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Figure S1 – related to Figure 1: Schematic diagrams of decision making processes used in 

this study and additional behavioral results  

(A) Schematic diagram for value-based decision making processes in both the Control and 

Other tasks based on a reinforcement learning (RL) model (a, b, respectively). (a) Box indicates 

the subjects’ (S’s) internal decision making process. As modeled by the RL, at the time of 

decision, subjects use the learned values of options to generate the choice probability of the 

stimulus, and accordingly make a choice decision. When the outcome is presented, the value of 

the chosen option (or the stimulus reward probability) is updated, using reward prediction error 

(RPE: discrepancy between S’s value and actual outcome). (b) Decision making process of 

subjects during the Other task is modeled by Simulation-RLsRPE+sAPE (S-RLsRPE+sAPE) model. The 

large box on the left indicates the subject’s internal process; the smaller box inside indicates the 

other’s (O’s) internal decision making process being simulated by the subject. The large box on 

the right, outlined by a thick dashed line, corresponds to what the other is ‘facing in this task,’ 

and is equivalent to what subjects were facing in the Control task (compare with the schematic 

in (a)). The hatched box inside corresponds to the other’s internal process, which is hidden from 

the subjects. As modeled by the S-RLsRPE+sAPE, at the time of decision, subjects use the learned 

simulated-other’s value to first generate the simulated-other’s choice probability (O’s Choice 

Prob), based on which they generate their own value (S’s Value) and the subject’s choice 

probability for predicting the other’s choice (S’s Choice Prob). Accordingly, subjects then 

predict the other’s choice. Once the outcome is shown, subjects update the simulated-other’s 

value using the simulated-other’s reward and action prediction errors (sRPE and sAPE), 

respectively; sRPE is the discrepancy between the simulated-other’s value and the other’s actual 

outcome, and sAPE is the discrepancy between the simulated-other’s choice probability and the 

other’s actual choice, in the value level. The simulated-other’s action prediction error is first 
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generated in the action level (denoted by sAPE’ in the figure) and transformed (indicated by T 

in the open circle) to the value level, becoming the sAPE to update the simulated-other’s value, 

together with the sRPE. 

(B) Effects of simulated-other’s reward and action prediction errors on subjects’ choice 

behavior on the next trials during the fMRI experiment. We show the mean percentages (±SEM) 

of times (across subjects; n=36) that the subject’s prediction of the other’s chosen option in the 

next trial coincided with the other’s chosen option in the previous trial in each of the four cases: 

when the reward prediction error is negative (two left bars) or positive (two right bars), and 

when the action prediction error is smaller (open bars) or larger (filled bars) than the median. 

(C) Subjects’ behavior when the other’s choices were generated by risk-neural RL (O-RL), 

risk-neutral humans (O-human), or a random-chooser (O-random). The results of this additional 

experiment support the rationale for the use of the fitted risk-neutral RL model in the main 

report. (a) Mean percentages (±SEM) of choosing the stimulus with the higher reward 

probability (across subjects; n=17); shown as the averages of all trials. Asterisks above the 

horizontal lines indicate significant differences between the indicated means (**P<0.01; 

two-tailed paired t-test; n.s., non-significant as P> 0.05). The subjects behaved similarly, 

regardless of whether the other’s choices were generated by the O-RL or an O-human, but they 

behaved differently when the other’s choices were randomly generated. Although not shown in 

the panel, here we note a baseline result; the O-RL-generated other’s choices of the stimulus 

with the higher reward probability were not significantly different from the O-human-generated 

other’s choices (P > 0.05, two-tailed paired t-test), but were significantly different from the 

O-random-generated other’s choices (P < 0.001). (b) Models’ fit to behaviors. Each bar (±SEM) 

indicates the log likelihood of each model, averaged over subjects and normalized by the 

number of trials (thus a larger magnitude indicates a better fit to behavior). *P<0.05, one-tailed 
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paired t-test over AIC distributions. The comparison indicates that S-RLsRPE+sAPE model best fit 

all three choice conditions (O-RL, O-human and O-random). Abbreviations for each model are 

the same in Figure 1D. See Supplemental Experimental Procedures for further details of this 

experiment. 

(D) Subjects’ behavior with and without an additional constraint on reward magnitude 

randomization. The results of this additional experiment demonstrate that the subjects’ 

behaviors in both the Control and Other tasks did not significantly differ with or without the 

additional constraint. (a) Mean percentages (±SEM) of choosing the stimulus with the higher 

reward probability (across subjects; n=21) with and without the constraint are shown in the 

same format as panel C; n.s., non-significant as P> 0.05. Blue for the Control task and red for 

the Other task. In both tasks, the subjects’ behaviors were not significantly different under the 

two conditions. (b) Models’ fit to behaviors in the Control (left) and Other (right) tasks. We 

show the log likelihood of each model in the same format as panel C (b); *P<0.05 **P<0.01, 

one-tailed paired t-test over AIC distributions. In both tasks, the best fitted model reported in the 

main text was also the best fitted model in the condition without the constraint. See 

Supplemental Experimental Procedures for further details of this experiment.  
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Figure S2 related to Figure 2: Additional results of the neural correlates of simulated 

other’s reward and action prediction errors 

(A) Time course of the component parts of the neural correlates of the simulated-other’s reward 

prediction error in the vmPFC. Time course of effect sizes of the other’s reward outcome 

(orange) and the simulated-other’s reward probability (pink); the corresponding colored shading 

indicates ±SEM (n=36). To generate this plot, we first defined an ROI in the vmPFC based on 

the BOLD signals that were significantly correlated with the simulated-other’s reward 

prediction error (Figure 2A). To investigate the two components of the error (the 

simulated-other’s reward prediction error equals “the other’s reward outcome (1 if the 

other-chosen stimulus is the rewarded stimulus, or 0 otherwise)” minus “the simulated-other’s 

reward probability”), we transformed the BOLD signals in the ROI into z-scores over trials for 

each subject. Each time slice had a 200-ms resolution starting at, and aligned to, the onset of the 

OUTCOME phase and ended 16 s later. We then performed a first-order linear regression, 

“z-scored BOLD signals = a Other’s Reward Identity + b Simulated-Other’s Reward 

Probability” in each time slice for each subject. The mean and SEM of the estimated 

coefficients (effect sizes) for a  and b over subjects were then plotted (orange and pink curves 

correspond to a  and b, respectively). Gray shading indicates the OUTCOME duration. The 
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thick horizontal lines in the corresponding colors at the bottom indicate the periods during 

which the effect was significantly different from zero (p < 0.05, t-test). The transformation to 

z-scores mentioned above was employed so that the effect sizes could be compared among 

different time slices. We used a one-tailed t-test to examine the significance of the effect size in 

each time slice against the null hypothesis that it equaled zero.  

(B) Neural activity significantly modulated (P < 0.05, corrected) by the action prediction error 

in two levels. Activity modulated by the ‘after-transformed’ (in value level) action prediction 

error (green), by the untransformed (in the action level) action prediction error (purple), and by 

the overlap of two activations (dark blue); the action prediction error in the action level 

significantly modulated BOLD signals (P < 0.05, corrected) in the dorsomedial prefrontal 

cortex (dmPFC; TAL x=6, y=26, z=46), the right dorsolateral prefrontal cortex (dlPFC; x=30, 

y=8, z=46), and the bilateral temporoparietal junction and posterior superior temporal sulcus 

(TPJ/pSTS; x=45, y= -52, z=43 and x=-39, y=-67, z=46), in addition to some other significantly 

modulated areas. The solid, dotted-dashed, and dashed ovals highlight the overlap in the dmPFC, 

the right dlPFC and the TPJ/pSTS, respectively. The maps are thresholded at P < 0.005, 

uncorrected for display. 
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Figure S3 related to Figure 4: Reward prediction error signals in the ventral striatum 

(vStr) during the Control task.  

(A) BOLD signals observed in the vStr reflecting the reward prediction error at the time of 

OUTCOME in the Control task (P < 0.05, corrected; Table 2; The map is thresholded at P < 

0.005, uncorrected for display). To precisely assess striatal activity, we used a local registration 

procedure focusing on the anterior striatum. The normalized striatum space was first defined 

with reference to four landmarks (the anterior commissure and the most anterior, most dorsal, 

and most lateral points of the striatum), and then the functional images were transformed into 

that space.  

(B) Effect sizes of the vStr activity (error bars= ±SEM; n=36) representing the subjects’ reward 

probability in the Other task (RP; P=0.13, one-tailed t-test), the simulated-other’s reward 

prediction error in the Other task (sRPE; P=0.80), and the reward probability in the Control task 

(RP; P=0.13). n.s. = not significant.  
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Supplemental Tables  

Learning rate,  Stochasticity in Risk parameter
the choices,  pseudo-R 2

Median

25    percentile

75    percentile

th

th



RL

PR

Median

25    percentile

75    percentile

th

th

0.054

0.084

0.099

0.058

0.077

0.104

0.091

0.121

0.202

2.517

3.178

4.125

1.000

1.388

2.700

1.000

1.000

1.000

0.628

0.725

0.786

0.257

0.313

0.415

Table S1 related to Figure 1. Best fitting parameter estimates

Learning rate,  Stochasticity in Risk parameter
the choices,  pseudo-R 2

Median

25    percentile

75    percentile

th

th



Median

25    percentile

75    percentile

th

th

0.046

0.073

0.108

-

-

-

0.078

0.097

0.105

1.000

1.000

1.000

0.615

0.720

0.752

MG

Median

25    percentile

75    percentile

th

th

-

-

-

0.014

0.019

0.025

-

-

-

0.123

0.202

0.255

Control task

Other task

Median

25    percentile

75    percentile

th

th

-

-

-

0.014

0.072

0.180

0.073

0.093

0.104

0.529

0.581

1.000

0.569

0.686

0.733

sRPE sAPE

0.026

0.051

0.089

0.001

0.011

0.057

0.093

0.102

0.126

0.610

1.000

1.000

0.659

0.735

0.781

S-free RL

Median

25    percentile

75    percentile

th

th

0.014

0.044

0.063

0.030

0.046

0.064

1.000

1.000

1.000

0.123

0.175

0.230

S-RL

S-RL

S-RL

sRPE + sAPE

sAPE

sRPE

 

The best-fitting parameter estimates for each model are shown as the median plus the 1st and 3rd 

quartiles across subjects. Also shown are medians and quartiles for the pseudo-
2R  at the best 

fitting parameters, a normalized measure of the degree to which the model explained the choice 

data (Daw et al., 2006). Abbreviations for each model are the same in Figure 1D.  
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Table S2 related to Figure 1. Model comparison among S-RL                , S-RL        and S-RL        models

AIC

S-RL

S-RL

TotalMean SEM
# Subjects
favoring FS-RL Paired t-test

40.6 2.3

43.0 2.4

1461.1

1547.0 20 t(35) = 3.25
P = 0.0013

- -

Fit all subjects
together

corrected AIC

TotalMean SEM
# Subjects
favoring FS-RL Paired t-test

41.0 2.3

43.2 2.4

1475.2

1553.9 19 t(35) = 2.98
P = 0.0026

- -

Model Evidence (negative, log)

S-RL

S-RL

Total (GBF)Mean SEM
# Subjects
favoring FS-RL Probability

19.8 1.3

21.2 1.3

711.2

763.0 24

1.00-

1618.8

1625.5

Exceedance

S-RL 55.5 5.5 1997.4 23 55.7 5.5 2005.8 231778.5t(35) = 3.20
P = 0.0015

t(35) = 3.17
P = 0.0016

S-RL 22.6 1.3 813.1 28

0.00

0.00

sRPE+ sAPE sAPEsRPE

sRPE + sAPE

sAPE

sRPE

sRPE + sAPE

sAPE

sRPE

 

Results of comparing the goodness of fit of the S-RLsAPE, S-RLsRPE, and S-RLsRPE+sAPE models to 

choice behavior in the Other task (abbreviations are the same as in Figure 1D). AIC and 

corrected AIC (cAIC=AIC+    2 1 1k k n k   , where k  and n  are the number of free 

parameters and the sample size, respectively (Burnham and Anderson, 2002); smaller values 

indicate a better fit): the average and total values across subjects; the number of subjects 

favoring S-RLsRPE+sAPE; and paired t-test over the distribution of individual subject’s differences; 

AIC fitted to all subjects together (assuming a single set of parameters for all subjects). 

Bayesian model comparison based on the negative log model evidence (smaller values indicate 

a better fit): the average values; the total values, often called a group Bayes factor (GBF); the 

number of subjects favoring S-RLsRPE+sAPE; and the Bayesian exceedance probability (Stephan et 

al., 2009). The so-called model evidence of each model’s fit to each subject’s behavior was 

obtained using the variational Bayes method (with factorized approximations) to integrate out 

the model’s free parameters (Bishop, 2006); prior distributions of the parameters were assumed 

to be uniform (with ranges of [0,0.5] for  , [0,1] for  RPE RPE APEw     , [ 7,15]  

for  log  ). To compute the exceedance probabilities, we used the spm_BMS routine from 

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). 
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Supplemental Experimental Procedures 

 

Subjects 

Thirty-nine healthy, normal subjects (11 females, 28 males; age range: 20-35 years; mean ± 

standard deviation, 22.6 ± 4.0) participated in the fMRI experiment. Subjects were pre-assessed 

to exclude those with any previous history of neurological or psychiatric illness. Before the 

experiment, subjects were instructed about the experimental tasks, and informed that they would 

receive monetary rewards proportional to the average of all the points they earned in four test 

sessions (two fMRI scan sessions, from which the results of both behavioral and imaging data 

are reported in the main text, and two other sessions not involving fMRI, the results of which 

were not reported in the main text; see below) in addition to a base participation fee (6000 yen). 

The total monetary reimbursement in Yen equaled 200 � (average points – 20) + 6000. A 

separate behavioral experiment (see Figure 1C) involved 24 normal subjects (11 females, 13 

males; age range, 18-24 years; mean, 20.0 ± 1.2 years) who did not participate in the fMRI 

experiment. The procedures used were virtually identical to those used in the fMRI experiment. 

These subjects received monetary rewards based on the points they earned during three 

experimental sessions (see below) in addition to the base fee. All subjects in both experiments 

gave their informed written consent, and the study was approved by RIKEN’S Third Research 

Ethics Committee. 

 

Experimental tasks 

Two tasks, the Control and the Other, were conducted (Figure 1A). Each task consisted of 

multiple trials in which different pairs of fractal stimuli were used. Each trial within both tasks 

consisted of four phases. 



Supplemental Information: Simulation learning of other’s decisions 

12/35 
 

The Control task was a one-armed bandit task (Behrens et al., 2007), in which subjects 

were instructed to choose the stimulus that would maximize the number of points earned. At the 

beginning of each trial, subjects were presented with a pair of fractal stimuli with a fixation 

point between them. The two stimuli with randomly assigned reward magnitudes, indicated by 

numbers in their centers, were randomly positioned left or right of the fixation point in every 

trial (for 3-7 s; CUE phase; Figure 1A). In every trial, the reward magnitude for one stimulus 

(R) was randomly sampled from a uniform distribution ranging from 1 to 99 points, while the 

reward for the other stimulus was set to (100-R); this randomization was further constrained to 

ensure that the same stimulus was not assigned the higher magnitude in three successive trials. 

This constraint was introduced, in addition to reward magnitude randomization, to further 

ensure that subjects did not repeatedly choose the same stimulus (see the control analysis 

described below). When the fixation point was changed to a question mark, subjects made their 

choice by pressing a button with their right hand within 1.5 s (RESPONSE phase). The chosen 

stimulus was immediately highlighted by a gray frame, initiating the INTER-STIMULUS 

INTERVAL (ISI) phase. After the ISI phase (3-7 s), the rewarded stimulus was revealed in the 

center of the screen for 3 s (OUTCOME phase). This was followed by a 3-5 s intertrial interval 

(ITI) before the next trial was commenced. In both the Control and Other tasks, one of the two 

stimuli was arbitrarily designated to have a higher reward probability (set to be 0.75, and 

thereby setting the other stimulus probability to 0.25). Subjects were not informed of the 

probability, but were instructed that the reward probabilities were independent of the reward 

magnitudes. 

In the Other task, subjects were instructed to predict the choice of another person who 

had performed the Control task. From the CUE to the ISI phase, the images on the screen were 

identical to those in the Control task in terms of presentation. However, the two stimuli 
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presented in the CUE phase were generated for the other person performing the Control task. 

Upon appearance of the question mark at the fixation point (RESPONSE), subjects predicted 

the choice made by the other person; this choice was immediately highlighted by a gray frame, 

initiating the ISI. In the OUTCOME phase, the other person’s actual choice was highlighted by 

a red frame, and the rewarded stimulus for the other was indicated in the center. For every trial 

in which the subjects’ predicted choice matched the other’s actual choice, they earned a fixed 

reward of 50 points. The Other task was designed to minimize differences from the Control task, 

so that the number of phases was the same between the two tasks and in terms of visual 

presentation, only the red frame, indicating the other’s choices, was added at the OUTCOME 

phase in the Other task. 

Subjects were told they would see on the screen the choices of another subject who had 

participated in previous experiments. However, the choices of the other subject were actually 

generated by an RL model (see below). In the Other task in the fMRI experiment, the RL model 

generated choices on a risk-neutral basis; the model’s parameters ( 0.14, 0.098, 1     ; see 

below) were determined from average values obtained in a pilot experiment (independent from 

the experiments reported in this study). Accordingly, the choices generated by the model were 

considered to approximately mimic average (risk-neutral) human behavior in this task, and thus 

allowed us to use the same type of the other’s behavior for all subjects; this approach was 

supported by a separate behavioral control analysis (see below). In post-experiment interviews, 

we debriefed each subject and confirmed that they had no doubt that the choices were being 

made by someone else. 

For the experiment in the MRI scanner, two tasks, one Control and one Other, were 

employed. Each task consisted of 90 trials, and the order of the two tasks was counter-balanced 

across subjects. Before these tasks, subjects performed a short exercise session (Control task, 20 
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trials) inside the MRI scanner. Before entering the scanner, they were first familiarized with the 

tasks through performance of a few tens of trials in both tasks using a shorter timing sequence 

for the phases, after which they performed two test sessions: 120 trials of both the Control and 

Other tasks, the order of which was counter-balanced across subjects. Subjects also obtained 

earnings in both test sessions. The results of these pre-scanning sessions were not reported in 

the present paper, as they were essentially the same as those from the two fMRI sessions 

reported in the paper. Finally, subjects performed the two tasks (40 trials for each) with the 

same timing sequence used for experiments involving the MRI scanner.  

Three conditions were used in a separate behavioral experiment (Figure 1C): one Control 

and two Others, and the order of the three was randomized across subjects. As in the fMRI 

experiment, these additional subjects also went through a training session before starting the 

main experiment. The settings for the Control and ‘Other I’ task were the same as described for 

the fMRI experiment, but in the ‘Other II’ task, a risk-aversive RL model 

( 0.14, 0.098, 1.568     ) was used to generate the other’s choices instead of the 

risk-neutral model. After altering the magnitude of   while fixing the magnitudes of the other 

two parameters, as in the original Other task, the RL model was found to choose the stimulus 

with the higher reward probability in the Control task with the same average percentage as the 

subjects in the fMRI experiment who behaved risk-aversively  i.e., there was no statistical 

difference after 100 runs of the model. After completing the experiments, we asked subjects via 

questionnaires: (i) Which information did you use for predicting the other’s choices in the Other 

task: the other’s outcomes, the other’s choices, or both?; (ii) Did you notice any differences 

between the other’s behaviors under the two different Other conditions? A majority of subjects 

reported that (i) they considered both sources of information (20/22 subjects) and (ii) they 

noticed the difference in the two conditions (21/22 subjects). These answers are further evidence 
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that subjects simulated the other’s value-based decision making and used both the 

simulated-other’s reward error and action prediction error.  

 

Behavioral analysis and computational models fitted to behavior  

Among the 39 subjects who underwent fMRI scans, three were not included in the final 

analyses because their choice behaviors were found to be outliers in the pool of subjects (P < 

0.01, Thompson’s test). The remaining 36 subjects were used for the subsequent behavioral and 

fMRI data analyses. For the behavioral analyses shown in Figure 1C, two of the 24 subjects 

were not included due to outlier behavior (P < 0.01, Thompson’s test), leaving 22 subjects for 

the final analysis. 

We fitted several computational models to the subjects’ choice behaviors in both tasks. 

All of these models were based on and modified from the Q learning model, a basic RL model 

(Sutton and Barto, 1998), which is referred to simply as the RL model, hereafter (Supplemental 

Figure S1A). In the Control task, the RL model, being risk-neutral, constructed values Qs of the 

two stimuli in each trial, given by  

     S S SQ A R A p A  ,  (1) 

where ( )SR A  is the reward magnitude of stimulus A in a given trial, ( )Sp A  is the reward 

probability of stimulus A, and the subscript, s, refers to the subject (under simulation-free RL 

formulation). The value of the other stimulus, B, was similarly derived; for simplicity, therefore, 

we will only provide equations for stimulus A. To account for possible risk-aversive (or 

risk-prone) behaviors of subjects, we followed the approach taken by Behrens et al. (2007); we 

included a free parameter that replaced ( )Sp A  in Eq (1) with  ( ),SF p A  ; where   is a 

non-negative free parameter for risk behavior, and the function  ,F p   is a simple non-linear 
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transform within the bounds of 0 and 1, given by  

   , max min ( 0.5) 0.5 ,1 ,0F p p        .  (2) 

When 1  ,  ( ), ( )S SF p A p A  , leading to risk-neutral behavior, whereas 1   and 1   

imply risk-aversive and risk-prone behavior, respectively.  

The RL model chose either stimulus A or B based on the choice probability (of stimulus 

A)  Sq A , given by 

      S S Sq A f Q A Q B  , (3) 

where    1 1 expf z z      is a sigmoidal function allowing probabilistic choices with 

a free parameter , which adjusts the degree of stochasticity in the choices (Sutton and Barto, 

1998). Once a choice was made and the reward outcome was revealed, the RL model utilized 

the reward prediction error to update the stimulus value based on the Rescorla-Wagner rule. In 

the context of our tasks, only the reward probability was updated (Behrens et al., 2007) because 

this was the only variable unknown to subjects. Accordingly, when stimulus A was chosen, the 

reward prediction error was given by 

 S S Sr p A   , (4) 

where sr  is the reward outcome (1 if stimulus A is rewarded and 0 otherwise). The reward 

probability was updated using    S S Sp A p A   , where  , another free parameter, is 

the learning rate.  

Two variants of the RL model were also fitted to the behavior in the Control task. To 

compute the stimulus values, the two models ignored either the reward magnitude or the reward 

probability, thus setting    S SQ A p A  or    S SQ A R A , respectively. We also tested a 
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model using    ( ),S SQ A F p A  , but its fit was significantly worse than that of the RL 

model (data not shown).  

The model with the best fit to the behavior in the Other task was the model that we called 

Simulation-RLsRPE+sAPE model (S-RLsRPE+sAPE) (see Supplemental Figure S1A). In each trial, the 

S-RLsRPE+sAPE model computed the subject’s choice probability       S S S
q A f Q A Q B    , 

where we used s  instead of s  to indicate subjects, because  S
q A  

was computed in a 

“simulation-based” manner  i.e., by simulating the other’s RL model. We reserved s  to 

indicate subjects when computing in a “simulation-free” manner. Here,    
S SSQ A R p A    

indicates stimulus A’s value for subjects;   ( ) ( )S S SR R A R B   denotes the fixed reward 

outcome that subjects would obtain if their prediction of the other’s choice matched the other’s 

actual choice. When simulating the other’s RL model, the subjects’ stimulus reward probability 

is equivalent to the simulated-other’s choice probability,    OS
p A q A . The 

simulated-other’s choice probability as well as the simulated-other’s value of stimulus A are 

given by 

      O O Oq A f Q A Q B   and      O O OQ A R A p A  ,  (5) 

where  OR A  is the reward magnitude of stimulus A for the other in the trial, and  Op A  

is the simulated-other’s reward probability for stimulus A. When inclusion of the risk parameter 

produced a better fit to behavior,  Op A  in the second equation was replaced by 

 ( ),OF p A  . 

When the outcome for the other was revealed (denoted by Or , which was 1 if the 

other received a reward and 0 otherwise), the S-RLsRPE+sAPE model updated the reward 
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probability, not only using the simulated-other’s reward prediction error but also the 

simulated-other’s action prediction error. The simulated-other’s reward prediction error was 

given by    O O OA r p A   . The simulated-other’s action prediction error was generated 

first in the ‘action’ level as the difference between the other’s actual choice and the 

simulated-other’s choice probability, given by    ( ) ( ) 1O A O OA I A q A q A      , wherein 

the choice probability is generated through a sigmoid function using the difference of two 

values (1st equation in Eq (5)); thus, to be used for updating the simulated-other’s value, the 

action prediction error needed to be ‘pulled back’, or transformed, from the action to the value 

level (Supplemental Figure S1A). As this error should act as a learning signal to update the 

simulated-other’s value, which is to cause a small change of the value in the value level, the 

transformation of the error between the two levels can be formulated by making 

correspondingly small changes in both of the levels. This is accomplished using a general notion 

of variation. Given function ( )z f x , a variation equation is given by ( )z f x x  , which 

indicates how small changes between both sides ( ,z x  ) should match, and in our 

case, z and x correspond to the simulated-other’s choice probability and the chosen value, 

respectively. Applying the variation formulation to our case leads to,  

          /O O O O Oq A f Q A Q B Q A Q A       . (6) 

When we set ( ) ( )O Oq A A   and replaced the 1st term on the left hand side of the equation 

with K, we let    /O OQ A q A K   when 0K  ; otherwise   0OQ A  . By simple 

calculation, we obtain      O O OK R A q A q B , where   is omitted on the right side 

because it will be absorbed into the learning rate. Thus, the simulated-other’s action prediction 
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error (in the value level) is given by ( ) ( ) /O OA A K   ( 0)K  ; we refer to the 

simulated-other’s action prediction error as being in the value level, unless explicitly stated 

otherwise. Then, the S-RLsRPE+sAPE updated the simulated-other’s reward probability, using both 

the simulated-other’s reward and action prediction errors together, given by  

    ( ) ( )O O sRPE O sAPE Op A p A A A      , (7) 

where the two  ’s indicate the learning rates of the reward and action prediction errors. In 

both the Control and Other tasks, the learned variable is a reward probability dissociated from 

reward magnitudes (Behrens et al., 2008; Behrens et al., 2007; Boorman et al., 2009), as 

magnitudes were randomly assigned to the stimuli, and independent of the stimulus (see below 

for the control analysis confirming this view).  

The two other Simulation-RL models, each using only one of the two prediction errors, 

were modeled by using either sRPE O   or sAPE O   to update ( )Op A  in Eq (7). The 

simulation-free RL model, which focused only on the subjects’ own outcomes during the Other 

task, set the choice probability to       S S Sq A f Q A Q B  , where    S S SQ A R p A  , 

given the subjects’ reward SR  and the estimated reward probability ( )Sp A .  Sp A  was 

replaced by  ( ),SF p A   whenever a better fit to behavior was obtained by including the risk 

parameter. The reward probability was updated by    S S Sp A p A    using the reward 

prediction error    S S S SC r p A   .  

We used a maximum likelihood approach to fit the models to the subjects’ behaviors. For 

individual subjects, we minimized the negative log-likelihood of the sum of each model’s 

choice probabilities against the actual choices made by subjects (matlab command fminsearch; 
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Matlab R2007b, MathWorks). Each minimization was repeated 50 times, using randomly 

generated initial values. The model with the best minimization was then selected, which also 

determined the estimated values of the model’s free parameters. For comparisons of goodness 

of fit, we used Akaike’s Information Criterion (AIC) to take into account the different numbers 

of free parameters between models. We first compared the total AIC values between two 

models, calculating each AIC value as a summation of all subjects’ AIC values. Second, to take 

into account variation in the AIC values across subjects, we also used a paired t-test to compare 

the distribution of differences in the AIC values obtained in the two models. When the results of 

the two comparisons were consistent, we reported the results of the second analysis in the 

Results (e.g., in Figure 1D), since this was more stringent; otherwise, we reported the results for 

both comparisons. For a given model’s fit to each subject’s behavior in a task, the inclusion of 

the risk parameter was determined using the AIC value to compare the fit by two variants of the 

given model, with or without including the risk parameter (the risk parameter, when included, 

was optimized together with the other parameters in the minimization); the risk parameter was 

included only if it yielded a better fit for the given model with the subject in the task.  

When we reported the accuracy of each model’s performance averaged across subjects in 

Results, the accuracy was expressed as a percentage, across trials within a given task, of the 

model’s stimuli with the higher choice probability that matched the stimulus actually chosen by 

subjects. 

Given that the S-RLsRPE+sAPE model had the best fit to the behavior in the Other task, we 

performed two control analyses, which provided evidence supporting separate contributions of 

the simulated-other’s reward and action prediction errors to simulation learning. First, we 

examined Spearman’s correlation coefficient between the two errors; it was found to be low 

across subjects (mean ± standard deviation: -0.018 ± 0.129); at each individual, only 2 of 36 
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subjects had correlations significantly different from zero (P < 0.05, two-tailed; the two 

subjects’ correlation coefficients corresponded to the maximum and minimum magnitudes 

among the subjects, 0.198 and -0.271, respectively). Also, the correlation between the learning 

rates of the two errors was low (-0.155), insignificantly different from zero (P=0.366). As a 

further confirmation, we also examined Spearman’s correlation between the information 

provided by the other’s rewards and actions (using a binary representation); it was low (-0.042 ± 

0.125); at each individual, only 2 subjects (who were different from the two subjects above) had 

correlations significantly different from zero (P < 0.05, two-tailed; the two subjects’ correlation 

coefficients corresponded to the maximum and minimum, 0.300 and -0.277, respectively). 

Together, these results indicate that the two errors can in principle have a separate contribution 

to learning to simulate the other’s decisions.  

Second, we conducted a two-way repeated measures ANOVA analysis to examine 

whether the subjects’ behavior differs with respect to the magnitudes of the simulated-other’s 

action prediction error in the previous trial (Supplemental Figure S1B). The S-RLsRPE+sAPE 

differs from the S-RLsRPE in that it uses the action prediction error as an additional learning 

signal. Therefore, the S-RLsRPE+sAPE should predict that, in a given trial, the subjects are more 

inclined to choose the same option that the other chose in the previous trial, as the 

simulated-other’s action prediction error is larger; whereas the S-RLsRPE is insensitive to the 

information of this error. We examined this hypothesis by analyzing the percentage of times that, 

in a given trial, the subject’s choice coincided with the other’s chosen option in the previous 

trial. For the first variable of the ANOVA, we used the median of the action prediction error (for 

each subject) to sort the trials during the Other task into two groups. As the simulated-other’s 

reward prediction error also contributes to learning, it was also of particular interest to contrast 

the cases when the reward prediction error was either negative or positive, because the effects of 
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the reward and action prediction errors on updating the simulated-other’s reward probability are 

opposite only when the reward prediction error is negative. Thus, as the second variable in the 

ANOVA, we used the sign of the reward prediction error to also classify the trials into the two 

groups.  

We also examined the fit of several variants of the S-RLsRPE+sAPE model to the behavior in 

the Other task, compared with that of the original S-RLsRPE+sAPE model. First, we examined two 

variants including risk parameters differently from the original model and the results of the 

comparison of the fit indicated that the original S-RLsRPE+sAPE model fit equally or better to the 

behavior compared with the two variants. In the original model, the risk parameter was included 

in the simulated-other’s choice probability, but not in the subject’s own choice probability. This 

was because we reasoned that the effect of the risk parameter was relatively negligible at the 

subject’s level of valuation, as the reward magnitude was fixed for subjects. However, we also 

examined two other variants of the S-RLsRPE+sAPE model: one that included a risk parameter only 

at the subject’s level and another that included risk parameters at both the subject’s and 

simulated-other’s levels. The original S-RLsRPE+sAPE model fit the behavior significantly better 

than the variant that included a risk parameter only at the subject’s level (1461.1 vs. 1543.1; in 

total AIC values and P < 0.01 by paired t-test). The original was also significantly better than 

the variant that included risk parameters at both levels (1461.1 vs. 1466.4; total AIC values), 

though the original did not significantly differ from the variant based on a paired t-test (P = 

0.36).  

Second, to examine a variant of the S-RLsRPE+sAPE model that used the simulated-other’s 

action prediction error only for biasing the subject’s choices in the next trial, ( )sAPE O A   was 

omitted from Eq (7) and the subject’s choice probability was modified as 
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       ' ( )OS S S
q A f Q A Q B A     , where   is a free parameter to determine the 

influence of the bias (determined when maximizing likelihood), and '
O  is the 

simulated-other’s action prediction error in the action level from the previous trial (Note: We 

also examined the case in which we the action prediction error in the value level was use for 

biasing, i.e. using        ( )OS S S
q A f Q A Q B A     ; the result was the same: P < 

0.001, one-tailed paired t-test). 

 

Additional control analyses on behavior and computational models fitted to behavior  

In addition to the results reported in the main text, we summarize here further control 

analyses using the same data in the main text.  

We conducted a control analysis on the non-linear risk function (Eq. 2) for capturing the 

subjects’ risk tendency observed in experimental tasks. Overall, the results of the control 

analysis support the use of the non-linear risk function; or at the very least, there is no reason to 

believe that the other functions examined in the control analysis can better account for the risk 

behavior. We examined two other representative approaches accounting for risk behavior: using 

the power function or mean-variance functions, both of which are often used in neuroscience 

studies (Huettel et al., 2006; Tobler et al., 2009). The power function had the form, 

( ) { ( )} ( )Q A R A p A  , where subscripts were dropped for simplicity and   in the power of 

the reward magnitude is the risk parameter in this function. The mean-variance function is, 

   2( ) [ ( )] Variance[ ( )] ( ) ( ) { ( )} ( )(1 ( ))Q A E R A R A R A P A R A P A P A        ,  

where again   is the risk parameter of the function. First, we compared the fits of the three 

functions to the subjects’ behavior in the Control task. The non-linear function (Eq. 2) fit the 
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behavior equally as well as the power and mean-variance functions (P = 0.12 and P = 0.18, 

respectively, by paired t-test over the AIC distributions). The correlations of the risk parameter 

values between the non-linear function and each of the two other functions is very high 

(Spearman’s correlation coefficient: 0.93 and 0.95 for the power and mean-variance function, 

respectively), suggesting that they capture the nature of the risk behavior in a very similar way. 

Second, we then examined a variant of the power function, given by 

'( ) { ( )} { ( )}Q A R A p A    ; that was used in another study (Boorman et al., 2009), in which a 

task was somewhat similar to the Control task in this study. This model’s fit was again not 

different from that used in the main study (P = 0.37). Third, we also compared these different 

approaches for fitting the models to the behavior in the Other task; the non-linear function had a 

comparable or better fit than the other three functions (P < 0.05 with the original power function, 

P < 0.01 with the mean-variance function, and P = 0.18 with the variant of the power function).  

We conducted a control analysis to address a possible concern of whether reward 

magnitudes might have an effect on learning the reward probability; for instance, missing out on 

a large reward magnitude might have a particular effect on learning, compared to missing out on 

a relatively small reward. In the original model settings for both Control and Other tasks, we did 

not include any parameters that might take into account effects of reward magnitudes on 

learning reward probability. This was because in our experimental tasks, reward magnitudes 

were randomized every trial, independently (or almost completely independently at the very 

least given the additional constraint on reward magnitude randomization) from the reward 

probability of the stimulus. Thus we consider it neither possible nor necessary to learn to 

associate specific reward magnitudes with specific stimuli, as supported by earlier studies using 

the same or similar task for the Control task (Behrens et al., 2007; Boorman et al., 2009). 

Nevertheless, to address the concern, we examined the behavioral fits of several variants of the 
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models best fitted to each task (the RL model in the Control task and S-RLsRPE+sAPE model in the 

Other task). Using two approaches, we constructed models’ variants that had different learning 

parameters depending on reward magnitudes as well as on whether reward was gained or missed. 

The first approach was to allow different learning rates for when the reward magnitude of the 

stimulus chosen in the trial was smaller or larger than 50 (since reward magnitudes were 

randomly assigned to the two stimuli as R and 100-R). Thus, the variant of the RL model in the 

Control task (hereafter called the 1st-variant RL model) had two learning rate parameters, only 

one of which was used for updating the value, depending on the magnitude of the stimulus 

chosen by the subject in the trial. Similarly, for the S-RLsRPE+sAPE model in the Other task, we 

allowed different learning parameters depending on the reward magnitude (for the other) of the 

stimulus chosen by the other in Other task. There were three variants of the S-RLsRPE+sAPE 

model; the ‘1st-R-variant’ and ‘1st-A-variant’ S-RLsRPE+sAPE model had the two different learning 

parameters only for the simulated-other’s reward and action prediction error, respectively; and 

the ‘1st-RA-variant’ S-RLsRPE+sAPE model had the two different learning parameters for each of 

the two errors. The second approach was to further allow different learning parameters 

depending on whether the reward was obtained or missed. Thus, this variant of the RL model in 

the Control task (the 2nd-variant RL model) had four learning parameters, one of which was 

used in each trial, depending on the magnitude of the stimulus chosen by the subject in the trial 

and on whether the chosen stimulus was rewarded or not. For the S-RLsRPE+sAPE model, there 

were three-variants; the ‘2nd-R-variant’ and ‘2nd-A-variant’ of the S-RLsRPE+sAPE model had the 

four different learning parameters only for the simulated-other’s reward and action prediction 

error, respectively, and the ‘2nd-RA-variant’ S-RLsRPE+sAPE model had the four different learning 

parameters for each of the two errors.  

The comparison of the fit of these variants to the behavior with that of the original model 
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(using the paired t-test over the AIC distributions) demonstrated that reward magnitudes did not 

have a noticeable effect on learning the reward probability; For the Control task, the fit of the 

original RL model was not significantly different from those of the two variants (the 1st-variant 

and the 2nd-variant RL model; P =0.15, and P =0.61, respectively); For the Other task, the fit of 

the original S-RLsRPE+sAPE model was not significantly different from those of most of the 

variants (the 1st-R-variant, the 1st-A-variant, the 1st-RA-variant, the 2nd-R-variant and the 

2nd-A-variant S-RLsRPE+sAPE model; P =0.22, P =0.12, P =0.10, P =0.42, and P =0.63, 

respectively) and was better than that of the most complex variant (the 2nd-RA-variant 

S-RLsRPE+sAPE, P < 0.01).  

 

Additional behavioral experiments for control analyses  

In addition to the results reported in the main text, we further performed two additional 

behavioral experiments for control analyses that are summarized here. Subjects in each 

experiment did not participate in any other experiments described in this report, and received 

monetary rewards, in addition to the base fee, based on the points they earned during the 

experiment. The procedures used were virtually identical to those used in the fMRI experiment 

except particular aspects of the experiment (described below). After completing the experiment, 

we asked subjects to fill in the questionnaires. All subjects gave their informed written consent, 

and both studies were approved by RIKEN’S Third Research Ethics Committee.  

In the first experiment, we examined the question of whether the subjects’ prediction of 

the other’s choices generated by a computer model (which was adopted in the main study) may 

differ from those made predicting the choices generated by actual humans, or more precisely, by 

risk-neutral humans. An additional question was whether the subjects’ predictions were actually 

meaningful or at all different from those made when the other’s choices were random choices, 
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i.e., generated by a random-chooser. This additional experiment involved 17 normal subjects 

(11 females, 6 males; age range, 18-33 years; mean, 21.4 ± 4.0 years). The subjects earned the 

points during the four experimental sessions, corresponding to the following four conditions: 

one Control task and three Other tasks. The other’s choices were generated by the RL model 

(O-RL, using the same parameter values used in the main report), by a risk-neutral human 

(O-human), and by a random-chooser (O-random). The procedures were modified from those 

used in the fMRI experiment in the following two aspects: (i) O-random was not used in 

exercise sessions and was always placed in the last of the four main sessions (the order of the 

other three sessions was counter-balanced across subjects). This was to avoid any potential 

compounds. When we compared the subjects’ behaviors in the O-RL and O-random tasks prior 

to this experiment, they were already quite different; thus, if the subjects had experienced 

O-random either in exercise sessions or as one of the main sessions before the other main 

sessions, they might have been confused by the experience, which might have affected their 

behavior in the other main sessions. (ii) We balanced the subjects’ experience of O-RL and 

O-human tasks in the exercise session. For the short exercise session, either O-RL or O-human 

was used to generate the other’s choices, counter-balanced across the subjects. For the long 

exercise session, the subjects experienced three sessions: one Control task and two Other tasks 

(O-RL and O-human). The choices in the O-human task were those of actual human subjects 

during the Control task, who indicated risk-neutral behavior in the behavioral experiment 

reported in the main text (i.e., the experiment conducted for the results in Figure 1C); there were 

8 subjects in this pool. For each subject in this experiment, a different set of O-human choices 

was randomly chosen in the exercise session; the sets of choices were also randomly chosen in 

the main session but we ensured that they were different from that used in the exercise session. 

Among the 17 subjects, there were no outliers (P > 0.01, Thompson’s test) and all data was 



Supplemental Information: Simulation learning of other’s decisions 

28/35 
 

included in the subsequent analysis.  

The results of the additional experiment support the rationale for the use of the fitted 

risk-neutral RL model in the main report (see Supplemental Figure S1C and the legend). This 

conclusion was further supported by the subjects’ answers to the following post-experiment 

questionnaires: (i) Which information did you use for predicting the other’s choices in the Other 

task: the other’s outcomes, the other’s choices, or both? (ii) Did you notice any differences in 

the other’s behavior among the three Other task sessions; if yes, which session(s) were different 

from the other sessions? (iii) Were there any of the three Other task sessions that you felt that 

the other behaved non-humanly? A majority of subjects reported that (i) they considered both 

sources of information (14/17 subjects), (ii) they considered that the O-random (i.e., the last of 

the three Other task sessions) behaved differently from the O-RL and O-human (14/17 subjects), 

and (iii) they considered that the O-random behaved non-humanly (13/17 subjects). 

In the second experiment, we examined whether our additional constraint on the reward 

magnitude randomization (such that the same stimulus was not assigned the higher magnitude in 

three successive trials) might alter the subjects’ behavior, compared to the case when the reward 

magnitude assignment was completely random. This additional experiment involved 23 normal 

subjects (9 females, 14 males; age range, 18-37 years; mean, 20.9 ± 4.2 years). The subjects 

earned the points during the following four experimental sessions: the Control and Other tasks 

when the reward magnitude randomization was conducted with or without the constraint 

mentioned above. The procedures used were modified for the following; we tried to ensure that 

the subjects experienced the tasks equally with or without the constraint during exercise 

sessions before the main sessions. For the short exercise session, the subjects experienced both 

the Control and Other tasks either with or without the constraint, counter-balanced across 

subjects, while during the long exercise session, they experienced all the four conditions. After 
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excluding two subjects based on their outlier choice behaviors (P < 0.01, Thompson’s test), the 

remaining 21 subjects (9 females, 11 males; age range, 18-37 years; mean, 20.8 ± 4.4 years) 

were used for the subsequent analysis.  

The results of this additional experiment demonstrate that the subjects’ behaviors in both 

the Control and Other tasks did not significantly differ with or without the additional constraint 

on reward magnitude randomization (see Supplemental Figure S1D and the legend). This 

conclusion was further supported by the subjects’ answers to the following post-experiment 

questionnaires: (i) Which information did you use for predicting the other’s choices in the Other 

task: the other’s outcomes, the other’s choices, or both? (ii) Did you notice any differences in 

the reward magnitudes of the various options or in the ‘correct’ stimulus between the two 

sessions of the Control task? (iii) Did you notice any differences in the reward magnitudes of 

the options or in the ‘correct’ stimulus between the two sessions of the Other task? A majority 

of subjects reported that (i) they considered both sources of information (18/21 subjects), (ii) 

they noticed no differences in the two sessions of the Control task (19/21 subjects), and (iii) 

they noticed no differences in the two sessions of the Other task (20/21 subjects).  

 

fMRI acquisition and analysis.  

The fMRI images were collected using a 4 T Varian Unity Inova MRI system (Agilient Inc., 

Santa Clara, CA) with a phased array coil (four receiver coils were placed over the left and right 

frontal and occipital cortices). For subjects positioned in the scanner, visual input was provided 

via a fiber optic goggle system (Avotec, Jensen Beach, FL) that subtended 25°×19° of the visual 

angle, and subjects used a button box to make their responses. The BOLD signal was measured 

using a two shot T2*-weighted echo planar imaging sequence (Volume TR=2222 ms, 

TE=20.5 ms, FA=30°). Twenty-five axial slices (thickness=3.0 mm, gap=1 mm, 
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FOV=192×192 mm, matrix=64×64) parallel to the AC-PC plane were acquired per volume. The 

start of an experimental task was synchronized with the first EPI acquisition timing. Before, 

after, or between the functional runs, a set of high-resolution (1 mm3) and a set of 

low-resolution (1.72 mm3) whole-brain anatomical images were acquired using a T1-weighted 

3D FLASH pulse sequence (TI=500ms, FA=11°, [TR=12.7ms, TE=6.8ms] for the high 

resolution scans, [TR=11.1 ms, TE=6.2 ms] for the low resolution scans). The low-resolution 

anatomical imaging slices were parallel to the functional imaging slices and were used to aid in 

co-registering the functional data to the high-resolution anatomical data. A pressure sensor was 

used to monitor and measure the respiration signal, and a pulse oximeter was used to measure 

the cardiac signal. The respiratory and cardiac signals were used in postprocessing to remove 

physiological fluctuations from functional images (Hu et al., 1995). 

Functional and anatomical images were analyzed using Brain Voyager QX 2.1 (Brain 

Innovation B.V., Maastricht, NL). Functional images for each subject were preprocessed, which 

included slice time correction, three-dimensional motion correction, spatial smoothing with a 

Gaussian filter (FWHM=8 mm), and high-pass filtering (three cycles per run length). 

Anatomical images of each subject were transformed into the standard Talairach space (TAL) 

(Talairach and Tournoux, 1988). Functional images were then normalized and resized according 

to transformed structural images, and thus transformed into the standard Talairach space. An 

exception was activation in the ventral striatum reported in Supplemental Figure S3 (see 

legend).  

We employed a so-called model-based analysis (O'Doherty et al., 2007) to analyze the 

BOLD signals in both tasks. For the Control task, we created subject-specific design matrices 

containing the following regressors: (1) six regressors encoding the average BOLD responses 

for the onsets and the periods of the DECISION, ISI, and OUTCOME phases, where the 
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DECISION phase was defined as the period from the onset of CUE until subjects made their 

responses in the RESPONSE period and the other two phases were defined as in Figure 1A; (2) 

two regressors for the two variables of interest: one representing the reward probability (RP) of 

the stimulus chosen in the DECISION period and the other representing the reward prediction 

error (RPE) in the OUTCOME period. For the Other task, subject-specific design matrices 

contained the following regressors: (1) the same six regressors as in (1) above in the Control 

task; (2) three regressors for the three variables of interest: one representing the subject’s reward 

probability (RP) for the stimulus chosen in the DECISION period, and the other two 

representing the simulated-other’s reward (sRPE) and action prediction (sAPE) errors in the 

OUTCOME period. For both tasks, all regressors were convolved using a canonical 

hemodynamic response function. Also included were six variables of no interest  i.e., motion 

correction parameters  to account for motion effects. Together, these regressors were fitted to 

each subject’s data individually, and the fitted coefficient values of the regressors (effect sizes) 

were then entered into a random-effects analysis and analyzed using a one-tailed t-test. The 

significances of the BOLD signals were reported based on corrected p-values (P < 0.05), using a 

family-wise error for multiple comparison corrections, where cluster-level inference was used.  

We first thresholded contrast maps at P < 0.005 (uncorrected) and determined the appropriate 

spatial extent threshold for corrected cluster-level inference at P < 0.05 (corrected), referring to 

the AlphaSim program in Analysis of Functional NeuroImages (AFNI) (Cox, 1996); This 

resulted in reporting uncorrected P < 0.005 and cluster size > 56 unless otherwise explicitly 

stated.  

Additional regression analyses were employed to further examine the potential 

confounders of the variables of interest. For each variable of interest, additional regressors 

corresponding to potential confounders for that variable were added to the same phase of the 
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original regression matrix in each task, as described in the Results section. All of the signals in 

the vmPFC, dmPFC, and dlPFC reported in the Results section remained significant (P < 0.05, 

corrected) with these additional regressions. 

To extract cross-validated percent changes in BOLD signals (Figure 2B, D), we followed 

the previously described leave-one-out procedure (Gläscher et al., 2010) to provide an 

independent criterion for ROI selection and thus ensure statistical validity (Kriegeskorte et al., 

2009). We re-estimated our second-level analysis 36 times, always leaving out one subject. 

Starting at the peak voxels for the focal signal (e.g., the simulated-other’s reward prediction 

error in the vmPFC in Figure 2B), we selected the nearest maximum in these cross-validation 

second-level analyses. The selected voxel was defined as an ROI, and we extracted the BOLD 

signal in the ROI from the left-out subject. Based on the magnitude of the focal signal, the 

left-out subject’s cross-validated BOLD changes were binned as low, medium, or high 

(corresponding to the 33rd, 66th, and 100th percentiles, respectively) to obtain the individual’s 

bin-wise mean BOLD changes. Then the mean BOLD changes across subjects (and the SEM) 

were computed for each bin. To determine whether the BOLD changes increased with the order 

of the bins, we calculated Spearman’s correlation coefficient (  ) using the distributions of the 

individual’s bin-wise values, which were the difference between the individual bin-wise mean 

and the individual’s grand mean for all the trials. Its statistical significance was tested using a 

one-tailed t-test.  

To investigate the correlations between the variabilities of the subjects’ effect sizes in 

respective brain regions and their behavioral variabilities (Figure 3), we calculated Spearman’s 

correlation coefficient (  ) and tested its statistical significance using a one-tailed t-test. Given 

our hypothesis that the neural variability in a ROI for each error should be positively correlated 

with the behavioral variability, we also examined the bootstrap test, allowing replacements and 
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generating 10,000 bootstrapped datasets, to examine the significance (these results are not 

shown, as the results are the same as those from the one-tailed t-test). We chose to use the 

Spearman’s, because it is nonparametric and thus known as being relatively robust against 

possible outliers. Nevertheless, we performed two additional correlation analyses, each of which 

was more robust against possible outliners. One was to use Jackknife to detect potential outliers 

and remove the detected data points before computing the correlation (  ) (Efron, 1992); in 

brief, we first computed the so-called Jackknife influence function ( ){ } ( 1)( )i iu n    　
, 

where n  is the number of samples, i  is the Spearman’s correlation coefficient computed 

by excluding the i-th subject, and ( )
1
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i
in

 
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 　 . We then obtained the relative Jackknife 

influence function, †{ } { } /i iu u Z  , where Z is a normalization factor given by 
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
  . Using the values of the relative Jackknife influence function, we 

detected samples that might have rather extraordinary influences on the statistics of interest 

(correlation in our case). We classified these samples as outliers, if the i-th sample had 

†| { } | 2iu   . After removing the outliers, the Spearman’s correlation coefficient was computed 

and the significance was examined using a one-tailed t-test. The other was to use the so-called 

robust correlation coefficient (Abdullah, 1990), instead of Spearman’s, as it is more robust 

against potential outliers. The robust correlation coefficient is a weighted correlation coefficient, 

in which the weights were set to zero for data points judged as potential outliers, based on the 

residuals of the linear regression (Abdullah, 1990; Eqs. 2.3 and 2.4). The significance was 

examined using a bootstrap test (10,000 bootstrapped datasets, allowing replacements; 

one-tailed test). 
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To ensure the results of the cross-validated ROI analyses (Figure 4B), we also performed 

additional ROI analyses by orthogonalizing each variable to the variable used to define the ROI, 

when it was from the same task. Results of these analyses are essentially the same as those 

shown in Figure 4B. Specifically, an ROI defined by RP in the Control task contained signals 

significantly modulated by RPE, even when the regressor variable of RPE was orthogonalized 

to RP in the Control task (P<0.005); an ROI defined by RPE contained signals significantly 

modulated by the regressor variable of RP in the Control task, even when the regressor variable 

was orthogonalized to RPE (P<0.005); an ROI defined by RP in the Other task contained 

signals significantly modulated by the regressor variable of sRPE, even when the regressor 

variable was orthogonalized to RP in the Other task (P<0.005); and an ROI defined by sRPE 

contained signals significantly modulated by the regressor variable of RP in the Other task, even 

when the regressor variable was orthogonalized to sRPE (P<0.00005). 
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