example, see Demange, Gale, and Sotomayor (1986).
4In our auction model, efficiency is defined by taking government revenue into account.
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MPW rule satisfies strategy-proofness,5 and chooses an efficient allocation corresponding to

the revealed preferences.

The third property of the MPW rule is individual rationality, which requires that any agent

should not be made worse off than he would be if he had received no object and paid nothing.

This property induces agents’s voluntary participation. Fourth is no subsidy for losers. Under

the MPW rule, the governments never subsidize losers. This property prevents agents with

little abilities from flocking to auctions to sponge subsidies.

The primary conclusion of this article is that only the minimum price Walrasian rule sat-

isfies strategy-proofness, efficiency, individual rationality, and no subsidy for losers (Theorem

4.1). Since the outcome of the MPW rule coincides with that of the SA auction (Proposition

5.1), the result supports SA auctions adopted by many governments.

1.3 Related Literature

Holmström (1979) establishes a fundamental result relating to our question that applies

when agents’ benefits from auctioned objects are not influenced by their payments, i.e., agents

have “quasi-linear” preferences. He assumes that preferences are quasi-linear, and shows that

only the Vickrey—Clarke—Groves type (VCG)6 allocation rules satisfy strategy-proofness and

efficiency.7 His result implies that on the quasi-linear domain, only the Vickrey rule8 satisfies

strategy-proofness, efficiency, individual rationality, and no subsidy for losers.9 In reality,

preferences are approximately quasi-linear if payments are sufficiently low. However, quasi-

linearity is not an appropriate assumption for large-scale auctions. Excessive payment for

the auctioned objects may damage bidders’ budgets and render effective use of the objects

impossible. Or bidders may need to obtain loans to bid high amounts, and typically financial

costs are nonlinear in borrowings, which makes bidders’ preferences on objects and payments

nonquasi-linear.10 In spectrum license auctions and vehicle ownership license auctions, license

prices often equal or exceed bidders’ annual revenues. Thus, bidders’ preferences are nonquasi-

linear for such important auctions.11 As contrasted with Holmström (1979), our result can be

applied even to such environments.

Saitoh and Serizawa (2008) investigate a problem similar to ours in the case where the

domain includes nonquasi-linear preferences, and there are multiple units of the same object.

They generalize Vickrey rules by employing compensating valuations from no object and no

payment, and characterize the generalized Vickrey rule by strategy-proofness, efficiency, indi-

5In addition, the MPW rule satisfies group strategy-proofness, i.e., by misrepresenting their preferences, no
group of agents should obtain assignments that they prefer.

6See Clarke (1971), Groves (1973), and Vickrey (1961).
7More precisely, Holmström (1979) studies public goods models. When agents have quasi-linear preferences,

his result can be applied to the auction model.
8See Section 6 for the formal definition.
9Remember that the payment of an agent under the VCG rule is decomposed into two parts. The first part

is what is called “Vickrey price”, the social opportunity cost to allocate him an object; the second is the term

which is independent of his preference. Individual rationality and no subsidy for losers imply that the second
part is zero. See also Chew and Serizawa (2007).
10See Saitoh and Serizawa (2008) for numerical examples.
11Ausubel and Milgrom (2002) also discuss the importance of the analysis under nonquasi-linear preferences.
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vidual rationality, and no subsidy.12 We stress that when preferences are not quasi-linear, the

heterogeneity of objects makes the MPW rule different from the generalized Vickrey rule.13

Although the assumption of quasi-linearity neglects the serious effects of large-scale auc-

tion payments in actual practice, it is difficult to investigate the above question without this

assumption. Quasi-linearity simplifies the description of efficient allocations. More precisely,

under quasi-linear preferences, an efficient allocation of objects can be achieved simply by

maximizing the sum of realized benefits from objects (agents’ net benefits), and hence, effi-

cient allocations of objects are independent of how much agents pay. In this sense, Holmström

(1979) characterizes only the payment part of strategy-proof and efficient rules. On the other

hand, without quasi-linearity, efficient allocations of objects do depend on payments, and thus

are complicated to identify. Furthermore, as mentioned earlier, on nonquasi-linear domains,

the MPW rule is different from the generalized Vickrey rule, and the former outperforms the

latter in terms of our desirable properties: strategy-proofness, efficiency, individual rationality,

and no subsidy for losers. Needless to say, Holmström’s (1979) results cannot be applied to

prove our results on a nonquasi-linear domain. It is worthwhile to mention that most standard

results of auction theory, such as the Revenue Equivalence Theorem, also depend on assuming

quasi-linearity. In this article, we overcome that difficulty.

Since Hurwicz’s (1972) seminal work, many authors have investigated efficient and strategy-

proof rules in pure exchange economies.14 In pure exchange economies, classical15 preferences

are standard, but no rule satisfies strategy-proofness, efficiency, and individual rationality on

the classical domain. On the other hand, Demange and Gale (1985) show that, in the model

studied in this article, the MPW rule satisfies strategy-proofness, efficiency, and individual

rationality on the classical domain.16 Miyake (1998) shows that only the MPW rule satisfies

strategy-proofness among “Walrasian rules”.17 Note that the Walrasian rules are a small part of

the class of allocation rules satisfying efficiency, individual rationality, and no subsidy for losers.

By developing analytical tools different from Miyake’s (1998), we extend his characterization

in that we establish the uniqueness of the rules satisfying the desirable properties without

confinement to Walrasian rules.

Many authors have analyzed SA auctions in quasi-linear settings (Ausubel, 2004, 2006;

Ausubel and Milgrom, 2002; de Vries, Schummer, and Vohra, 2007; Gul and Stacchetti, 2000;

and Mishra and Parkes, 2007; Andersson, Andersson and Talman, 2012, etc). In nonquasi-

12Sakai (2008) also obtains a result similar to theirs.
13In Section 6, we give a detailed discussion on this point by contrasting the MPW rule with the generalized

Vickrey rule.
14For example, see Zhou (1991); Barberà and Jackson (1995); Schummer (1997); Serizawa (2002); and

Serizawa and Weymark (2003).
15In pure exchange economies, where consumption spaces are some multidimensional Euclidean space, clas-

sical preferences are assumed to satisfy convexity in addition to continuity and monotonicity. Clearly, the class

of such preferences contains nonquasi-linear preferences.
16More precisely, Demange and Gale (1985) study two-sided matching markets which contain our model as

a special case, and show the rules selecting an optimal stable assignment for one side of the market are group
strategy-proof for the agents on that side.
17A “Walrasian rule” is the rule that assigns a Walrasian equilibrium allocation to each preference profile.
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linear settings, the MPW rules differ from the generalized Vickrey rules, and it is the MPWE

allocation that coincides with the outcome of the SA auction.18 Therefore, our result demon-

strates that the SA auction analyzed by those works is more important in nonquasi-linear

settings.

1.4 Organization

The article is organized as follows. Section 2 sets up the model and introduces basic

concepts. Section 3 defines and characterizes minimum price Walrasian equilibrium. Section

4 provides our main result. Section 5 defines the SA auction, and shows that its outcome

coincides with the MPWE allocation. Section 6 introduces generalized Vickrey rules, and

contrasts them with the MPW rule. Section 7 concludes. All proofs appear in the Appendix.

2 The Model and Definitions

There are n agents and m objects, where 2 ≤ n < ∞ and 1 ≤ m < ∞. We denote the set of
agents by N ≡ {1, . . . , n}, and the set of objects by M ≡ {1, . . . ,m}. Let L ≡ {0}∪M . Each
agent consumes one object at most. We denote the object that agent i ∈ N receives by xi ∈ L.
Object 0 is referred to as the “null object”, and xi = 0 means that agent i receives no object.

We denote the money that agent i pays by ti ∈ R. For each i ∈ N , agent i’s consumption set
is L×R, and agent i’s (consumption) bundle is a pair zi ≡ (xi, ti) ∈ L×R. Let 0 ≡ (0, 0).
Each agent i has a complete and transitive preference relation Ri on L× R. Let Pi and Ii

be the strict and indifference relation associated with Ri, respectively. Given a preference Ri
and a bundle zi ∈ L×R, let the upper contour set and lower contour set of Ri at zi be
UC(Ri, zi) ≡ {ẑi ∈ L × R : ẑiRi zi} and LC(Ri, zi) ≡ {ẑi ∈ L × R : ziRi ẑi}, respectively.
For each i ∈ N , agent i’s preference Ri satisfies the following properties:
Money monotonicity: For each xi ∈ L and each ti, t̂i ∈ R, if t̂i < ti, then, (xi, t̂i)Pi (xi, ti).
Finiteness: For each ti ∈ R and each xi, x̂i ∈ L, there exist t̂i, t̄i ∈ R such that (x̂i, t̂i)Ri (xi, ti)
and (xi, ti)Ri (x̂i, t̄i).

Continuity: For each zi ∈ L× R, UC(Ri, zi) and LC(Ri, zi) both are closed.19
Let RE be the class of continuous, money monotonic, and finite preferences, which we

call the “extended domain”. Given Ri ∈ RE, zi ∈ L × R, and yi ∈ L, we define the
compensating valuation CVi (yi; zi) of yi from zi for Ri by (yi, CVi(yi; zi)) Ii zi. Note

that by continuity and finiteness of preferences, CVi(yi; zi) exists, and by money monotonicity,

CVi(yi; zi) is unique. The compensating valuation for R̂i is denoted by dCV i.
We introduce another property of preferences.

Desirability of objects: For each xi ∈M and each ti ∈ R, (xi, ti)Pi (0, ti).20
18Alaei, Jain, and Malekian (2013) construct an alternative algorithm computing MPWE in nonquasi-linear

setting.
19Money monotonicity and finiteness imply continuity. All of results hold without assuming continuity.
20A preference Ri satisfies weak desirability of objects if for each xi ∈ M , (xi, 0)Pi 0. All the results in this

article still hold if desirability of objects is replaced by weak desirability of objects.

4



Definition 2.1. A preference Ri is classical if it satisfies continuity, money monotonicity,

finiteness, and desirability of objects.

Let RC be the class of classical preferences, which we call the “classical domain”. Note

that RC ( RE.

Definition 2.2. A preference Ri is quasi-linear if there is a valuation function vi : L→ R+
such that (i) vi(0) = 0, (ii) for each x ∈ M , vi(x) > 0, and (iii) for each zi ≡ (xi, ti) ∈ L × R,
and each ẑi ≡ (x̂i, t̂i) ∈ L× R, ziRi ẑi if and only if vi(xi)− ti ≥ vi(x̂i)− t̂i.
We denote the class of quasi-linear preferences by RQ, which we call the “quasi-linear

domain”. Note that RQ ( RC .

An object allocation is an n-tuple (x1, . . . , xn) ∈ Ln such that for each i, j ∈ N , if xi 6= 0
and i 6= j, then xi 6= xj, that is, no two agents receive the same object except when both agents
receive the null object. Let X be the set of object allocations. A (feasible) allocation is an n-

tuple z ≡ (z1, . . . , zn) ≡ ((x1, t1), . . . , (xn, tn)) ∈ [L×R]n of bundles such that (x1, . . . , xn) ∈ X.
Let Z be the set of feasible allocations. We denote the object allocation and agents’ payments

under an allocation ẑ by x̂ ≡ (x̂1, . . . , x̂n) and t̂ ≡ (t̂1, . . . , t̂n), respectively.
Let R be a class of preferences such that R ⊆ RE . A preference profile is an n-tuple

R ≡ (R1, . . . , Rn) ∈ Rn. Given R ≡ (R1, . . . , Rn) ∈ Rn and N 0 ⊆ N , let RN 0 ≡ (Ri)i∈N 0 and

R−N 0 ≡ (Ri)i∈N\N 0 .

An allocation rule, or simply a rule, on Rn is a function f from Rn to Z. Given a rule f

and a preference profile R ∈ Rn, we denote agent i’s assignment of objects under f at R by

fxi (R) and agent i’s payment under f at R by f
t
i (R), and we write

fi(R) ≡ (fxi (R), f ti (R)), f(R) ≡ (f1(R), . . . , fn(R)), and fx(R) ≡ (fxj (R))j∈N .
We introduce basic properties of rules. The efficiency condition defined below takes the

auctioneer’s preference into account and assumes that he is only interested in his revenue. An

allocation ẑ ∈ Z is (Pareto-)dominates z ∈ Z for R ∈ Rn if

(i)
X
i∈N

t̂i ≥
X
i∈N

ti, (ii) for each i ∈ N, ẑiRi zi, and (iii) for some j ∈ N, ẑj Pj zj .

An allocation z ∈ Z is (Pareto-)efficient for R ∈ Rn if there is no feasible allocation ẑ ∈ Z
that dominates z.

Efficiency: For each R ∈ Rn, f(R) is efficient for R.

Individual rationality below requires that a rule should never assign an allocation which

makes some agent worse off than he would be if he had received no object and paid nothing.

No subsidy requires that the payment of agents always should be nonnegative. No subsidy

for losers requires that the payment of agents who do not obtain objects always should be

nonnegative. No subsidy implies no subsidy for losers.

Individual rationality: For each R ∈ Rn and each i ∈ N , fi(R)Ri 0.
No subsidy: For each R ∈ Rn and each i ∈ N , f ti (R) ≥ 0.
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No subsidy for losers: For each R ∈ Rn and each i ∈ N , if fxi (R) = 0, then f ti (R) ≥ 0.
The two properties below have to do with incentive-compatibility. The first says that by

misrepresenting his preferences, no agent should obtain an assignment that he prefers.

Strategy-proofness: For each R ∈ Rn, each i ∈ N , and each R̂i ∈ R, fi(R)Ri fi(R̂i, R−i).
The second is a stronger property: by misrepresenting their preferences, no group of agents

should obtain assignments that they prefer.

Group strategy-proofness: For each R ∈ Rn and each N̂ ⊆ N , there is no R̂N̂ ∈ R#N̂ such

that for each i ∈ N̂ , fi(R̂N̂ , R−N̂)Pi fi(R).21

3 Minimum Price Walrasian Equilibrium

3.1 Definition of Walrasian equilibria

We define “Walrasian equilibrium” and “minimum price Walrasian equilibrium” in this

model. Let R ⊆ RE in this section. All results in this section also hold on the classical domain

RC .

Given a price vector p ≡ (p1, . . . , pm) ∈ Rm+ , the (common) budget set is defined as
B(p)≡ {(x, px) : x ∈ L}, where px = 0 if x = 0. Given i ∈ N , Ri ∈ R and p ∈ Rm+ , agent i’s
demand set is defined as D(Ri , p)≡ {x ∈ L : for each y ∈ L, (x, px)Ri (y, py)}.
Definition 3.1. Let R ∈ Rn. A pair (z, p) ∈ Z × Rm+ is aWalrasian equilibrium for R if

(WE-i) for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi , and
(WE-ii) for each x ∈M, if for each i ∈ N, xi 6= x, then, px = 0.

Condition (WE-i) says that each agent receives the object he demands, and pays its price.

Condition (WE-ii) says that an object’s price is zero if it is not assigned.

Fact 3.1. For each R ∈ Rn, there is a Walrasian equilibrium for R.

Fact 3.1 is already known.22 The existence of Walrasian equilibrium is also guaranteed by

Proposition 5.1 in Section 5 by using the SA auction.

Given R ∈ Rn, letW (R) be the set of Walrasian equilibria for R, and let Z(R) and
P (R) be the projections of W (R) onto Z and Rm

+ , respectively, i.e.,

Z(R) ≡ {z ∈ Z : for some p ∈ Rm+ , (z, p) ∈ W (R)}, and
P (R) ≡ {p ∈ Rm+ : for some z ∈ Z, (z, p) ∈ W (R)}.

That is, Z(R) and P (R) are the sets of Walrasian equilibrium allocations and prices for R,

respectively. Fact 3.2 below is the so-called First Welfare Theorem.

21Let #A denote the cardinality of set A.
22For example, see Alkan and Gale (1990). Our model is a special case of their model.
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Fact 3.2. Let R ∈ Rn and z ∈ Z(R). Then, z is efficient for R.23
Fact 3.3 below says that for each preference profile R, there is the minimum price pmin(R)

among Walrasian equilibrium prices. The minimum price Walrasian equilibrium (hereafter

MPWE) is the Walrasian equilibria associated with the minimum price.

Fact 3.3 (Demange and Gale, 1985). For each R ∈ Rn, there is pmin(R) ∈ P (R) such
that for each p ∈ P (R) and each x ∈M , pxmin(R) ≤ px.
Given R ∈ Rn, let Wmin(R) be the set of minimum price Walrasian equilibria for

R, and let
Zmin(R) ≡ {z ∈ Z : (z, pmin(R)) ∈ Wmin(R)}.

By Facts 3.1 and 3.3, for each R ∈ Rn, the set Zmin(R) is nonempty. Although the corre-

spondence Zmin is set valued, it is essentially single-valued, i.e., for each R ∈ Rn, each pair

z, z0 ∈ Zmin(R), and each i ∈ N , zi Ii z0i.24
3.2 Illustration of minimum price Walrasian equilibrium

We illustrate a MPWE in a simple case where there are three agents, and two objects,

say A and B, by using Figure 1. In Figure 1, there are three horizontal lines. The lowest

horizontal line corresponds to no object. The middle and highest ones correspond to objects

A and B, respectively. The intersection of the vertical line and each horizontal line denotes

the consumption bundle of the corresponding object and no payment. For example, the origin

0 denotes the consumption bundle of null object and no payment. For each point zi on the

one of three horizontal lines, the distance from zi to the vertical line denotes payment. For

example, z1 denotes the consumption bundle of object A and payment p
A. Agents’ preferences

are described by indifference curves depicted on the three horizontal lines. That is, if two

points on the horizontal lines are connected by a indifference curve of an agent, it means that

the agent is indifferent between the two points.

Assume that agents’ preferences Ri, i = 1, 2, 3, are ones depicted in Figure 1. The com-

pensating valuations from the origin are ranked as CV1(A; 0) > CV3(A;0) > CV2(A; 0) and

CV1(B; 0) > CV2(B;0) > CV3(B;0).

The MPWE for the preference profile R = (R1, R2, R3) is as follows: Agent 1 receives object

A and pays CV3(A;0), i.e., the price p
A of object A is CV3(A; 0). This agent 1’s consumption

point is depicted as z1 in Figure 1. Agent 2 receives object B and pays CV1(B; z1), i.e., the

price pB of object B is CV1(B; z1). This agent 2’s consumption point is depicted as z2 in Figure

1. Agent 3’s consumption point is 0 and depicted as z3.

23To see this, suppose that z ≡ (z1, . . . , zn) is not efficient for R. Then, there is ẑ ≡ (ẑ1, . . . , ẑn) such that

(i)
X
i∈N

t̂i ≥
X
i∈N

ti, (ii) for each i ∈ N, ẑiRi zi, (iii) for some j ∈ N, ẑj Pj zj .

Since z ∈ Z(R), there is a price vector p ∈ Rm+ such that (z, p) ∈ W (R). Then, by (ii) and (WE-i), for each
i ∈ N , t̂i ≤ px̂i . By (iii) and (WE-i), t̂j < px̂j . Thus,

P
i∈N t̂i <

P
i∈N p

x̂i =
P

i∈N ti. This contradicts (i).
24An allocation z0 ∈ Z is obtained by an indifferent permutation from z ∈ Z if there is a permutation π on

N such that for each i ∈ N , z0i = zπ(i) and z
0
i Ii zi (Tadenuma and Thomson, 1991). Note that for each pair

z, z0 ∈ Zmin(R), z0 is obtained by an indifferent permutation from z.
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object A

no object

R2 R1R3

CV3(A; 0) CV1(A; 0)

z1
•

•

object B

CV2(A; 0)

z2•

CV2(B; 0)
CV1(B;0)

R1

0 = z3

CV3(B; 0)

pB

pA

Figure 1: Illustration of nonquasi-linear preferences and the minimum Walrasian equilibrium

Let’s see why the allocation z ≡ (z1, z2, z3) is the MPWE for R. First, note that for each
agent i = 1, 2, 3, zi is maximal for Ri in the budget set {0, (A, pA), (B, pB)}. Thus, z is a
Walrasian equilibrium.

Next, let (epA, epB) be a Walrasian equilibrium price. We show epA ≥ pA and epB ≥ pB.

If epA < pA and epB < pB, then, all agents prefer (A, epA) or (B, epB) to 0, that is, all three
agents demand A or B or both. In that case, one agent cannot receive an object he demands,

contradicting (WE-i). Therefore, epA ≥ pA or epB ≥ pB. If epA < pA, then epB ≥ pB, and so, both
agents 1 and 3 prefer (A, epA) to 0 and (B, epB), that is, both demand only A. In that case,
agent 1 or 3 cannot receive the object he demands, contradicting (WE-i). Therefore, epA ≥ pA.
If epB < pB, both agents 1 and 2 prefer (B, epB) to 0 and (A, epA), and so, agent 1 or 2 cannot
receive the object he demands, contradicting (WE-i). Therefore, epB ≥ pB. Hence, (z, p) is the
MPWE for R.

3.3 Overdemanded and underdemanded sets

We introduce the concepts of “overdemanded set” and “underdemanded set” (Mishra and

Talman, 2010; etc.), and relate these concepts to Walrasian equilibria.

Definition 3.2. (i) A set M 0 ⊆M of objects is (weakly) overdemanded at p for R if

#{i ∈ N : D(Ri, p) ⊆M 0} (≥) > #M 0.

(ii) A set M 0 ⊆M of objects is (weakly) underdemanded at p for R if

[∀x ∈M 0, px > 0] =⇒ #{i ∈ N : D(Ri, p) ∩M 0 6= ∅} (≤) < #M 0.

We illustrate the above concepts by using the preferences in Figure 1. Note that {i ∈ N :

D(Ri, p) ⊆ {A}} = ∅, {i ∈ N : D(Ri, p) ⊆ {B}} = {2}, {i ∈ N : D(Ri, p) ⊆ {A,B}} = {1, 2},
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{i ∈ N : D(Ri, p) ∩ {A} 6= ∅} = {1, 3}, {i ∈ N : D(Ri, p) ∩ {B} 6= ∅} = {1, 2}, and
{i ∈ N : D(Ri, p) ∩ {A,B} 6= ∅} = {1, 2, 3}. Thus, no set of objects is overdemanded or
weakly underdemanded in Figure 1.

Fact 3.4 below is a characterization of Walrasian equilibria by means of the concepts of

overdemanded and underdemanded sets. This fact is established by Mishra and Talman (2010)

for quasi-linear preferences. However, their proof also works for preferences in the extended

domain.

Fact 3.4 (Mishra and Talman, 2010). Let R ∈ Rn. A price vector p is a Walrasian

equilibrium price for R if and only if no set of objects is overdemanded and no set of objects is

underdemanded at p for R.

Theorem 3.1 below is a characterization of the minimum price Walrasian equilibrium by

means of the concepts of overdemanded and weakly underdemanded sets. Mishra and Talman

(2010) first obtain the same conclusion on the quasi-linear domain. We emphasize, in contrast

to Fact 3.1, that Mishra and Talman’s (2010) proof crucially depends on the quasi-linearity. It

relies on the simple fact that when preferences are quasi-linear, if a set M 0 of objects is weakly
underdemanded at a Walrasian equilibrium (z, p), then all the prices of M 0 can be slightly
lowered by the same amount while maintaining the Walrasian equilibrium conditions (WE-i)

and (WE-ii).25 However, it is not true when preferences are not quasi-linear. Theorem 3.1

below is a novel result in that point.

Theorem 3.1 is the key to obtaining Theorem 4.1 in Section 4 and Proposition 5.1 in Section

5. Since we obtain the existence of Walrasian equilibrium as a by-product of Proposition 5.1,

this theorem is also a key to the existence of Walrasian equilibrium.

Theorem 3.1. Let R ∈ Rn. A price vector p is a minimum Walrasian equilibrium price for R

if and only if no set of objects is overdemanded and no set of objects is weakly underdemanded

at p for R.

Corollary 3.1 of Theorem 3.1 below says that if the number of objects is greater than or

equal to the number of agents, the price of some objects is 0. It is useful to prove Fact 4.1 in

Section 4. Corollary 3.2 says that each object bearing a positive price is connected by agents’

demands to the null object or to an object with a price of 0. For example, in Figure 1, object

B has a positive equilibrium price, agent 1’s demand connects objects A and B, and agent 3’s

demand connects object A and null object.

Corollary 3.1 (Existence of Free Object). Let m ≥ n, R ∈ Rn, and z ∈ Zmin(R). Then,
there is i ∈ N such that pximin(R) = 0.

Corollary 3.2 (Demand Connectedness).26 Let R ∈ Rn and (z, p) be a minimum Wal-

rasian equilibrium price for R. For each x ∈M with px > 0, there is a sequence {ik}Kk=1 of K
distinct agents such that (i) xi1 = 0, or xi1 6= 0 and pxi1 = 0, (ii) xiK = x, and (iii) for each
k ∈ {1, . . . , K − 1}, {xik , xik+1} ⊆ D(Rik , p).

25For details, refer to the proof of Lemma 3 in Mishra and Talman (2010).
26This structure is discussed by Demange, Gale, and Sotomayor (1986) and Miyake (1998).
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Here, we also introduce a concept of “di-truncation” of a preference, which is important to

prove Theorem 3.1 above and Fact 4.1 in Section 4. It says that the welfare position of each

consumption bundle zi ∈M ×R is lowered as much as di in terms of money, but their relative
positions are kept.

Given Ri ∈ R and di ∈ R, the di-truncation of Ri is the preference R̂i such that for

each zi ∈M × R, dCV i(0; zi) = CVi(0; zi) + di. Given R ∈ Rn, the d-truncation of R is the

preference profile R̂ such that for each i ∈ N, R̂i is the di-truncation of Ri.
We have a remark and a fact below relating truncations.

Remark 3.1. Let Ri ∈ R, di ∈ R, and R̂i be the di-truncation of Ri. Then, for each

zi, ẑi ∈M × R, ziRi ẑi if and only if zi R̂i ẑi.
Fact 3.5 (Roth and Sotomayor, 1990). Let R ∈ Rn and R̂ be the d-truncation of R such

that for each i ∈ N, di ≥ 0. Then, pmin(R̂) ≤ pmin(R).

4 Main Results

In this section, we provide a characterization of the minimum price Walrasian equilibrium by

means of the properties of rules. Let R ⊆ RE.

Definition 4.1. A rule f on Rn is a minimum price Walrasian rule if for each R ∈ Rn,

f(R) ∈ Zmin(R).
4.1 Properties of the minimum price Walrasian rule

Let g be a minimum price Walrasian rule on Rn. First, by Fact 3.2, for each R ∈ Rn, g(R)

is efficient for R. Let R ∈ Rn. Then, there is a price vector p ≡ (p1, · · · , pm) ∈ Rm+ such

that for each i ∈ N , (a) gi(R) ∈ B(p), and (b) for each ẑi ∈ B(p), gi(R)Ri ẑi. Let i ∈ N .
Note that, for each x ∈ M , px ≥ 0, and B(p) = {(0, 0), (1, p1), (2, p2), · · · , (m, pm)}. Thus, by
(a), gti(R) ≥ 0, and by (b), gi(R)Ri 0. Therefore, the minimum price Walrasian rules satisfy

efficiency, individual rationality, and no subsidy.

Fact 4.1 below is first shown by Demange and Gale (1985). By using Theorem 3.1, we show

this fact more directly in Appendix B.

Fact 4.1 (Demange and Gale, 1985). The minimum price Walrasian rules are group

strategy-proof.

4.2 Characterizations

In this subsection, we focus on the case where each agent has a classical preference and

the number of agents exceeds the number of objects. Remember that all results established

in Section 3 also hold in this case. Theorem 4.1 below is a main conclusion of this article, a

characterization of the minimum price Walrasian rule.

Theorem 4.1. LetR ≡ RC and n > m. A rule f onRn satisfies strategy-proofness, efficiency,

individual rationality, and no subsidy for losers if and only if it is a minimum price Walrasian

rule: for each R ∈ Rn, f(R) ∈ Zmin(R).
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Proof of Theorem 4.1 is in Appendix B. Since the minimum price Walrasian rules are group

strategy-proof, Theorem 4.1 implies that only the minimum price Walrasian rules satisfies group

strategy-proofness, efficiency, individual rationality, and no subsidy for losers. Since no subsidy

implies no subsidy for losers, Theorem 4.1 also implies that only the minimum price Walrasian

rules satisfies strategy-proofness, efficiency, individual rationality, and no subsidy.

4.3 Indispensability of the axioms and assumptions

The only if part of Theorem 4.1 fails if we drop any of the four axioms, strategy-proofness,

efficiency, individual rationality, and no subsidy for losers. The following examples establish

the independence of the axioms in Theorem 4.1.

Example 4.1 (Dropping strategy-proofness). Let f be a rule that chooses a “maximum”
price Walrasian equilibrium allocation for each preference profile. Then, the rule f satisfies

efficiency, individual rationality, and no subsidy for losers, but not strategy-proofness.27

Example 4.2 (Dropping efficiency). Let f be the rule such that for each preference profile,
each agent receives no object and pays nothing. Then, the rule f satisfies strategy-proofness,

individual rationality, and no subsidy for losers, but not efficiency.

Next, we introduce variants of Walrasian equilibria, ones with “entry fees”. A pair (z, p) ∈
Z × Rm of a feasible allocation and a price vector is a Walrasian equilibrium with entry fees

for R ∈ Rn if there is an entry fee vector e = (e1, · · · , en) ∈ Rm, and

(WE-i*) for each i ∈ N , xi ∈ D(Ri, p) and ti = pxi + ei, and
(WE-ii) for each x ∈M, if for each i ∈ N, xi 6= x, then, px = 0.

Note that, by Facts 3.1 and 3.3, for each preference profile R ∈ Rn and each e = (e1, · · · , en) ∈
Rm, there is a minimum price Walrasian equilibrium with entry fees e, and it is efficient.

A rule f on Rn is a minimum price Walrasian rule with entry fees if there is a

list {ei(·)}i∈N of entry fee functions defined on Rn, and for each R, f(R) is a minimum price

Walrasian equilibrium with entry fees {ei(R)}i∈N . If the entry fee function ei(·) of each agent i
depends on only other agents’ preferences, then the associated minimum price Walrasian rule

with entry fees satisfies strategy-proofness. Thus, we assume that for each i ∈ N , his entry fee
function ei(·) is defined on the class of the other agents’ preference profiles Rn−1.

Example 4.3 (Dropping individual rationality). Let a list {ei(·)}i∈N of entry fee func-
tions be such that for each i and each R−i ∈ Rn−1, ei(R−i) > 0. Then, the associated minimum
price Walrasian rule with entry fees satisfies strategy-proofness, efficiency, and no subsidy for

losers, but not individual rationality.

Example 4.4 (Dropping no subsidy for losers). Let a list {ei(·)}i∈N of entry fee functions
be such that for each i and each R−i ∈ Rn−1, ei(R−i) < 0. Then, the associated minimum price

27Demange and Gale (1985) also show that for each preference profile, there is a maximum price Walrasian

equilibrium. When there is only one object, the maximum price Walrasian equilibrium corresponds to the first

price auction. It is well-know that the first price auction is not strategy-proof.

11



Walrasian rule with entry fees satisfies strategy-proofness, efficiency, and individual rationality,

but not no subsidy for losers.

One might wonder if minimum price Walrasian rules with entry fees can be characterized by

only strategy-proofness and efficiency. Our proof of Theorem 4.1 fails if individual rationality

and no transfer for losers are dropped. However, we have not found an example of a rule that

satisfies strategy-proofness and efficiency, but is not a minimum price Walrasian rule with

entry fees. Therefore, it is an open question whether the class of minimum price Walrasian

rules with entry fees can be characterized by only strategy-proofness and efficiency or not.

One might also wonder if the assumption that n > m can be dropped in Theorem 4.1. Our

proof of Theorem 4.1 also fails if n ≤ m. However, we have not found an example of a rule
that satisfies the four properties of Theorem 4.1, but is not a minimum price Walrasian rule

even if n > m is dropped. Therefore, this question is also open.

5 Simultaneous Ascending Auction

We define a class of simultaneous ascending auctions, and show that they achieve the minimum

price Walrasian equilibrium. Let R ⊆ RE, R ∈ Rn, and p ∈ Rm+ .
Definition 5.1. A set M 0 ⊆M of objects is a minimal overdemanded set at p for R if M 0 is
overdemanded at p for R, and there is no M 00 (M 0 such that M 00 is overdemanded at p.

Under a (continuous time) “simultaneous ascending auction”, there is a constant d > 0,

and at each time, each bidder submits his demand at the current price vector, and the prices

of the objects in a minimal overdemanded set are raised at a speed at least d.

Definition 5.2. A simultaneous ascending (SA) auction is a function p̂ from R+×Rm+×Rn

to Rm+ such that
(i) for each p ∈ Rm+ , each R ∈ Rn, and each x ∈M , p̂x(0, p, R) ≡ 0,
(ii) p̂ is absolutely continuous with respect to t and p,

(iii) there is d > 0 such that for each t ∈ R+, each p ∈ Rm+ , each R ∈ Rn, and each x ∈M ,
(iii-a) if p̂x is differentiable at (t, p), and x is in a minimal overdemanded, dp̂x(t, p, R)/dt ≥ d,

and

(iii-b) dp̂x(t, p, R)/dt = 0 otherwise.

Remark 5.1.28 For each R ∈ Rn, a SA auction p̂ generates a price path p(·) such that for
each x ∈M and each t ∈ R+,

px(t) =

Z t

0

dp̂x(s, p(s), R)

ds
ds.

Proposition 5.1. For each preference profile, the price path generated by any simultaneous

ascending auction converges to the minimum Walrasian equilibrium price in a finite time.

28Condition (ii) of Definition 5.2 (absolute continuity) guarantees the intergrability of dp̂x(t, p(t), R)/dt with
respect to t, that is, the existence and uniqueness of the price path for each SA auction and each preference

profile.
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The proof is in Appendix C. Proposition 5.1 says that for each R ∈ Rn, the price path p(·)
generated by an SA auction has a final time T such that for each t ≥ T , p(t) = p(T ) = pmin(R),
and at the final price p(T ), each agent receives an object from his demand. Moreover, this

proposition implies the existence of Walrasian equilibrium.

6 Generalized Vickrey Rule

In this section, we introduce generalized Vickrey rules, and contrast them with the minimum

price Walrasian rules.

6.1 Generalized Vickrey rule

Each quasi-linear preference Ri can be defined by means of valuation function vi : L →
R+, and a preference profile R in the quasi-linear domain corresponds to a valuation profile

v(R) ≡ (v1(R1), . . . , vn(Rn)). Given a valuation profile v = (v1, . . . , vn), let (x∗1(v), . . . , x∗n(v)) ∈
argmax(x1,...,xn)∈X

P
i vi(xi), σ−i(v) ≡

P
j 6=i vj(x

∗
j(v)), and σ−i(v) ≡ max(x1,...,xn)∈X

P
j 6=i vj(xj).

On the quasi-linear domain, the Vickrey rules are defined as follows.

Definition 6.1. A rule f on the quasi-linear domain is a Vickrey rule if for each valuation

profile v, fx(v) ∈ argmax(x1,...,xn)∈X
P

i vi(xi), and for each i ∈ N , f ti (v) = σ−i(v)− σ−i(v).

To generalize the above definition to the classical domain, we need to use some valuation

function vi for each classical preference Ri. Compensating valuation CVi(·;0) from the origin

0 is defined for each classical preference Ri and a generalization of valuation function, and

so a natural candidate. Given a classical preference Ri, let vi(·;Ri) be a function defined
as: for each x ∈ L, vi(x;Ri) ≡ CVi(x;0). Given a classical preference profile R, let v(R) ≡
(v1(·;R1), . . . , vn(·;Rn)).
Definition 6.2. A rule f on the classical domain is a generalized Vickrey rule if for

each valuation profile v(R), fx(v(R)) ∈ argmax(x1,...,xn)∈X
P

i vi(xi;Ri), and for each i ∈ N ,
f ti (v(R)) = σ−i(v(R))− σ−i(v(R)).

A classical preference Ri is object-blind if for each x, y ∈M and each t ∈ R, (x, t) Ii (y, t).
If objects are homogeneous, agents have object-blind preferences. We call the class of object-

blind preferences the “object-blind domain.” On the object-blind domain, the generalized Vick-

rey rules give objects to agents with m highest compensating valuations from 0, and they pay

(m + 1)-th highest compensating valuation from 0. Saitoh and Serizawa (2008) and Sakai

(2008) characterize the generalized Vickrey rules on this domain.

Fact 6.1 (Saitoh and Serizawa, 2008; Sakai, 2008). A rule f on the object-blind domain

satisfies strategy-proofness, efficiency, individual rationality, and no subsidy if and only if it is

a generalized Vickrey rule.29

One the quasi-linear domain, the classes of Vickrey rules, the generalized Vickrey rules,

and the MPW rules all coincide. Fact 6.1 suggests that the generalized Vickrey rules are

29It is straightforward that on the object-blind domain, strategy-proofness, efficiency, individual rationality,
and no subsidy for losers imply no subsidy .
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natural generalizations of the Vickrey rules on the object-blind domain. On the object-blind

domain, the classes of the generalized Vickrey rules and the MPW rules also coincide. However,

Theorem 4.1 and Fact 6.1 are mathematically independent.

6.2 Generalized Vickrey rule vs. minimum price Walrasian rule

Notice that in Example of Section 3 (Figure 1), agent 2’s payment pB in the MPWE

cannot be computed from the compensating valuations vi(·;Ri), i = 1, 2, 3, from the origin 0.

Payments of the MPW rule are influenced by compensating valuations from various points. It

is worthwhile to mention that for the preference profile in Figure 1, it is agent 1’s preference R1
that determined whether agent 2 or 3 receives an object in the MPWE allocation. In Figure

1, agent 1 prefers (A,CV3(A; 0)) to (B,CV2(B;0)), and agent 2 receives an object. However,

if agent 1 prefers (B,CV2(B;0)) to (A,CV3(A; 0)), agent 3 instead receives an object. Object

allocations of the MPW rule are also influenced by compensating valuations from various

points. Thus, the outcome z of the MPW rule is not the one of the generalized Vickrey rule.

Accordingly, the MPW rule does not coincide with the generalized Vickrey rule.

One can easily check that the generalized Vickrey rules are not efficient nor strategy-proof

on the classical domain with heterogeneous objects. To check this fact, let R1 ∈ RC , R2 ∈ RQ,

and R3 ∈ RQ be such that CV1(A; 0) = 9, CV1(B;0) = 10, (A, 6)P1 (B, 5), CV2(A;0) = 3,

CV2(B; 0) = 5, CV3(A;0) = 6, and CV3(B;0) = 2. Then, the outcome of the generalized

Vickrey rule for R is z ≡ ((B, 5), (0, 0), (A, 4)). Let ẑ ≡ ((A, 6), (B, 5), (0,−2)). Then, ẑ
Pareto-dominates z, and so the generalized Vickrey rule is not efficient. Let R̂1 ∈ RQ be

such that dCV 1(A;0) = 8 and dCV 1(B; 0) = 5. Then, under the generalized Vickrey rule,

the consumption point agent 1 will obtains for (R̂1, R−1) is (A, 6). Since (A, 6)P1 (B, 5), the
generalized Vickrey rule is not strategy-proof.

The generalized Vickrey rule employs only a small part of the information about agents’

preferences (i.e., “compensating valuations from the origin”). On the other hand, the MPW

rule employs other information (i.e., “compensating valuations from various points”). As

we stated in Section 4, only the MPW rule satisfies strategy-proofness, efficiency, individual

rationality, and no subsidy for losers on the domain including nonquasi-linear preferences.

Thus, the information about compensating valuations from various points is necessary to design

rules satisfying the above four properties on this domain. Proposition 5.1 states that the SA

auction achieves the same outcome as the MPW rule.

7 Concluding Remarks

In this article, we mainly focus on the analysis of rules that allocate objects efficiently, and

show that only the MPW rules are desirable based on the four properties, strategy-proofness,

efficiency, individual rationality, and no subsidy for losers. It would be also important to

investigate rules that produce more revenue for the auctioneer. An interesting question relating

to this issue is to examine whether there are strategy-proof, efficient, and individually rational

rules that produce a revenue of more than the total payment under the MPW rule for each
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preference profile. We believe that the results and techniques developed in this article will be

useful for the study of this research topic.

Appendix: Proofs

In this Appendix, we provide the proofs of all results of the article. In Section A, we prove

Theorem 3.1 and Corollaries 3.1 and 3.2 in Section 3. In Section B, we give the proofs of the

main results (Fact 4.1 and Theorem 4.1 in Section 4). Section C gives the proof of Proposition

5.1 in Section 5.

In Section D, we provide the proof of Fact 3.4 in Section 3. The proof is the same as

Mishra and Talman’s (2010), but we provide it for completeness of the article. Fact 3.2 is

already shown by the authors such as Demange and Gale (1985) and Roth and Sotomayor

(1990). We also give the proof of Fact 3.5 in Section E for completeness.

A Proofs for Section 3 (Theorem 3.1 and Corollaries 3.1 and 3.2)

Let R ⊆ RE in this section.

Lemma A.1. Let R ∈ Rn, (z, p) ∈ W (R), and R̂ be the d-truncation of R such that for

each i ∈ N with xi 6= 0, di ≤ −CVi(0; zi), and for each i ∈ N with xi = 0, di ≥ 0. Then,
(z, p) ∈ W (R̂).
Proof of Lemma A.1. Since (z, p) ∈ W (R), (z, p) satisfies (WE-i) and (WE-ii) for R. Since
(WE-ii) is independent of preferences, we show only (WE-i) for R̂, that is, that for each i ∈ N
and each y ∈ L, (xi, pxi) R̂i (y, py). Let i ∈ N and y ∈ L.
First, consider the case where xi 6= 0. If y 6= 0, then by Remark A.1, (xi, pxi) R̂i (y, py). If

y = 0, then by di ≤ −CVi(0; zi), (xi, pxi) R̂i 0 = (y, py).
Next, consider the case where xi = 0. If y = 0, then by (y, py) = 0 = (xi, p

xi),

(xi, p
xi) R̂i (y, p

y). If y 6= 0, then by (xi, pxi)Ri (y, py) and di ≥ 0, (xi, pxi) R̂i (y, py). ¤
Lemma A.2. Let i ∈ N , Ri ∈ R, di ∈ R, and R̂i ∈ R be the di-truncation of Ri. Let

p, q ∈ Rm+ , x ∈M , and y ∈ L be such that x ∈ D(Ri, p) and y ∈ D(R̂i, q).
(i) If qx < px and y ∈M , then, (y, qy)Pi (x, px) and qy < py.
(ii) If qx < px and di ≤ −CVi(0; (x, px)), then, y ∈M , (y, qy)Pi (x, px), and qy < py.
Proof of Lemma A.2.

Proof of (i). Let qx < px and y ∈ M . By y ∈ D(R̂i, q), (y, qy) R̂i (x, qx). Since R̂i is the
di-truncation of Ri, it follows from Remark 3.1 that (y, qy)Ri (x, q

x). Thus,

(y, qy)Ri (x, q
x)Pi (x, p

x)Ri (y, p
y),

where the second preference relation follows from qx < px, and the third from x ∈ D(Ri, p).
Thus, (y, qy)Pi (x, p

x). Also, (y, qy)Pi (y, p
y) implies that qy < py.
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Proof of (ii). Let qx < px and di ≤ −CVi(0; (x, px)). Then, dCV i(0; (x, px)) ≤ 0, and so

(x, px) R̂i 0. Thus,

(y, qy) R̂i (x, q
x) P̂i (x, p

x) R̂i 0,

where the first preference relation follows from y ∈ D(R̂i, q), and the second from qx < px.

Then, (y, qy) P̂i 0 implies y ∈M . Thus, by (i) of Lemma A.2, (y, qy)Pi (x, px) and qy < py. ¤
We now proceed to prove Theorem 3.1.

Proof of Theorem 3.1. We first show if part of Theorem 3.1. Then, we prove only if part.

Proof of “IF” part. Assume that no set of objects is overdemanded and no set of objects

is weakly underdemanded at p for R. Then, by Fact 3.4, p ∈ P (R). Suppose that there is
q ∈ P (R) such that q ≤ p and q 6= p. Without loss of generality, assume that for each x ∈M 0,
qx < px, and for each x /∈M 0, qx = px, where M 0 ≡ {1, . . . ,m0} and 1 ≤ m0 ≤ m.
Since M 0 is not weakly underdemanded at p for R, there is N 0 ⊆ N such that #N 0 > #M 0

and for each i ∈ N 0, D(Ri, p)∩M 0 6= ∅. For each i ∈ N 0, let yi ∈ D(Ri, p)∩M 0. Since for each
x ∈M 0, qx < px, and for each x /∈M 0, qx = px, it follows that for each i ∈ N 0 and each x /∈M 0,
(yi, q

yi)Pi (yi, p
yi)Ri (x, p

x) = (x, qx). Thus, for each i ∈ N 0, D(Ri, q) ⊆ M 0. By #N 0 > #M 0,
this implies M 0 is overdemanded at q. Since q ∈ P (R), by Fact A.1, this is a contradiction.
Proof of “ONLY IF” part. Let p ≡ pmin(R). Then, by Fact 3.4, no set of objects is

overdemanded and no set of objects is underdemanded at p for R. We show that no set of

objects is weakly underdemanded at p for R. Suppose that there is a set M 0 of objects that is
weakly underdemanded at p for R, i.e., for each x ∈M 0, px > 0, and #{i ∈ N : D(Ri, p)∩M 0 6=
∅} ≤ #M 0. Let N 0 ≡ {i ∈ N : D(Ri, p) ∩M 0 6= ∅}. Without loss of generality, assume that
M 0 is minimal among the weakly underdemanded sets at p for R, i.e., no proper subset of M 0

is weakly underdemanded at p. Since p ∈ P (R), there is an allocation z ∈ Z such that for

each i ∈ N, xi ∈ D(Ri, p) and ti = pxi . Since no set of objects is underdemanded at p for R,
#N 0 = #M 0. Without loss of generality, let M 0 ≡ {1, . . . ,m0} and N 0 ≡ {1, . . . ,m0}.
Step 1. For each i ∈ N 0, xi ∈M 0.

Proof of Step 1. Since for each x ∈M 0, px > 0, it follows from (WE-ii) that for each x ∈M 0,
there is i(x) ∈ N 0 such that xi(x) = x. Then, by #N 0 = #M 0, for each i ∈ N 0, xi ∈M 0. ¤
For each x ∈ M 0, let qx ≡ max{CVj(x; zj) : j ∈ N \ N 0} ∪ {0}. Then, for each x ∈ M 0,

qx < px.30 Let R̂m0+1 ∈ R be such that for each x ∈ M 0, if qx > 0, dCV m0+1(x;0) = q
x, and

if qx = 0, dCV m0+1(x; 0) ∈ (0, px). Consider the economy E 0 with objects M 0, agents N 00 ≡
N 0∪{m0+1}, and their preference profile (RN 0 , R̂m0+1). Let zm0+1 ≡ 0 and zN 00 ≡ (zN 0 , zm0+1).

Step 2. (zN 00 , pM
0
) is a minimum price Walrasian equilibrium of the economy E 0.31

30To see this, suppose that for some x ∈ M 0, qx ≥ px. Then, there is j ∈ N \ N 0 such that (x, px) Rj zj .
Since xj ∈ D(Rj , p), x ∈ D(Rj , p). Thus, j ∈ N 0. This contradicts j ∈ N \N 0.
31Let WM 0,N 00

(R̄N 00) and WM 0,N 00
min (R̄N 00) be the sets of Walrasian and minimum price Walrasian equilibria

of the economy with objects M 0, agents N 00, and their preference profile R̄N 00 , and let PM
0,N 00

(R̄N 00) and

pM
0,N 00

min (R̄N 00) be the projections of WM 0,N 00
(R̄N 00) and WM 0,N 00

min (R̄N 00) onto R#M
0

+ , respectively.
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Proof of Step 2. Let (z̃N 00 , p̃M
0
) ∈ WM 0,N 00

min (RN 0 , R̂m0+1). Since (zN 00 , pM
0
) ∈ WM 0,N 00

(RN 0 , R̂m0+1),

p̃M
0 ≤ pM 0

. Let M− ≡ {x ∈ M 0 : p̃x < px}. We show that M− = ∅. Suppose that M− 6= ∅.
Let N− ≡ {i ∈ N 0 : D(Ri, pM

0
) ∩M− 6= ∅}.

Step 2.1. For each i ∈ N−, x̃i ∈ M−.

Proof of Step 2.1. Let i ∈ N−. Then, there is x ∈ D(Ri, pM 0
) ∩M−. Thus, x ∈ M 0 and

p̃x < px. Since (z̃N 00 , p̃M
0
) ∈ WM 0,N 00

min (RN 0 , R̂m0+1), x̃i ∈ D(Ri, p̃M 0
). Then, Lemma A.2-(ii)

implies that x̃i ∈M 0 and p̃x̃i < px̃i . Thus, x̃i ∈M−. ¤
Step 2.2. M− =M 0, N− = N 0, and #M− = #N−.

Proof of Step 2.2. Since no two agents in N− receive the same object, Step 2.1 implies
#M− ≥ #N−.
Suppose M− 6= M 0. Then, since M− ( M 0 and M 0 is minimal among the weakly under-

demanded sets at p for R, M− is not weakly underdemanded at pM
0
for (RN 0 , R̂m0+1).

32 Thus,

since for each x ∈ M−, px > 0, we have #N− ≥ #M− + 1. This contradicts #M− ≥ #N−.
Thus, M− =M 0.
By the definition of N−, M− =M 0 implies N− = N 0.
Since M 0 is weakly underdemanded, #N 0 = #M 0. By the above results, #M− = #M 0 =

#N 0 = #N−. ¤
Step 2.3. For each x ∈M 0, p̃x ≥ qx.
Proof of Step 2.3. Suppose that there is x ∈ M 0 such that p̃x < qx. Hence, qx > 0. Then,
by x̃m0+1 ∈ D(R̂m0+1, p̃

M 0
) and p̃x < qx = dCV m0+1(x;0), x̃m0+1 ∈ M 0. By M− = M 0 and

N− = N 0 (Step 2.2), Step 2.1 implies that for each i ∈ N 0, x̃i ∈ M 0. Since #M 0 = m0, this is
a contradiction. ¤
Let (z̄, p̄) ∈ Z × Rm+ be such that z̄N 0 = z̃N 0 , z̄−N 0 = z−N 0 , p̄M

0
= p̃M

0
, and p̄−M

0
= p−M

0
.

Step 2.4. (z̄, p̄) is a Walrasian equilibrium of the original economy, i.e., (z̄, p̄) ∈ W (R).
Proof of Step 2.4. By Step 2.3, for each y ∈ M 0, p̃y ≥ qy. Let h ∈ N \ N 0. Then, for each
y ∈ L, if y /∈M 0, then

(x̄h, p̄
x̄h) = (xh, p

xh)Rh (y, p
y) = (y, p̄y),

where the preference relation follows from xh ∈ D(Rh, p), and if y ∈M 0, then

(x̄h, p̄
x̄h) = (xh, p

xh)Rh (y, q
y)Rh (y, p̄

y),

where the first preference relation follows from the definition of qy, and the last from p̄y = p̃y ≥
qy. Thus, for each h ∈ N \N 0, x̄h ∈ D(Rh, p̄).
Let h ∈ N 0. Then, for each y ∈ L, if y /∈M 0, then

(x̄h, p̄
x̄h) = (x̃h, p̃

x̃h)Rh (xh, p̃
xh)Rh (xh, p

xh)Rh (y, p
y) = (y, p̄y),

32By M− ⊆ M 0, {i ∈ N : D(Ri, p) ∩M− 6= ∅} ⊆ {i ∈ N : D(Ri, p) ∩M 0 6= ∅} = N 0. Then, {i ∈ N 0 :
D(Ri, p

M 0
) ∩M− 6= ∅} = {i ∈ N : D(Ri, p) ∩M− 6= ∅}. Hence, #N− = #{i ∈ N 0 : D(Ri, pM

0
) ∩M− 6= ∅} =

#{i ∈ N : D(Ri, p) ∩M− 6= ∅} > #M−.
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where the first preference relation follows from x̃h ∈ D(Rh, p̃M 0
), the second from p̃M

0 ≤ pM 0
,

and the third from xh ∈ D(Rh, p), and if y ∈M 0, then

(x̄h, p̄
x̄h) = (x̃h, p̃

x̃h)Rh (y, p̃
y) = (y, p̄y),

where the preference relation follows from x̃h ∈ D(Rh, p̃M 0
). Thus, for each h ∈ N 0, x̄h ∈

D(Rh, p̄). Since (z, p) and (z̃N 00 , p̃) satisfy (WE-ii), (z̄, p̄) also satisfies (WE-ii). Thus, (z̄, p̄) ∈
W (R). ¤
Remember that p = pmin(R). However, since M

− 6= ∅, p̄ ≤ p and p̄ 6= p. This is a

contradiction. Thus, M− = ∅. This completes the proof of Step 2.
Without loss of generality, let x1 ≡ 1, . . . , xm0 ≡ m0. Denote by Π the set of the permuta-

tions of M 0 and by {x(k)}m0
k=1 its generic element. Given {x(k)}m0

k=1 ∈ Π, let {i(k)}m0
k=1 be such

that

xi(1) = x(1), xi(2) = x(2), . . . , xi(m0) = x(m
0),

and {t(k)}m0
k=1 be such that

t(1) ≤dCV m0+1(x(1);0), t(2) ≡ CVi(1)(x(2); z0(1)), . . . , t(m0) ≡ CVi(m0−1)(x(m0); z0(m0 − 1)),
where for each k ∈ {1, . . . ,m0}, z0(k) ≡ (x(k), t(k)). We call such a pair {z0(k), i(k)}m0

k=1 an

assignment sequence. See Figure 2 for an illustration.

Step 3. There is b < p1 such that for any assignment sequence {z0(k), i(k)}m0
k=1 constructed as

above, and for k with x(k) = 1, t(k) < b.

Proof of Step 3. For any assignment sequence {z0(k), i(k)}m0
k=1, since t(1) ≤ qx(1) < px(1), the

following holds inductively: for each k ≥ 2,
(x(k), t(k)) Ri(k−1) z0(k − 1) Pi(k−1) (x(k − 1), px(k−1)) Ri(k−1) (x(k), px(k)),
and t(k) < px(k),

where the first preference relation follows from t(k) = CVi(k−1)(x(k); z0(k − 1)), the second
from t(k− 1) < px(k−1), and the third from x(k− 1) ∈ D(Ri(k−1), p). Since the cardinality of Π
is finite (m0!), there is b < p1 such that for any assignment sequence {z0(k), i(k)}m0

k=1, and for

k with x(k) = 1, t(k) < b. ¤
Let R̂1 be such that (i) R̂1 is the d1-truncation of R1, and (ii) b < dCV 1(x1; 0) < p1.33

Consider the economy bE with objects M 0, agents N 00 ≡ {1, . . . ,m0 + 1}, and their preference
profile (R̂1, R̂m0+1, RN 0\{1}). Let (ẑ, p̂) be a minimum price Walrasian equilibrium of bE.
Step 4. x̂1 6= 0.
Proof of Step 4. Suppose that x̂1 = 0. We use Claim A.1 below. It implies that m0

agents (agents 2, . . . ,m0 + 1) receive m0 different objects in M 0\{x1}. By #M 0 = m0, this is a
contradiction. Thus, proving Claim A.1 completes Proof of Step 4.

33Note that d1 > 0.
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4)
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5)
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t(4)

R1

object

payment

Figure 2: Illustration of assignment sequence for the case of m0 = 4, x(1) = x2, x(2) = x3,

x(3) = x1, and x(4) = x4.

Claim A.1. The following sequences {i(k)} and {z0(k) ≡ (x(k), t(k))}, k = 1, . . . ,m0, can be
constructed:

x(1) ≡ x̂m0+1, xi(1) = x(1), and t(1) ≡ p̂x(1), and
∀k ∈ {2, . . . ,m0}, x(k) ≡ x̂i(k−1), xi(k) = x(k), and t(k) ≡ CVi(k−1)(x(k); z0(k − 1)).

Furthermore, for each k ∈ {1, . . . ,m0}, x(k) 6= 0, x(k) 6= x1, p̂x(k) ≤ t(k) and p̂x(k) < px(k).
Proof of Claim A.1. The proof is by induction.

Part I. First, we show x(1) ≡ x̂m0+1 6= 0. Suppose x̂m0+1 = 0. Then, since two agents (1 and

m0+1) in N 00 receive no object and #N 00 = #M 0+1, there is x ∈M such that for each h ∈ N 00,
x̂h 6= x. By (WE-ii), p̂x = 0. Since dCV m0+1(x; 0) > 0, (x, p̂

x) P̂m0+1 0. This is a contradiction

since x̂m0+1 = 0 and (ẑ, p̂) ∈ WM 0,N 00
min (R̂1, R̂m0+1, RN 0\{1}). Thus, x(1) 6= 0.

Note that by Step 1, x(1) 6= 0 implies that agent i(1) with xi(1) = x(1) uniquely exists.

Thus, x(1), i(1), and t(1) are well-defined.

Second, we show that x(1) 6= x1. Suppose that x(1) = x1. Then, by Step 3 and (ii) of

R̂1, p̂
x(1) ≡ t(1) < b < dCV 1(x1;0), that is, (x(1), p̂x(1)) P̂1 0. Thus, by x̂1 = 0, x̂1 /∈ D(R̂1, p̂).

However, since (ẑ, p̂) ∈ WM 0,N 00
min (R̂1, R̂m0+1, RN 0\{1}), this is a contradiction. Thus, x(1) 6= x1.

Third, by x(1) ≡ x̂m0+1 ∈ D(R̂m0+1, p̂), p̂
x(1) ≤dCV m0+1(x(1);0) < p

x(1).
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Part II (Induction argument). Let k ∈ {2, . . . ,m0}. Assume that Claim A.1 holds until

k − 1. Since x(k − 1) ∈ D(Ri(k−1), p), x̂i(k−1) ∈ D(Ri(k−1), p̂), and p̂x(k−1) < px(k−1), Lemma
A.2-(ii) implies that x(k) ≡ x̂i(k−1) 6= 0 and p̂x(k) < px(k).
Note that by Step 1, x(k) 6= 0 implies that agent i(k) with xi(k) = x(k) uniquely exists.

Thus, x(k), i(k), and t(k) are well-defined.

If p̂x(k) > t(k) = CVi(k−1)(x(k); z0(k − 1)), then
(x(k − 1), p̂x(k−1))Ri(k−1) z0(k − 1)Pi(k−1) (x(k), p̂x(k)),

contradicting x(k) ≡ x̂i(k−1) ∈ D(Ri(k−1), p̂). Thus, p̂x(k) ≤ t(k).
We show x(k) 6= x1. Suppose that x(k) = x1. Then, by Step 3 and (ii) of R̂1, p̂

x(k) ≤
t(k) < b < dCV 1(x1; 0). Thus, (x(k), p̂x(k)) P̂1 0. Then, by x̂1 = 0, x̂1 /∈ D(R̂1, p̂). However,
since (ẑ, p̂) ∈ WM 0,N 00

min (R̂1, R̂m0+1, RN 0\{1}), this is a contradiction. Thus, x(k) 6= x1. ¤
Step 5. We derive a contradiction to conclude that no set of objects is weakly underdemanded

at p for R.

Note that by (i) and (ii) of R̂1, d1 > 0. Since (ẑ, p̂) ∈ WM 0,N 00
min (R̂1, R̂m0+1, RN 0\{1}), Step 2

and Fact 3.5 imply that p̂ ≤ pM 0
. Note that

(x̂1, p̂
x̂1) R̂1 0 Î1 (x1,dCV 1(x1; 0)) P̂1 (x1, px1),

where the first preference relation follows from x̂1 ∈ D(R̂1, p̂), the second from the definition

of compensating valuation, and the third from (ii) of R̂1.

By Steps 1 and 4, x1 6= 0 and x̂1 6= 0. Since (i) of R̂1, by Remark 3.1, (x̂1, p̂x̂1)P1 (x1, px1).
Then,

(x̂1, p̂
x̂1)P1 (x1, p

x1)R1 (x̂1, p
x̂1),

where the second preference relation follows from x1 ∈ D(R1, p). Thus, p̂x̂1 < px̂1 .
By (i) and (ii) of R̂1, R1 is the (−d1)-truncation of R̂1 and −d1 ≤ 0 ≤ −dCV 1(0; ẑ1). Then,

Lemma A.1 implies that p̂ ∈ PM 0,N 00
(RN 0 , R̂j). However, by Step 2, p

M 0
= p

M 0,N 00
min (RN 0 , R̂j).

Since p̂ ≤ pM 0
and p̂x̂1 < px̂1 , this is a contradiction. ¤

Proof of Corollary 3.1. Suppose that for each i ∈ N , pximin(R) > 0. Then, for each i ∈ N ,
xi 6= 0. Let M̄ ≡ {x1, . . . , xn}. Then, #M̄ ≡ #N . Since #M̄ = #{i ∈ N : D(Ri, p)∩M̄ 6= ∅},
M̄ is weakly underdemanded at p for R. This is a contradiction to Theorem 3.1. ¤
Proof of Corollary 3.2. Let x ∈M be such that px > 0. Then, by (WE-ii) in Definition 3.1,

there is j1 ∈ N such that xj1 = x. By Theorem 3.1, the set {x} is demanded at p by at lease
two agents, and so, there is j2 ∈ N \ {j1} such that x ∈ D(Rj2 , p). If xj2 = 0 or pxj2 = 0, then
by letting i1 ≡ j2 and i2 ≡ j1, we obtain the desired conclusion. Thus, we assume that xj2 6= 0
and pxj2 > 0. Then, the set {xj1, xj2} is demanded at p by at lease three agents, and so, there is
j3 ∈ N \{j1, j2} such that x ∈ D(Rj3, p). If xj3 = 0 or pxj3 = 0, then by letting i1 ≡ j3, i2 ≡ j2,
and i3 ≡ j1, we obtain the desired conclusion. Thus, we assume that xj3 6= 0 and pxj3 > 0.

Repeating this argument inductively, there is a sequence {jk}Kk=1 of K distinct agents such that

(a) xjK = 0 or p
xjK = 0, (b) xj1 = x, and (c) for each k ∈ {2, . . . , K}, {xjk , xjk−1} ⊆ D(Rjk , p).

For each k ∈ {1, . . . , K}, let ik ≡ jK−(k−1). Then, the desired conclusion follows from (a), (b),

and (c). ¤
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B Proofs for Section 4 (Main results: Fact 4.1 and Theorem 4.1)

Proof of Fact 4.1. Let R ⊆ RE. Let g be a minimum price Walrasian rule on Rn. By

contradiction, suppose that there exist R ∈ Rn, N̂ ⊆ N, and R̂N̂ ∈ R#N̂ such that for

each i ∈ N̂ , gi(R̂N̂ , R−N̂ )Pi gi(R). Let z ≡ g(R) and ẑ ≡ g(R̂N̂ , R−N̂ ). Let p and p̂ be
the equilibrium prices associated with z and ẑ, respectively. Without loss of generality, let

N̂ = {1, . . . , n̂}. Let M+ ≡ {x ∈ M : 0 < px} and m+ ≡ #M+. Note that, if n > m, then

n > m+, and if n ≤ m, then by Corollary 3.1, m+ ≤ n− 1 < n.
In this paragraph, we show that for each i ∈ N̂ , x̂i 6= 0, and p̂x̂i < px̂i . Let i ∈ N̂ . Note that

(x̂i, p̂
x̂i)Pi (xi, p

xi)Ri 0, where the first preference relation follows from gi(R̂N̂ , R−N̂)Pi gi(R),
and the second from xi ∈ D(Ri, p). Thus, x̂i 6= 0. Note that (x̂i, p̂

x̂i)Pi (xi, p
xi)Ri (x̂i, p

x̂i),

where the last preference relation also follows from xi ∈ D(Ri, p). Thus, (x̂i, p̂x̂i)Pi (x̂i, px̂i)
implies that p̂x̂i < px̂i .

Note that, for each i ∈ N̂ , since 0 ≤ p̂x̂i < px̂i , x̂i ∈ M+. Then, if m+ < n̂, more than

m+ agents receive the objects in M+, which is a contradiction. Thus, assume that m+ ≥ n̂.
By Theorem 3.1, there is i0 ∈ N \ N̂ such that D(Ri0 , p) ∩ {x̂1, . . . , x̂n̂} 6= ∅. Without loss
of generality, let i0 ≡ n̂ + 1. Note that Rn̂+1 itself is its dn̂+1-truncation. Thus, by Lemma
A.2-(ii), x̂n̂+1 6= 0, and 0 ≤ p̂x̂n̂+1 < px̂n̂+1. Thus, x̂n̂+1 ∈ M+. Then, by Theorem 3.1, there is

i00 ∈ N \{1, . . . , n̂+1} such that D(Ri00 , p)∩{x̂1, . . . , x̂n̂+1} 6= ∅. Without loss of generality, let
i00 ≡ n̂ + 2. Note that Rn̂+2 itself is its dn̂+2-truncation. Thus, by Lemma A.2-(ii), x̂n̂+2 6= 0,
and 0 ≤ p̂x̂n̂+2 < px̂n̂+2 . Thus, x̂n̂+2 ∈ M+. Repeat this argument (m+ − n̂ + 1) times. Then,
more than m+ agents receive objects in M+. This is a contradiction. ¤
Next, we prove Theorem 4.1. Let R ≡ RC and n > m. Since if part of Theorem 4.1 follows

from the discussion in Subsection 4.1, we give the proof of the only if part of the theorem.

Part 1: Preliminary results (Proofs of Lemmas B.1—B.5, and Fact B.1)

Lemma B.1 (Zero-payment for losers). Let f be a rule satisfying individual rationality

and no subsidy for losers on Rn. Let R ∈ Rn and i ∈ N be such that fxi (R) = 0. Then,

f ti (R) = 0.

Proof of Lemma B.1. By no subsidy for losers, f ti (R) ≥ 0. By individual rationality,

f ti (R) ≤ 0. Thus, f ti (R) = 0. ¤
Lemma B.2. Let f be a rule satisfying efficiency, individual rationality, and no subsidy for

losers on Rn. Let R ∈ Rn and x ∈M . Then, there is i ∈ N such that fxi (R) = x.

Proof of Lemma B.2. By contradiction, suppose that for each i ∈ N , fxi (R) 6= x. Then, by
n > m, there is j ∈ N such that fxj (R) = 0. By Lemma B.1, f

t
j (R) = 0. Let ẑ ∈ Z be such that

ẑj ≡ (x, 0) and for each i ∈ N \ {j}, ẑi ≡ fi(R). Then, since (x, 0)Pi (0, 0), ẑj Pj fj(R). Note
that for each i ∈ N \ {j}, ẑi Ii fi(R), and

P
i∈N t̂i =

P
i∈N f

t
i (R). Thus, ẑ Pareto-dominates

f(R) at R, which contradicts efficiency. ¤
Lemma B.3. Let R ∈ Rn, i, j ∈ N , and z ∈ Z with xi 6= 0. Assume that (a) 0 ≤
tj − CVi(xj; zi) < CVj(xi; zj)− ti. Then, there is ẑ ∈ Z that Pareto-dominates z at R.
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Proof of Lemma B.3. Let d ≡ tj − CVi(xj; zi), and let ẑ ∈ Z be such that ẑi ≡ (xj, tj − d),
ẑj ≡ (xi, ti+d), and for each k ∈ N \{i, j}, ẑk ≡ zk. Since ẑi = (xj, CVi(xj; zi)), ẑi Ii zi. By (a)
and ẑj = (xi, ti + tj − CVi(xj; zi)), ẑj Pj (xi, CVj(xi; zj)) Ij zj. For each k ∈ N \ {i, j}, ẑk Ik zk,
and

P
k∈N t̂k = tj − d+ ti + d+

P
k 6=i,j tk =

P
k∈N tk. Thus, ẑ Pareto-dominates z at R. ¤

Given a bundle zi ≡ (xi, ti) ∈ L × R with xi 6= 0, let RNCV (zi) be the set of preferences

R̂i ∈ R such that for each y ∈ L \ {xi}, dCV i(y; zi) < 0, that is, for each object except for xi,
the compensating valuation of R̂i from zi is negative.

Lemma B.4. Let f be a rule satisfying strategy-proofness and no subsidy on Rn. Let R ∈ Rn

and i ∈ N be such that fxi (R) 6= 0. Let R̂i ∈ RNCV (fi(R)). Then, fi(R̂i, R−i) = fi(R).

Proof of Lemma B.4. First, we show fxi (R̂i, R−i) = fxi (R). Suppose not. Let x ≡
fxi (R̂i, R−i). By strategy-proofness, fi(R̂i, R−i) R̂i fi(R), and so, f

t
i (R̂i, R−i) ≤dCV i(x; fi(R)).

Since R̂i ∈ RNCV (fi(R)), dCV i(x; fi(R)) < 0. Thus, f ti (R̂i, R−i) < 0, contradicting no subsidy.
Next, we show f ti (R̂i, R−i) = f

t
i (R). Suppose that f

t
i (R̂i, R−i) < f

t
i (R). (The opposite case

can be treated symmetrically.) Then, fi(R̂i, R−i)Pi fi(R), contradicting strategy-proofness. ¤
We introduce some additional notations. Given R ∈ Rn, x ∈ M , and z ∈ (L × R)n, let

πx(R) ≡ (πx1 (R), . . . ,πxn(R)) be the permutation on N such that CVπxn(R)(x; zπxn(R)) ≤ · · · ≤
CVπx1 (R)(x; zπx1 (R)). That is, π

x
n(R) is the agent with the lowest compensating valuation of object

x from z, πxn−1(R) is the agent with the second lowest compensating valuation of object x from
z, and so on. For each k ∈ N , let Ck(R, x; z) ≡ CVπxk(R)(x; zπxk (R)). That is, Ck(R, x; z) is the k-
th highest compensating valuation (CV) of object x from z. We simply write Ck(R, x; (0, . . . , 0))

as Ck(R, x).

Lemma B.5. Let f be a rule satisfying strategy-proofness, efficiency,individual rationality

and no subsidy for losers. Let R ∈ Rn, i ∈ N , and x ∈ M . If fxi (R) = x, then, f ti (R) ≥
Cm+1(R, x).

Proof of Lemma B.5. Note that for each y ∈ M and each i ∈ N , (y, 0)Pi (0, 0). Thus,
for each y ∈ M , Cm+1(R, y) > 0. By contradiction, suppose that fxi (R) = x and f ti (R) <

Cm+1(R, x). Let R̂i ∈ RQ be a quasi-linear preference such that for each y ∈ M , 0 <dCV i(y;0) < Cm+1(R, y), and f ti (R) <
dCV i(x;0). Let ŷ ≡ f ti (R̂i, R−i). Then, by strategy-

proofness, f ti (R̂i, R−i) ≤dCV i(ŷ; fi(R)). SincedCV i(0; fi(R)) < 0, it follows from no subsidy for
losers that ŷ 6= 0.
Since #{j ∈ N \ {i} : CVj(ŷ; 0) ≥ Cm+1(R, ŷ)} ≥ m, there is j ∈ N \ {i} such that

CVj(ŷ; 0) ≥ Cm+1(R, ŷ) and fxj (R̂i, R−i) = 0. By Lemma B.1, f tj (R̂i, R−i) = 0.
Let ẑi ≡ (0,dCV i(0; fi(R̂i, R−i)), ẑj ≡ (ŷ,dCV i(ŷ;0)), and for each k 6= i, j, ẑk ≡ fk(R̂i, R−i).

Then, ẑi Îi fi(R̂i, R−i), and for each k 6= i, j, ẑk Ik fk(R̂i, R−i). By CVj(ŷ;0) > dCV i(ŷ;0),
ẑj Pj fj(R̂i, R−i). Since R̂i ∈ RQ, dCV i(0; fi(R̂i, R−i)) = f ti (R̂i, R−i) −dCV i(ŷ;0). Thus,

t̂i + t̂j =dCV i(0; fi(R̂i, R−i)) +dCV i(ŷ;0) = f ti (R̂i, R−i). Then, by f tj (R̂i, R−i) = 0, Pk∈N t̂k =P
k∈N f

t
k(R̂i, R−i). Thus, ẑ Pareto-dominates f(R̂i, R−i) at (R̂i, R−i), which contradicts effi-

ciency. ¤
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Fact B.1. Strategy-proofness, efficiency, individual rationality, and no subsidy for losers imply

no subsidy.

Proof of Fact B.1. Let f satisfy the four properties om Rn. Let R ∈ Rn, i ∈ N , and
x ≡ fxi (R). If x = 0, Fact B.1 follows from no subsidy for losers. Thus, we assume that

x 6= 0. Then, by Lemma B.1, f ti (R) ≥ Cm+1(R, x). Since for each y ∈ M and each i ∈ N ,
(y, 0)Pi (0, 0), for each y ∈M , Cm+1(R, y) > 0. Thus, f ti (R) > 0. ¤
Hereafter, we maintain the assumption that f is a rule on Rn, and that the rule f satisfies

strategy-proofness, efficiency, individual rationality, and no subsidy for losers. Then, by Fact

B.1 above, no subsidy is implied by the four properties. Therefore, hereafter, we also assume

that the rule f satisfies no subsidy.

Part 2: Proof of Proposition B.1 (Proofs of Lemmas B.6 and B.7, and Proposition B.1)

We establish Proposition B.1 below, which says that for each preference profile, the allo-

cation chosen by the rule f satisfying strategy-proofness, efficiency, individual rationality, and

no subsidy for losers should (weakly) dominate the minimum price Walrasian equilibrium.

Proposition B.1.34 Let R ∈ Rn and z ∈ Zmin(R). For each i ∈ N , fi(R)Ri zi.
We introduce two lemmas to prove Proposition B.1.

Lemma B.6. Let R ∈ Rn, i ∈ N , and x ∈M . If fxi (R) = x, then, CVi(x;0) ≥ Cm(R, x).
Proof of Lemma B.6. By contradiction, suppose that fxi (R) = x and CVi(x; 0) < C

m(R, x).

Then, by Lemma B.5, Cm+1(R, x) ≤ f ti (R). By individual rationality, f
t
i (R) ≤ CVi(x;0).

Then, by CVi(x;0) ≤ Cm+1(R, x), f ti (R) = CVi(x; 0). Since #{j ∈ N : CVj(x; 0) ≥
Cm(R, x)} = m, there is j ∈ N \ {i} such that CVj(x; 0) ≥ Cm(R, x) and fxj (R) = 0.

By Lemma B.1, f tj (R) = 0. Then, by CVi(x; fi(R)) = 0 and f
t
i (R) = CVi(x;0) < C

m(R, x) ≤
CVj(x;0), 0 = f

t
j (R)−CVi(x; fi(R)) < CVj(x;0)− f ti (R). Note that x 6= 0. Thus, by Lemma

B.3, there is ẑ ∈ Z that Pareto-dominates f(R) at R, which contradicts efficiency. ¤
Given R ∈ RN , let ZIR(R) be the set of individually rational allocations, that is, ZIR(R) ≡

{z ∈ Z : for each i ∈ N, zi Ri 0}.
Lemma B.7. Let R ∈ Rn, x ∈M , and i ∈ N be such that for each y ∈M \ {x}, CVi(y; 0) <
Cm(R, y). Let z ∈ ZIR(R), CVi(x; 0) > C1(R−i, x; z), and fj(R)Rj zj for each j ∈ N \ {i}.
Then, fxi (R) = x.

Proof of Lemma B.7. (Figure 3) By contradiction, suppose that fxi (R) 6= x. Then, by

Lemma B.2, there is j ∈ N \ {i} such that fxj (R) = x. Since fj(R)Rj zj, f tj (R) ≤ CVj(x; zj) <
CVi(x; 0). Since z ∈ ZIR(R), for each y ∈ M , CVj(y; zj) ≤ CVj(y;0). Let R̂j ∈ RNCV (fj(R))

be such that (i) −dCV j(0; fj(R)) < CVi(x;0)−f tj (R), and (ii) for each y ∈M\{x},dCV j(y; 0) =
CVj(y; 0). Then, by Lemma B.4, fj(R̂j, R−j) = fj(R). Since fxj (R̂j, R−j) = x, f

x
i (R̂j, R−j) 6=

x. Next, we show that fxi (R̂j, R−j) /∈ M \ {x}. Suppose that there is y ∈ M \ {x} such
that fxi (R̂j, R−j) = y. By (ii), Cm(R̂j, R−j, y) = Cm(R, y). Since CVi(y; 0) < Cm(R, y),

34This result also holds for any Walrasian equilibrium allocation z.
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Figure 3: Illustration of proof of Lemma B.7.

CVi(y;0) < C
m(R̂j, R−j, y), which contradicts Lemma B.6. Thus, fxi (R̂j, R−j) = 0. By Lemma

B.1, f ti (R̂j, R−j) = 0. Then, by (i) and Lemma B.3, there is ẑ ∈ Z that Pareto-dominates

f(R̂j, R−j) at (R̂j, R−j), which contradicts efficiency. ¤
We now proceed to prove Proposition B.1.

Proof of Proposition B.1. We only show f1(R)R1 z1 since the case of any other agent can be

treated in the same way. If x1 = 0, then z1 = 0, and so, by individual rationality, f1(R)R1 z1.

Thus, we assume that x1 6= 0. Let N+ ≡ {j ∈ N : xj 6= 0}. Note that #N+ = m.

By contradiction, suppose that z1 P1 f1(R). We prove Claim B.1 below by induction. (iv-

(k + 1)) of Claim B.1 induces a contradiction by the finiteness of N+.

Claim B.1. For each k ≥ 0, there exist a set N(k + 1) of k + 1 distinct agents, say

N(k + 1) ≡ {1, . . . , k + 1}, and R̂N(k+1) ∈ Rk+1 such that

(i-(k + 1)) zk+1 Pk+1 fk+1(R̂N(k), R−N(k)),
(ii-(k+1)) for each j ∈ N(k+1) and each y ∈M\{xj},dCV j(y; 0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, y),
(iii-(k + 1)) tk+1 <dCV k+1(xk+1;0) < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))), and
(iv-(k + 1)) N(k + 1) ( N+,

where N(k) ≡ {1, . . . , k}.
Proof of Claim B.1.

Step 1. Let k = 0 and N(1) ≡ {1}. By z1 P1 f1(R), (i-1) holds, and so, t1 < CV1(x1; f1(R)).
Note that for each y ∈ M , Cn(R, y) > 0. Thus, there is R̂1 ∈ R such that (ii-1): for each
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Figure 4: Illustration of (i-(k+1)), (ii-(k+1)) and (iii-(k+1)) in the proof of Proposition B.1

for k = 1.

y ∈M \ {x1}, dCV 1(y;0) < Cn(R, y), and (iii-1): t1 <dCV 1(x1;0) < CV1(x1; f1(R)).
Note that {1} ⊆ N+. Suppose that {1} = N+. Since #N+ = m, m = 1. Thus, by

x1 6= 0, for each j ∈ N \ {1}, zj = 0. Since z ∈ W (R), for each j ∈ N \ {1}, zj Rj z1, and so,
CVj(x1;0) ≤ t1. Thus, by (iii-1), C1(R−1, x1; z) ≤ t1 <dCV 1(x1;0). By individual rationality,
for each j ∈ N \ {1}, fj(R̂1, R−1)Rj 0 = zj. Since z ∈ ZIR(R̂1, R−1), Lemma B.7 implies
fx1 (R̂1, R−1) = x1. By individual rationality, f

t
1(R̂1, R−1) ≤ dCV 1(x1;0). However, by (iii-1),

f t1(R̂1, R−1) < CV1(x1; f1(R)). Thus, f1(R̂1, R−1)P1 f1(R), contradicting strategy-proofness.
Therefore, (iv-1): {1} ( N+.

Step 2 (Induction argument). Let k ≥ 1. As induction hypothesis, we assume that there
exist a set N(k) ⊇ N(1) of k distinct agents, say N(k) ≡ {1, . . . , k}, and R̂N(k) ∈ Rk such that

(i-k) zk Pk fk(R̂N(k)\{k}, R−N(k)\{k}),
(ii-k) for each j ∈ N(k) and each y ∈M \ {xj}, dCV j(y; 0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, y),
(iii-k) tk <dCV k(xk;0) < CVk(xk; fk(R̂N(k)\{k}, R−N(k)\{k})), and
(iv-k) N(k) ( N+.

See Figure 4 for an illustration of (i-(k + 1)), (ii-(k + 1)) and (iii-(k + 1)) for k = 1.

By (iv-k), N+ \N(k) 6= ∅. The proof consists of the following two steps.
Step 2-1. There is k0 ∈ N+ \N(k) such that zk0 Pk0 fk0(R̂N(k), R−N(k)).
Proof of Step 2-1. By contradiction, suppose that for each j ∈ N+\N(k), fj(R̂N(k), R−N(k))Rj zj.
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First, we show that fxk (R̂N(k), R−N(k)) = xk. By (ii-k), for each y ∈M \ {xk},
dCV k(y; 0) < Cn(R̂N(k)\{k}, R−N(k)\{k}, y) = Cn−1(R̂N(k), R−N(k), y) ≤ Cm(R̂N(k), R−N(k), y).
Let ẑ ∈ Z be such that for each j ∈ N \ N(k), ẑj ≡ zj, and for each j ∈ N(k), ẑj ≡ 0.

Then, ẑ ∈ ZIR(R̂N(k), R−N(k)). By the supposition of Step 2-1, for each j ∈ N+ \ N(k),
fj(R̂N(k), R−N(k))Rj zj ≡ ẑj. By individual rationality, for each j ∈ N(k) ∪ (N \ N+),

fj(R̂N(k), R−N(k)) Rj 0 = ẑj.
Since z ∈ W (R), for each j ∈ N \N(k), CVj(xk; ẑj) = CVj(xk; zj) ≤ tk. By (ii-k), for each

j ∈ N(k) \ {k},
dCV j(xk; ẑj) =dCV j(xk; 0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, xk) ≤ Cn(R, xk) ≤ tk.

Thus, by (iii-k), C1(R̂N(k)\{k}, R−N(k), xk; ẑ) ≤ tk <dCV k(xk; 0).
Since the assumptions of Lemma B.7 hold for the profile (R̂N(k), R−N(k)) as above, Lemma

B.7 implies that fxk (R̂N(k), R−N(k)) = xk.
By individual rationality, f tk(R̂N(k), R−N(k)) ≤ dCV k(xk; 0). However, (iii-k) implies that

f tk(R̂N(k), R−N(k)) < CVk(xk; fk(R̂N(k)\{k}, R−N(k)\{k})).
Thus, fk(R̂N(k), R−N(k))Pk fk(R̂N(k)\{k}, R−N(k)\{k}), contradicting strategy-proofness. ¤

Step 2-2. We complete the proof of Claim B.1.

Proof of Step 2-2. Without loss of generality, let k+1 ≡ k0 and N(k+1) ≡ N(k)∪ {k+1}.
Then, N(k + 1) ) N(k), and (i-(k + 1)) follow from zk0 Pk0 fk0(R̂N(k), R−N(k)). By (i-(k + 1)),
tk+1 < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))). Also, for each y ∈ M , Cn(R̂N(k), R−N(k), y) > 0.

Thus, there is R̂k+1 ∈ R such that

tk+1 <dCV k+1(xk+1;0) < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))),
and for each y ∈M\{xk+1},dCV k+1(y; 0) < Cn(R̂N(k), R−N(k), y). Let R̂N(k+1) ≡ (R̂N(k), R̂k+1).
Then, (ii-(k + 1)) and (iii-(k + 1)) follow from (ii-k).

By (iv-k) and {k + 1} ⊆ N+, N(k + 1) ⊆ N+.

Finally, we show (iv-(k + 1)): N(k + 1) ( N+. Suppose that N(k + 1) = N+. Then,

#N(k + 1) = #N+ = m. Thus, for each j ∈ N \N(k + 1), zj = 0.
By (ii-(k + 1)), for each y ∈M \ {xk+1},dCV k+1(y; 0) < Cn(R̂N(k), R−N(k), y) = Cn−1(R̂N(k+1), R−N(k+1), y) ≤ Cm(R̂N(k+1), R−N(k+1), y).
Let ẑ ∈ Z be such that for each j ∈ N , ẑj ≡ 0. Then, ẑ ∈ ZIR(R̂N(k+1), R−N(k+1)).
By individual rationality, for each j ∈ N \ {k + 1}, fj(R̂N(k+1), R−N(k+1))Rj 0 = ẑj. Since

z ∈ W (R), for each j ∈ N \ N(k + 1), CVj(xk+1; ẑj) = CVj(xk+1; zj) ≤ tk+1. By (ii-(k + 1)),
for each j ∈ N(k + 1) \ {k + 1},
dCV j(xk+1; ẑj) =dCV j(xk+1; 0) < Cn(R̂{1,...,j−1}, R−{1,...,j−1}, xk+1) ≤ Cn(R, xk+1) ≤ tk+1.

26



Thus, by (iii-(k + 1)), dCV k+1(xk+1; 0) > tk+1 ≥ C1(R̂N(k), R−N(k+1), xk+1; ẑ), and the as-
sumptions of Lemma B.7 hold for the profile (R̂N(k+1), R−N(k+1)). Lemma B.7 implies that
fxk+1(R̂N(k+1), R−N(k+1)) = xk+1.
By individual rationality, f tk+1(R̂N(k+1), R−N(k+1)) ≤ dCV k+1(xk+1;0). However, by (iii-

(k + 1)), f tk+1(R̂N(k+1), R−N(k+1)) < CVk+1(xk+1; fk+1(R̂N(k), R−N(k))).
Thus, fk+1(R̂N(k+1), R−N(k+1)) Pk+1 fk+1(R̂N(k), R−N(k)), contradicting strategy-proofness.

¤
Part 3: Proofs of Lemmas B.8—B.11.

Given z ∈ Z(R), let RI(z) be the set of preferences Ri ∈ R such that for each i, j ∈ N ,
zi Ii zj, that is, all the assignments under z are indifferent.

Lemma B.8. Let R ∈ Rn, (z∗, p) ∈ Wmin(R), N
0 ⊆ N , R̂N 0 ∈ RI(z∗)#N

0
, and R̂ ≡

(R̂N 0 , R−N 0). Then, (a) z∗ ∈ Zmin(R̂), (b) for each i ∈ N , fi(R̂) R̂i z∗i and (c) for each i ∈ N ,
if fxi (R̂) = 0, then 0 ∈ D(R̂i, p).
Proof of Lemma B.8. First, we show (a). Let M 0 ⊆ M . Since z∗ ∈ Zmin(R), it follows
from Theorem A.1 that (i) #{i ∈ N : D(Ri, p) ⊆ M 0} ≤ #M 0 and (ii) #{i ∈ N : D(Ri, p) ∩
M 0 6= ∅} > #M 0. Note that for each i ∈ N 0, D(R̂i, p) = L and for each j ∈ N \ N 0,
D(R̂j, p) = D(Rj, p). Thus, for each i ∈ N 0, D(R̂i, p) *M 0 and D(R̂i, p) ∩M 0 6= ∅. Then,

#{i ∈ N : D(R̂i, p) ⊆M 0} ≤ #{i ∈ N : D(Ri, p) ⊆M 0} ≤ #M 0, and

#{i ∈ N : D(R̂i, p) ∩M 0 6= ∅} ≥ #{i ∈ N : D(Ri, p) ∩M 0 6= ∅} > #M 0.

That is, no set of objects is overdemanded nor weakly underdemanded at p for R̂. Thus, (a)

follows from Theorem 3.1. Then, (b) also follows from Proposition B.1.

Finally, we show (c). Let i ∈ N . By contradiction, suppose that fxi (R̂) = 0 and 0 /∈
D(R̂i, p). Then, by Lemma B.1, z

∗
i P̂i 0 = fi(R̂). This contradicts (b). ¤

Given p ∈ Rm++ and R ∈ Rn, let N(R, p) denote the set of demanders of the non-null

objects at the price p, that is, N(R, p) ≡ {i ∈ N : D(Ri, p) ∩M 6= ∅}.
Lemma B.9. Let R ∈ Rn and (z∗, p) ∈ Wmin(R). Let N 0 ⊆ N with 1 ≤ #N 0 ≤ m,

R̄N 0 ∈ RI(z∗)#N
0
, R̄ ≡ (R̄N 0 , R−N 0) and N 00 ≡ N(R, p) \ N 0. Assume that (9-i) for each

i ∈ N \ N 0, and each x ∈ M , if fxi (R̄) = x, then f ti (R̄) ≥ px, and (9-ii) for each j ∈ N 0,
fxj (R̄) 6= 0. Then,
(9-a) for each j /∈ N(R, p) ∪N 0, fxj (R̄) = 0, and
(9-b) there is a sequence {ik}Kk=1 of K distinct agents such that (i) K ∈ {2, . . . ,m+ 1},

(ii) fxi1(R̄) = 0, (iii) for each k ∈ {1, . . . , K − 1}, ik ∈ N 00, and iK ∈ N 0, and
(iv) for each k ∈ {1, . . . , K − 1}, {fxik(R̄), fxik+1(R̄)} ⊆ D(Rik , p).
See Figure 5 for an illustration of (9-b).

Proof of (9-a) of Lemma B.9. Suppose that for some j /∈ N(R, p) ∪ N 0, x ≡ fxj (R̄) 6= 0.
By D(R̄j, p) = 0, individual rationality implies f

t
j (R̄) ≤ CVj(x;0) < px. This contradicts (9-i).
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Figure 5: Illustration of (9-b) of Lemma B.9 for K = 4.

Proof of (9-b) of Lemma B.9. Let N 00
1 ≡ {i ∈ N 00 : fxi (R̄) = 0}. We show that (9-1-b):

N 00
1 6= ∅. Since N 00 ≡ N(R, p) \ N 0, N 00 ∪ N 0 ⊇ N(R, p). Thus, #N 00 + #N 0 ≥ #N(R, p). By

Lemma B.8-(a), z∗ ∈ Zmin(R̄). Thus, by Theorem 3.1, there is no weakly underdemanded set

at p for R̄, and so, #N(R, p) ≥ m + 1. Therefore, #N 00 + #N 0 ≥ m + 1. By (9-ii), for each
j ∈ N 0, fxj (R̄) 6= 0. Thus, at least one agent in N 00 receives no object, that is, (9-1-b) holds.
Since N 00

1 ⊆ N(R, p), for each i ∈ N 00
1 , D(Ri, p)∩M 6= ∅. Thus, by (9-1-b), we have (9-1-d):

there is i1 ∈ N 00
1 such that D(Ri1, p) ∩M 6= ∅.

Let N(1) ≡ N 00
1 and D1 ≡ [

S
i∈N(1)D(Ri, p)] \ {0}. Given k ≥ 2, let N 00

k ≡ {j ∈ N 00 \N(k−
1) : fxj (R̄) ∈ Dk−1}, N(k) ≡ N(k− 1)∪N 00

k , and Dk ≡ [
S
j∈N 00

k
D(Rj, p)] \ [

S
j∈N(k−1)D(Rj, p)].

We introduce Claim B.2 below to show (9-b) inductively. Note that Assumptions (9-(k−1)-
b) and (9-(k − 1)-d) of Claim B.2 follow from (9-1-b) and (9-1-d) when k = 2, that (9-k-b)

implies N(k) ) N(k − 1), and that Assumptions except for (9-(k − 1)-a*) hold recursively.
Thus, for any k ≥ 2, as long as (9-(k − 1)-a*) holds, Claim B.2 is applied and N(k) increases

as k increases. Since N(k) ⊆ N 00 and N 00 is finite,35 there is k ≤ m such that (9-k-a*) does not

hold. Let k be the first number that violates (9-k-a*) in this iteration.

By (9-k-b), for each k0 ∈ {1, . . . , k}, N 00
k0 6= ∅. Since (9-k-a*) does not hold, there are

jk ∈ N 00
k and jk+1 ∈ N 0 such that fxjk+1(R̄) ∈ D(Rjk , p). Then,

35By (9-ii) of Lemma B.9 and feasibility of object allocation, it should be #N 00 ≤ m.
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for each k0 ∈ {1, . . . , k − 1}, there is jk0 ∈ N 00
k0 such that f

x
jk0+1

(R̄) ∈ D(Rjk0 , p).
To show that the sequence {jk0}k+1k0=1satisfies (iv) of (9-b), we prove

for each k0 ∈ {1, . . . , k}, fxjk0 (R̄) ∈ D(Rjk0 , p).
By j1 ∈ N 00

1 , f
x
j1
(R̄) = 0. Then, by Lemma B.8-(c), fxj1(R̄) ∈ D(Rj1, p). Let k0 ∈ {2, . . . , k}.

By contradiction, suppose that fxjk0 (R̄) /∈ D(Rjk0 , p). Let y ≡ fxjk0 (R̄). Then, by x∗jk0 ∈
D(Rik0 , p), z

∗
jk0
Pik0 (y, p

y). By Lemma B.8-(b), fjk0 (R̄)Rjk0 z
∗
jk0
. Thus, fjk0 (R̄)Rjk0 z

∗
jk0
Pik0 (y, p

y),

which implies f tjk0 (R̄) < p
y. This contradicts (9-i) of Lemma B.9.

Then, the sequence {jk0}k+1k0=1 satisfies (i), (ii), (iii), and (iv) of (9-b). Thus, for the rest of

the proof of (9-b), we prove Claim B.2 below.

Claim B.2. Let k ≥ 2. Assume that
(9-(k − 1)-a) for each i ∈ N(k − 2) and each j ∈ N 0, fxj (R̄) /∈ D(Ri, p),36
(9-(k − 1)-b) for each k0 ∈ {1, . . . , k − 1}, N 00

k0 6= ∅,
(9-(k − 1)-c) for each k0 ∈ {2, . . . , k − 1}, #N 00

k0 = #Dk0−1,
37

(9-(k − 1)-d) there is ik−1 ∈ N 00
k−1 such that D(Rik−1 , p) ∩ [M \Sk0≤k−2Dk0 ] 6= ∅,38 and

(9-(k − 1)-a*) for each i ∈ N 00
k−1 and each j ∈ N 0, fxj (R̄) /∈ D(Ri, p).

Then,

(9-k-a) for each i ∈ N(k − 1) and each j ∈ N 0, fxj (R̄) /∈ D(Ri, p),
(9-k-b) for each k0 ∈ {1, . . . , k}, N 00

k0 6= ∅,
(9-k-c) for each k0 ∈ {2, . . . , k}, #N 00

k0 = #Dk0−1, and
(9-k-d) there is ik ∈ N 00

k such that D(Rik , p) ∩ [M \Sk0≤k−1Dk0 ] 6= ∅.
Proof of Claim B.2. First, (9-k-a) follows from (9-(k − 1)-a) and (9-(k − 1)-a*). By (9-
(k − 1)-d), there is ik−1 ∈ N 00

k−1 such that D(Rik−1 , p) ∩ [M \Sk0≤k−2Dk0 ] 6= ∅. Thus, Dk 6= ∅.
By Lemma B.2, for each x ∈ Dk, there is i(x) ∈ N such that fxi(x)(R̄) = x. Note that, by

(9-a), i(x) ∈ N(R, p) ∪ N 0. By (9-k-a) and the definition of N(k − 1), for each x ∈ Dk,

i(x) ∈ N 00 \N(k − 1). Thus, N 00
k 6= ∅. Then, (9-k-b) follows from (9-(k − 1)-b).

Since fx(R̄) ∈ X, no two agents receive the same object, i.e., for each x, y ∈ Dk with x 6= y,
i(x) 6= i(y). Thus, #N 00

k = #Dk−1. Then, (9-k-c) also follows from (9-(k − 1)-c).
Finally, we show (9-k-d). By contradiction, suppose that for each i ∈ N 00

k , D(Ri, p) ∩ [M \S
k0≤k−1Dk0 ] = ∅. See Figure 6 for an illustration of proof of (9-k-d). Then,

36Define N(0) = ∅. When k = 2, (9-(k − 1)-a) holds vacantly.
37When k = 2, (9-(k − 1)-c) holds vacantly.
38When k = 2, (9-(k − 1)-d) requires that there is i1 ∈ N 00

1 such that D(Ri1 , p) ∩M 6= ∅.
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Figure 6: Illustration of (9-k-d) of Lemma B.9 for the case of k = 3, m = 4, n = 5, N 00
1 ≡ {i1},

N 00
2 ≡ {i2}, N 00

3 ≡ {i3}, and N 0 ≡ N \ {i1, i2, i3}. In this case, D1 = {1}, D2 = {2}, and
{j ∈ N : D(R̄j, p) ∩ [M \ (D1 ∪D2)] 6= ∅} = N 0.

#

(
j ∈ N : D(R̄j, p) ∩

"
M \

[
k0≤k−1

Dk0

#
6= ∅

)
= #N 0 +#N 00 −#N 00

1 −
kX

k0=2

#N 00
k0

= #M −
kX

k0=2

#Dk0−1

= #

(
M \

[
k0≤k−1

Dk0

)
,

where the first equality follows from #
©
j ∈ N : D(R̄j, p) ∩M 6= ∅ª = #N 0 + #N 00, and for

each k0 ∈ {1, . . . , k} and each i ∈ N 00
k0 , D(Ri, p)∩

£
M \Sk00≤k−1Dk00

¤
= ∅, and the second from

#N 0 +#N 00 −#N 00
1 = m and (9-k-c): for each k0 ∈ {2, . . . , k}, #N 00

k0 = #Dk0−1.
Therefore, the set

£
M \Sk0≤k−1Dk0

¤
is weakly underdemanded at p for R̄. However, by

Lemma B.8-(a), z∗ ∈ Zmin(R̄), and so, by Theorem 3.1, there is no weakly underdemanded set
at p for R̄. This is a contradiction. ¤
Lemma B.10. Let R ∈ Rn, i ∈ N , and x ∈M be such that fxi (R) = x and CVi(0; fi(R)) < 0.

Let j ∈ N \ {i}. Assume that (10-i) −CVi(0; fi(R)) < CVj(x;0)− f ti (R). Then, fxj (R) 6= 0.
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Proof of Lemma B.10. Suppose that fxj (R) = 0. By Lemma B.1, f
t
j (R) = 0. By assumption

(10-i), −CVi(0; fi(R)) < CVj(x; 0)− f ti (R). Then, by Lemma B.3, there is ẑ ∈ Z that Pareto-
dominates f(R) at R, which contradicts efficiency. ¤
Lemma B.11. Let R ∈ Rn, (z∗, p) ∈ Wmin(R), and N 0 ⊆ N . Assume that (11-i) for each
R̄N 0 ∈ RI(z∗)#N

0
, each i ∈ N\N 0, and each x ∈M , if fxi (R̄N 0 , R−N 0) = x, f ti (R̄N 0 , R−N 0) ≥ px.

Let R̂N 0 ∈ RI(z∗)#N
0
. Then, for each i ∈ N 0 and each x ∈ M , if fxi (R̂N 0 , R−N 0) = x, then

f ti (R̂N 0 , R−N 0) ≥ px.
Proof of Lemma B.11. Let R̂ ≡ (R̂N 0 , R−N 0). Without loss of generality, let N 0 ≡
{1, 2, . . . , n0}. We only show that if fx1 (R̂) = x ∈ M , f t1(R̂) ≥ px since we can treat simi-

larly the other agents in N 0. Let fx1 (R̂) ≡ x ∈M . By contradiction, suppose that f t1(R̂) < px.
Let N 00 ≡ N(R, p) \N 0.
Case 1. #N 0 ≥ m+ 1.
Since f t1(R̂) < p

x, there is R̄1 ∈ RNCV (f1(R̂)) such that (ii) −CV 1(0; f1(R̂)) < px − f t1(R̂).
Then, by Lemma B.4, f1(R̄1, R̂−1) = f1(R̂). Note that for each j ∈ N 0 \ {1},

−CV 1(0; f1(R̂)) < px − f t1(R̂) =dCV j(x;0)− f t1(R̂),
where the inequality follows from (ii) and the equality from R̂j ∈ RI(z∗). Thus, by Lemma
B.10, for each j ∈ N 0 \ {1}, fxj (R̄1, R̂−1) 6= 0. Since #N 0 ≥ m+ 1, this is a contradiction.
Case 2. #N 0 ≤ m.
First, we show the following step.

Step 1. Let S ⊆ N 0, R̄S ∈ RI(z∗)#S, and R̄ ≡ (R̄S, R̂−S). For each i ∈ N 0, let xi ≡ fxi (R̄).
Assume that

(11-1-i) for each i ∈ N 0, xi 6= 0,
(11-1-ii) for each i ∈ S and each zi ≡ (y, t) ∈M × R with t < py, −CV i(0; zi) < py − t,
(11-1-iii) there is j ∈ S such that f tj (R̄) < pxj , and
(11-1-iv) there is a sequence {ik}Kk=1 of K distinct agents such that (i*) 2 ≤ K ≤ m+ 1,

(ii*) fxi1(R̄) = 0, (iii*) for each k ∈ {1, . . . , K − 1}, ik ∈ N 00, and iK ∈ N 0, and
(iv*) for each k ∈ {1, . . . , K − 1}, {fxik(R̄), fxik+1(R̄)} ⊆ D(R̄ik , p).

Then, (11-a) f tiK(R̄) < p
xiK , and (11-b) iK /∈ S.

Proof of Step 1.

Proof of (11-a). If iK = j, f tiK (R̄) < pxiK follows from (11-1-iii). Thus, let iK 6= j. By

Lemma B.8-(b), f tiK (R̄) ≤ pxiK . By contradiction, suppose that f tiK (R̄) = pxiK . Let z0 ∈ Z be
such that

z0j ≡ (0, CV j(0; fj(R̄))),
z0iK ≡ (xj, f tj (R̄)− CV j(0; fj(R̄))),
for each k ∈ {1, . . . , K − 1}, z0ik ≡ fik+1(R̄), and
for each i ∈ N \ ({ik}Kk=1 ∪ {j}), z0i ≡ fi(R̄).
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Figure 7: Illustration of z0 in (11-a) of Lemma B.11 for K = 4.

See Figure 7 for the illustration of z0.
We show z0 Pareto-dominates f(R̄) at R̄. By the definition of CV j(0; fj(R̄)), z0j Īj fj(R̄).

Note that

z0iK P̄iK (xj, p
xj ) ĪiK fiK (R̄),

where the first preference relation follows from z0iK ≡ (xj , f tj (R̄) − CV j(0; fj(R̄))), (11-1-iii):
f tj (R̄) < p

xj , and (11-1-ii): −CV j(0; fj(R̄)) < pxj − f tj (R̄), and the indifference relation from
f tiK(R̄) = p

xiK and iK ∈ N 0, which implies R̄iK ∈ RI(z∗).
Lemma B.8-(b) and (11-i) imply that for each k ∈ {1, . . . , K − 1}, f tik(R̄) = pxik . Thus, by

(11-1-iv)-(iv*), for each k ∈ {1, . . . , K − 1}, z0ik = fik+1(R̄) Īik fik(R̄).
For each i ∈ N \ ({ik}Kk=1 ∪ {j}), by z0i ≡ fi(R̄), z0i Īi fi(R̄).
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Note thatX
i∈N

t0i = CV j(0; fj(R̄)) + f
t
j (R̄)− CV j(0; fj(R̄)) +

K−1X
k=1

f tik+1(R̄) +
X

i∈N\({ik}Kk=1∪{j})
f ti (R̄)

= f tj (R̄) +

KX
k=2

f tik(R̄) +
X

i∈N\({ik}Kk=1∪{j})
f ti (R̄)

=
X
i∈N

f ti (R̄),

where the last equality follows from (11-1-iv)-(ii*): f ti1(R̄) = 0. Thus, z0 Pareto-dominates
f(R̄) at R̄, which contradicts efficiency. ¤
Proof of (11-b). By contradiction, suppose that iK ∈ S. By (11-1-i) and (11-1-iv)-(iii*),
xiK 6= 0. By Step 1-(11-a), f tiK (R̄) < pxiK .
Let z0 ∈ Z be such that

z0iK ≡ (0, CV iK (0; fiK (R̄))),
z0iK−1 ≡ (xiK , f tiK(R̄)− CV iK(0; fiK (R̄)))
for each k ∈ {1, . . . , K − 2}, z0ik ≡ fik+1(R̄), and
for each i ∈ N \ {ik}Kk=1, z0i ≡ fi(R̄).

See Figure 8 for the illustration of z0.
We show z0 Pareto-dominates f(R̄) at R̄. By the definition of CV j(0; fj(R̄)), z0iK ĪIK fiK (R̄).
Lemma B.8-(b) and (11-i) imply that for each k ∈ {1, . . . , K − 1}, f tik(R̄) = pxik . By

(11-1-iv)-(iv*), for each k ∈ {1, . . . , K − 2}, z0ik = fik+1(R̄) Īik fik(R̄).
Note that

z0iK−1 P̄iK−1 (xiK , p
xiK ) ĪiK−1 (xiK−1 , p

xiK−1 ) ĪiK−1 fiK−1(R̄),

where the strict preference relation follows from iK ∈ S, z0iK−1 = (xiK , f tiK (R̄)−CV iK(0; fiK (R̄))),
(11-a): f tiK (R̄) < p

xiK , and (11-1-ii): −CV iK (0; fiK(R̄)) < pxiK − f tiK (R̄), the first indifference
relation from (11-1-iv)-(iv*): {xiK−1 , xiK} ⊆ D(R̄iK−1, p), and the second from f tiK−1(R̄) =

pxiK−1 .

For each i ∈ N \ {ik}Kk=1, by z0i = fi(R̄), z0i Īi fi(R̄). Note thatX
i∈N

t0i = CV iK(0; fik(R̄)) + f
t
iK
(R̄)− CV iK (0; fiK (R̄)) +

K−2X
k=1

f tik+1(R̄) +
X

i∈N\({ik}Kk=1)
f ti (R̄)

= f tiK (R̄) +

K−1X
k=2

f tik(R̄) +
X

i∈N\({ik}Kk=1)
f ti (R̄)

=
X
i∈N

f ti (R̄),
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Figure 8: Illustration of z0 in (11-b) of Lemma B.11 for K = 4.

where the last equality follows from (11-1-iv)-(ii*): f ti1(R̄) = 0. Thus, z0 Pareto-dominates
f(R̄) at R̄, which contradicts efficiency. ¤
Step 2. We derive a contradiction to conclude that f t1(R̂) ≥ px.
Since f t1(R̂) < p

x, there is R̄1 ∈ RI(z∗) ∩RNCV (f1(R̂)) such that

(11-1-a) for each z1 ≡ (y, t) ∈M × R with t < py, −CV 1(0; z1) < py − t.
Then, by R̄1 ∈ RNCV (f1(R̂)) and Lemma B.4, f1(R̄1, R̂−1) = f1(R̂). Thus,

(11-1-b) fx1 (R̄1, R̂−1) = x ∈M and f t1(R̄1, R̂−1) < p
x.

Note that {1} ⊆ N 0. Suppose that {1} = N 0. Since f1(R̄1, R̂−1) = f1(R̂) and f
x
1 (R̂) =

x 6= 0, fx1 (R̄1, R̂−1) = x 6= 0. Then, by (11-i) of Lemma B.11, it follows from (9-b) of Lemma

B.9 that there is a sequence {ik}Kk=1 of K distinct agents such that (i) 2 ≤ K ≤ m + 1,

(ii) fxi1(R̄1, R̂−1) = 0, (iii) for each k ∈ {1, . . . , K − 1}, ik ∈ N 00, and iK ∈ N 0, and (iv) for
each k ∈ {1, . . . , K − 1}, {fxik(R̄1, R̂−1), fxik+1(R̄1, R̂−1)} ⊆ D(R̂ik , p). Then, by Step 1 (11-b),
iK /∈ {1}. Since {1} = N 0, iK /∈ N 0, which contradicts (iii): iK ∈ N 0. Thus, if {1} = N 0, we
obtain a contradiction. Therefore, we assume that

(11-1-c) {1} ( N 0.

Induction argument:
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Let s ≥ 1 and N(1) ≡ {1}. As induction hypothesis, we assume that there exist a set
N(s) ⊇ N(1) of s distinct agents and R̄N(s) ∈ RI(z∗)s such that

(11-s-a) for each i ∈ N(s) and each zi ≡ (y, t) ∈M ×R with t < py, −CV i(0; zi) < py − t,
(11-s-b) for some j ∈ N(s), fxj (R̄N(s), R̂−N(s)) ≡ x0 ∈M and f tj (R̄N(s), R̂−N(s)) < p

x0 , and

(11-s-c) N(s) ( N 0.

Note that (11-s-a), (11-s-b), and (11-s-c) follow from (11-1-a), (11-1-b), and (11-1-c) if

s = 1.

We show that there exist a set N(s + 1) ) N(s) of s + 1 distinct agents and R̄N(s+1) ∈
RI(z∗)s+1 such that

(11-(s+ 1)-a) for each i ∈ N(s+ 1) and each zi ≡ (y, t) ∈M × R with t < py,

−CV i(0; zi) < py − t, and

(11-(s+ 1)-b) for some j0 ∈ N(s+ 1),

fxj0(R̄N(s+1), R̂−N(s+1)) ≡ x00 ∈M and f tj0(R̄N(s+1), R̂−N(s+1)) < p
x00 .

First, we show (11-(s + 1)-a). Since (R̄N(s), R̂−N 0\N(s)) ∈ RI(z∗)#N
0
, (11-s-b) and Lemma

B.10 imply that

(B-1) for each i ∈ N 0, fxi (R̄N(s), R̂−N(s)) 6= 0.
Then, by (11-i) of Lemma B.11, it follows from (9-b) of Lemma B.9 that there is a sequence

{ik}Kk=1 of K distinct agents such that (i) 2 ≤ K ≤ m + 1, (ii) fxi1(R̄N(s), R̂−N(s)) = 0, (iii)

for each k ∈ {1, . . . , K − 1}, ik ∈ N 00, and iK ∈ N 0, and (iv) for each k ∈ {1, . . . , K − 1},
{fxik(R̄N(s), R̂−N(s)), fxik+1(R̄N(s), R̂−N(s))} ⊆ D(R̂ik , p). Let xiK ≡ fxiK(R̄N(s), R̂−N(s)).
Then, by Step 1-(11-a),

(B-2) f tiK (R̄N(s), R̂−N(s)) < p
xiK .

Also, by Step 1-(11-b),

(B-3) iK ∈ N 0 \N(s).
Next, let j0 ≡ iK and N(s + 1) ≡ N(s) ∪ {j0}. Then, by (B-3), N(s + 1) ) N(s). Also,

(B-1) and (B-2) imply that fxiK (R̄N(s), R̂−N(s)) 6= 0 and f tj0(R̄N(s), R̂−N(s)) < pxj0 . Thus, there
is R̄j0 ∈ RI(z∗) ∩RNCV (fj0(R̄N(s), R̂−N(s))) such that

for each zj0 ≡ (y, t) ∈M × R with t < py, −CV j0(0; zj0) < py − t,

Thus, (11-(s+ 1)-a) follows from (11-s-a).

Next, we show (11-(s+1)-b). By R̄j0 ∈ RNCV (fj0(R̄N(s), R̂−N(s))), Lemma B.4 implies that
fj0(R̄N(s+1), R̂−N(s+1)) = fj0(R̄N(s), R̂−N(s)). Then, by (B-1), fxj0(R̄N(s+1), R̂−N(s+1)) 6= 0. By

(B-2), f tj0(R̄N(s+1), R̂−N(s+1)) < p
xj0 . Thus, (11-(s+ 1)-b) holds.
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Since N(s) ( N 0 and j0 ∈ N 0, N(s + 1) ⊆ N 0. Suppose that N(s + 1) = N 0. Since
(R̄N(s+1), R̂−N 0\N(s+1)) ∈ RI(z∗)#N

0
, (11-(s+ 1)-b) and Lemma B.10 imply that

(B-4) for each i ∈ N 0, fxi (R̄N(s+1), R̂−N(s+1)) 6= 0.
Then, by (11-i) of Lemma B.11, it follows from (9-b) of Lemma B.9 that there is a sequence

{ik}Kk=1 of K distinct agents such that (i) 2 ≤ K ≤ m+ 1, (ii) fxi1(R̄N(s+1), R̂−N(s+1)) = 0, (iii)
for each k ∈ {1, . . . , K − 1}, ik ∈ N 00, and iK ∈ N 0, and (iv) for each k ∈ {1, . . . , K − 1},
{fxik(R̄N(s+1), R̂−N(s+1)), fxik+1(R̄N(s+1), R̂−N(s+1))} ⊆ D(R̂ik , p).
Then, by Step 1-(11-b), iK /∈ N(s + 1). Since N(s + 1) = N 0, iK /∈ N 0, which contradicts

(iii): iK ∈ N 0. Thus, if N(s+ 1) = N 0, we obtain a contradiction.
If N(s+ 1) ( N 0, we obtain a contradiction by repeating the induction argument (#N 0 −

#N(s+ 1)) times. ¤
Part 4: Proof of Theorem 4.1.

Proof of Theorem 4.1. Let R ∈ Rn and (z∗, p) ∈ Wmin(R). By Lemma B.5, for each

R̄ ∈ RI(z∗)n, each i ∈ N , and each x ∈ M , if fxi (R̄) = x, then, f ti (R̄) ≥ px. Next, we prove
the following claim.

Claim B.3. Let k ∈ {1, . . . , n} and Nk ⊆ N be such that #Nk = k. Then, for each R̄−Nk ∈
RI(z∗)#N\Nk , each i ∈ N , and each x ∈M , if fxi (RNk , R̄−Nk) = x, then, f ti (RNk , R̄−Nk) ≥ px.
Proof of Claim B.3. We prove Claim B.3 by induction on k. Let k = 1. Let N1 ⊆ N with

#N1 = 1. Let R̄−N1 ∈ RI(z∗)#N\N1, i ∈ N1, and x ∈ M be such that fxi (RN1, R̄−N1) = x.

Suppose that f ti (RN1, R̄−N1) < p
x. Let R̄i ∈ RI(z∗) and x̂ ≡ fxi (R̄). Then, since f ti (R̄) ≥ px̂,

fi(RN1 , R̄−N1) P̄i fi(R̄), contradicting strategy-proofness. Thus, for each R̄−N1 ∈ RI(z∗)#N\N1,
each i ∈ N1, and each x ∈M , if fxi (RN1 , R̄−N1) = x, then, f ti (RN1, R̄−N1) ≥ px. Then, it follows
from Lemma B.11 that for each R̄−N1 ∈ RI(z∗)#N\N1 , each i ∈ N \ N1, and each x ∈ M , if
fxi (RN1 , R̄−N1) = x, then, f

t
i (RN1, R̄−N1) ≥ px.

Let k ∈ {2, . . . , n}. As induction hypothesis, we assume that
B.3.1: for each Nk−1 ⊆ N with #Nk−1 = k − 1, each R̄−Nk−1 ∈ RI(z∗)#N\Nk−1, each i ∈ N ,
and each x ∈M , if fxi (RNk−1, R̄−Nk−1) = x, then, f ti (RNk−1, R̄−Nk−1) ≥ px.
Let Nk ⊆ N be such that #Nk = k. Let R̄−Nk ∈ RI(z∗)#N\Nk , i ∈ Nk and x ∈ M

be such that fxi (RNk , R̄−Nk) = x. Suppose that f ti (RNk , R̄−Nk) < px. Let Nk−1 ≡ Nk \ {i}.
Let x̂ ≡ fxi (RNk−1, R̄−Nk−1). Then, by induction hypothesis (B.3.1), f ti (RNk−1 , R̄−Nk−1) ≥
px̂. Thus, fi(RNk , R̄−Nk) P̄i fi(RNk−1 , R̄−Nk−1), which contradicts strategy-proofness. Thus, for
each R̄−Nk ∈ RI(z∗)#N\Nk , each i ∈ Nk, and each x ∈ M , if fxi (RNk , R̄−Nk) = x, then,

f ti (RNk , R̄−Nk) ≥ px. Then, it follows from Lemma B.11 that for each R̄−Nk ∈ RI(z∗)#N\Nk ,
each i ∈ N \Nk, and each x ∈M , if fxi (RNk , R̄−Nk) = x, then, f ti (RNk , R̄−Nk) ≥ px. ¤
We show that f(R) satisfies (WE-i) in Definition 3.1. Let i ∈ N and y ≡ fxi (R). By

Proposition B.1, f ti (R) ≤ CVi(y; z
∗
i ). By z

∗
i ∈ D(Ri, p), CVi(y; z∗i ) ≤ py, where py = 0 if

y = 0. If y = 0, py = 0 = f ti (R). If y 6= 0, by Claim B.3, py ≤ f ti (R). Then, by f ti (R) ≤
CVi(y; z

∗
i ) ≤ py ≤ f ti (R). CVi(y; z∗i ) = py = f ti (R). Thus, fi(R) Ii z∗i . Since z∗i ∈ D(Ri, p), for

each z0i ∈ B(p), fi(R) Ii z∗i Ri z0i. Thus, for each i ∈ N , fxi (R) ∈ D(Ri, p).
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Next, we show that f(R) satisfies (WE-ii) in Definition 3.1. Since R ≡ RC and n > m, for

each x ∈M , px > 0. By Lemma B.2, for each x ∈M , there is i ∈ N such that fxi (R) = x.

Since p = pmin(R), we conclude that f(R) ∈ Zmin(R). ¤

C Proofs for Section 5 (Proposition 5.1)

Proof of Proposition 5.1. Let R ⊆ RE and R ∈ Rn. Consider a simultaneous ascending

(SA) auction defined in Section 5. By the definition of the SA auction, the price path p(t)

generated by the SA auction is nondecreasing with respect to time t. Next, for each x ∈ M ,
let p̄x > C1(R, x). Then, each agent demands only the null object at the price vector p̄, that

is, no overdemanded set exists at p̄. Thus, the price path p(·) is bounded above, that is, for
each t ∈ R+, p(t) ≤ p̄. Note that the prices are raised at a speed at least d > 0. Thus, there
is a price vector p∗ such that the price path p(·) converges to p∗ in a finite time.
Let T be the final time of the SA auction. We show that the final price p(T ) = pmin(R).

By the definition of SA auctions, no overdemanded set exists at the price p(T ). If no weakly

underdemanded set exists at p(T ), then the desired conclusion follows from Theorem 3.1. Thus,

we show that no weakly underdemanded set exists at p(T ). The proof consists of the following

two steps.

Step 1. Let t0 ∈ (0, T ]. Assume that there is a set M 0 of objects that is weakly underdemanded
at p(t0). Let N 0 ≡ {i ∈ N : D(Ri, p(t

0)) ∩M 0 6= ∅}. Then, (5-a) #N 0 ≥ 2, and (5-b) there
exist t00 ∈ (0, t0) and M 00 (M 0 such that N 00 ≡ {i ∈ N : D(Ri, p(t

00)) ∩M 00 6= ∅} ( N 0 and M 00

is underdemanded at p(t00).

Proof of Step 1. Since M 0 is weakly underdemanded at p(t0), for each x ∈ M 0, px(t0) > 0

and #N 0 ≤ #M 0. For each i ∈ N , let z0i ≡ (x0i, t0i) ∈ D(Ri, p(t0)). Note that for each i ∈ N \N 0

and each x ∈ M 0, CVi(x; z0i) < px(t0). For each x ∈ M 0, let qx ≡ max{CVj(x; z0j) : j ∈
N \N 0}∪ {0}. Let e > 0 be such that for each x ∈M 0, qx < px(t0)− e ≡ px. Let t00 ≡ max{t ∈
R+ : for some x ∈ M 0, px(t) ≤ px}. Then, there is x0 ∈ M 0 such that dpx

0
(t00)/dt > 0 and

px
0
(t00) = px

0
. Since dpx

0
(t00)/dt > 0, there is a minimal overdemanded set M̂ at p(t00) including

x0. See Figure 9 for an illustration.
Let M̂ 0 ≡ M̂ ∩M 0. Since x0 ∈M 0, M̂ 0 6= ∅. Let

N̂ 0 ≡ {i ∈ N 0 : D(Ri, p(t00)) ∩ M̂ 0 6= ∅ and D(Ri, p(t00)) ⊆ M̂}.

We show that #N̂ 0 > #M̂ 0. If M̂ ⊆M 0, then M̂ 0 = M̂ and for each i ∈ N̂ 0, D(Ri, p(t00)) ⊆
M̂ 0. Since M̂ is an overdemanded set at p(t00), the desired conclusion holds. Thus, we assume
that M̂ *M 0. Let M̂ 00 ≡ M̂ \M 0 and N̂ 00 ≡ {i ∈ N : D(Ri, p(t

00)) ⊆ M̂ 00}. Then,

{i ∈ N : D(Ri, p(t
00)) ⊆ M̂}

={i ∈ N : D(Ri, p(t
00)) ⊆ M̂ 00} ∪ {i ∈ N : D(Ri, p(t

00)) ∩ M̂ 0 6= ∅ and D(Ri, p(t00)) ⊆ M̂}
=N̂ 00 ∪ N̂ 0,
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Figure 9: Illustration of proof of Step 1 of Proposition 5.1 for the case of m = 4,M 0 ≡ {1, 2, 3},
N 0 ≡ {1, 2, 3}, x0 ≡ 2, and M̂ 0 ≡ {2, 4}. In this case, M̂ 0 = {2}, N̂ 0 = {2, 3}, M̂ 00 = {4},
N̂ 00 = {4}, M 00 = {1, 3}, and N 00 = {1}.

where the first equality follows from M̂ 00 ∪ M̂ 0 = M̂ and M̂ 00 ∩ M̂ 0 = ∅, and the second
from the fact that for each i ∈ N \ N 0, D(Ri, p(t00)) ∩ M̂ 0 = ∅. Note that for each x ∈ M 0,
qx < px ≤ px(t00). Thus, for each i ∈ N \N 0 and each x ∈M 0,

(x0i, p
x0i(t00))Ri (x0i, p

x0i(t0))Ri (x, qx)Pi (x, px(t00)).

Since M̂ 0 ⊆M 0, for each i ∈ N \N 0, D(Ri, p(t00)) ∩ M̂ 0 = ∅. Thus, N̂ 00 ∩ N̂ 0 = ∅. Then,
#N̂ 00 +#N̂ 0 = #{i ∈ N : D(Ri, p(t

00)) ⊆ M̂}
> #M̂ (M̂ is an overdemanded set at p(t00))

= #M̂ 00 +#M̂ 0.

Note that M̂ 00 ( M̂ . Since M̂ is a minimal overdemanded set at p(t00), M̂ 00 is not overde-
manded at p(t00), and so, #N̂ 00 ≤ #M̂ 00. This implies that #N̂ 0 > #M̂ 0.
We show (5-a). Since M̂ 0 6= ∅, 1 ≤ #M̂ 0. By #N̂ 0 > #M̂ 0 and N̂ 0 ⊆ N 0, we have

1 ≤ #M̂ 0 < #N̂ 0 ≤ #N 0, and thus, #N 0 ≥ 2.
Next, we show (5-b). LetM 00 ≡M 0\M̂ 0. Since M̂ 0 (M 0,39 M 00 6= ∅. By M̂ 0 6= ∅,M 00 (M 0.

39To see this, suppose that M̂ 0 = M 0. Since M 0 is weakly underdemanded at p(t0), #N 0 ≤ #M 0. By
M̂ 0 =M 0 and #N̂ 0 > #M̂ 0, #N 0 ≤ #M 0 = #M̂ 0 < #N̂ 0 ≤ #N 0, which is a contradiction.
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First, we show thatN 00 ⊆ N 0\N̂ 0, that is, for each i ∈ N 00, i ∈ N 0 and i /∈ N̂ 0. Let i ∈ N 00. Then,
D(Ri, p(t

00))∩M 00 6= ∅. Since for each x ∈M 0, qx < px(t00) and M 00 ⊆M 0, for each j ∈ N \N 0,
D(Rj, p(t

00)) ∩M 0 = ∅. This implies i ∈ N 0. Since M̂ 0 = M 0 ∩ M̂ implies M 00 = M 0 \ M̂ ,
D(Ri, p(t

00)) ∩M 00 6= ∅ implies D(Ri, p(t00)) \ M̂ 6= ∅. Since N̂ 0 ⊆ {j ∈ N : D(Rj, p(t
00)) ⊆ M̂},

this implies i /∈ N̂ 0. Thus, N 00 ⊆ N 0 \ N̂ 0.
Since #N̂ 0 > #M̂ 0 ≥ 1, #N̂ 0 ≥ 2, and so, N 00 ( N 0. Finally, it follows from the inequalities

below that M 00 is underdemanded at p(t00).

#N 00 ≤ #N 0 −#N̂ 0 by N̂ 0 ⊆ N 0

< #N 0 −#M̂ 0 by #N̂ 0 > #M̂ 0

≤ #M 0 −#M̂ 0 by #N 0 ≤ #M 0

= #M 00.

¤
Step 2. There is no weakly underdemanded set at p(T ).

Proof of Step 2. By contradiction, suppose that there is a set M1 of objects that is weakly

underdemanded at p(T ). LetN1 ≡ {i ∈ N : D(Ri, p(T ))∩M1 6= ∅}. Then, by Step 1, #N1 ≥ 2,
and there exist t1 < T andM2 (M1 such that N2 ≡ {i ∈ N : D(Ri, p(t1))∩M2 6= ∅} ( N1 and
M2 is underdemanded at p(t1). Since M2 is underdemanded at p(t1), Step 1 also implies that

#N2 ≥ 2, and there exist t2 < t1 and M3 ( M2 such that N3 ≡ {i ∈ N : D(Ri, p(t2)) ∩M3 6=
∅} ( N2 and M3 is underdemanded at p(t2). Repeating this argument inductively, there is a

sequence {Nk} ( N1 such that for each k ≥ 2, #Nk < #Nk−1 and #Nk ≥ 2. However, since
N1 is finite and for each k ≥ 2, Nk ( N1, this is a contradiction. ¤

D Proof of Fact 3.4.

The following theorem is useful to prove Fact 3.4.

Hall’s Theorem (Hall, 1935). Let N ≡ {1, . . . , n} and M ≡ {1, . . . ,m}. For each i ∈ N ,
let Di ⊆M . Then, (i) there is a one to one mapping x̂ from N to M such that for each i ∈ N ,
x̂(i) ∈ Di if and only if (ii) for each N

0 ⊆ N , #Si∈N 0 Di ≥ #N 0.

Fact 3.4 (Mishra and Talman, 2010). Let R ⊆ RE and R ∈ Rn. A price vector p is a

Walrasian equilibrium price for R if and only if no set of objects is overdemanded and no set

of objects is underdemanded at p for R.

Proof of Fact 3.4. First, we prove only if part of Fact 3.4. Then, we show if part.

Proof of “ONLY IF” part. Let p ∈ P (R). Then, there is an allocation z = (xi, ti)i∈N
satisfying conditions (WE-i) and (WE-ii) in Definition 3.1. Let M 0 ⊆M .
We show that M 0 is not overdemanded at p for R. Let N 0 ≡ {i ∈ N : D(Ri, p) ⊆ M 0}.

Since for each i ∈ N 0, xi ∈ D(Ri, p) ⊆ M 0, and each indivisible object is consumed at most
one agent, #N 0 = #{xi : i ∈ N 0}. Since {xi : i ∈ N 0} ⊆ M 0, #{xi : i ∈ N 0} ≤ #M 0. Thus,
#N 0 ≤ #M 0.
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We show that M 0 is not underdemanded at p for R. Let N 0 ≡ {i ∈ N : D(Ri, p)∩M 0 6= ∅}.
Suppose that for each x ∈ M 0, px > 0 and #N 0 < #M 0. Note that #N 0 < #M 0 implies that
there is x ∈ M 0 such that for all i ∈ N, xi 6= x. Then, condition (WE-ii) implies that px = 0.
This is a contradiction. Thus, #N 0 ≥ #M 0.
Proof of “IF” part. Assume that no set of objects is overdemanded and no set of objects is

underdemanded at p for R.

Let Z∗ ≡ {z = (xi, ti)i∈N ∈ Z : ∀ i ∈ N, xi ∈ D(Ri, p) and ti = pxi}. First, we show
Z∗ 6= ∅. Suppose that there is N 0 ⊆ N such that for each i ∈ N 0, 0 /∈ D(Ri, p) and

#{Si∈N 0 D(Ri, p)} < #N 0. Then {Si∈N 0 D(Ri, p)} is overdemanded at p for R. Thus, for
each N 0 ⊆ N , if for each i ∈ N 0, 0 /∈ D(Ri, p), then #{∪i∈N 0D(Ri, p)} ≥ #N 0. Then, by Hall’s
Theorem, there is z̄ ∈ Z such that for each i ∈ N , if 0 /∈ D(Ri, p), then x̄i ∈ D(Ri, p) and
t̄i = p

x̄i . Thus, Z∗ 6= ∅.
By definition, for each z ∈ Z∗, (z, p) satisfies (WE-i). We show that there is z ∈ Z∗ such

that (z, p) satisfies (WE-ii). Let M+(p) ≡ {x ∈M : px > 0}. Let

z ∈ arg max
z0∈Z∗

#{y ∈M+(p) : ∃ i ∈ N s.t. x0i = y}, (1)

that is, z maximizes over Z∗ the number of objects inM+(p) that are assigned to some agents.

Then, by the definition of Z∗, (z, p) satisfies (WE-i).
Let M 0 ≡ {y ∈ M+(p) : ∀ i ∈ N, xi 6= y}. Note that, if M0 = ∅, (z, p) also satisfies

(WE-ii). Thus, we show that M0 = ∅. By contradiction, suppose that M0 6= ∅.
Let N0 ≡ {i ∈ N : D(Ri, p) ∩M 0 6= ∅}. For each k = 1, 2, . . . , let Mk ≡ {y ∈ M : ∃ i ∈

Nk−1 s.t. xi = y} and Nk ≡ {i ∈ N : D(Ri, p)∩Mk 6= ∅}\{Sk−1
k0=0N

k0}. We claim by induction
that for each k ≥ 0, Mk ⊆M+(p) and Nk 6= ∅.
Induction argument:

Step 1. By the definition of M0, M 0 ⊆ M+(p). Since M 0 is not underdemanded at p for R,

#N0 ≥ #M 0. Thus, M 0 6= ∅ implies that N 0 6= ∅.
Step 2. Let K ≥ 1. As induction hypothesis, assume that for each k ≤ K − 1, Mk ⊆ M+(p)

and Nk 6= ∅.
First, we show that MK ⊆M+(p). Suppose that there is x ∈MK \M+(p). Then, px = 0.

By the induction hypothesis, there is a sequence {x(s), i(s)}Ks=1 such that
x(1) = x, xi(1) = x(1),

x(2) ∈ D(Ri(1), p) ∩MK−1, xi(2) = x(2),

x(3) ∈ D(Ri(2), p) ∩MK−2, xi(3) = x(3),
...

...

x(K) ∈ D(Ri(K−1) , p) ∩M 1, xi(K) = x(K).

Let x(K + 1) ∈ D(Ri(K), p) ∩M0. For each s ∈ {1, 2, . . . , K}, let ẑi(s) ≡ (xi(s+1), pxi(s+1)),
and for each j ∈ N \ {i(s)}Ks=1, let ẑj ≡ zj. Then, ẑ ∈ Z∗, and

#{y ∈M+(p) : ∃ i ∈ N s.t. x̂i = y} = #{y ∈M+(p) : ∃ i ∈ N s.t. xi = y}+ 1.
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This is a contradiction to (1). Thus, MK ⊆M+(p).

Next, we show that NK 6= ∅. By MK ⊆ M+(p) and the induction hypothesis,
SK
k=1M

k ⊆
M+(p). Thus, since

SK
k=0M

k is not underdemanded at p for R,

#

K[
k=0

Nk ≥ #
K[
k=0

Mk. (2)

By the definitions of Mk and Nk, for each k, k0 ∈ {0, 1, . . . , K} with k 6= k0, Nk ∩ Nk0 = ∅,
which also implies that Mk ∩Mk0 = ∅. Thus,

#

K[
k=0

Nk =

KX
k=0

#Nk, and #

K[
k=0

Mk =

KX
k=0

#Mk.

Then, by (2),

K−1X
k=0

#Nk +#NK =

KX
k=0

#Nk ≥
KX
k=0

#Mk =

KX
k=1

#Mk +#M 0. (3)

For each k ≥ 1, byMk ⊆M+(p), #Mk = #Nk−1. Thus,
PK−1

k=0 #N
k =

PK
k=1#M

k. Then,

by (3),

#NK ≥ #M0.

Thus, by M0 6= ∅, #NK ≥ 1, and so NK 6= ∅.
SinceM+(p) is finite, by the above induction argument, for largeK, #

SK
k=0M

k =
PK

k=0#M
k >

#M+(p). Since
SK
k=0M

k ⊆M+(p), this is a contradiction. ¤

E Proof of Fact 3.5.

Let R ⊆ RE .

Lemma E.1. Let i ∈ N and Ri ∈ R. Let p, q ∈ Rm+ and x, y ∈ L be such that x ∈ D(Ri, p)
and (y, qy)Pi (x, p

x). Then, y ∈M and qy < py.

Proof of Lemma E.1. Since (y, qy)Pi (x, p
x) and x ∈ D(Ri, p), we have (y, qy)Pi (x, px)Ri 0.

Thus, y ∈ M . Also, by x ∈ D(Ri, p), (y, qy)Pi (x, px)Ri (y, py). Thus, (y, qy)Pi (y, py) implies
that qy < py. ¤
Given R, R̂ ∈ Rn, (z, p) ∈ W (R), and (ẑ, p̂) ∈ W (R̂), let
N1 ≡ {i ∈ N : ẑi Pi zi}, M2 ≡ {x ∈M : px > p̂x},
X1 ≡ {x ∈ L : for some i ∈ N1, xi = x}, and bX1 ≡ {x ∈ L : for some i ∈ N1, x̂i = x}.

Lemma E.2: Decomposition (Demange and Gale, 1985). Let R ∈ Rn and (z, p) ∈
W (R). Let R̂ ∈ Rn be the d-truncation of R such that for each i ∈ N , di ≤ −CVi(0; zi), and
let (ẑ, p̂) ∈ W (R̂). Then, X1 = bX1 =M2.
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Proof of Lemma E.2. First, we show that bX1 ⊆ M 2. Let x ∈ bX1. Then, there is i ∈ N1

such that x̂i = x. By i ∈ N1, (x̂i, p̂
x̂i)Pi (xi, p

xi). Thus, by xi ∈ D(Ri, p), Lemma E.1 implies
that x̂i ∈M and p̂x̂i < px̂i , and so x = x̂i ∈M 2. Thus, bX1 ⊆M 2.

Next, we show that M 2 ⊆ X1. Let x ∈ M2. Then, x ∈ M and 0 ≤ p̂x < px. Thus, by

(WE-ii), there is i ∈ N such that xi = x. Since di ≤ −CVi(0; zi), Lemma A.2-(ii) implies that
(x̂i, p̂

x̂i)Pi (xi, p
xi). Thus, i ∈ N1, and so x = xi ∈ X1. Thus, M2 ⊆ X1.

Note that by the definition of X1 and bX1, #X1 ≤ #N1 and # bX1 ≤ #N1. Since bX1 ⊆
M2 ⊆ M , each agent in N1 receives a different object, and so # bX1 = #N1 ≥ #X1. SincebX1 ⊆ M 2 ⊆ X1, # bX1 ≤ #M 2 ≤ #X1. Thus, # bX1 = #M2 = #X1. By # bX1 = #M2 andbX1 ⊆M2, bX1 =M 2. By #M 2 = #X1 and M 2 ⊆ X1, M 2 = X1. ¤
Lemma E.3: Lattice Structure (Demange and Gale, 1985). Let R ∈ Rn and (z, p) ∈
W (R). Let R̂ be the d-truncation of R such that for each i ∈ N , di ≤ −CVi(0; zi), and let
(ẑ, p̂) ∈ W (R̂). Then, (i) p(−) ≡ p ∧ p̂ ∈ P (R), and (ii) p(+) ≡ p ∨ p̂ ∈ P (R̂).40
Proof of Lemma E.3. Let N1 ≡ {i ∈ N : ẑi Pi zi} and M2 ≡ {x ∈M : px > p̂x}.
Proof of (i). Let z(−) be an allocation such that for each i ∈ N1, z

(−)
i ≡ ẑi, and for each

i ∈ N \N1, z
(−)
i ≡ zi. We show that (z(−), p(−)) ∈ W (R).

Step 1. (z(−), p(−)) satisfies (WE-i).

Let i ∈ N and x ∈ L. In the following two cases, we show that (x(−)i , p(−)x
(−)
i )Ri (x, p

(−)x),
which implies x

(−)
i ∈ D(Ri, p(−)).

Case 1. i ∈ N1.

Since x
(−)
i = x̂i, by Lemma E.2, x

(−)
i ∈ M 2, and so x

(−)
i ∈ M and p̂x

(−)
i < px

(−)
i . Thus,

p(−)x
(−)
i = p̂x

(−)
i .

First, we assume that x ∈M 2. Then, by p(−)x = p̂x,

(x
(−)
i , p(−)x

(−)
i ) = ẑi R̂i (x, p̂

x) = (x, p(−)x),

where the preference relation follows from x̂i ∈ D(R̂i, p̂). Since R̂i is the di-truncation of Ri,
x
(−)
i 6= 0, and x 6= 0, Remark 3.1 implies that (x(−)i , p(−)x

(−)
i )Ri (x, p

(−)x).
Next, we assume that x /∈M2. Then, by p(−)x = px,

(x
(−)
i , p(−)x

(−)
i ) = ẑi Pi ziRi (x, p

x) = (x, p(−)x).

where the strict preference relation follows from i ∈ N1, and the second preference relation

from xi ∈ D(Ri, p).
Case 2. i /∈ N1

.

Since x
(−)
i = xi, by Lemma E.2, x

(−)
i /∈ M2. Thus, px

(−)
i ≤ p̂x(−)i or x

(−)
i = 0. First, we

assume that x ∈M2. Then, p(−)x = p̂x. Note that i /∈ N1 implies (x
(−)
i , p(−)x

(−)
i ) = ziRi ẑi.

Case 2-1. x̂i 6= 0.
40Denote p ∧ p̂ ≡ (min{px, p̂x})x∈M and p ∨ p̂ ≡ (max{px, p̂x})x∈M .
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By x̂i ∈ D(R̂i, p̂), ẑi R̂i (x, p̂x) = (x, p(−)x). Since R̂i is the di-truncation of Ri, x̂i 6= 0, and
x 6= 0, Remark 3.1 implies that ẑiRi (x, p̂x). Thus,

(x
(−)
i , p(−)x

(−)
i ) = ziRi ẑiRi (x, p̂

x) = (x, p(−)x).

Case 2-2. x̂i = 0.

Then, ẑi = 0. Since x̂i ∈ D(R̂i, p̂), dCV i(x;0) ≤ p̂x. Thus, if CVi(x;0) ≤dCV i(x; 0), then,
ẑiRi (x, p̂

x), which implies that,

(x
(−)
i , p(−)x

(−)
i ) = ziRi ẑiRi (x, p̂

x) = (x, p(−)x).

Next, assume that CVi(x; 0) >dCV i(x; 0). Then, since R̂i is the di-truncation of Ri, di > 0,
which implies that xi 6= 0.41 Then, by di ≤ −CVi(0; zi), CVi(x; zi) ≤dCV i(x;0) ≤ p̂x, which
implies that ziRi (x, p̂

x). Thus,

(x
(−)
i , p(−)x

(−)
i ) = ziRi (x, p̂

x) = (x, p(−)x).

Next, we assume that x /∈M2. Then, p(−)x = px. Since x(−)i = xi ∈ D(Ri, p),

(x
(−)
i , p(−)x

(−)
i ) = ziRi (x, p

x) = (x, p(−)x).

Step 2. (z(−), p(−)) satisfies (WE-ii).

Let x ∈ M be such that p(−)x > 0. We show that there is i ∈ N such that x
(−)
i = x. Since

p(−) = p ∧ p̂, p(−)x > 0 implies that px > 0 and p̂x > 0.
Case 1. x ∈M 2.

By Lemma E.2, there is i ∈ N1 such that x̂i = x. Since i ∈ N1, by construction of z(−),
x
(−)
i = x̂i. Thus, x

(−)
i = x.

Case 2. x /∈M 2.

Since px > 0, there is i ∈ N such that xi = x. By Lemma E.2, i /∈ N1. This implies that

x
(−)
i = xi. Thus, x

(−)
i = x. ¤

Proof of (ii). Let z(+) be an allocation such that for each i ∈ N1, z
(+)
i ≡ zi, and for each

i ∈ N \N1, z
(+)
i ≡ ẑi. We show that (z(+), p(+)) ∈ W (R̂).

Step 1. (z(+), p(+)) satisfies (WE-i).

Let i ∈ N and x ∈ L. In the following two cases, we show that (x(+)i , p(+)x
(+)
i ) R̂i (x, p

(+)x),

which implies x
(+)
i ∈ D(R̂i, p(+)).

Case 1. i ∈ N1.

Since x
(+)
i = xi, by Lemma E.2, x

(+)
i ∈ M2, and so x

(+)
i ∈ M and p̂x

(+)
i < px

(+)
i . Thus,

p(+)x
(+)
i = px

(+)
i . First, we assume that x ∈M 2. Since x

(+)
i = xi ∈ D(Ri, p) and p(+)x = px,

(x
(+)
i , p(+)x

(+)
i ) = ziRi (x, p

x) = (x, p(+)x).

41To see this, suppose that xi = 0. Then, di ≤ −CVi(0; zi) = 0, which contradicts di > 0.
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Since R̂i is the di-truncation of Ri, x
(+)
i 6= 0, and x 6= 0, Remark 3.1 implies that

(x
(+)
i , p(+)x

(+)
i ) R̂i (x, p

(+)x).

Next, we assume that x /∈M2. Then, px ≤ p̂x or x = 0.
Case 1-1. x 6= 0.
Since x

(+)
i = xi ∈ D(Ri, p) and p(+)x = p̂x ≥ px,

(x
(+)
i , p(+)x

(+)
i ) = ziRi (x, p

x)Ri (x, p
(+)x).

Since R̂i is the di-truncation of Ri and x
(+)
i 6= 0, (x(+)i , p(+)x

(+)
i ) R̂i (x, p

(+)x).

Case 1-2. x = 0.

Since R̂i is the di-truncation of Ri and di ≤ −CVi(0; zi),

(x
(+)
i , p(+)x

(+)
i ) = zi R̂i 0 = (x, p

(+)x).

Case 2. i /∈ N1
.

Since x
(+)
i = x̂i, by Lemma E.2, x

(+)
i /∈M 2. Thus, px

(+)
i ≤ p̂x(+)i or x

(+)
i = 0. If x

(+)
i = 0,

(x
(+)
i , p(+)x

(+)
i ) = 0 = ẑi R̂i (x, p̂

x) R̂i (x, p
(+)x),

where the first preference relation follows from x̂i ∈ D(R̂i, p̂), and the second from px
(+)
=

max{px, p̂x}.
Thus, we assume that x

(+)
i 6= 0. Then,

(x
(+)
i , p(+)x

(+)
i ) = ẑi R̂i (x, p̂

x) R̂i (x, p
(+)x),

where the first equality follows from px
(+)
i ≤ p̂x(+)i = p(+)x

(+)
i , the first preference relation from

x̂i ∈ D(R̂i, p̂), and the second preference relation from p(+)x = max{px, p̂x}.
Step 2. (x

(+)
i , p(+)) satisfies (WE-ii).

Let x ∈ M be such that p(+)x > 0. We show that there is i ∈ N such that x
(+)
i = x. Since

p(+) = p ∨ p̂, p(+)x > 0 implies that px > 0 or p̂x > 0.
Case 1. x ∈M 2.

By Lemma E.2, there is i ∈ N1 such that xi = x. Since i ∈ N1, x
(+)
i = xi. Thus, x

(+)
i = x.

Case 2. x /∈M 2
.

If p̂x = 0, then p̂x = 0 < px. Thus, x ∈ M2, which is a contradiction. Thus, p̂x > 0. Then,

there is i ∈ N such that x̂i = x. By Lemma E.2, i /∈ N1, which implies that x
(+)
i = x̂i. Thus,

x
(+)
i = x. ¤
The following is obtained as a corollary of Lemma E.3.

Corollary E.1. Let R ∈ Rn and p, p̂ ∈ P (R). Then, (i) p ∧ p̂ ∈ P (R) and (ii) p ∨ p̂ ∈ P (R).
We now proceed to prove Fact 3.5.
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Fact 3.5 (Roth and Sotomayor, 1990). Let R ∈ Rn and R̂ be the d-truncation of R such

that for each i ∈ N, di ≥ 0. Then, pmin(R̂) ≤ pmin(R).
Proof of Fact 3.5. Let (ẑ, p̂) ∈ W (R̂). Then, for each i ∈ N , since dCV i(0; ẑi) ≤ 0 and

di ≥ 0, −di ≤ 0 ≤ −dCV i(0; ẑi). Since R is the (−d)-truncation of R̂, Lemma E.3 implies
p(−) ≡ p̂ ∧ pmin(R) ∈ P (R̂). Thus, since pmin(R̂) ≤ p(−), pmin(R̂) ≤ pmin(R). ¤
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