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Abstract

We study the dynamics of competition in a model with network effects, an
incumbent and entry. We propose a new equilibrium concept which takes
formally into account the strategic advantages of incumbency in a static
model. We then embed this static analysis in a dynamic framework with
heterogeneous consumers. We completely identify the conditions under which
inefficient equilibria with two networks will emerge at equilibrium; explore
the reasons why these inefficient equilibria arise; and compute the profits of
the incumbent when there is only one network at equilibrium.



1 Introduction

“A standard concern is that if a platform becomes dominant, there
may be dynamic inefficiencies because users are coordinated and
locked-in to a single platform. It may be difficult for an innova-
tive new platform to gain market share, even if its underlying
attributes and technology are better. This concern has helped to
motivate antitrust actions in industries such as operating systems
and payment cards.. . . Indeed, even in industries such as social
networking, where one might expect positive feedback effects to
generate agglomeration, it is easy to point to examples of success-
ful entry (Twitter) or rapid decline (MySpace).”

Levin (2013)

Although the importance of competition for the market has been stressed
by economists studying the new information technologies, relatively little
work has been done to explore the reasons why, in the presence of network
externalities, a platform would be able to maintain a dominant position, or
the value of this dominant position.

The main aim of this paper is to explore the values of incumbency in a
dynamic market with network effects and free entry. We are in effect analyzing
the following conversation between a platform and policy makers: “Because
of the network externalities in your industry, you yield enormous market
power and can extract large profits from your clients”; “You forget that if I
try to use this market power, entrants will be able to convince my consumers
to join their network”; “This is your standard argument, but according to
your reasoning, these entrants will be scared of entry in future periods, and
therefore will not be aggressive.”

In order to examine the argument, we construct a model in which there is
at the outset a single firm who controls the market. There are positive market
externalities so that consumers like to be with other consumers. We study
dynamic competition, assuming that there are potential entrants in each of an
infinite sequence of periods. We derive bounds on the profit of the incumbent
and show that it is always smaller than the discounted value of the profit
in a one period model. When consumers are heterogenous, we completely
characterize the conditions under which there one network or (inefficiently)
multiple networks at equilibrium.

Although most of our analysis focuses on the dynamic model, we also
contribute to the analysis of incumbency advantage in static environments.
Indeed, while economists often argue as if network effects provided a strong
advantages to incumbents, the formal models of competition between networks
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do not naturally lead to this conclusion. Absent switching costs, there is
no reason for all the members of an incumbent network to purchase from a
new entrant who would offer better conditions. Consider, for instance, the
case where there is an incumbent network who offers its service at price 20e
and an entrant who offers its service at a price of 10e. There is a mass 1
of consumers and each of them is willing to pay a network a price equal to
20 times the mass of (other) consumers who have joined the network. It is
clearly an equilibrium for the consumers to all purchase from the incumbent,
but it is also a (Pareto better from their point of view) equilibrium for all of
them to purchase from the entrant. The characterization of network effects
as “social switching costs” is due to the fact that our intuition leads us to
believe that the most likely equilibrium is for the consumers to purchase from
the incumbent.

However, very little work has been done to formalize this intuition, and
without formalization it is impossible to study the constraints that bear on
incumbents. Such issues as the constraints that potential entry puts on the
pricing strategies of incumbents. Much of the work which has been conducted
on this issue, tackles the issue by modelling belief formation of consumers.
This approach is not feasible in our case, as we would have to model the belief
formation about the whole sequence of future periods. It is also not clear how
one handle heterogenous consumers.

We approach the problem by explicitly modeling the migration process
between the two platforms. We present this model in section 2. As the reader
will notice, this leads to a selection criterion that gives lots of power to the
incumbent. In fact, one could view our solution concept as a refinement of the
set of equilibria that chooses the best equilibrium from the incumbent’s point
of view. This makes our results that its profit are limited in the dynamic
model more striking. Furthermore, we demonstrate that in the subgames
where consumers choose which network to join, given a set of prices offered
by the networks, our equilibrium always exists and up to network name the
equilibrium is unique.

In section 3 we apply our selection equilibrium concept to simple one period
games with one incumbent. First, we assume that the outside opportunity of
the consumers is to join no network and assuming that there are two types of
consumers compute the cases where the incumbent want to offer one or two
networks. We then turn our attention to cases where there is entry.

Starting in section 4, we turn to the study of an infinite horizon model
an infinite horizon model with free entry. Our focus is to determine how to
value the incumbency advantage in the market and whether the market will
be efficient. It is efficient for all consumers to be on the same network, due to
network effects. Despite the efficiency of a single network and the advantage
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that an incumbent possesses over its rivals, we identify conditions where the
incumbent will lose some consumers to an entrant. The incumbent chooses to
give up the consumers because it will be able to extract higher profits from
the remaining consumers. In section 7, we derive equilibrium profits when
there is only a single network equilibrium. In all equilibria, whether there are
two network or a single network, we find a limited value to the incumbent’s
advantage. In fact, the present discounted value of the incumbent’s profits
never exceeds the static equilibrium price times the mass of consumers in the
market. We discuss the literature in section 8 and then conclude.

2 Modeling incumbency

Although our main interest below will be on dynamic models, in this section
we propose a way to model the advantages of incumbency in a one period
model.

To see the source of the difficulties which we face, consider the following
example. There is a mass α > 1/2 of consumers, and the utility that they
derive from belonging to a network is equal to the mass of consumers on the
network multiplied by v ∈ (0, 4/3). If network 1 charges v/2 and network 2
charges 0, there are three equilibria in the game played by the consumers: one
in which they all join network 1; one in which they all join network 2; and a
third one in which (1 + 2α)/4 consumers join network 1 while the others join
network 2.1 If the consumers are unattached — the market is just opening
up — most economists would presume that they would coordinate on the
Pareto-optimal equilibrium (from their point of view) and that they all join
network 2. However, if told that network 1 is the incumbent, most economists
would predict that the consumers would all stay on that network, despite
the fact that incumbency, by itself, does not change in any way the formal
description of the game that the consumers are playing. In this section, we
propose a way to systematically describe the incumbency advantage, in this
simple example and in more complicated environments where there can be
heterogenous consumers and several incumbents.

We will show that our modeling of incumbency advantage generates an
essentially unique equilibrium, in the consumer subgame and argue that this
is the best equilibrium from the incumbent’s point of view — in that sense
our predictions are not very different from those of Caillaud and Jullien
(2003), but our concept is easier to use in the dynamic game that we will
be considering. Starting in section 4, we will embed this static model in an
infinite horizon stationary dynamic model.

1Indeed, (1 + 2α)/4× v − v/2 = [α− (1 + 2α)/4]× v.
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We use the following strategy. We first define “unattached consumers” (uc)
equilibria, in which there are no incumbency advantage (because consumers
move easily from network to network) — these are the standard equilibria Nash
equilibria of the games played by the consumers. We then define “attached
consumers” (ac) equilibria, which are the outcome of a migration process
between the incumbent(s) and the entrants. We show that ac equilibria are
uc equilibria satisfying additional constraints.

In order to avoid introducing useless complications, we assume that there
are two types of consumers, but it should be clear that the results extend to
models with any number of types. We also assume that the only choice that
the consumers face is which network to join. There is no difficulty extending
the definitions where one of the choices is to join no network (and this is
indeed what we do in section 3).

There is a mass αh of High Network Effects hne consumers and a mass α`
of Low Network Effects (lne) consumers.2 We will refer to h or ` as the
types of the consumers. A consumer of type θ derives utility uθ(γiθ, γiθ′)
from belonging to network i when γiθ consumers of the same type and γiθ′
consumers of the other type also do. The functions uθ are strictly increasing
in both arguments.

Even though consumers like to have more consumers of both types on the
network to which they belong, they prefer consumers of their own type:3

∂uiθ(γiθ, γiθ)/∂γiθ > ∂uiθ(γiθ, γiθ′)/∂γiθ′ ≥ 0. (1)

(Here, as in the rest of the paper, θ′ will always be taken to be “the other
type”, different from θ.) We will need no other hypothesis on the utility
functions, in particular no concavity or convexity assumption.

Assume that there are m networks, indexed by i. An allocation γ of
consumers is a 2 ×m vector of nonnegative numbers {γih, γi`}i=1,...,m with∑

i γiθ = αθ and
∑

i γi` = α` where γih and γi` are the number of hne
and lne consumers on network i. Let pi be the price charged by network i.
An allocation γ is an unattached consumers (uc) equilibrium (that is an
equilibrium in which incumbency plays no role) if and only if

γiθ > 0 =⇒ uθ(γiθ, γiθ′)− pi = max
j
uθ(γjθ, γjθ′)− pj.

The definition of uc equilibrium treats all networks in the same way and
is the standard definition of equilibrium in networks: there is no incumbency

2For the purpose of this section, the fact that some consumers derive more utility than
the others from the presence of other consumers play no role.

3 We believe that nearly all our results (lemma 2 is an exception) hold true without
this assumption. This will be clarified in a future version of this paper.
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Start from the initial allocation β
of consumers between platforms.

Would some consumers gain from moving?

A mass ηθti − ηθt−1i of the consumers
with highest gains from moving move.

The allocation is an ac equilibrium.

no

yes

Figure 1: This figure represents in algorithmic form the definition of ac
equilibria.

advantage. We now turn to a definition of equilibrium which depends on the
initial allocation of consumers, and which we will show in lemma 1 that it
selects a uc equilibrium. This definition is illustrated on figure 1.

Let β be an allocation of consumers among the networks — think of β as
the initial allocation of consumers. The allocation γ is on a migration path
from β if there exists an integer T ≥ 0 and sequences {ηtiθ ≥ 0}t=0,1...,T of
allocations of consumers to networks (

∑
i η

t
iθ = αθ for all t = 1, 2, . . . and all

θ) which lead from β to γ:

η0
iθ = βiθ and ηTiθ = γiθ, for all i and µ,

and which satisfy the following property: for each t = 1, 2, . . . , T − 1 there
exists a type transferred θ(t), a source network s(t), and a destination net-
work d(t) such that

ηtd(t)θ(t) − ηt−1
d(t)θ(t) = ηt−1

s(t),θ(t) − η
t
s(t)θ(t) > 0,

ηtiθ = ηt−1
iθ if {i, θ} 6= {d(t), θ(t)} and {i, θ} 6= {s(t), θ(t)},

and[
uθ(t)

(
ηt−1
d(t)θ(t), η

t−1
d(t)θ′(t)

)
− pd(t)

]
−
[
uθ(t)

(
ηt−1
s(t)θ(t), η

t−1
s(t)θ′(t)

)
− ps(t)

]
= max

θ̃,j,j′

{[
uθ̃

(
ηt−1

jθ̃
, ηt−1

j,θ̃
′

)
− pj

]
−
[
uθ′
(
ηt−1

j′θ̃
, ηt−1

j′,θ̃
′

)
− pj′

]}
> 0.

(2)

It may be worthwhile restating what we are doing. At each step all the
consumers are buying from one network or the other. We check whether some
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consumer would find it optimal “on its own” to move from one network to an
other.4 If this is the case, we move a strictly positive mass of the consumers
who have the greatest incentives to move.

Equation (2) expresses the fact that it is the consumer with the highest
gain in utility who changes network, if this strictly increases his utility.5

The allocation γ is a final allocation if there is no migration path leading
from γ to another allocation.

Definition 1. An allocation γ is an uc equilibrium if it is on a migration
path from the original allocation and it is a final allocation.

If an initial allocation is a final allocation, then there can be no other
allocation that can be reached by a migration path of length 1. It is straight-
forward to see that this implies that the allocation is a ac equilibrium and
therefore proves the following lemma.

Lemma 1. All ac equilibria are also uc equilibria. An initial allocation is
an ac equilibrium if and only if it is a uc equilibrium. Furthermore, if an
initial allocation is a uc allocation, it is the only ac equilibrium.

We will call a migration path a migration path through large steps if at every
step all the consumers of type θ(t) in network s(t) migrate to network d(t):
ηts(t)θ(t) = 0 for all t. The following lemma makes easier both the identification
and proof of existence of ac equilibria.

Lemma 2. The set of ac equilibria is not changed if we impose the restriction
that the migration path is a migration path through large steps.

4An alternative assumption would have any group of consumers with a strictly positive
gain from moving move, i.e, (2) would be rewritten under the simpler form[

uθ(t)

(
ηt−1
d(t)θ(t), η

t−1
d(t)θ′(t)

)
− pd(t)

]
−
[
uθ(t)

(
ηt−1
s(t)θ(t), η

t−1
s(t)θ′(t)

)
− ps(t)

]
> 0.

This is not sufficient to prove our results. Indeed, we have built an example using this
relaxed assumption where in the initial allocation the hne consumers are on one network
and the lne consumers on another. The migration leads to an uc equilibrium where all
the hne consumers and 11/16 of the lne consumers migrate to one network and the rest
of the lne consumers to another one. Lemma 3 does not hold.

5This assumption considerably simplifies the reasoning below. In a ac equilibrium,
consumers will stay on the incumbent network when they are indifferent between doing so
and joining an entrant. We could do without the assumption, but this would require that
when studying competition between networks, we use the type of limit pricing arguments
standard in, for instance, the study of Bertrand competition with different marginal costs.
In our framework, this would make the proofs much more complicated. We relax this
condition for equilibria in subsection 7.2.
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Proof. Assume that a migration path which leads to ac equilibrium is not a
migration path through large steps. Then, there exists a t such that ηtθ(t)s(t) >

0. It is easy to see that {θ(t+ 1), d(t+ 1), s(t+ 1)} = {θ(t), d(t), s(t)}: at
step t + 1, the migration will involve the same type of consumers moving
from the same network to the same network as at step t+ 1. Indeed, in all
networks the utility of agents of type θ(t) is the same at the end and at the
beginning of step t, except it is strictly higher in d(t) and strictly smaller
in s(t). For agents of the other type, the same property holds true; however
by (1), the increase in the utility they derive from d(t) and the the decrease
in the utility they derive from s(t) are smaller than for agents of type θ(t).
Hence, condition (2) holds true for {θ(t), d(t), s(t)} when the superscript t− 1
is replaced by t.

We can therefore construct a new migration path, which will lead to the
same final allocation by replacing steps t and t+ 1 by one “larger” step with
the same θ, d and s. Iterating on this procedure will lead to a migration
path through large steps which leads to the same allocation as the original
path.

From the proof of Lemma 2 it is clear that the following corollary holds:

Corollary 1. If at any stage t of a large step migration path all consumers
of a given type belong to the same network (ηtiθ = αθ for some i, θ and t),
then they will remain on the same network on all the rest of the migration
path.

This implies the following lemma, which we will use extensively in the
sequel.

Lemma 3. If βiθ = αθ for some i and some θ, then in any ac equilibrium
all consumers of type θ will belong to the same network.

The following lemma, whose proof can be found in the appendix on
page 34, will not be useful in the proofs that follow, but shows that we can
also interpret our migration paths as a sequence of “individual moves”.

Lemma 4. The set of ac equilibria is not changed if we add the restriction
that µ(t) must be smaller than some ε > 0 for all t.

Lemma 4 is proved by “cutting” each step of a large step algorithm
into smaller steps with the same source and destination networks and the
same migrating type. It shows that we can think of migration paths as
approximating a process in which the consumers move “one by one” from one
network to the other; in each stage it is the consumer with the greatest gain
from moving who moves.
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It is easy to show, and we prove formally on page 34 in the appendix, that
large step migrations must eventually stop at a ac equilibrium, which proves
the following lemma.

Lemma 5. Whatever the initial allocation {βiH , βiL}i=1,...,m and prices pi
charged by the networks, there exists a ac equilibrium.

3 One Period Games

In the competition models which we are studying below, we will consider
scenarios in which at the start there is a an incumbent network from which
all consumers purchased in the past. By lemma 3, this implies that in any
period consumers of the same type will always joint the same network, and
the following shorthand notation will prove very useful:

uh = uh(αh, 0), u` = u`(0, α`)

vh = uh(0, α`), v` = u`(αh, 0)

wh = uh(αh, α`), w` = u`(αh, α`).

(Note that we use the same symbol uθ to denote both the utility function
of consumers of type θ and their utility if there are all on the same network
in which there are no consumers of the other type — this will create no
confusion).

We assume
wi > ui > vi for i ∈ {h, `}. (3)

We are representing the fact that the hne consumers value network effects
more than lne consumers by the following conditions:

wh > wl and uh > u`. (4)

Finally, unless we explicitly state the opposite, we assume

w` < uh − vh. (SmallCE)

The right hand side is the difference between what hne consumers are willing
to pay to be on the same network with only the other hne consumers and
what they are willing to pay to be on the same network as with only the lne
consumers. The left hand side is what lne consumers are willing to pay to
be on the same network as all other consumers. Written vh < uh − w`, it
puts an upper bound on vh, hence the name “Small Cross Effects”. When it
does not hold there is only one network in the equilibrium in a model of any
length of time (see section 5.2).
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In the rest of this section, we study the consequences of the equilibrium
selection criterion of section 2 in static models.

First, as a benchmark, suppose that there is no entry: the incumbent
announces a price and the consumers decide whether or not to stay in the
network (in the latter case, their utility is 0). If the incumbent charges w`,
all the consumers stay on the network and its profit is (αh + α`)w`. If the
incumbent charges uh, which is greater than w` by (SmallCE), its only
clients are the hne consumers and its profit is αhuh. It is straightforward
that all other prices are dominated by one of these two, and we have therefore
proved the following lemma.

Lemma 6. In a static model with no entrants, the incumbent will sell access
only to hne consumers if αhuh > (αh+α`)w`, and to all consumers otherwise.
Its profit will be αhuh in the first case and (αh + α`)w` in the second.

Let us now add free entry. Although it is easy to see that Nash timing
would give exactly the same results, for simplicity, we assume Stackelberg
timing where the incumbent first chooses its price pI followed by the entrants;
then the consumers decide which networks to join. Entrants will never charge
less than 0, and competition among them implies that any entrant who attract
consumers will do so at a price of 0. The incumbent either charge wl and
keep all the consumers or uh − vh and keep only the hne consumers. This
implies the following lemma.

Lemma 7. In the one period model with free entry, the incumbent sells only
to the hne customers, at a price uh − vh, if and only if

uh − vh >
αh + α`
αh

w`. (5)

In this case its profit is αh(uh − vh). Otherwise, it sells to all consumers at a
price of w` and its profit is (αh + α`)w`.

Lemmas 6 and 7 together show that free entry makes the separation
of lne and hne consumers less likely. Without entry, the incumbent can
generate more surplus from the hne consumers, since their outside option
is 0 rather than vh. Therefore, more competition, under the form of entry,
leads to inefficiencies, since it is efficient for all consumers to be on the same
network.
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Period 1 starts with one Incumbent

Each period t > 1 starts with one or several incumbents

Incumbent(s) set prices

Entrants set prices (free entry)

The consumers play the “within period” dy-
namic game of choosing their networks

Figure 2: The dynamic model.

4 The dynamic model

4.1 Stationary equilibria with entry

The dynamic model which we will use is represented in Figure 2. At the
beginning of period 1 there is one incumbent, which we will denote the
“Incumbent”. In each subsequent period, there will be one or more incumbents,
the firms that sold to a strictly positive measure of consumers in the previous
period. There will also be nE ≥ 2 entrants.6 For simplicity, we assume
Stackelberg timing where all the incumbents set prices simultaneously and then
the entrants, having seen these prices, choose their own prices.7 Consumers
then choose their networks, and then the game moves to period t + 1. For
simplicity, we assume that firms with no consumer at the end of a period
“drop out”of the game.8

6Assuming the presence of at least two entrants avoid inessential technical difficulties.
See Biglaiser, Crémer, and Dobos (2013) for an extended discussion of this point in the
context of a switching cost model.

7We can also get the same basic results using a Nash timing, where firms simultaneously
set prices. In that case, there will only be mixed strategy equilibria, but the equilibrium
profits will be the same as with Stackelberg timing; see Biglaiser et al. (2013) for similar
issues in a model of switching costs.

8Formally, in any period τ > t, their strategy set is a singleton, and the consumers
never choose to join these firms whatever the prices charged by the firms which are active
in period τ .
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Note that there are two dynamics in the game which we are describing: the
“large scale” dynamics from period to period and the “small scale” or “within
period” dynamics, when consumers choose which network to join according
to the process described in section 2. We assume, as in the one period model,
there is no discounting within a period, but we assume a common discount
factor δ < 1, between periods. We interpret this as players move very quickly
and then have a full period to consume the network benefits.

4.2 Within period equilibrium and the myopia
principle

In each period, the equilibrium of the game played by the consumers will
satisfy the ac equilibrium selection introduced section 3, and we turn to an
extension of its definition to the dynamic case. In each period t, there is a
set of incumbents {1, 2, . . . , ntI} (in equilibrium, ntI will actually be equal to
either 0 or 1), and a set of entrants {1, 2, . . . , nE}. Incumbent i has some
consumers from the previous period, βtiH and βtiL with βtiH + βtiL > 0.

The purchasing decisions of the consumers depend on the βtjθs, on the
prices charged by the firms, and on their expectations of the decisions of other
consumers. As in section 2, the game between consumers will in general have
several equilibria. We solve this indeterminacy by extending the notion of ac
equilibrium to this dynamic framework. Let us call Wiθt

(
βt+1

)
the expected

discounted utility of a consumer of type θ, measured before incumbents have
chosen their prices, if he has purchased from incumbent network i in period t.
It is important to stress that in any equilibrium, a type θ consumer must
receive the same continuation utility at the start of period t+ 1 as any other
type θ consumer no matter which network they belong to in period t. This is
because in any equilibrium, if a consumer with a lower utility in a period would
move to a network that provided them with a higher utility. This move will
always happen due to two features of our model First, since all consumers are
”small”, they do not change the state of the market. Second, the consumers
have no switching costs. If the equilibrium allocation of consumers in period t
has γtjh hne consumers and γtj` lne consumers in network j, his utility if he
purchases from network i which charges pti will be

uθ(γih, γi`)− pti + δWθ,t+1

(
{γjh, γj`}j∈N (t+1)

)
,

where N (t+ 1) is the set of incumbents at stage t.
We can apply the same reasoning as in section 2 to define migration paths

within period t. At each step τ , the consumers who change networks are
those consumers of type θ(τ) such that there exists source and destination
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networks, s(τ) and d(τ), which are solution of

max
θ′,i,i′

{[
uθ′(η

τ−1
iθ′

, ητ−1
i,−θ′) +Wθ′t

({
ητ−1
jθ′

, ητ−1
j,−θ′

}
j∈N (t)

)
− pti

]
−
[
uθ′(η

τ−1
i′θ′

, ητ−1
i′,−θ′) +Wθ′t

({
ητ−1
j′θ′

, ητ−1
j′,−θ′

}
j∈N (t)

)
− pti′

]}
, (6)

as long as the value of this solution is strictly positive. The same W term
appears in both terms of this expression and therefore solving (6) is equivalent
to (2). We obtain the following “myopia principle” which will play a very
important role in the sequel.

Lemma 8 (Myopia principle). In the continuation game played by the con-
sumers in any period t of a dynamic game, the set of equilibria is the same
as if the game were a one period game.

It is important to note that the myopia principle does not imply that the
prices charged by the networks will be the same in a multi-period game as in a
one period game — it is only the consumers who are “myopic”, not the firms.
The literature on switching costs often assumes that consumers are myopic;
in that case this an assumption on the bounded rationality of consumers who
do not take into account their long run interests when taking decisions. In
the present paper, the myopia principle is not an assumption but a result,
which stems from the fact that agents are “very small” and a consumer does
not change the state. Furthermore, since there are no switching costs, thus
each consumer knows that it will get the same utility in the future as any
consumer of its same type.

Notice that the myopia principle is very general in our framework, and in
particular it does not depend on the Markov property which we will introduce
shortly. The fact that it holds is a fundamental difference with switching
cost models, where, as shown in Biglaiser et al. (2013) high switching cost
consumers try to “hide among” low switching cost consumers who induce
firms to charge low prices.

4.3 Markov equilibria

We focus our attention on Markov equilibria, defined as follows. Along the
equilibrium path, the price charged by incumbent i depends only on the βtjθs

and not on t; the prices charged by entrants depend only on the βtjθs and
the prices charged by the incumbents; the equilibrium of the game played
between the consumers depend only of βtjθs and the prices charged by the
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firms. Furthermore, all that matters is the βtjθs and not the name of the
network.

By Corollary 1 and Lemma 8, consumers of the same type will all “stay
together”; therefore along the equilibrium path, there will be only either one
or two incumbents in every period. Therefore, we need only distinguish the
following prices for the incumbents: ph, the price charged by a firm whose
clients in the previous period were (only) the hne consumers; p`, the price
charged by a firm whose clients in the previous period were (only) the lne
consumers; p2, the price charged by a firm who sold to the 2 types of clients
in the previous period. We will distinguish three types of equilibria:

• Two network equilibria: along the equilibrium path, consumers buy
from two different networks (which implies that in the first periods,
at least one type of consumers purchase from an entrant). If after a
deviation, there is only one incumbent network, consumers will reallocate
themselves among two different networks. We study these equilibria in
section 6.

• One network equilibria where “consumers stay separated after they
split” and along the equilibrium path consumers always buy from the
Incumbent. If after a deviation, consumers have purchased from two
different networks, then there are two networks in all subsequent periods
(barring, of course, a further deviation). We study these equilibria in 7.1.

• One network equilibria where “consumers get back together after they
split”. If after a deviation, there are two different networks, in the
subsequent period, the consumers all purchase from the same network.
We study these equilibria in 7.2.

Before turning to the study of these equilibria, we study some simple
versions of our model.

5 Simple infinite horizon models with free

entry

In this section, we examine a series of very simple dynamic models with free
entry. They both help to illustrate how our solution concept works in dynamic
models and show that the value of incumbency can be quite limited.
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5.1 Identical Consumers

We begin by examining the equilibrium when there is only one type of
consumers, for definitiveness assume that they are the hne consumers. Our
main result will be that the profits in the infinite horizon are exactly the
same as in the static model.

Let Π denote the equilibrium profits when all consumers are on the same
network. Entrants are willing to price down to −δΠ/αh and no further, as
any lower price would yield negative profits. The Incumbent chooses the
largest price pI which enables him to keep all the consumers:

wh − pI =
δΠ

αh
,

Because Π = αhpI/(1− δ), this proves the following proposition.

Proposition 1. If all consumers are hne consumers, then the unique equilib-
rium has a single network. The Incumbent keeps all consumers on its network
and charges pI = (1− δ)wh in each period. Its profit is αhwh, the same as in
a static model.

The result on the equality of static and dynamic profit are reminiscent of
those of Biglaiser et al. (2013) in the case of switching costs. Competition from
the entrants prevents the incumbent from enjoying the rents of incumbency
more than once: it can take only one bite from the apple. Notice that the
results would also hold in a model with a finite number of periods. In the
infinite horizon case, this is dependant on the stationarity assumption (see
Biglaiser and Crémer (2011)).

5.2 Equilibrium when condition (SmallCE) does not
hold

We will now show that if condition (SmallCE) does not hold, i.e., if wl >
uh − vh, then the only equilibrium is a one network equilibrium. We begin by
proving two preliminary lemmas. First, because wl < wh, in the first period
it is impossible for an entrant to attract the hne consumers and not the lne
consumers. We therefore have the following lemma.

Lemma 9. In the first period of a two network equilibrium, the hne consumers
purchase from the Incumbent and the lne consumers from an entrant.

Consider now a two network equilibrium. In the first period, the incumbent
charges p2 and the lowest priced entrant charges pE. The fact that the
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lne consumers purchase from the entrant imply w` − p2 < −pE and the
fact that the hne consumers choose to purchase from the incumbent imply
uh − p2 ≥ vh − pE. This implies that (SmallCE) holds. We state this
formally in the following lemma.

Lemma 10. Condition (SmallCE) is necessary for the existence of a two
network equilibrium.

If follows trivially from Lemma 10, that if (SmallCE) does not hold,
then any equilibrium has to be a single network equilibrium. Therefore, in
any period there is an incumbent who charges p2. Let pE be the lowest price
charged by any entrant. If −pE ≤ w` − p2 < wh − p2, then both the lne and
hne consumers will choose to purchase from the incumbent. On the other
hand, if −pE > w` − p2, the lne consumers will migrate to the entrant (or
one of the entrants) who charges pE. Once they have done so, hne consumers
will follow, as their utility at the incumbent uh − p2 is strictly smaller than
their utility at the entrant vh − pE. Therefore, if p2 − pE ≤ w` the incumbent
keep all the consumers; otherwise it will them all.

The lowest price that entrants are willing to price to attract all consumers
is −δΠ2/(αl + αh), where Π2 is the discounted intertemporal profit of the
incumbent in any period. Therefore the profit maximizing prize for the
incumbent satisfies p2 = −δΠ2/(αh+α`)+w`. Because Π2 = (αh+α`)p2/(1−
δ), we have proved the following proposition.

Proposition 2. If (SmallCE) does not hold, then the only equilibrium is
a single network equilibrium. The Incumbent charges (1− δ)(αh + α`)w` in
every period and its discounted profit is (αh + α`)w` the same as in the static
model.

The last part of the proposition is a direct consequence of Lemma 7. Given
that the hne consumers will follow whenever the lne consumers migrate to
an entrant, there is essentially only one type of consumers, and we obtain
essentially the same results as in 5.1.

5.3 The LNE consumers do not derive any utility from
belonging to a network9

We now turn to a case where the lne consumers derive no utility from
belonging to a network: w` = u` = v` = 0. In the first part of the subsection

9Formally, the results of this subsection are a special case of those of section 6; our aim
here is to bring out some of the economics of competition between the incumbents and the
entrants which might not be as transparent in the analysis of the general case.
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we also assume that hne consumers only derive utility from the presence of
other hne consumers and do not care about the presence of lne consumers:
vh = 0 and wh = uh > 0. We will show that even under these circumstances,
lne consumers affect the equilibrium by dampening the aggressiveness of
entrants.

As will be proved formally in section 6, there will be two networks at
equilibrium: this is intuitively obvious as the Incumbent would have to charge
a price of 0 in order to keep the lne consumers while he can make a strictly
positive profit by selling only to the hne consumers.

Let Π be the discounted profits of the incumbent measured from the start
of a period (in section 6, we show that this profit is the same whether all the
consumers or only the hne consumers were its clients in the last period). If an
entrant attracts10 the hne consumers, it will also attract the lne consumers
and the lowest price that it is willing to offer is −δΠ/(αh + α`). To keep
the hne consumers, the incumbent chooses a price pI that makes them just
indifferent between staying on its network and purchasing from the entrant
at that price: we must have

uh − pI = δΠ/(αh + α`), (7)

and therefore

Π =
pI

1− δ
=

(αh + α`)αhuh
αh + (1− δ)α`

.

Notice that the profit of the incumbent is increasing in the number of lne
consumers: because they accept the offers at a negative price, they make the
entrants less aggressive. This is specially striking when δ converges to 1, as Π
converges to (αh+α`)uh. A lne consumer is worth as much to the incumbent
as a hne consumer, despite the fact that lne consumers never purchase from
the incumbent.11 It may be worthwhile noting that in a one period model,
the incumbent would charge uh and its profit would be αhuh. With δ close
to 1, it is as if lne consumers had been transformed into hne consumers. 12

When α` is equal to zero, the derivative of this profit with respect to α` or to
αh is uh.

13

10 This assumes that the lne consumers all coordinate on the same entrant. They need
not do so if there are indifferent to network effects. This coordination must either be
assumed or the results which we present here can be considered as limit results when lne
consumers are close to indifferent to network effects.

11This result is similar to the result of Biglaiser et al. (2013) in a switching cost model,
where with δ close to 1, a 0 switching cost consumer was worth as much to the incumbent
as a consumer with positive switching cost.

12This result will also arise in the more general model below. See equation (11).
13The reasoning of the preceding paragraph has assumed that uh is not affected by
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6 Two network equilibria

6.1 Main results

We are looking under which conditions two networks will coexist at equilibrium.
Given our Markov assumption, and given the results of section 2 which show
that consumers of the same type will always purchase from the same network
if they are initially together, such an equilibrium would look as follows. In
the first period, the Incumbent charges p2.After the first period, there will be
two networks on the equilibrium path. This can only happen if in the first
period an entrant charges pE and attracts one type of consumers (it is clear
that the Incumbent must sell to at least one type of consumers, otherwise its
profits would be equal to 0). Because w` < wh, the lne consumers gain the
most from moving to any entrant as [−pE − (w` − p2)] > [−pE − (wh − p2)].
Therefore the entrant will attract the lne consumers and the Incumbent
will sell to the hne consumers. In subsequent periods, along the equilibrium
path, there will be two incumbents: the Incumbent who sells to the hne
consumers in all periods and the successful first period entrant who sells to
lne consumers in every period.

Off equilibrium, in some period all the consumers could buy from one firm.
In this case, by the Markov hypothesis, in the next periods the consumers
would again split among two networks as described in the previous paragraph.

The equilibrium will therefore be characterized by three prices, ph, the
price charged by the ”H incumbent” (which along the equilibrium path will be
the Incumbent), p` the price charged by the L incumbent, and p2 (along the
equilibrium path, this will only be used by the Incumbent in the first period).
Let Πh, Π` and Π2 be the corresponding profits. We have Πh = ph/(1− δ),

the change in αh. If we make explicit the dependence of the utilities on the size of the
networks, the profit Π when δ is close to 1 becomes equal to (αh + α`)uh(αh, 0). When
α` = 0, the derivative of this profit with respect to α` is uh(αh, 0) as ∂uh/∂α` = 0. The
derivative with respect to αh is equal to uh(αh, 0) + αh∂uh(αh, 0)/∂αh. The second term,
αh∂uh(αh, 0)∂αh, is the increase in the value of the network for the other hne consumers.
A lne consumer is worth as much as the “direct” effect of a hne consumer. If uh is concave,
then αh∂uh(αh, 0)/∂αh > uh(αh, 0) and therefore a lne consumer is worth less than half
of a hne consumer.

Very similar results hold if the hne consumers do care about the presence of lne
consumers; i.e., if we let vh to be strictly positive. Entrants will still be willing to price
down to −δΠ/(αh + α`), but (7) becomes uh − pI = vh + δΠ/(αh + α`): the presence of
the lne consumers increase the attractiveness of the entrant. Then Π is given by (11).
An increase in vh decreases profits: it makes it easier for entrants to attract the hne
consumers by first attracting the lne consumers. It may also be worthwhile noticing that
the separation of the consumers in two different networks is now inefficient. Otherwise, the
same comments as in the previous two paragraphs hold.
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Π` = p`/(1− δ) and Π2 = p2 + δΠh.
The following proposition summarizes our results.

Proposition 3. There exists a two network equilibrium if and only

uh − vh ≥
(1− δ)α` + αh

(1− δ)αh
(w` − δu`). (2NtwCond)

In this equilibrium
p` = u`(1− δ) (8)

and
Π` = αlu`. (9)

L incumbents charge the same price and have the same profit as if there were
only lne consumers.

H incumbents and firms which, after a deviation, have sold to every
consumers in the preceding period charge the same price,

p2 = ph =
(1− δ)(αh + α`)(uh − vh)

(1− δ)α` + αh
, (10)

and have the same profit,

Π2 = Πh =
αh(αh + α`)(uh − vh)

(1− δ)α` + αh
. (11)

This profit, which is also the profit of the Incumbent,

1. is greater than the profit of the Incumbent in the one period model two
network equilibrium, αh(uh − vh), and smaller than the value of a flow
of this one period profit, αh(uh − vh)/(1− δ);

2. is less than the profit where all the consumers pay the one period price
in the two network equilibrium, (αl + αh)(uh − vh);

3. is increasing in uh, decreasing in vh and independent of wh, w`, u`
and v`;

4. is increasing in αh and in α`;

The difficult part of the proof is proving that (2NtwCond) is a necessary
and sufficient condition and that equations (9) to (11) hold — this is done
in 6.2. The rest of the theorem is an immediate consequence of (11).

As we will see later, the binding deviation for the existence of a two network
equilibrium is the attempt by the Incumbent to keep all the consumers. By (9)
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the lowest price that entrants are willing to charge is −δu`. Because the lne
consumers are the more eager to change network, to keep all the consumers,
the incumbent can charge at most w` − δu` and the resulting profits from
repeating this strategy forever is

ΠD =
(α` + αh)(w` − δu`)

1− δ
.

Condition (2NtwCond) simply states that this profit is smaller than Π2.
Points 1 and 2 are similar to the case when wl = 0; as in Biglaiser

et al. (2013) switching cost paper, lne consumers have some value for the
Incumbent even though it does not sell to them, since they get in the way of
an entrant trying to attract high value consumers. On the other hand, they
do not provide much more value to the incumbent than the static equilibrium
payoff. In particular from point 2, the Incumbent’s profit does not exceed
the static profit maximizing price times the entire measure of consumers.
Thus, the incumbent generates profits from having the lne consumers in the
market, but that value is limited to what the Incumbent obtained from the
hne consumers in the static model. We will see when examining the single
network equilibrium that this also holds.

From point 3, the fact that profits are independent of the lne consumers
preferences are due to the fact that the constraint on the pricing of the
incumbent is the fear of losing the hne consumers, once the lne consumers
have already been attracted. The lne consumers preferences dictate when a
two network equilibrium exists.

6.2 Existence of two network equilibria: comparing
static and dynamic models

The aim of this subsection is to discuss in some detail the circumstances in
which there exist a two network equilibrium. We begin by the following, easy
to prove, corollary which shows that there is a fundamental difference between
the cases where w` > u` and w` = u`, this is the case where the presence of
hne consumers add utility to lne consumers when they are all on the same
network and the case where it does not. Corollary 3 provides more details for
the case w` > u`.

Corollary 2. If (5) holds, then a two network equilibrium exists in the static
model. If w` > u` and (5) holds, then there exists a δ2 < 1 such that there
exists a two network equilibrium if and only if δ < δ2. If w` = u`, there exists
a two network equilibrium if and only if δ ≥ δ1, where this δ1 is equal to 0 if
and only if (5) holds.
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The first part of the corollary states that if w` > u` and there exists a
two network equilibrium in the static case, then there cannot exist a two
network equilibrium when the discount factor is close to 1. On the other hand,
when w` = u`, which is compatible in the static case both with the existence
and non existence of a two network equilibrium, there exists a two network
equilibrium only if δ is large enough. Indeed, in this case ΠD = (αh + α`)w`
is independent of δ, whereas Π2 grows in δ.

The next corollary demonstrates that for intermediate values of uh − vh
and small cross effects for the lne consumers, that an equilibrium may exist
in the dynamic model when it does not exist in the static model.14

Corollary 3. If αhwl ≥ u`(αh + α`), then

• if uh − vh < (1 + α`/αh)w` there is no two network equilibrium either
in the static or the dynamic model;

On the other hand, if αhwl < u`(αh + α`), then there exists a Ṽ such that

• if uh − vh < Ṽ , there is no two network equilibrium either in the static
or the dynamic model;

• if Ṽ ≤ uh − vh < (1 + α`/αh)w`, there does not exist a two network
equilibrium in the static model, but there is one in the dynamic model
for δ ∈ [δ1, δ2] with δ1 > 0 and δ2 < 1;

The second part of the corollary, when αhwl < u`(αh + α`) is illustrated
on Figure 3, while the proof is presented in the appendix on page 35.

6.3 Condition (2NtwCond) is a necessary condition for
existence of a two network equilibrium

It seems intuitive that in any equilibrium, the net surplus of the hne consumers
must be larger than the net surplus of the lne consumers:

u` − p` < uh − ph. (12)

This implies that, along the equilibrium path, an entrant cannot attract the
lne consumers without having first attracted the hne consumers. In the
main text, we assume that (12) holds and we show in appendix E that this
must indeed be the case whenever a two network equilibrium exists.

We first show that we can strengthen (12). The proof of all the claims
that follow can be found in the appendix.

14We note that our results from Corollary 2 still hold for large uh − vh.
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Figure 3: This figure illustrate corollary 3 for α` = αh, w` = 1 and u` = .8.
The right hand side of (2NtwCond) is then to (2− δ)(1− .8δ)/(1− δ), which

is equal to 2 when δ = 0. Its minimum, Ṽ is equal to 1.8 and is obtained for
δ̃ = .5. For uh − vh = v1 ∈ [1.8, 2], there exists an interval [δ1

1, δ
1
2] such that

there exists a two network equilibrium.
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pE

p
E

= −(uh − ph) + vh

pE = −(u` − p`)

All consumers purchase from their respective incumbent.

The lowest price entrant attracts all consumers;
its profits are (αh + α`)pE + δΠ2.

The lowest price entrant attracts the lne consumers;
its profits are α`pE + δΠ`.

Figure 4: The response of consumers to entry when (13) holds.

Claim 1. If (12) holds, then in a two network equilibrium

vh + u` − p` < uh − ph. (13)

An entrant attracts the hne consumers without attracting the lne con-
sumers only if uh − ph < −pE ≤ u` − p`. By (12), this is impossible. Then,
(13) implies that the continuation equilibria in the consumers’ game as a
function of pE are as represented on Figure 4.

From the definition of prices in Figure 4, there is no profitable entry when
consumers start the period on separate networks only if

α`pE + δΠ` ≤ 0,

(αh + α`)pE + δΠ2 ≤ 0.

The first equation states that an entrant cannot profitably attract only the
lne consumers, while the second states that an entrant cannot profitably
attract all consumers, noting that the lne consumers would always migrate
first since u` − p` < uh − ph. Using the fact that the Incumbent will choose
the highest ph that is consistent with preventing from profitably attract
all the consumers and a successful entrant who attracts the lne consumers
will choose the highest price that prevents new entrants from attracting its
consumers we have
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Claim 2. If (12) holds, and there is a two network equilibrium, then

−(αh + α`)[uh − ph − vh] + δΠ2 = 0, (14)

−α`(u` − p`) + δΠ` = 0. (15)

It is relatively intuitive, and proved in claim D 1 in the appendix, that (15)
is binding at equilibrium: otherwise, the L incumbent could raise its price
and keep its consumers. Because Π` = α`p`/(1 − δ), equations (8) and (9)
hold. Thus, once the two groups are separated, the L incumbent behaves
in the same way and obtain the same profit as if it where the incumbent
with only the lne consumers present (see proposition 1). Similarly, the fact
that (14) is binding follows, otherwise the Incumbent could raise its price.

The reasoning which precedes show the “necessity” part of the following
lemma. The sufficiency part, which is quite straightforward, is proved in the
appendix.

Lemma 11. Equations (8) and 10 are sufficient and necessary for the fact
that once lne and hne consumers have purchased from different networks
then will continue to do so in the continuation equilibrium.

This lemma provides conditions for the fact that once there are two
networks in a period, there are also two networks in subsequent periods. Its
proof relies on deviations in period 2 and after, when the consumers have
already split between the two networks. We now turn to the study of the first
period and on the incentives of the agents to create two networks out of one.

First, we must have

−(αh + α`) [p2 − (uh − vh)] + δΠ2 ≤ 0. (16)

Otherwise, in the first period an entrant could attract all the consumers by
charging a price “slightly below” p2−(uh−vh) and make strictly positive profit.
Claim D 2, presented on page 37 in the Appendix, shows that in equilibrium
this constraint must be binding: otherwise the Incumbent could profitably
increase its price in period 1. Because (14) and (D 5) are both binding, we
have p2 = ph and therefore Π2 = Πh. Along with Πh = αhph/(1 − δ), this
proves (10) and (11).

Summarizing the discussion so far, we have proved that if there is an
equilibrium satisfying (13), then the prices must satisfy equations (8) and (10).
Furthermore, if the prices satisfy these equations, then there is no profitable
entry by (14) and (15).

Finally, we need to make sure that the incumbent charges a price when it
has all the consumers for which an entrant finds it profitable to attract the lne
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consumers. If the Incumbent charges p′2, an entrant needs to charge less than
p′2 − w` to attract only the lne consumers and the upper bound on its profit
would be −α`(w` − p′2) + δΠ` = α`(p

′
2 − (w` − δu`)). Therefore, an entrant

will be willing to attract only the lne consumers if and only if p′2 > w` − δu`.
This implies that p2 > w` − δu` is a necessary condition for the existence of a
two network equilibrium. If this inequality holds, we need to ensure that the
Incumbent would not find it optimal to price down to w` − δu`. By the one
deviation principle, this will be the case if (αh + α`)(w` − δu`) ≤ αhp2, which
is equivalent to (2NtwCond). This condition also implies p2 ≥ w` − δu`.

We have used (12) and (SmallCE) to prove that (2NtwCond) is necessary
for the existence of a two network equilibrium. It is easy to show that both of
these conditions hold whenever (2NtwCond) hold (see claim D 3 on page 38
in the appendix). Thus, we have derived the necessary conditions for a two
network equilibrium. We turn now to showing that (2NtwCond) is also a
sufficient condition for the existence of a two network equilibrium

6.4 Condition (2NtwCond) is a sufficient condition for
a two-network equilibrium.

We show that (2NtwCond) is sufficient for the existence of a two network
equilibrium. Much of the construction of the equilibrium in the preceding
subsection can be used in this proof. We will proceed by going through the
possible deviations and showing that they are not profitable.
First period

Incumbent: By the reasoning showing equation (16) on page 23, if it
increased its price an entrant would find it profitable to attract all the
consumers. Decreasing the prices to p′2 ≥ w` − δu` would not change demand
and hence would lead to lower prices. Lowering the price below w`−δu` would
enable the Incumbent to keep all the consumers, but, because (2NtwCond)
hold at the cost of lower profits, as shown on page 24.

Entrants: Competition between the entrants will lead them to charge
a price equal to −δΠ`/α` = −δu`. At that price, lne consumers find it
profitable to purchase from the entrants as shown on page 24. The proof of
proposition 3 shows that no entrant will find it profitable to attract all the
consumers.
Subsequent periods

Incumbents The same reasoning as in period 1 shows that the H incumbent
has no incentive to deviate. The incentives of the L incumbent are the same
as in 5.1 as far as competing for the lne consumers. In order to attract the
hne consumers it would have to choose a price inferior to p2 − (uh − vh),
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which is unprofitable for the same reason that it would be unprofitable for an
entrant to attract all the consumers in the first period.

Entrants For the same reasons as in 5.1 they cannot profitably attract
the lne consumers. For the same reason as in the first period, they cannot
attract profitably all the consumers.

We have derived all the results up to this point, assuming that equation (12)
held. In appendix E, we show that this equation must hold if there exist a
two network equilibrium.

7 Analysis of equilibria with one network

In this section, we study the stationary equilibria with only one network, that
is equilibria such that, along the equilibrium path, the Incumbent sells to
both lne and hne consumers in every period. We first present the following
corollary which holds for all single network equilibria .

Corollary 4. There exists a δ such that for any δ ≥ δ a) there exists at least
one single network equilibrium and b) in any single network equilibrium the
profit of the incumbent is (αh + α`)(uh − vh).15

We pursue the analysis by distinguishing between four types of one network
equilibria which differ along two dimensions. The first dimension describes
what happens off the equilibrium path if the consumers ever get “separated”
in two different networks: consumers can either stay separated in subsequent
periods - the S (for Separated) equilibria - or they can all purchase from the
same network in the period after they have split so that two networks exist
for only one period - the T (for T ogether) equilibria.

As long as it sells to both types of consumers, the Incumbent network
faces two entry constraints: preventing profitable entry which would attract
only the lne consumers and preventing profitable entry which would attract
all consumers. The second dimension describes which of these two constraints
is binding. Figure 5 represents the four types of equilibria.

In 7.1, we first examine the S type equilibria in which consumers keep on
purchasing from different networks after out-of-equilibrium moves in which
they do so. In 7.2, we study T type equilibria. We complete the section,
by determining the incumbency advantage and examine comparative static
properties of the equilibria.

15This corollary is an easy consequence of lemmas E 1, E 2, E 4 and E 3. It is easy to see
that, for δ close to 1, an equilibrium of type T1 exists, an equilibrium of type S1 exists if
(uh − vh) < (αh + α`)u`/α`, that there is no equilibrium of type T2 or S2, and that when
an equilibrium exists the profit is (αh + α`)(uh − vh).
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binding constraint

lne consumers both types

After separation
keep separated S` S2

back together T` T2

Figure 5: The type of equilibria in the one network case.

7.1 S type equilibria: consumers stay separated after
they split

In S type equilibria, if, off the equilibrium path, hne and lne consumers
join different networks in some period, then they stay on these networks
in subsequent periods. As discussed on page 23, claim D 1 is valid in the
continuation path after two networks have been formed when condition (12)
holds and we have Π` = α`u` and p` = u`(1− δ).16

Along the equilibrium path, in order to attract only the lne consumers,
an entrant must charge a price pE which satisfies −pE > w` − p2 as well as
vh − pE ≤ uh − p2 — such a pE exists by (SmallCE). This is profitable
if α`pE + δΠ` > 0, which is equivalent to −pE < δΠ`/α` = δu`. To make
this type of entry impossible the incumbent must ensure that at the price
pE = −δu` the lne consumers choose not to purchase from the entrant.
Therefore, it must choose p2 such that w` − p2 ≥ δu`, that is

p2 ≤ w` − δu`. (17)

To attract both types of consumers, an entrant must charge a p2 which
satisfies vh−pE > uh−p2.17 This is profitable if and only if (αh+α`)pE+δΠ2 >
0, which is equivalent to −pE < δΠ2/(αh + α`). To make this type of entry
impossible the incumbent must choose a price such that for all profitable pE we
have uh−p2 ≥ vh−pE. We must therefore have δΠ2/(αh+α`) ≤ uh−vh−p2.
Because Π2 = (αh + α`)p2/(1− δ), this is equivalent to

p2 ≤ (1− δ)(uh − vh). (18)

16We focus attention on equilibrium where off the equilibrium path, uh−ph ≥ u`−p`. It
is possible to have uh − ph < ul − pl for small δ. This is possible only if u` > δuh. Indeed,
if uh−ph < u`−p`, then by the same argument as in the proof of claim D 1, ph = uh(1− δ)
and therefore uh − ph = δuh. Since p` ≥ 0, uh − ph < ul − pl is possible only if ul > δuh.

17By (SmallCE), this condition is sufficient for the entrant to attract first the lne
consumers and then the hne consumers.
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Along the equilibrium path, both of the constraints (17) and (18) must
be met and at least one binding. This implies the following lemma.

Lemma 12. In the “consumers stay separated after they split” single network
equilibria the profit of the incumbent is

(αh + α`) min

[
w` − δu`

1− δ
, uh − vh

]
.

When (17) is binding, we have a Sl equilibrium; when (18) is binding
we have a S2 equilibrium. In the Appendix, we find conditions under which
either an Sl or S2 equilibrium exists. The details are rather complicated, but
we find that both equilibrium require small uh−vh and that an Sl equilibrium
can not exist when a two network equilibrium exists, while for a small slice
of parameters, an S2 equilibrium may exist when a two network equilibrium
exists.

7.2 T type equilibria: consumers come back after they
split

In T type equilibria, any entrant who, out of equilibrium, attracts consumers
in period t looses them in period t+ 1.

On the equilibrium path, an entrant is not able to attract the lne con-
sumers at a strictly positive price, and therefore we must have

w` ≥ p2. (19)

So, that an entrant cannot profitably give lne consumers some utility in a
period.

An entrant must also find it unprofitable to attract all the consumers.
This occurs if and only if

uh − p2 ≥ vh +
δΠ2

α` + αh
,

which, because Π2 = (αh + α`)p2/(1− δ), is equivalent to

p2 ≤ (1− δ)(uh − vh). (20)

The following lemma states the profits of the T equilibrium.

Lemma 13. In the “consumers come back together if ever separated” single
network equilibria the profit of the incumbent is to

(αh + α`) min

[
w`

1− δ
, uh − vh

]
.
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When (19) is binding, we have a T l equilibrium; when (20) is binding we
have a T2 equilibrium. We prove the lemma in the Appendix, where we also
find existence conditions. A subtlety that arises for the existence of the T
equilibrium is due to how we defined AC equilibria. In our definition, we
assumed that a consumer only left its current network if it strictly prefers to go
to a rival network. If we maintain the strictness assumption, no T equilibrium
exists. This is because when the incumbent attracts back consumers it will
choose the highest possible price that will give the lne consumers a strict
preference to come back to its network. This price does not exist when there
are continuum of prices; this would also happen in the standard Bertrand
competition model with different marginal costs. So, for the existence of only
these equilibria, we relax the strictness assumption. Alternatively, assuming a
finite set of prices, where the distance between any consecutive pair of prices
goes to 0 will implement the equilibrium profits of Lemma 13.

7.3 Profits and Comparative Statics in Single Network
Equilibria

We now compare the single network equilibrium in the static and the dynamic
model to demonstrate that the incumbency gain is quite limited when going
to the dynamic model. We then discuss comparative statics of both single
and two network equilibrium.

Comparing Lemmas 7, 12 and 13 we find that the profit of the Incumbent
is greater in the dynamic than in the static model.

Corollary 5. If there is an single network equilibrium in both the static and
dynamic model, then the profits are higher in the dynamic model.

While the profits are weakly higher in the dynamic model than in the
static model when there is a single network equilibrium, we also find

Corollary 6. The profits in the single network equilibrium dynamic model
are smaller than the value of a flow of one period profit.

These two corollaries are in the same spirit as Proposition 3 for the two
network equilibrium. They are part of the story that the incumbent profit
is quite limited in the dynamic model with free entry. Furthermore, when
looking over all equilibrium of the game we have:

Corollary 7. The incumbent’s equilibrium profit in the dynamic model does
not exceed

(αh + αl) min

[
uh − vh,

wl
1− δ

]
.
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Thus, the incumbent can collect the minimum from the total measure of
consumers of either the single period profit from the two network equilibrium
and the present discounted surplus from the lne consumers. Thus, the
incumbent’s profits are quite limited in the dynamic model.

It is interesting to compare the profits in the single network equilibrium
to those in the two network equilibrium when both exist. We find that the
incumbent always prefers the one network equilibrium.

Corollary 8. When both a single network equilibrium and a two network
equilibrium exist, then the profit of the incumbent is larger in the single
network equilibrium.

While there are many possible profits that an incumbent can achieve, the
comparative statics are relatively stable across equilibria in both the single
network and two network equilibria..

Corollary 9. The incumbent’s equilibrium profits are:

• Always increasing in αl and ah.

• Increasing in uh and decreasing in vh a two-network equilibrium and in
a S1 and T1 single network equilibrium.

• Increasing in δ and wl in a two network equilibrium and in a S2 and
T2 single network equilibrium.

• Decreasing in ul in a S2 single network equilibrium.

• Otherwise, independent of all parameters

8 Literature

There are two main themes of this paper. One is that we want to identify the
incumbency value in a dynamic market model with network externalities. The
U.S. Department of Justice and others argued that Microsoft in the 1990’s was
able to make surpranormal profits due to the fact of the network externalities
effects generated by consumers wanting to have a platform (computer) with
many applications written for them. Farrell and Klemperer (2007) survey the
literature on switching costs and network effects, which can sometimes be
thought of as social switching costs in the sense that the cost of a consumer
changing goods depends on other consumers’ purchases. As can be seen from
their survey, most of the focus on network goods is on symmetric competition,
but there is a brief discussion on incumbency advantages. For example,
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Fudenberg and Tirole (2000) examine an overlapping generation model where
an incumbent uses limit pricing and an incompatible good to detour entry
when there are network effects.

It is well known that there are multiple equilibria in games with network
effects, see Katz and Shapiro (1985, 1994). This leads to the second theme of
identifying which equilibrium consumers coordinate on when choosing which
network to belong to.

We identify equilibria in markets with network externalities, and choose
a solution concept that gives incumbent(s) an advantage with their current
customer base. Many papers with network externalities have examined the
issue of coordination among market participants. There have been a variety
of approaches to deal with the multiplicity of equilibria. One set of literature
relies on the global games approach as pioneered by Carlsson and Van Damme
(1993), where agents receive a small piece of private information. The private
information can lead to a large amount of strategic uncertainty and can induce
a unique equilibrium. The equilibrium that is chosen has the agents choosing
a risk dominant action (Harsanyi and Selten, 1988). Sakovics and Steiner
(2012), uses the global games approach where consumer preferences are known
and a monopoly platform can make consumer specific offers to resolve the
coordination problem. Jullien and Pavan (2013) analyze a single period global
game where two two-sided platforms compete. Users receive private signals
about their own preferences and about the quality of the platforms. There are
also some dynamic global games, see Angeletos, Hellwig, and Pavan (2007).

Ochs and Park (2010) analyze a dynamic model where consumers have
private information about the value of switching to an entrant network and
once they switch, they cannot go back. Firms are not active players. They
find a unique equilibrium for sufficiently high discount factor where consumers
gradually switch to the entrant network over time. We have active firms and
consumers can switch in every period.

As in the global games literature, most work on platform competition
deals with static models. Caillaud and Jullien (2003) analyzed a static model
where two two-sided platforms compete. They introduce a solution concept
that is based on “pessimistic beliefs” towards an entrant in a static duopoly
model, which maximizes the incumbent’s profit in any equilibrium. In a
paper that also examines two-sided markets and focuses on whether agents
have pessimistic or optimistic beliefs regarding whether to join a platform,
Halaburda and Yehezkel (2013) analyze a model where agents on each side
of the market obtain private information about their valuations or cost and
observe contracts that platforms are offering before they join. Our solution
concept is related to the idea of pessimistic beliefs and can be thought of as
generalization for any number of firm and types of consumers and consumers
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have private information about their valuations before joining the platforms.
Ambrus and Argenziano (2009) analyze a two-sided network model and uses
the concept of coalitional rationizability to solve the consumer coordina-
tion problem. They can generate asymmetric networks with heterogeneous
consumers. Cabral (2011) analyzes a dynamic Hotelling style model of one
sided networks, where in each period firms compete for a new consumer and
other consumers are not allowed to change networks. Weyl (2010) analyzes a
static monopoly multi-sided platform and where the firm can offer ”insulating
tariffs” which are utility offers to consumers to solve the multiplicity problem
with network effects,while Weyl and White (2012) demonstrate the effects of
insulated tariffs when platforms compete. Much of the literature on two-sided
markets focusses on media markets starting with Anderson and Coate (2005).

9 Conclusion

In this paper, we created a new solution concept for models where consumer
network externalities are present. The equilibrium that we identify is very
favorable for incumbent networks. Despite this fact, we found in a dynamic
free entry model their increased profits from moving from a static to an infinite
horizon model are quite limited. In particular, the profits never exceed the
static equilibrium price times the total mass of consumers in the market.

One of the results that made going from the static equilibrium to the
dynamic model was the myopia principle that we identified: consumers
rationally choose which network to join based only on their current payoff
and not on future payoffs. This was due to two assumptions that we make:
consumers are small and so do not affect the state of the market and that
there are no switching costs. If either of these two assumptions do not hold,
then the myopia principal is not valid.

In a companion paper, Biglaiser et al. (2013), we examine models with
an free entry model with an incumbent and consumer switching costs. As
in our current paper,we found that the incumbent’s profit do not grow very
much when expanding the time horizon from 1 period to an infinite number
of periods. In future work, we want to investigate a model with both network
externalities and switching costs. Some preliminary work on this model,
demonstrate that the equilibria can be quite different than with a model with
either switching costs or network effects. are
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Appendices

A Proofs of lemmas in section 2

Proof of lemma 4. It is easy to see that a migration path through large steps
can be replaced by a migration path with µ(t) < ε for all t. Let θ̄(t), µ̄(t),
s̄(t), and d̄(t) be respectively the type of transferred customers, the mass
of migrating customers, the source network and the destination network in
the large step migration path. We construct a new migration path in the
following way. Let θ(1) = θ̄(1), d(1) = d̄(1), s(1) = s̄(1), and η such that

0 < η1

θ(1)d(1)
− η0

θ(1)d(1)
= η0

θ(1)s(1)
− η1

θ(1)s(1)
< ε.

At the end of step 1 on the new migration path, by the same reasoning as in
the proof of lemma 2,

uθ(1)

(
η1

hd(1)
, η1

`d(1)

)
− pd(1) > uθ′

(
η1

jθ′
, η1

j,−θ′

)
− pj −

[
uθ′
(
η1

j′θ′
, η1

j′,−θ′

)
− pj′

]
for all (θ′, j, j′) 6= (θ(1), d(1), s(1)). Therefore

{θ(2), d(2), s(2)} = {θ(1), d(1), s(1)} ,

and by an easy recurrence it is possible to build a new migration path
which after a finite number t∗1 of steps will rejoin the original migration path:

η
t∗1
θj = η1

θj for all θ and j. We can then take θ(t∗1 + 1) = θ(2), d(t∗1 + 1) = d(2)
and s(t∗1 + 1) = s(2).

By the same reasoning as in the previous paragraph there will exist t∗2
such that after t∗2 steps the new migration path will have the same allocation
as the original migration path at t = 2. The result is proved by noticing that
we can repeat the process until convergence to the final allocation along the
original path.

Proof of lemma 5 (page 8). We have defined migration paths by the fact that
they lead from one initial allocation to a final allocation. To show that there
exists a final allocation define the following procedures, inspired by large steps
migration paths, but without guarantee that they lead to a final allocation.
At every step, check whether there exist a {θ(t), d(t), s(t)} satisfying (2). If
there is move all the consumers of type θ(t) from s(t) to d(t). If there is not,
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we have identified a ac equilibrium. To finish the proof, we only need to
show that any such procedure will eventually find itself at a stage when this
happens.

At every step, either the destination network already has clients or it
charges a strictly lower price that the source network, or both. To each
network which has a strictly positive mass of consumers, associate an index
equal to the number of networks which charge strictly lower prices multiplied
by either 1 if it has a positive mass of only one type of consumers and 2 if it
has a positive mass of both types of consumers. The sum of these network
indexes decreases by at least one at each stage of the migration. Given that
this sum cannot be smaller than 1, the result is proved.

B Proof of Lemma 9

Proof of lemma 9, page 14. Clearly, the Incumbent will have some sales in
the first period. If there is an equilibrium where in period 1 the Incumbent
sells only to the lne consumers, then there must exist p2 and pE such that

wh − p2 ≤ −pE (hne consumers purchase from the entrant),

u` − p2 ≥ v` − pE (lne consumers purchase from the incumbent).

This implies wh ≤ p2 − pE ≤ u` − v`, which contradicts (3) and (4).

C Proofs of Corollaries 2 and 3

Proof of corollary 2. Condition (2NtwCond) is equivalent to

h(δ)
def
= (1− δ)αh(uh − vh)− ((1− δ)α` + αh)(w` − δu`) > 0.

If αh(uh − vh) > (αh + α`)w`, the function h is positive for δ = 0 and strictly
negative for δ = 1. Furthermore, it is a quadratic function for which the
coefficient of δ2 is equal to −α`u`; it is therefore concave and has exactly one
zero for δ ∈ (0, 1), which proves the first part of the corollary.

When w` = u` condition (2NtwCond) is equivalent to αh(uh − vh) ≥(
(1− δ)α` + αh

)
w`, which, together with (SmallCE), proves the result.

Proof of corollary 3. The derivative of the right hand side of (2NtwCond)
with respect to δ has the same sign as

[−α`(w` − δu`) + ((1− δ)α` + αh) (−u`)] (1− δ)
+ ((1− δ)α` + αh) (w` − δu`)

= −α`u`(1− δ)2 + αh(w` − u`).
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If αh(w` − u`) > α`u`, this derivative is positive for all δ; the maximum
of the right hand side of (2NtwCond) is obtained for δ = 1 and is equal to
α`(w` − u`). The first part of the corollary is a direct consequence of these
facts.

If αh(w` − u`) < α`u`, this derivative is negative for all

δ < δ̃
def
= 1−

√
αh(w` − u`)

α`u`
< 1.

Calling Ṽ the corresponding value of the right hand side, the second part of
the corollary follows. (See figure 3.)

D Proof of Proposition 3

Proof of claim 1. Assume that the H incumbent charges a price p′h such that

vh + u` − p` ≥ uh − p′h. (D 1)

If an entrant charges pE ≥ −(u` − p`), by (12) we have −pE ≤ u` − p` <
uh − ph, and no consumer wants to migrate “on his own” to the entrant who
attracts no consumer.

On the other hand if the entrant charges pE < −(u`−p`), it attracts all the
consumers: the lne consumers as −pE > u` − p`, and, once it has attracted
the lne consumers, the hne consumers as vh − pE > vh + u` − p` ≥ uh − p′h:
hne consumers strictly prefer to be on the same network as the lne consumers
and pay pE rather than to be on the same network as the other hne consumers
and pay p′h.

Therefore, for all p′h which satisfy (D 1), the response of entrants does not
depend on p′h. The H incumbent would increase its price rather than charge
a ph which satisfies (D 1).

Claim D 1. If (12) holds, then

−α`(u` − p`) + δΠ` = 0. (D 2)

Proof. Assume (D 2) did not hold. Then, −α`(u` − p`) + δΠ` < 0. In any
period after the first, the L incumbent could increase its profit by charging
p′` ∈ (p`, u` − δΠ`/α`). Indeed, any entrant who would want to attract the
lne consumers would have to charge t most p′E = −(u`− p′`) < −δΠ`/α` and
would make negative profits, α`p

′
E + δΠ`.
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Proof of claim 2. By (14), if (14) does not hold, −(αh + α`)[uh − ph − vh] +
δΠ2 < 0. By (13), it is then possible to find a price p′h > ph which satisfies
both

−(αh + α`)(uh − p′h − vh) + δΠ2 < 0 (D 3)

and
uh − p′h > vh + u` − p` =⇒ uh − p′h > vh − p`. (D 4)

We will show that a deviation by the H incumbent to such a p′h would be
profitable.

The H and L incumbents announce their prices simultaneously; therefore
the deviation by the H incumbent would not affect p`. By (D 4), after such a
deviation the lne consumers would respond by purchasing either from the
lowest price entrant or from the L incumbent, as in figure 4 (replacing, of
course, ph by p′h). Therefore, the deviation would be unprofitable for the
H incumbent only if an entrant could profitably attract all the consumers. It
could do this only by charging a price p′E which satisfies vh − p′E > uh − ph,
which by (D 3) implies p′E ≤ −(uh − p′h − vh) < −δΠ2/(αh + α`). The profits
of the entrant, (αh + α`)p

′
E + δΠ2, would be strictly negative, which proves

the result.

Proof of lemma 11. Only the sufficiency part is left to prove. From figure 4
an entrant could try either to a) attract only the lne consumers by charging
a price strictly smaller than −(w` − p`), but this is not profitable by claim
D 1 as

α`(−(w` − p`)) + δΠ` ≤ α`(−(u` − p`)) + δΠ`

= α`u`(−1 + (1− δ) + δ) = 0,

or b) attract all consumers by charging a price strictly smaller that −(uh −
ph) + vh, but this is not profitable by (16).

Claim D 2. If (12) holds, then −(αh + α`)(uh − p2 − vh) + δΠ2 = 0.

Proof. Because (16) holds, it is sufficient to show that if −(αh + α`)(uh −
p2 − vh) + δΠ2 < 0, then a deviation by the period 1 incumbent to a price
p′2 > p2 satisfying

−(αh + α`)(uh − p′2 − vh) + δΠ2 < 0 (D 5)

would be profitable.
At the original p2, there was profitable entry by attracting only the lne

consumers; a fortiori, it will also be profitable to attract the lne consumers
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when the price is p′2. Therefore, the deviation by the period 1 incumbent
is unprofitable only if an entrant could profitably attract all the consumers
when the price is p′2. By (D 5), in order to attract the hne consumers as
well as the lne consumers, a entrant needs to charge a price p′E which
satisfies p′E < −(uh − p′2) + vh < −δΠ2/(αh + α`). The profits of the entrant,
(αh + α`)p

′
E + δΠ2, would be strictly negative, which proves the result.

Claim D 3. If (2NtwCond) holds, then a) (SmallCE) holds and b) the
prices defined by (8) and (10) satisfy condition (12).

Proof. a) Because w` − δu` ≥ (1− δ)w`, (2NtwCond) implies (SmallCE).

b)

uh − ph = uh −
(1− δ)(αh + α`)(uh − vh)

(1− δ)α` + αh
≥ δ

αh
(1− δ)α` + αh

(uh − vh)

≥ δ
αh

(1− δ)α` + αh
× (1− δ)α` + αh

(1− δ)αh
(w` − δu`) (by (2NtwCond))

=
δ

1− δ
(w` − δu`) ≥ δu` = u` − p`.

E The proof that (12) holds

We have assumed in the main text that condition (12) holds. In this appendix,
we show that this must indeed be the case whenever a two network equilibrium
exists.

We proceed by contradiction. If if did not hold, we would have uh − ph <
u` − p`. As we will see, the results which we obtained based on the stability
of the consumers in period 2 and onwards in 6.3 hold with h and ` inverted.
We then show that these results are incompatible with the separation of the
consumers in two different networks in the first period.

The proof of claim 1 can be reproduced with h and ` inverted and therefore

v` + uh − ph < u` − p`. (13 - HL)

Similarly, we have
ph = uh(1− δ) (8 - HL)

which implies
Πh = αhuh. (9 - HL)

Reproducing the reasoning of claim 2:

−(αh + α`)(u` − p` − v`) + δΠ2 = 0; (cl. 2 - HL)
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On the other hand, claim D 2 is not affected, as it based on period 1
deviation which attract all consumers

−(αh + α`)(uh − p2 − vh) + δΠ2 = 0. (cl. D 2)

Equations (9 - HL), (cl. 2 - HL) and (cl. D 2) give us three equations in
four unknowns: Πh, p`, Π2 and p2. We add the following

Π2 = αhp2 + δΠh = αhp2 + δαhuh (E 1)

From (cl. D 2) and (E 1) we obtain

− (αh + α`)[(uh − p2)− vh] + δ [αhp2 + δαhuh] = 0

⇐⇒ [(1 + δ)αh + α`]p2 = (αh + α`)(uh − vh)− δ2αhuh

⇐⇒ p2 =
(αh + α`)(uh − vh)− δ2αhuh

(1 + δ)αh + α`
. (E 2)

By (cl. 2 - HL), we have

u` − p` − v` =
δΠ2

αh + α`
, (E 3)

and, by (8 - HL) and (cl. D 2)

− (αh + α`)[uh − ph + uh(1− δ)− p2 − vh] + δΠ2 = 0

=⇒ uh − ph =
δΠ2

αh + α`
− uh(1− δ) + p2 + vh. (E 4)

Equations (13 - HL), (E 3) and (E 4) imply that we must have

−uh(1− δ) + p2 + vh < 0.

By (E 2), this is equivalent to

−uh(1− δ) +
(αh + α`)(uh − vh)− δ2αhuh

(1 + δ)αh + α`
+ vh < 0.

Multiplying by (1 + δ)αh + α`, this yields

(uh + vh)δα` < 0

which establishes the contradiction.
We have therefore shown the following proposition:

Proposition E 1. In any two network equilibrium, condition (12) must hold.
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E.1 Existence of S2 equilibria

Lemma E 1. If δαl − (1 − δ)αh > 0, then an S2 equilibrium exists if and
only if

uh − vh ≤ min

[
w` − δu`

1− δ
,
(αh + α`)(δu` − v`)
δαl − (1− δ)αh

]
.

If δαl − (1− δ)αh < 0, then an S2 equilibrium exists if and only if

(αh + α`)(δu` − v`)
δαl − (1− δ)αh

≤ uh − vh ≤
w` − δu`

1− δ
.

In both cases, the profit of the incumbent is (αh + α`)(uh − vh).

Proof. Condition (18) is binding if and only if p2 = (1 − δ)(uh − vh) and
Π2 = (αh + α`)(uh − vh), and therefore

uh − vh ≤
w` − δu`

1− δ
. (E 5)

By the discussion on page 23, Claim 2 holds and this implies ph = p2 and
Πh = αh(uh − vh).

Off the equilibrium path, in order to attract the lne consumers the
H incumbent would have to charge a price p′h which satisfies v` − p′h >
u` − p` = δu`. This is unprofitable only if Πh ≥ (αh + α`)(v` − δu`) + δΠ2,
which is equivalent to

(αh + α`(δu` − v`) ≥ (δαl − (1− δ)αh)(uh − vh),

which proves the lemma.

E.2 Existence of S` equilibria

Lemma E 2. An S` type equilibrium exists if and only if uh − vh ≥ (w` −
δu`)/(1− δ) and

(1− δ)α` + αh
(1− δ)αh

(w` − δu`) ≥ uh − vh

≥ (1− δ)(αl + αh)

αh
(v` − δu`) +

δ[αh(2− δ) + α`(1− δ)]
(1− δ)αh

(w` − δu`). (E 6)

In every period the incumbent charges w` − δu` and its equilibrium profit Π2

is equal to (αh + α`)(w` − δul)/(1− δ).
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Proof. The fact that (17) is binding immediately yields the value of p2 and
of the profit of the incumbent.

The left most inequality is the consequence of the fact that the Incumbent
must have no incentive to increase the price in such a way that it sells only
to the hne consumers. The lowest price that an entrant would be willing to
charge in order to attract all the consumers is −δΠ2/(αh + α`), and therefore
the incumbent can price up to (uh − vh) − δΠ2/(αh + α`) and sell to the
hne consumers. In subsequent periods, it will set the same price by claim 2.
Therefore, this deviation is unprofitable, only if

Π2 ≥
1

1− δ
× αh ×

(
uh − vh − δ

Π2

α` + αh

)
, (E 7)

which is equivalent to the left most inequality of (E 6).
Off the equilibrium path, consumers stay separated. In order to attract the

lne consumers away from the L incumbent, the H incumbent must announce
a price not larger than v` − u` + p` = v` − δu`. This is not profitable only if

Πh ≥ (αh + α`)(v` − δu`) + δΠ2,

where Πh is the profit of the H incumbent, and equal to the right hand
side of (E 7), which is equivalent to the right most inequality in (E 6).18

Notice first that, when, out of equilibrium, the consumers were separated
in two different networks in period t − 1, it is not the L incumbent which
attracts all the consumers in period t. Indeed, this would be profitable only if
p` ≥ −δΠ2/(αh+α`). However, we must also have p`+(uh−vh) < 0; otherwise
the H incumbent would find it profitable to keep the hne consumers.19

Therefore uh−vh < −p` ≤ δΠ2/(αh+α`), which contradicts (20) as it implies
Π2 ≤ (αh +α`)(uh− vh). This implies that (19) is necessary and sufficient for
preventing a deviation by an entrant which would attract the lne consumers.
Because (20) is necessary and sufficient to prevent an entrant to attract all
the consumers, the lemma is proved.

E.3 Existence of T2 type equilibria

We start with T2 equilibria and prove the following lemma.

18The other possible deviations are not profitable. If the H incumbent increases its price
it looses all its consumers. Claim 2 shows that the L incumbent cannot deviate.

19It is clear that we must have p` + (uh − vh) ≤ 0. If we had p` + (uh − vh) = 0,
the H incumbent would keep the hne consumers if it charged 0 and there is no Nash
equilibrium in which the L incumbent can attract the hne consumers profitably.
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Lemma E 3. A T2 equilibrium exists if and only if

δαl − (1− δ)αh > 0

(αl + αh)(ul − vl)
δαl − (1− δ)αh

≤ uh − vh ≤ wl/(1− δ).

The equilibrium profit of the incumbent is (αh + α`)(uh − vh).

Proof. In a T2 equilibrium, the Incumbent can never profitably raise its price
and keep just the hne consumers, since (uh−vh) ≤ w`. So, we just need to see
if the Incumbent is willing to bring back the lne consumers if the consumers
are ever are separated. To attract the lne consumers, ph must be less than
ul− v`, since the firm with the lne consumers charges 0.20 So, it must be the
case that ph ≤ v` − u`.21 Furthermore, the Incumbent must choose a price
that will induce the hne consumers to stay on its network instead of joining
an entrant network. An entrant is willing to price down to −δ(uh − vh) if it
can attract all consumers. To keep the hne consumers instead of joining an
entrant if an entrant tries to attract all consumers then ph ≤ vh + uh(1− δ).
Thus, the binding constraint is ph ≤ v` − u`. If the H incumbent deviates
and just keeps the hne consumers, it charges (1− δ)(uh − vh). Thus, for the
H incumbent to prefer to attract the lne consumers to deviating and keeping
only the hne consumers we need (α`+αh)(v`−u`+ δ(uh−vh)) ≥ αh(uh−vh)
or (uh − vh)(δα` − (1− δ)αh) ≥ (α` + αh)(u` − v`).

E.4 Existence of T` type equilibria

Lemma E 4. A T` equilibrium exists if and only if

w`
1− δ

≤ uh − vh ≤

min

[
(α` + αh)(1− δ) [vl − ul + δw`/(1− δ)]

αh
+

δw`
1− δ

,

(α` + αh){w`(1 + δ)− δ(vl − ul)}
αh

]
.

The equilibrium profit is (α` + αh)w`/(1− δ).

20We assume that firms do not use weakly dominated strategies and it is clear that if
the L firm charged a positive price and lost consumers that it could profitably deviate and
lower its price.

21Recall that we are using the weak inequality definition of AC equilibria for this class
of equilibria.
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Proof. Off the equilibrium path, the incumbent must offer a price less than
vl − ul, since the firm with the lne consumers will price of 0.22 The lowest
price an entrant willing to offer if it attracts all consumers is δw`/(1 − δ).
The Incumbent’s price must not exceed uh − vh − δw`/(1 − δ) to prevent
the hne consumers from leaving its network if the lne consumers join an
entrant’s network. Since vl − ul < 0 < uh − vh − δw`/(1− δ), the incumbent
will price at vl−ul to have all the consumers on its network. If the Incumbent
were to deviate and have only the hne consumers on the market, then it will
charge uh − vh − δw`/(1− δ). Thus, for the Incumbent to prefer to bring all
consumers onto its network we must have

(α` + αh) [vl − ul + δw`/(1− δ)] ≥
αh

1− δ

[
uh − vh −

δw`
1− δ

]
. (E 8)

Or,
(α` + αh)(1− δ) [vl − ul + δw`/(1− δ)]

αh
+

δw`
1− δ

≥ uh − vh.

On the equilibrium path, the Incumbent must prefer to keep all consumers to
just keep the hne consumers and then bringing them back on the network
the following period at a price of vl − ul. So, we need

(α` + αh)w`/(1− δ) ≥ αh(uh − vh) + δ(α` + αh) [vl − ul + δw`/(1− δ)] ,

where the l.h.s. is the equilibrium profits, and the r.h.s. is the sum of profits
in the defection period plus the discounted l.h.s. of expression E 8. This can
be rewritten as

(α` + αh)w`(1 + δ)− δ(α` + αh) [vl − ul]
αh

≥ uh − vh.

22See proof of Lemma E 3.
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