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1 Introduction

One of the key results in the literature on infinitely repeated games is the folk theorem:

any feasible and individually rational payoff can be sustained in equilibrium when players

are suffi ciently patient. Even if a stage game does not have an effi cient Nash equilibrium,

the repeated game does. Hence, the repeated game gives a formal framework to analyze a

cooperative behavior. Fudenberg and Maskin (1986) establish the folk theorem under perfect

monitoring, where players can directly observe the action profile. Fudenberg, Levine, and

Maskin (1994) extend the folk theorem to imperfect public monitoring, where players can

observe only public noisy signals about the action profile.

The driving force of the folk theorem is reciprocity: if a player deviates today, she will be

punished in future. For this mechanism to work, each player needs to coordinate her action

with the other players’histories.

This coordination is straightforward if players’strategies only depend on the public com-

ponent of histories, such as action profiles in perfect monitoring or public signals in public

monitoring. Since this public information is common knowledge, players can coordinate a

punishment contingent on the public information (reciprocity), and thereby provide dynamic

incentives to choose actions that are not static best responses. On the other hand, with pri-

vate monitoring, where players can observe only private noisy signals about action profiles,

since they do not share common information about histories, this coordination could become

complicated as periods proceed.

Hörner and Olszewski (2006) and Hörner and Olszewski (2009) show the robustness of

this coordination to private monitoring if monitoring is almost perfect and almost public,

respectively. If monitoring is almost perfect, then players can believe that every player

observes the same signal corresponding to the true action profile with a high probability. If

monitoring is almost public, then players can believe that every player observes the same

signal with a high probability. Hence, almost common knowledge about relevant histories

still exists.

However, with general private monitoring, almost common knowledge may not exist and
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coordination is diffi cult. Nevertheless, a series of papers, Sugaya (2012b), Sugaya (2012c) and

Sugaya (2012d), show that the folk theorem with the lower bound calculated by individually-

mixed minimax values generically holds in repeated games with private monitoring, without

public randomization or cheap talk.

The proof of these papers goes as follows: first, assuming that cheap talk is available,

construct a sequential equilibrium to support an arbitrarily fixed payoff profile. Second,

dispense with cheap talk by showing that players can communicate by actions. In this

paper, we set aside the second issue and focus on the first component.

Since the messages by cheap talk are public, introducing cheap talk and letting a strategy

depend on the messages by the cheap talk helps to overcome the diffi culty of coordination

through private signals. In fact, folk theorems have been proven by Compte (1998), Kandori

and Matsushima (1998), Aoyagi (2002), Fudenberg and Levine (2007) and Obara (2009).

There are two key differences between this paper and the other papers: first, in this

paper, the communication is carefully constructed so that we can dispense with cheap talk

later.1 Note that, when the players communicate with actions, the common knowledge about

the messages will disappear.

Second, even with cheap talk, it is hard to incentivize the players to tell the truth when

the monitoring of actions is private since there is no precise evidence to show that a player

tells a lie. This is why the existing papers in the literature need to assume more than

individual identifiability of actions. In this paper, we show that individual identifiability is

suffi cient if we carefully construct an equilibrium.

To this end, it simplifies the equilibrium construction to concentrate on the Nash-threat

folk theorem rather than the minimax-threat folk theorem. The reason is related to one well

known in mechanism design: if there are only two players and they send messages that are

statistically rare, then the players cannot tell which one of them is more suspicious. Even

in such a case, they can mutually punish each other by going to a long repetition of a static

Nash equilibrium to discourage lies. See Sugaya (2012c) and Sugaya (2012d) for how to deal

1See Sugaya (2012b), Sugaya (2012c) and Sugaya (2012d) for this part.
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with mixed-strategy minimax values.

To show the folk theorem with general monitoring, we unify and improve on belief-free

equilibria that has been used extensively to show the partial results so far in the literature on

private monitoring. A strategy profile is belief-free if, after any history profile, the continua-

tion strategy of each player is optimal conditional on the histories of the opponents. Hence,

coordination never becomes an issue. The belief-free approach has been successful in showing

the folk theorem in prisoners’dilemma with almost perfect monitoring. See, among others,2

Piccione (2002), Ely and Välimäki (2002), Ely, Hörner, and Olszewski (2005), Yamamoto

(2007) and Yamamoto (2009).

There are two extensions necessary for the folk theorem in general games with general

monitoring. First, without any assumption on the precision of monitoring, Matsushima

(2004) and Yamamoto (2012) show the folk theorem in prisoners’dilemma if the monitoring

is conditionally independent. The main idea is to recover the precision of monitoring by

“review strategies.”The intuition is as follows: suppose two players play prisoners’dilemma.

Each player i has two signals, gi (good signal) and bi (bad signal). If player j (the opponent)

takes Cj (cooperation), then player i observes the good signal more likely. For example, the

probability of gi given Cj is 0.6 while that given Dj is 0.3. (If these numbers were almost

equal to 1 and 0, respectively, then the monitoring would be almost perfect.) For a simple

exposition, let us see one period as a day. Even if a signal per day is not so precise, if player

j has an incentive to take a constant action over a year, then player i can get an almost

precise idea of player j’s action by aggregating information over the year. With conditionally

independent monitoring, since player j cannot obtain any information about how player i’s

review on player j is going over the year, it is optimal for player j to adhere to one constant

action.

However, without conditionally independent monitoring, player j has an incentive to

2Kandori and Obara (2006) use a similar concept to analyze a private strategy in public monitoring.
Kandori (2011) considers “weakly belief-free equilibria,”which is a generalization of belief-free equilibria.
Apart from a typical repeated-game setting, Takahashi (2010) and Deb (2011) consider the community
enforcement and Miyagawa, Miyahara, and Sekiguchi (2008) consider the situation where a player can
improve the precision of monitoring by paying cost.
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defect after some history. Since player i observes gi with probability 0.6 under player j’s

cooperation, what player i can expect for one year is to observe approximately 365×0.6 ≈ 200

days of good signals. Hence, player i cannot punish player j after excessively many days of

good signals (say, 250 days) since otherwise, punishment would be triggered too easily and

effi ciency would be destroyed.

Hence, if the monitoring is not conditionally independent, then players i and j need to

coordinate on when player i should switch to defection. Previously, attempts to generalize

Matsushima (2004) to conditionally dependent monitoring have shown only limited results

because coordination is diffi cult in private monitoring.3 In this paper, the players use cheap

talk to overcome this diffi culty. Note that, since player i’s switch to defection hurts player

j, constructing an incentive compatible equilibrium is not straightforward.

Second, Hörner and Olszewski (2006) show the folk theorem in a general game but with

almost perfect monitoring. Hörner and Olszewski (2006) consider the following phase-belief-

free equilibrium: they see the repeated game as a repetition of L-period review phase and

the belief free property holds at the beginning of each review phase. However, the players

coordinate their play within a phase.

Given our first generalization, it is natural to replace each period of Hörner and Olszewski

(2006) with a T -period review round (T = 365 in our example above), and so consider a

LT -period review phase. One diffi culty to make this idea work is that, in the equilibrium of

Hörner and Olszewski (2006), player i’s optimal action in period l ≤ L depends on player

j’s history until period l − 1. Hence, player i calculates the belief of player j’s history from

player i’s history and takes an action. That is, player i’s action in period l depends on player

i’s history until period l − 1. Symmetrically, player j’s action in period l depends on player

j’s history until period l − 1.

If we replace one period of Hörner and Olszewski (2006) with a T -period review round,

then player i’s optimal action in round l ≤ L depends on player j’s history until round l− 1.

At the same time, player j’s action in round l depends on player j’s history until round l−1.

3See Fong, Gossner, Hörner, and Sannikov (2010) and Sugaya (2012a).
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Therefore, player i, which playing the stage game T times in round l, gradually learns player

j’s action, which affects player i’s belief about player j’s history, which, in turn, affects player

i’s belief about her optimal action. This belief update can be getting very complicated if T

becomes large.

In this paper, we use the communication to simplify this belief calculation. At the end of

round l−1, player i announces what action player i will take in round l. If this announcement

is different from what would be optimal given player j’s history (that is, player i announces

a wrong action), then player j changes her strategy so that it is actually optimal for player i

to follow player i’s own announcement. To incentivize player i to tell the truth, we make sure

that when player i announces a wrong action, player j punishes player i. This implies that,

to know what announcement is correct, player i at the end of round l− 1 needs to calculate

the belief about player j’s history. Hence, our paper is related to belief-based approach.4

The rest of the paper is organized as follows: Section 2 introduces the model and Section

3 states the assumptions and main result. Section 4 relates the infinitely repeated game to

a finitely repeated game with an auxiliary scenario (reward function) and derives suffi cient

conditions on the finitely repeated game to show the folk theorem in the infinitely repeated

game. The remaining parts of the paper are devoted to the proof of the suffi cient conditions.

Section 5 offers the overview of the structure of the proof. Section 6 defines the equilibrium.

While defining the equilibrium, we define variables with various conditions. In Section 7, we

verify that we take all the variables satisfying all the conditions. Section 8 finishes proving the

suffi cient conditions. Section 9 concludes. Some proofs are relegated to Appendix (Section

10).

4Among papers using the belief-based approach, Sekiguchi (1997) shows that the payoff of the mutual co-
operation is approximately attainable and Bhaskar and Obara (2002) show the folk theorem in the prisoners’
dilemma with almost perfect monitoring. Phelan and Skrzypacz (2012) characterize the set of possible be-
liefs about opponents’states in a finite-state automaton strategy and Kandori and Obara (2010) offer a way
to verify if a finite-state automaton strategy is an equilibrium. However, without almost perfect or public
monitoring, the belief calculation is too complicated to find an equilibrium to support the folk theorem.
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2 Model

2.1 Stage Game

We consider the general multi-player repeated game, where the stage game is given by {I,

{Ai, Yi, Ui}i∈I , q}. I = {1, ..., N} is the set of players, Ai is the set of player i’s pure actions,

Yi is the finite set of player i’s private signals, and Ui is the finite set of player i’s ex-post

utilities. Let A ≡
∏

i∈I Ai, Y ≡
∏

i∈I Yi and U ≡
∏

i∈I Ui be the set of action profiles, signal

profiles and ex post utility profiles, respectively.

In every stage game, player i chooses an action ai ∈ Ai, which induces an action profile

a ≡ (a1, ..., aN) ∈ A. Then, a signal profile y ≡ (y1, ..., yN) ∈ Y and an ex post utility

profile ũ ≡ (ũ1, ..., ũN) ∈ U are realized according to a joint conditional probability function

q (y, ũ | a).

Following the convention in the literature, we assume that ũi is a deterministic function

of ai and yi so that observing the ex post utility does not give any further information than

(ai, yi). If this were not the case, then we could see a pair of a signal and an ex post utility

(yi, ũi) as a new signal.

Given this, we see q(y | a) as the conditional joint distribution of signal profiles. qi(yi | a)

denotes the marginal distribution of player i’s signals derived from q. In addition, let

qi(a) ≡ (qi(yi | a))yi∈Yi (1)

denote a |Yi| × 1 vector of player i’s signal distribution given a.

Player i’s expected payoff from a ∈ A is the ex ante value of ũi given a and is denoted

by ui (a). Without loss, we assume

ui(a) ≥ 0 (2)

for all i ∈ I and a ∈ A. For each a ∈ A, let u (a) represent the payoff vector (ui (a))i∈I .
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2.2 Repeated Game

Consider the infinitely repeated game with the (common) discount factor δ ∈ (0, 1). Let

ai,τ , yi,τ and mτ respectively, denote the action played by player i in period τ , the private

signal observed by player i in period τ and the message sent in period τ . Since the result of

communication is public, mτ does not have a player-specific index.

Player i’s private history up to period t ≥ 1 is given by hti ≡ {ai,τ , yi,τ ,mτ}t−1
τ=1. With

h1
i ≡ {∅}, for each t ≥ 1, let H t

i be the set of all h
t
i. As we will see, in each period t, player

i first sends a message simultaneously, second takes an action simultaneously, and finally

observes an signal. Hence, a strategy for player i is defined to be σi ≡ (σai , σ
m
i ) such that

• σai :
⋃∞
t=1H

t
i → 4(Ai) maps player i’s histories in period t at the instant when player

i takes an action to player i’s actions;

• σmi ≡ (σmi,t)
∞
t=1, where σ

m
i,t is player i’s strategy σ

m
i,t : H t

i×Ai×Yi →4(Mi,t) which maps

player i’s histories in period t at the instant when player i sends a message (after taking

ai,t and observing yi,t) to player i’s messages. The message space for each period, Mi,t,

will be defined later.

Let Σi be the set of all strategies for player i.

Finally, let E(δ) be the set of sequential equilibrium payoffs with a common discount

factor δ.

3 Assumptions and Result

In this section, we state the three assumptions and main result. First, we assume the

full dimensionality condition. Let α∗ be a static Nash equilibrium in the stage game with

v∗ ≡ u(α∗). If there are multiple, then the argument below holds for any arbitrarily fixed

static Nash equilibrium α∗. Then, the Nash-threat feasible payoff set is given by

FNash = {v ∈ RN : v ∈ co({u(a)}a∈A) and vi ≥ v∗i for all i}.
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We assume FNash has full dimension:

Assumption 1 FNash has full dimension: dim(FNash) = N .

Second, we assume that the marginal distribution of the signals has full support:

Assumption 2 For any i ∈ I, a ∈ A and yi ∈ Yi, qi(yi | a) > 0.

Third, we assume that player i’s signal statistically identifies player j’s action (see (1)

for the definition of qi(a)):

Assumption 3 For any j ∈ I, there exists i ∈ −j such that, for all a ∈ A, the collection of

|Yi|-dimensional vectors (qi(aj, a−j))aj∈Aj is linearly independent with respect to aj.

If cheap talk communication devices are available and these three assumptions are satis-

fied, then we can show that any payoff profile in FNash is sustainable in a sequential equilib-

rium.

Theorem 1 If cheap talk communication devices are available and Assumptions 1, 2 and

3 are satisfied, then for any v ∈ int(FNash), there exists δ̄ < 1 such that, for all δ > δ̄,

v ∈ E (δ).

Two remarks: first, with Assumption 2, the set of sequential equilibrium payoffs is equal

to that of Nash equilibrium payoffs. See Sekiguchi (1997) for the proof. Hence, we will

consider Nash equilibrium below.

Second, all the assumptions are generic if |Yi| ≥ |Aj| for all i and j. Especially, we can

allow public monitoring with |Y | = maxi∈I |Ai|, where Y is the set of public signals. Hence,

it is the restricted attention on the perfect public equilibrium that causes effi ciency loss in

Radner, Myerson, and Maskin (1986).5

5Kandori and Obara (2006) create an equilibrium with private strategies that Pareto-dominates the most
effi cient public perfect equilibrium. However, their equilibrium cannot support the mutual cooperation
payoff unless there exists an action after taking which a player can identify the other player’s defection
almost perfectly.
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4 Finitely Repeated Game

As we see in the Introduction, we see repeated game as a repetition of TP -period review phase

with TP ≡ LT , where L is the number of review rounds and T is the length of review round.

Instead of considering the infinitely repeated game directly, we consider TP -period finitely

repeated game with a “reward function.”Intuitively, a finitely repeated game corresponds to

a review phase in the infinitely repeated game and a reward function corresponds to changes

in the continuation payoff.

We derive suffi cient conditions on strategies and reward functions in the finitely repeated

game such that we can construct a strategy in the infinitely repeated game to support the

targeted payoff v. The suffi cient conditions are summarized in Lemma 1, which are the

same suffi cient conditions for the block equilibrium in Hörner and Olszewski (2006) to work.

In other words, the main contribution of this paper is to offer the proof of these suffi cient

conditions in a general private monitoring from the next section while Hörner and Olszewski

(2006) consider almost perfect monitoring.

Let σTPi ≡ (σa,TPi , σm,TPi ) with σa,TPi :
⋃TP
t=1H

t
i → 4(Ai), σ

m,TP
i ≡ (σmi,t)

TP
t=1, σ

m
i,t : H t

i ×

Ai × Yi → 4(Mi,t) and be player i’s strategy in the finitely repeated game and ΣTP
i be the

set of all strategies in the finitely repeated game. Each player i has a state xi ∈ {G,B}. In

state xi, player i plays σi (xi) ∈ ΣTP
i .

In addition, each player i with xi gives a “reward function”πi+1(xi, · : δ) : HTP+1
i → R to

player i+ 1, that is, the reward function is a mapping from player i’s histories in the finitely

repeated game to the real numbers. Throughout the paper, we identify player n /∈ {1, ..., N}

with player n (modN).

Our task is to find {σi (xi)}xi,i and {πi+1(xi, · : δ)}xi,i such that, for each i ∈ I, there are

two numbers vi and v̄i to contain v between them:

vi < vi < v̄i, (3)

such that there exists TP with limδ→1 δ
TP = 1, and such that the following conditions are
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satisfied: for suffi ciently large δ, for any i ∈ I,

1. for any combination of the other players’ states x−i ≡ (xn)n 6=i ∈ {G,B}N−1, it is

optimal to take σi (G) and σi (B): for any x−i ∈ {G,B}N−1,

σi (G) , σi (B) ∈ arg max
σ
TP
i ∈Σ

TP
i

E

[
TP∑
t=1

δt−1ui (at) + πi(xi−1, h
TP+1
i−1 : δ) | σTPi , σ−i(x−i)

]
;

(4)

2. regardless of x−(i−1), the discounted average of the expected sum player i’s instanta-

neous utilities and player i−1’s reward function on player i is equal to v̄i if player i−1’s

state is good and equal to vi if player i− 1’s state is bad: for all x−(i−1) ∈ {G,B}N−1,

1− δ
1− δTP

E

[
TP∑
t=1

δt−1ui (at) + πi(xi−1, h
TP+1
i−1 : δ) | σ(x)

]
=

 v̄i if xi−1 = G,

vi if xi−1 = B.
(5)

Intuitively, since limδ→1
1−δ

1−δTP = 1
TP
, this requires that player i’s payoff is solely con-

trolled by player i− 1 and is close to the targeted payoffs vi and v̄i;

3. 1−δ
δT

P converges to 0 faster than πi(xi−1, h
TP+1
i−1 : δ) diverges and the sign of πi(xi−1, h

TP+1
i−1 :

δ) satisfies a proper condition:


limδ→1

1−δ
δTP

sup
xi−1,h

TP+1
i−1

∣∣πi(xi−1, h
TP+1
i−1 : δ)

∣∣ = 0,

πi(G, h
TP+1
i−1 : δ) ≤ 0,

πi(B, h
TP+1
i−1 : δ) ≥ 0.

(6)

We call (6) the “feasibility constraint.”

We explain why these conditions are suffi cient. We see the infinitely repeated game as the

repetition of TP -period review phases. In each review phase, each player i has two possible

states {G,B} 3 xi and player i with state xi takes σi(xi) in the phase. (4) implies that both

σi(G) and σi(B) are optimal regardless of the other players’states. (5) implies that player
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i’s ex ante value at the beginning of the phase is solely determined by player i − 1’s state.

That is, player i− 1 is a controller of player i’s payoff.

Here, πi(xi−1, h
TP+1
i−1 : δ) represents the differences between player i’s ex ante value given

xi−1 at the beginning of the phase and the ex post value at the end of the phase after player

i − 1 observes hTP+1
i−1 . πi(xi−1, h

TP+1
i−1 : δ) = 0 implies that the ex post value is the same

as the ex ante value since player i − 1 transits to the same state in the next phase with

probability one. With xi−1 = G (B, respectively), the smaller πi(G, h
TP+1
i−1 : δ) (the larger

πi(B, h
TP+1
i−1 : δ), respectively), the more likely it is for player i− 1 to transit to the opposite

state B (G, respectively) in the next phase. The feasibility of this transition is guaranteed

by (6).

The following lemma summarizes the discussion:

Lemma 1 For Theorem 1, it suffi ces to show that, for any v ∈ int(FNash), for suffi ciently

large δ, there exist {vi, v̄i}i∈I with (3), TP with limδ→1 δ
TP = 1 and {{σi (xi)}xi∈{G,B}}i∈I and

{{πi(xi−1, · : δ)}xi−1∈{G,B}}i∈I such that (4), (5) and (6) are satisfied.

Proof. See Section 10.1.

From now on, when we say player i’s action plan, it means player i’s behavioral mixed

strategy σi (xi) within the current review phase (or, the finitely repeated game). On the

other hand, when we say player i’s strategy, it contains both σi (xi) and πi+1(xi, · : δ) which

determines player i’s entire strategy in the infinitely repeated game.

Let us specify vi and v̄i. This step is the same as Hörner and Olszewski (2006). Given

x ∈ {G,B}N , pick 2N action profiles {a(x)}x∈{G,B}N . As we have mentioned, player i − 1’s

state xi−1 refers to player i’s payoff and indicates whether this payoff is strictly above or

below vi no matter what the other players’states are. That is, player i− 1’s state controls

player i’s payoff. Formally,

max
x:xi−1=B

ui(a(x)) < vi < min
x:xi−1=G

ui(a(x)) for all i ∈ I.
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Take vi and vi such that

max

{
v∗i , max

x:xi−1=B
ui(a(x))

}
< vi < vi < vi < min

x:xi−1=G
ui(a(x)). (7)

Remember that v∗i is a static Nash equilibrium payoff.

Action profiles that satisfy the desired inequalities may not exist. However, if Assumption

1 is satisfied, then there always exist an integer z and 2z finite sequences {a1(x), . . . , az(x)}x∈{G,B}N

such that each vector wi(x), the average discounted payoff vector over the sequence {a1(x),

. . ., az(x)}x∈{G,B}N , satisfies the appropriate inequalities provided δ is close enough to 1.

The construction that follows must then be modified by replacing each action profile a(x)

by the finite sequence of action profiles {a1(x), . . ., az(x)}x∈{G,B}N . Details are omitted as

in Hörner and Olszewski (2006).

Given ρ > 0 that will be determined in Section 7, given a (x), for each i, we perturb

ai (x) to αi(x) so that player i takes all the actions in Ai with a positive probability no less

than 2ρ:

αi(x) ≡
(

1−
∑

ai 6=ai(x) 2ρ
)
ai(x) +

∑
ai 6=ai(x) 2ρai.

Let {w(x)}x∈{G,B}N be the corresponding payoff vectors under α (x):

w(x) ≡ u (α(x)) with x ∈ {G,B}N .

With suffi ciently small ρ, (7) implies

max

{
v∗i , max

x:xi−1=B
wi(x)

}
< vi < vi < vi < min

x:xi−1=G
wi(x). (8)

Below, we construct {σi (xi)}xi,i and {πi(xi−1, · : δ)}xi−1,i satisfying (4), (5) and (6) with

v̄i and vi defined above in the finitely repeated game.
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5 Overview of the Argument

This section provides an intuitive explanation for our construction. In this section, we focus

on the two-player prisoners’dilemma and we assume vi is arbitrarily close to the mutual

cooperation payoff. This implies that we need to show the suffi cient conditions with v̄i close

to ui(Ci, Ci):

v̄i ≈ ui(Ci, Ci), (9)

and so we take ai(G,G) = Ci. With two players, whenever we say players i and j, we assume

players i and j are different: i 6= j.

Further, in this intuitive explanation, let us assume that Yi = {gi, bi}, that is, player i

has two possible signals, “good”and “bad,”and that the good signal is more likely to occur

with the opponent’s cooperation: for all ai ∈ Ai,

qi(gi | ai, Cj) > qi(gi | ai, Dj). (10)

5.1 Structure of the Review Phase

In TP -period finitely repeated games, at the beginning, each player i simultaneously an-

nounces a state xi ∈ {G,B} by cheap talk. σi(xi) tells the truth about xi.6 Now, the players

have coordinated on the state profile x.

Based on this coordination, the players play the finitely repeated game for TP periods.

We see TP periods as L repetitions of T -period review rounds, that is, TP = LT . Here, we

take

T = (1− δ)−
1
2

so that

T →∞ and δLT → 1 as δ → 1 (11)

for any finite L. (See Section 7 for the definition of L.) Intuitively, if the discount factor

6In the specification in Section 2.2, the players send the message at the end of each period. We see that
the players end xi at the end of the last period of the previous phase.
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is large, then T is suffi ciently long to aggregate information effi ciently and, at the same

time, the discounting over the finitely repeated game is negligible since δLT goes to unity.

Throughout the paper, we neglect the integer problem since it is handled by replacing each

variable s that should be an integer with minn∈N,n≥s n.

5.2 Review Rounds

Let us now explain the review rounds. Look at the suffi cient conditions in Section 4. (4)

implies that player i wants to maximize

1− δ
1− δTP

E

[
TP∑
t=1

δt−1ui (at) + πi(xj, h
TP+1
j : δ) | σi, σj(x)

]
with i−1 = j in the two-player game. For suffi ciently large δ, this is approximately equal to

1

TP
E

[
TP∑
t=1

ui (at) + πi(xj, h
TP+1
j ) | σi, σj(x)

]
. (12)

In this section, we assume that the players did not discount the future. Intuitively speaking,

with a suffi ciently high discount factor, we can replicate the situation where discount factor

is unity by slightly adjusting the change of player i’s continuation payoff.7 Hence, in Section

5, we neglect discounting and heuristically assume that δ = 1 and that player i maximizes

(12). See Condition 2 of Lemma 2 and Section 6.4 for the formal treatment of discounting.

On the other hand, (5) together with (9) implies that

1− δ
1− δTP

E

[
TP∑
t=1

δt−1ui (at) + πi(xj, h
TP+1
j : δ) | σ(G,G)

]

≈ 1

TP
E

[
TP∑
t=1

ui (at) + πi(xj, h
TP+1
j ) | σ(G,G)

]
≈ ui(C,C). (13)

7Note, however, that known results in the case without discounting (for example, see Lehrer (1990))
cannot be extended to the case with discounting. It is the phase-belief-free property that allows us this
adjustment.
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Together with the feasibility constraint, this implies that we need to satisfy the following

two requirements: player j incentivizes player i to take cooperation with a high probability,

and if player i cooperates frequently, then the punishment πi(xj, h
TP+1
j ) should be close to

zero in expectation.

To this end, player j aggregates information in each review round. Suppose now the

players are in round l and player j takes αj(l) ∈ ∆(Aj) and expects player i to take αi(l) ∈

∆(Ai) in each period of round l (as will be seen, the players take i.i.d. mixed actions within

each review round). Since Assumption 3 implies that player j can statistically identify player

i’s action, player j can map her history in each period into a real number πi[α(l)] (yj) so that

E [ui (ai, αj) + πi[α(l)] (yj) | ai, αj(l)] (14)

is independent of ai ∈ Ai. Intuitively, conditional on αj(l), after observing a “good”signal gj
which occurs more likely after player i’s cooperation, player j gives a high point πi[α(l)] (yj)

while after observing a “bad”signal bj which occurs more likely after player i’s defection,

player j gives a low point πi[α(l)] (yj), so that the expected gain in points from coopera-

tion cancels out the loss in instantaneous utilities. We normalize πi[α(l)] (yj) by adding or

subtracting a constant so that

E [πi[α(l)] (yj) | α(l)] = 0. (15)

Further, take ū suffi ciently large so that8

ū > max
j∈I,α∈∆(A),yj∈Yj

|πi[α] (yj)| . (16)

Recall that we have L review rounds. For each round l, player j aggregates πi[α(l)](yj,t)

8Lemma 2 shows that the maximum is well defined.
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and creates player j’s score about player i:

Xj(l) =
∑

t: lth review round
πi[α (l)](yj,t). (17)

5.2.1 Conditional Independence

For a moment, assume that player i’s signals were independent of player j’s signals condi-

tional on any action profile a, as in Matsushima (2004). In addition, we only explain how to

construct an ε-sequential equilibrium in this subsubsection: an strategy profile consists an

ε-sequential equilibrium if, for any player i, after any history hti that happens with a positive

probability, the gain of a deviation is bounded by ε. The reason is just for simple exposition:

to convey the contrast between conditionally independent monitoring and conditionally de-

pendent monitoring, it is enough to consider an ε-sequential equilibrium. Note that we will

construct exact equilibrium that works for any correlation from next subsubsection.

To construct ε-sequential equilibrium with conditionally independent monitoring, we can

assume that player i takes the same behavioral mixed strategy αi(x) for all the rounds:

αi(l) = αi(x) (18)

for all l ∈ {1, ..., L}. Especially, since we focus on x = (G,G), αi (x) = (1− 2ρ)Ci + 2ρDi

with a small ρ > 0, that is, player i takes Ci with high probability 1− 2ρ. Intuitively, player

j, who also takes αj(x) symmetrically defined, wants to incentivize player i to take αi (x)

by aggregating information over the review round and the expected punishment should be

small if player i takes Ci frequently.

This can be done as follows. Define the reward function as

πi(xj, h
TP+1
j ) =

{
−2ūT +

∑L

l=1
Xj(l)

}
−
, (19)

where, in general, {X}− is equal to X if X ≤ 0 and 0 otherwise.

Now let us check (12) and (13). From (15), the expected increase in the score in each
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period (that is, the expected point) is non-positive. Therefore, by the law of large numbers,

given ū > 0 and L ∈ N, for suffi ciently large T , player i puts a high belief on the event

that
∑L

l=1Xj(l) ≤ 2ūT . Since player i’s signals are independent of player j’s signals, player

i cannot update any information about player j’s score from player i’s history.9 Therefore,

after any period τ and history hτi , player i believes πi(xj, h
TP+1
j ) = −2ūT +

∑L
l=1Xj(l) with

a high probability. Together with (14), player i believes that both cooperation and defection

are optimal with a high probability. Hence, (12) is satisfied.

At the same time, since (18) implies α(l) = α(x) and the expected value of πi[α (l)](yj)

with α(l) = α(x) is 0,

1

TP
E

[
TP∑
t=1

ui (at) + πi(xj, h
TP+1
j ) | σ(G,G)

]

≈ 1

TP

(
TP∑
t=1

TPui (α(x))− 2ūT

)
= ui (α(x))− 2

L
ū.

For suffi ciently small ρ and L, this is close to ui(C,C) and so (13) is satisfied. Therefore, we

are done.

5.2.2 Conditional Dependence

Now, assume that player i’s signals and player j’s signals can be arbitrarily correlated. Since

player i with αi(x) takes cooperation with a high probability, (15) implies that the expected

score is close to 0 if player i always cooperate. Hence, to prevent an ineffi cient punishment,

player j cannot punish player i after the score is excessively high (in the above example,

more than 2ūT ). On the other hand, if the signals are correlated, then after some history

of player i, judging from her own history and correlation, player i puts a high probability

on the event that player j’s score about player i has already been excessively high. Then,

player i wants to start to defect.

9Precisely speaking, player i can update the realization of the score from the realization of her own
mixture αi(x) and learning the realization of player j’s mixture from yi. We omit the details of the proof
since our construction for the general monitoring covers the conditionally independent monitoring.
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More generally, there are correlations with which it is impossible to create a punishment

schedule that is approximately effi cient and that at the same time incentivizes player i to

cooperate after any history.10 Hence, we need to let player i’s incentive to cooperate break

down after some history. Symmetrically, player j also switches her own action after some

history.

Reflective Learning Problem One may think that it solves the problem to define the

equilibrium strategy so that player i defects after player i’s expectation of player j’s score

about player i is much higher than the ex ante mean. If this were incentive compatible, then

since such a history happens only rarely, the equilibrium strategy attains effi ciency.

However, this creates the following problem: since player i switches her action based on

player i’s expectation of player j’s score about player i, player i’s action reveals player i’s

expectation of player j’s score about player i. Since both “player i’s expectation of player

j’s score about player i”and “player i’s score about player j”are calculated from player i’s

history, player j, who wants to infer player i’s score about player j, may have an incentive

to learn “player i’s expectation of player j’s score about player i”by privately monitoring

player i’s action. If so, player j’s decision of actions depends also on player j’s expectation of

player i’s expectation of player j’s score about player i. Proceeding one step further, player

i’s decision of actions depends on player i’s expectation of player j’s expectation of player i’s

expectation of player j’s score about player i. This chain of “reflective learning”continues

infinitely, and it is hard to analyze when the players have an incentive to cooperate.11

Cheap Talk to Coordinate the Continuation Play Without Reflecting Learning

We want to construct an equilibrium that is immune to the reflective learning. To this end,

the players use cheap talk to coordinate on the continuation play. Especially, we see the

finitely repeated game as L repetition of T -period review rounds and at the beginning of

each round, the players simultaneously send the histories within the previous round by cheap

10The formal proof of this claim is available upon request.
11Fong, Gossner, Hörner, and Sannikov (2010) take this approach and show that, under some open set of

monitoring structure, the mutual cooperation is sustainable with a suffi ciently high probability.
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talk. Since the result of the cheap talk is common knowledge, there is no learning problem

if the players have the incentive to tell the truth.

Now we will explain the equilibrium strategy. For that purpose, it is convenient to define

a state in each round l, constructed from the messages of the players: λ(l) ∈ {∅} ∪ I.

Intuitively, λ(l) = ∅ implies that no player i has announced that player i believes that player

j’s score has been excessively high until round l − 1; λ(l) = i ∈ {1, 2} implies that there

is only one player i who has announced so. If both players announced so, we ignore the

announcement and have λ(l) = ∅. The optimality of this ignorance will be verified later.

Let us first define player i’s action plan in each round l. If i 6= λ(l), then, intuitively,

since player i believes that the score has been regular until round l−1, player i believes that

there is enough room for the score to linearly increase with respect to the points without

hitting zero until the end of round l. That is, player i is indifferent between Ci and Di within

round l. Given this indifference, we can let player i take one of the following three mixed

action plans

αi (l) =


αi (x) ≡ (1− 2ρ)Ci + 2ρDi,

ᾱi (x) ≡ (1− ρ)Ci + ρDi,

αi (x) ≡ (1− 3ρ)Ci + 3ρDi,

(20)

with probability 1− η, η/2 and η/2, respectively, with small ρ, η > 0. Once player i decides

αi (l), player i takes an action according to αi(l) i.i.d. within round l. Note that player i

takes the same action plan αi (x) as in the case with conditional independence with a high

probability. However, with a small probability, player i puts more weight (ᾱi(x)) or less

weight (αi(x)) on cooperation.

On the other hand, if i = λ(l), then player i believes that the score cannot increase linearly

in the points without hitting zero and player i takes Di with probability one: αi(l) = Di.

See ?? in Figure 1 for the illustration (we will explain the last column later).
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Player j’s action plan is symmetrically defined: if j 6= λ(l), then

αj (l) =


αj (x) ≡ (1− 2ρ)Cj + 2ρDj,

ᾱj (x) ≡ (1− ρ)Cj + ρDj,

αj (x) ≡ (1− 3ρ)Cj + 3ρDj,

(21)

with probability 1− η, η/2 and η/2, respectively; if j = λ(l), then αj(l) = Dj.

After round l, player i sends her history in round l, {ai,t, yi,t}t:round l, to player j by cheap

talk. Let hli ≡ {ai,t, yi,t}t:round l be the true history and ĥli ≡ {âi,t, ŷi,t}t:round l be the reported

history.

Hence, the strategies of the players are characterized as follows: for each l,

1. from period (l−1)T +1 (the initial period of round l) to period lT −1 (the second last

period of round l), player i takes αi(l) as explained above. As will be seen below, since

λ(l) is well-defined by player i’s history at the beginning of round l, σai,t is well-defined.

Since Mi,t = ∅, σmi,t is redundant;

2. from period lT (the last period of round l), player i takes αi(l) as explained above.

Then, with Mi,t = (Ai × Yi)T , σmi,t sends ĥl1 = hli = {ai,t, yi,t}t:round l.

To define player i’s action plan, we are left to define the transition of λ(l). The initial

condition is λ(1) 6= ∅. For l ≥ 1, if λ(l) 6= ∅, then λ(l + 1) = λ(l). Hence, let us concentrate

on the case with λ(l) = ∅. Remember that λ(l + 1) = i means that player i believes that

player j’s score about player i has been regular until round l. Therefore, we will specify after

what history hli, player i believes that Xj(l) was regular in round l.

Player i believes Xj(l) is regular if both of the following two conditions are satisfied:

1. player i picks αi(l) = αi(x);

2. the realized frequency of player i’s action in round l is actually close to αi(x).

Let us call these two conditions Conditions 1 and 2 for the belief of Xj(l). Otherwise,

player i believes that Xj(l) was excessively high.
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Given this, λ(l + 1) is determined as follows:

• if there is unique i such that ĥli does not satisfy either Condition 1 or 2, then λ(l+1) = i;

• otherwise, λ(l + 1) = ∅.

Now, since we have defined player i’s action plan, let us define player j’s reward function

on player i. While taking the action, player j calculates Xj(l). Player j uses her true action

αj(l) while she assumes that player i takes αi(x) for round l:

Xj(l) =
∑

t: lth review round
πi[α (l)](yj,t). (22)

We say player j’s score about player i is “regular” in round l if Xj(l) ≤ ū
L
T and it is

“excessively high”if Xj(l) >
ū
L
T . See Figure 2 for the illustration.

Intuitively, if λ(l) 6= i (player i announced that she believes the score has been regular),

then the reward is linear in the score (and so both Ci and Di are optimal) while if λ(l) = i

(player i announced that she believes the score has been excessively high), then the reward

is constant (and so player i wants to take defection):

− 2ūT +
∑

l:λ(l)6=i
Xj(l)︸ ︷︷ ︸

player j adds the score
for rounds with λ(l)6=i

−
∑

l:iλ(l)=i
T (ui(Di, αj(l))− ui(αi(x), αj(l)))︸ ︷︷ ︸

As will be seen, for rounds with λ(l)=i,
player i takes Di instead of αi(x).

The marginal gain of Di is canceled out.

.

However, there are two events after which player j subtracts a large number ūLT +∑
l

(
minαj Tui(αi(x), αj)− Tui(αi(x), αj(l))

)
:

1. there is round l where (i) λ(l) = ∅, (ii) the true score was excessively high in round

l, that is, Xj(l) >
ū
L
T , and (iii) player i announced that player i believes that player

j’s score was regular, that is, ĥli satisfied Conditions 1 and 2 for the belief of Xj(l).

Intuitively, this means player i made a mistake in the announcement;

2. there is round l where (i) λ(l) = ∅ and (ii) player j took αj(l) 6= αj(x) or the actual

frequency of player j’s action was not close to αj(x). In other words, λ(l) = ∅ and
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player j’s history hlj did not satisfy Conditions 1 and 2 for the belief ofXi(l). Especially,

if player j’s announcement ĥlj does not satisfy either Condition 1 or 2 for the belief of

Xi(l) with λ(l) = ∅, then this condition is satisfied.

Let us call these conditions Conditions 1 and 2 for θj = B. We say θj = B if at least

one of these two conditions is satisfied and θj = G otherwise. Note that θj does not change

if λ(l) 6= ∅. Note also that if λ(l) = j for some l, then θj = B.

In total, the reward is

πi(xj, h
TP+1
j ) = −1{θj=B}

(
ūLT +

∑
l

(
min
αj

Tui(αi(x), αj)− Tui(αi(x), αj(l))

))
−2ūT +

∑
l:λ(l)6=i

Xj(l)

−
∑

l:iλ(l)=i
T (ui(Di, αj(l))− ui(αi(x), αj(l))). (23)

Intuitively,  Xj(l) if λ(l) 6= i,

constant if λ(l) = i
(24)

is the reward in round l.

Note that this reward is always non-positive: the last line is always non-positive; the

second line is non-positive if λ(l+ 1) = i after Xj(l) >
ū
L
T ; if λ(l+ 1) 6= i after Xj(l) >

ū
L
T ,

then player i announced that she believes the score was regular (Conditions 1 and 2 for the

belief of Xj(l) are satisfied) after round l even though the score was excessively high, or

player j announced that she believes the score was excessively high (Conditions 1 and 2 for

the belief of Xi(l) are not satisfied). Both imply θj = B. From (16), −ūLT is suffi ciently

small to make the reward non-positive sinceminαj Tui(αi(x), αj)−Tui(αi(x), αj(l)) is always

non-positive.

Hence, we are left to check player i’s incentive and effi ciency. Consider the incentive first.

If λ(l) = i, then (i) λ(l̃) with l̃ > l does not change and (ii) θj does not change either. Hence,

(24) implies that Di is optimal. If λ(l) = j, then again (i) λ(l̃) with l̃ > l does not change

and (ii) θj does not change either. Hence, (24) implies that Ci and Di are both optimal.
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Since λ(l̃) with l̃ > l does not depend on ĥli, it is optimal for player i to tell the truth.

Hence, we concentrate on the case with λ(l) = ∅. We proceed by backward induction.

In round L (the last round), the relevant part of (23) is Xj(L). Hence, (14) and (22) imply

that both Ci and Di are optimal. The message ĥLi is irrelevant.

Consider round L− 1. The relevant part of (23) is

X(L− 1)− 1{θj=B}

(
ūLT +

∑L

l=1

(
min
αj

Tui(αi(x), αj)− Tui(αi(x), αj(l))

))

+

 Xj(L) if λ(L) 6= i,

−T (ui(Di, αj(L))− ui(αi(x), αj(L))) if λ(L) = i.

First, we consider player i’s value in round L defined as

−1{θj=B}

(
min
αj

Tui(αi(x), αj)− Tui(αi(x), αj(L))

)

+

 Xj(L) if λ(L) 6= i,

−T (ui(Di, αj(L))− ui(αi(x), αj(L))) if λ(L) = i.

• if θj = G, then

— if λ(L) 6= i, then from the discussion about round L, both Ci and Di are optimal

if λ(L) 6= i. Hence, we can calculate player i’s value in round L with λ(L) 6= i,

assuming player i takes αi(x). In that case, the expectation of Xj(L) is zero from

(15) and (22). Hence, the value in round L is equal to Tui(αi(x), αj(L));

— if λ(L) = i, then player i will take Di and the value is Tui(αi(x), αj(L)) since the

deviation gain is canceled out by the reward function;

Hence, regardless of λ(L), player i’s value in round L is Tui(αi(x), αj(L)). Since

θj = G, λ(L) 6= j and so player j takes αj (x), ᾱj (x) and αj (x) with probability 1− η,

η/2 and η/2, with which the expected value of Tui(αi(x), αj(L)) is equal to Tui(α(x)).

• if θj = B, then by the same argument for the case with θj = G, player i’s payoff
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is minαj Tui(αi(x), αj)−Tui(αi(x), αj(L)) +Tui(αi(x), αj(L)) = minαj Tui(αi(x), αj).

Hence, regardless of λ(L), player i’s value in round L is minαj Tui(αi(x), αj).

Therefore, we can conclude the relevant movement of the continuation payoff from round

L is

X(L− 1)− 1{θj=B}

(
ūLT +

∑L−1

l=1

(
min
αj

Tui(αi(x), αj)− Tui(αi(x), αj(l))

))
+1{θj=B}min

αj
Tui(αi(x), αj) + 1{θj=G}Tui(α(x)). (25)

Note that now we take the summation of minαj Tui(αi(x), αj)−Tui(αi(x), αj(l)) until round

L− 1 since minαj Tui(αi(x), αj)− Tui(αi(x), αj(L)) is included in minαj Tui(αi(x), αj), the

value in round L.

If we neglect the effect of player i’s strategy on θj, then both Ci and Di would be optimal

by (14) and (22). Hence, if we adjust the reward function so that we can neglect this effect

we are done.

First, we adjust the reward function so that we can actually neglect the effect of player

i’s strategy on θj by adding

max
h̃L−1i

E
[
−1{θj=B}∆L | ĥL−1

i , h̃L−1
i

]
− E

[
−1{θj=B}∆L | ĥL−1

i , ĥL−1
i

]
(26)

where ∆L is the reduction of the continuation payoffs when θj = B happens

0 ≤ ∆L ≡ ūLT +
∑L−1

l=1

(
min
αj

Tui(αi(x), αj)− Tui(αi(x), αj(l))

)
+Tui(α(x))−min

αj
Tui(αi(x), αj)

and E
[
−1{θj=B}∆L | ĥL−1

i , h̃L−1
i

]
is the expected value of this reduction conditional on that

player i observed ĥL−1
i and reports h̃L−1

i .

Since Condition 2 for θj = B is solely determined by player j’s mixture and independent

of player i’s strategy in round L− 1, the effect of player i’s strategy on θj is solely through
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ĥL−1
i . Hence, if the truthtelling is optimal, then (26) cancels out the effect of player i’s

strategy on θj.

Second, player j incentivizes player i to tell the truth at the end of round L − 1 even

after taking (26) into account. Player j punishes player i based on ĥL−1
i by

−
∑

t: round L−1

T−2
∥∥1aj,t,yj,t − E[1aj,t,yj,t | ai,t, yi,t, αj(L− 1)]

∥∥2
. (27)

Finally, the expected value of (27) before observing yi,t but after taking ai,t is different

for different ai,t’s. To cancel out this difference, player j adds π
report
i [αj,t](yj,t) to the reward

with πreport
i [αj,t](yj,t) satisfying

E
[
−T−2

∥∥1aj,t,yj,t − E[1aj,t,yj,t | ai,t, yi,t, αj,t]
∥∥2

+ πreport
i [αj,t](yj,t) | ai,t, αj,t

]
= 0 (28)

for all (ai,t, αj,t). Assumption 3 guarantees the existence of such reward π
report
i [αj,t](yj,t) and∣∣πreport

i [αj,t](yj,t)
∣∣ = Θ(T−2).

Now the reward is (23) plus (26), (27) and (28). Given (26), (27) and (28), if the

truthtelling is optimal, then the effect of player i’s strategy on θj is canceled out. Hence, we

are left to show player i’s incentive to tell the truth in the end of round L− 1 and the entire

reward is non-positive.

First, we show that (26) is small for any ĥL−1
i . Classify ĥL−1

i into following four classes:

• if ĥL−1
i does not satisfy Conditions 1 and 2 for the belief of Xj(L−1), which minimizes

the probability of θj = B. Hence, (26) is zero;

• if ĥL−1
i satisfies Conditions 1 and 2 for the belief of Xj(L − 1), then consider the

following three cases for player i’s signal frequency in periods when player i took Ci

according to ĥL−1
i :

— if the frequency was very close to the ex ante distribution given (Ci, αj(x)), then

there are following two cases about player j’s action plan αj(L− 1):
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∗ if player j took αj(L − 1) 6= αj(x), then Condition 2 for θj = B is satisfied

and regardless of ĥL−1
i , θj = B is determined;

∗ if player j took αj(L− 1) = αj(x), then player i’s conditional expectation of

Xj(L− 1) given (Ci, αj(x)) was also close to the ex ante mean of Xj(L− 1)

under (Ci, αj(x)), which is close to zero for suffi ciently small ρ.12 Hence, by

the large deviation theory, since the length of the round is T , player i put a

belief no more than exp(−Θ(T )) on the event that Xj(L− 1) > ū
L
T ;13

— if the frequency was skewed toward gi, that is, if player i observed gi more often

than the ex ante frequency under (Ci, αj(x)), then by the large deviation theory,

then player i put a belief no less than 1− exp(−Θ(T )) on the event that player j

took ᾱj(x) and θj = B is determined regardless of ĥL−1
i since the frequency was

skewed toward qi (Ci, Cj);

— if the frequency was skewed toward bi, that is, if player i observed bi more often

than the ex ante frequency under (Ci, αj(x)), then by the same argument,14 player

i put a belief no less than 1− exp(−Θ(T )) on the event that player j took αj(x)

and θj = B is determined regardless of ĥL−1
i ;

Hence, in total, (26) is no less than exp(−Θ(T )).

Second, given (26) is small for all ĥL−1
i , the punishment (27) is suffi ciently large to

incentivize player i to tell the truth about hL−1
i . Whenever player i’s history (ai,t, yi,t) gives

player i different belief about player j’s history (aj,t, yj,t), (27) punishes player i by Θ(T−2)

12(15) and (17) implies that the ex ante mean of Xj(L − 1) under (αi(x), αj(x)) is zero. Since αi(x)
prescribes Ci with probability 1−2ρ, for suffi ciently small ρ, the ex ante mean of Xj(L−1) under (Ci, αj(x))
is also close to zero.
13For a variable XT which depends on T , we say XT = exp(−Θ(T k)) if and only if there exist k1, k2 > 0

such that exp(−k1T k) ≤ XT ≤ exp(−k2T k) for suffi ciently large T .
14Since we assume |Yi| = |Ai|, Assumption 3 implies that whenever player i’s signal frequency is not close

to the ex ante distribution under (Ci, αj(x)), it should be skewed toward either qi (Ci, Cj) or qi (Ci, Dj).
If |Yi| > |Ai|, then it could be the case that although player i’s signal frequency is not close to the ex ante

distribution under αj(x), it is skewed toward neither qi (Ci, Cj) nor qi (Ci, Dj). See Section 6.5.1 for how we
take care of this case.
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if player i tells a lie. Since (26) is bounded by exp(−Θ(T )), this punishment is suffi ciently

large. Note that (28) is sunk by the time when player i sends ĥL−1
i .

Therefore, we have verified player i’s incentive to tell the truth in the end of round L−1.

In addition, since (23) is non-positive and (26), (27) and (28) are all small (at least of order

Θ(−T 2)), by subtracting a small constant if necessary, the feasibility is satisfied.

Recursively, by backward induction, we can show that the equilibrium action plan is

optimal for each round. Since the players take α(x) with a high probability for suffi ciently

small η and Conditions 1 and 2 for θj = B only happens with a small probability, effi ciency

is preserved.

6 Equilibrium Strategy

Now we define the equilibrium strategy for TP -period finitely repeated game for the general

N -player game. Remember that we see the finitely repeated game as L repetitions of T -

period review rounds, where L ∈ N will be pinned down in Section 7 and T = (1− δ)−
1
2 as

in (11). Let T (l) with |T (l)| = T be the set of T periods in round l and hli = (ai,t, yi,t)t∈T (l)

be player i’s history in round l. Note that TP = LT .

In Section 6.1, we define statistics useful for the equilibrium construction. In Section 6.2,

we define the state variables that will be used to define the action plans and rewards. Given

the states, Section 6.3 defines the action plan σi(xi) and Section 6.4 defines the reward

function πi(xi−1, h
TP+1
i−1 : δ). Section 6.5 finishes defining the strategy by determining the

transition of the states defined in Section 6.2.

6.1 Statistics

We define one number ū > 0 and two statistics (functions of signals) useful for the equilibrium

construction: πi[α] (yi−1) and πδi (t, α−i,t, yi−1,t).

First, πi[α] (yi−1) is the point corresponding to πi[α](yj) briefly explained in Section 5.2.

Specifically, for each α ∈ ∆ (A), we want to create a statistics (point) πi[α] (yi−1) such that
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πi[α] : Yi−1 → (−ū, ū) cancels out the differences in the instantaneous utilities for different

ai’s:

ui(ai, α−i) + E [πi[α](yi−1) | ai, α−i] (29)

is independent of ai ∈ Ai, as in (14). Further, we want to make sure that if α−i = α−i (x),

then the expected sum of the instantaneous utility and πi[α (x)](yi−1) satisfies

ui(ai, α−i(x)) + E [πi[α(x)](yi−1) | ai, α−i(x)] = ui(α(x)) (30)

for all ai ∈ Ai. In other words, we take

E [πi[α(x)](yi−1) | α(x)] = 0. (31)

This corresponds to (15) in Section 5.2. Taking ū suffi ciently large, we want to make sure

that

2 max
i,a
|ui(a)|+ 2 max

i,α
|πi[α](yi−1)| < ū. (32)

We will prove that the maximum is well-defined in Section 10.2.

Second, we want to construct the point πδi : N×∆(A−i)× Yi−1 → R such that the effect

of discounting is canceled out:

δt−1ui (ai,t, α−i,t) + E
[
πδi (t, α−i,t, yi−1,t) | ai,t, α−i,t

]
= ui (ai,t, α−i,t) (33)

for all ai,t ∈ Ai, a−i,t ∈ ∆(A−i) and t ∈ {1, ..., TP} and

lim
δ→1

1− δ
1− δTP

∑TP

t=1
sup

α−i,t,yi−1,t

∣∣πδi (t, α−i,t, yi−1,t)
∣∣ = 0 (34)

for all L with TP = LT and T = (1− δ)−
1
2 .

Since Assumption 3 implies that player i− 1 can statistically infer player i’s action given

α−i, the existence of such πi[α] (yi−1) and πδi (t, α−i,t, yi−1,t) is guaranteed.
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Lemma 2 If Assumption 3 is satisfied, then there exists ū > 0 such that,

1. for each i ∈ I, α ∈ ∆ (A) and {α (x)}x∈{G,B}N , there exists πi[α] : Yi−1 → (−ū, ū) with

(29), (30) and (32);

2. for each i ∈ I, there exists πδi : N × ∆(A−i) × Yi−1 → R such that, for all L with

TP = LT and T = (1− δ)−
1
2 , (33) and (34) are satisfied.

Proof. See Section 10.2.

In addition to these two statistics, we consider the following variables in round l. Let

fi(ai, yi) be the frequency of an action-signal pair (ai, yi) in T (l). Given fi(ai, yi),

fi(ai, Yi) ≡ (fi(ai, yi))yi∈Yi ,

fi(ai) ≡
∑

yi
fi(ai, yi),

fi(Yi | ai) ≡
fi(ai, Yi)

fi(ai)

are the vector of player i’s signal frequency during the periods when player i takes ai,

the frequency of actions, and the vector of player i’s conditional signal frequency given ai,

respectively.

Suppose players i takes ai ∈ Ai for more than T/2 periods in T (l) and players −(i, j)

take α−(i,j) ∈ ∆(A−(i,j)). Then, by the law of large numbers, regardless of player j’s action,

fi(Yi | ai) is close to

Qj
i (ai, α−(i,j)) ≡ aff({qi(ai, aj, α−(i,j))}aj∈Aj) ∩ R

|Yi|
+ .

We can represent Qj
i (ai, α−(i,j)) by the matrix expression

Qj
i (ai, α−(i,j)) ≡ {yi ∈ R|Yi|+ : Qj

i (ai, α−(i,j))yi = qji (ai, α−(i,j))}.

Since all the signal frequencies should be on the simplex over Yj, by affi ne transformation,

we can assume that each element of Qj
i (ai, α−(i,j)) and qji (ai, α−(i,j)) is in (0, 1).
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Lemma 3 For any i, j ∈ I with i 6= j, ai ∈ Ai and α−(i,j) ∈ ∆(A−(i,j)), we can take

Qj
i (ai, α−(i,j)) and qji (ai, α−(i,j)) such that all the elements are in (0, 1).

Proof. See Section 10.3.

In general, for a random variable z ∈ Z, 1z ∈ {0, 1}|Z| is a |Z|-dimensional random

vector such that if z is realized, then the element corresponding to z is 1 and the others

are 0. After taking ai,t = ai and observing yi,t, player i calculates Q
j
i (ai, α−(i,j))1yi,t . With

D being the dimension of Qj
i (ai, α−(i,j))1yi,t , player i draws D random variables from the

uniform [0, 1] independently. If the dth realization of these random variables is no less

than the dth element of Qj
i (ai, α−(i,j))1yi,t , we define the dth element of ~Q

j
i (ai, α−(i,j)) equal

to 1. Otherwise, the dth element of ~Qj
i (ai, α−(i,j)) is 0. By definition, the distribution of

~Qj
i (ai, α−(i,j))1yi,t is independent of player j’s action as long as players −(i, j) take α−(i,j).

Let fi( ~Q
j
i (ai, α−(i,j)) | ai) be the conditional frequency of ~Qj

i (ai, α−(i,j)) in the periods when

player i takes ai in T (l).

When we say fi(Yi | ai) is close to Qj
i (ai, α−(i,j)), it means both of the following two

conditions are satisfied:

• ∥∥∥Qj
i (ai, α−(i,j))fi(Yi | ai)− fi( ~Qj

i (ai, α−(i,j)) | ai)
∥∥∥ < 1

K1

; (35)

• ∥∥∥fi( ~Qj
i (ai, α−(i,j)) | ai)− qji (ai, α−(i,j))

∥∥∥ < 1

K1

. (36)

The following lemma guarantees that, for any ε > 0, for suffi ciently large K1, (35) and

(36) imply

d(fi(Yi | ai),Qj
i (ai, α−(i,j))) < ε. (37)

In this paper, we use Euclidean norm and Hausdorff metric.

Lemma 4 For any ε > 0, there exists K̄1 such that, for all K1 > K̄1, (35) and (36) imply

(37).
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Proof. See Section 10.4.

Further, we want to make sure that the probability that fi(Yi | ai) is close toQj
i (ai, α−(i,j))

is independent of player j’s strategy given that player i takes ai for more than T/2 periods

in T (l) and that players −(i, j) take α−(i,j). (36) is independent since the distribution of

~Qj
i (ai, α−(i,j))1yi,t is independent. For all the histories where player i takes ai for more than

T/2 periods in T (l), conditional on player i’s history in T (l), (35) is satisfied with probability

1−exp(−Θ(T )). Let p̄ = 1−exp(−Θ(T )) be the minimum of such a probability with respect

to player i’s histories satisfying the condition that player i takes ai for more than T/2 periods

in T (l). If (35) happens with a larger probability p than p̄ after some history, then player

i draws a random variable from the uniform [0, 1]. If this realization is no less than p − p̄,

then player i behaves as if (35) were not satisfied.

In total, when we say fi(Yi | ai) is close to Qj
i (ai, α−(i,j)), then (36) and (35) are satis-

fied, taking this adjustment into account. Then, the probability that fi(Yi | ai) is close to

Qj
i (ai, α−(i,j)) is independent of player j’s strategy.

6.2 States xi, λ(l) and θi−1

Now, we define three state variables useful to define the equilibrium strategy: xi, λ(l) and

θi−1. The state xi ∈ {G,B} is determined at the beginning of the finitely repeated game and

fixed. Since x is communicated by cheap talk at the beginning of the finitely repeated game

truthfully, x becomes common knowledge. Hence, we use x−i for the definition of player i’s

strategy.

As seen in Section 5.2, λ(l) ∈ {∅}∪I∪punish is the state for round l. Intuitively, λ(l) = i

means that player i− 1’s score about player i has been excessively high, and so if λ(l) = i,

then player i− 1’s reward on player i is constant and player i takes a static best response to

players −i. In Section 5.2, we focus on the case with xi−1 = G for all i ∈ I. If player i − 1

has xi−1 = B, then instead of λ(l) = i, the players have λ(l) = punish after player i − 1’s

score about player i has been excessively “low”and if λ(l) = punish, all the players take

static best response to each other, that is, the static Nash equilibrium α∗i .
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In addition, as seen in Section 5.2, after some events, player i−1 adds or subtracts a large

number from the reward function. θi−1 = B implies such an event happens while θi−1 = G

implies such an event does not happen.

6.3 Player i’s Action Plan σi (xi)

Now, we define player i’s action plan σi (xi) given states x and λ(l). See Section 6.4 for the

definition of the reward function πi(xi−1, h
TP
i−1 : δ) and Section 6.5 for the transition of the

states.

At the beginning of the finitely repeated game, player i tells the truth about xi. If

player i told a lie and her state is x̂i when it is xi, define σi(xi) = σi(x̂i), that is, player i’s

continuation action plan is as if her true state is x̂i.

In round l, player i with σi(xi) takes an i.i.d. action plan αi(l), depending on λ(l). To

define the strategy, let Ci = {ti ∈ R|Ai| : ‖ti‖ = 1} be the set of |Ai|-dimensional vectors with

length 1 and C̄i ⊂ Ci with
∣∣C̄i∣∣ <∞ be the finite subset of Ci. See Lemma 5 for the formal

definition of C̄i. Given C̄i and ρ > 0 to be determined in Section 7, αi(l) is determined as

follows:

1. if λ(l) 6= i and λ(l) 6= punish, then with η > 0,

(a) with probability 1− η, αi(l) = αi(x);

(b) with probability η, player i randomly draws ti from C̄i such that Pr(ti) = 1/
∣∣C̄i∣∣.

If ti is drawn, then player i takes

αi(x, ti) ≡
(

1−
∑

ai 6=ai(x)
(2ρ+ ρti(ai))

)
ai(x) +

(∑
ai 6=ai(x)

(2ρ+ ρti(ai)) ai

)
;

2. if λ(l) = i, then player i takes a static best response to a−i(x);

3. if λ(l) 6= punish, then player i takes a static Nash equilibrium action α∗i ;

At the end of period lT (the last period of round l), each player i truthfully sends hli

simultaneously by cheap talk.
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6.4 Reward Function

In this subsection, we explain player i− 1’s reward function on player i, πi(xi−1, h
TP
i−1 : δ).

Reward Function As in (22), we call

Xi−1 (l) ≡
∑
t∈T (l)

πi[αi(x), α−i(l)](yi−1,t)

“player i− 1’s score on player i.”

The reward πi(xi−1, h
TP+1
i−1 : δ) is written as

πi(xi−1, h
TP+1
i−1 : δ) =

L∑
l=1

∑
t∈T (l)

πδi (t, α−i,t, yi−1,t)

+sign(xi−1)1{θi−1=B}

{
3ūLT +

L∑
l=1

(π̄i(x, α−i(l), l) +Xi−1(l))

}

+sign(xi−1)2ūT + 1{θi−1=G}


π̄i(x, λ(l), l) +

∑
l:


λ(l) 6= i,

λ(l) 6= punish

Xi−1(l)


+
∑

l:λ(l)=∅

∑
t∈T (l)

(
−T−2

∥∥1a−i,t,y−i,t − E[1a−i,t,y−i,t | âi,t, ŷi,t, α−i,t]
∥∥2

+ πreport
i [α−i,t](yi−1,t)

)

+sign(xi−1)
L−1∑
l=1

vi({λ(l̃)}l−1

l̃=1
, {hl̃−i}ll̃=1

, ĥli) (38)

where sign(xi−1) = −1 if xi−1 = G and sign(xi−1) = 1 if xi−1 = B.

Let us comment on the reward function line by line. The first line is to cancel out the

effect of discounting. Hence, from now, we can assume δ = 1.

The role of the second line is the same as ūLT in (23). There are two possible events to

induce θi−1 = B:
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• xi−1 = G and player i − 1’s score is excessively high but player i announces that she

believes it is regular, which corresponds to Condition 1 for θj = B in Section 5;

• there is another player j ∈ −i such that xj−1 = G and player j announces that she

believes player j − 1’s score is excessively high, which corresponds to Condition 2 for

θj = B in Section 5;

In such a case, player i−1 subtracts or adds large number 3ūLT to satisfy the feasibility,

depending on her state xi−1. In addition, player i − 1 uses the score to incentivize player i

in the continuation play. Further, we have π̄i(x, α−i(l), l). As will be seen in Section 8, once

θi−1 = B is induced, then player i − 1 will make player i indifferent between any sequence

{λ(l)}Ll=1. π̄i(x, α−i(l), l) cancels out the possible differences in player i’s payoffs for different

α−i(l)’s, which are determined by {λ(l)}Ll=1.

The role of the third line is to incentivize player i by the score. As in −2ūT in (23),

sign(xi−1)2ūT makes it rare for the score to be excessively high or low. Player i is incentivized

to take the equilibrium action by the score. Similarly to π̄i(x, α−i(l), l), π̄i(x, λ(l), l) adjusts

player i’s incentive about the transition of {λ(l)}Ll=1.

The fourth line incentivizes player i to tell the truth about the history at the end of each

review round, as (27) in Section 5. As in (28), πreport
i [α−i,t](yi−1,t) cancels out the differences

in ex ante payoffs for different actions in terms of (27).

The last line deals with the fact that different histories of player i give different payoffs

in the continuation play since the message of the histories affect the transition of {λ(l)}Ll=1.

As (26), we cancel out the effect of this differences on player i’s incentives.

Finally, note that player i−1 uses the information owned by players−(i−1, i) to calculate

the reward (for example, a−i,t, y−i,t in the fourth line). Player i yields this information from

the messages by players −(i− 1, i). This does not affect the incentives of players −(i− 1, i)

since this information is used only for the reward to player i.
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6.5 Transition of the States

In this subsection, we explain the transition of the players’states. Since x is fixed in the

phase, we consider λ(l) and θi−1.

6.5.1 Transition of λ(l + 1) ∈ {∅} ∪ I ∪ punish

As mentioned in Section 5.2, λ(l + 1) = i implies that player i believes that player i − 1’s

score has been high. In addition, λ(l + 1) = punish implies that some player i − 1 had an

excessively low score on player i and triggered the punishment. Since player i does not have

an incentive to tell that she believes that player i− 1 has an excessively low score and that

players −i now need to punish player i, player i− 1 announces the punishment.

The initial condition is λ(1) = ∅. Inductively, given λ(l) ∈ {∅} ∪ I ∪ punish, λ(l + 1) is

determined as follows: if λ(l) 6= ∅, then λ(l + 1) = λ(l). That is, once λ(l) 6= ∅ happens, it

lasts until the end of the finitely repeated game. If λ(l) = ∅, then λ(l+ 1) ∈ {∅}∪ I ∪punish

is determined as follows:

1. if there exists a unique i such that xi−1 = G and “player i announces that player i

believes that the score Xi−1 (l) is excessively high,”then λ(l + 1) = i;

2. otherwise, that is, if there is no i such that xi−1 = G and “player i announces that

player i believes that the score Xi−1 (l) is excessively high,”then

(a) if there exists i with xi−1 = B such that “player i − 1 triggers the punishment,”

then λ(l) = punish;

(b) otherwise, λ(l + 1) = ∅.

Let us call these conditions Conditions 1, 2-(a) and 2-(b) for λ(l + 1).

Now, we define when “player i announces that player i believes that the score Xi−1 (l) is

excessively high”and when “player i− 1 triggers the punishment,”which are determined by

player i’s announcement ĥli at the end of round l and player i − 1’s announcement ĥli−1 at

the end of round l, respectively.
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When Player i Announces that Player i Believes that The Score Xi−1 (l) is Ex-

cessively High Since λ(l + 1) does not change after λ(l) 6= ∅, we concentrate on the case

with λ(l) = ∅. This implies that, from Section 6.3, each player j ∈ I takes

1. with probability 1− η, αj(l) = αj(x);

2. with probability η, player j randomly draws tj from C̄j such that Pr(tj) = 1/
∣∣C̄j∣∣. If

tj is drawn, then player j takes

αj(x, tj) ≡
(

1−
∑

aj 6=aj(x)
(2ρ+ ρtj(aj))

)
aj(x) +

(∑
aj 6=aj(x)

(2ρ+ ρtj(aj)) aj

)
.

If player i’s message ĥli satisfies at least one of the following two conditions, then we say

that player i announces that Xi−1(l) is excessively high. The first condition is that, as in

Section 5, player i does not take αi(l) 6= αi(x) or player i’s action frequency is not close to

the ex ante distribution αi(x).

The second condition is that, for all j ∈ −i, player i’s signal frequency while player i

takes ai(x) in T (l) is not close to the affi ne full of player i’s signal frequencies with respect

to player j’s action.

Suppose that player i tells the truth and that neither of the two conditions is satisfied.

Then, as mentioned in footnote ??, conditional on that the first condition is not satisfied

(and so player i takes ai(x) frequently), as long as the second condition fails (and so player

i’s signal frequency is close to the affi ne hull), player i’s signal frequency is either close to the

ex ante distribution under α−i(x) (and so player i believes that the score is not excessively

high), or implies that player i believes that αj(l) 6= αj(x). In both cases, player i believes

that there is no need to induce λ(l + 1) = i.

In total, player i’s message ĥli satisfies at least one of the following two conditions, then

we say that player i announces that Xi−1(l) is excessively high:

1. player i takes αi(l) 6= αi(x) or player i’s action frequency is not close to the ex ante

distribution αi(x);
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2. for all j ∈ −i, fi(Yi | ai(x)) is not close to Qj
i (ai(x), α−(i,j)(x)). See Section 6.1 for

the definition. Note that, conditional on Condition 1 not being satisfied, together with

with ρ, ε < 1/4, player i takes ai(x) for more than T/2 times in T (l).

Let us call these two conditions Conditions 1 and 2 for the belief of Xi−1(l).

When Player i − 1 Triggers the Punishment Intuitively, player i − 1 triggers the

punishment if and only if player i−1 believes that player i takes αi(l) 6= αi(x). Since Xi−1(l)

monitors player i, player i − 1 triggers the punishment if Xi−1(l) is small. Specifically, if

player i − 1’s message ĥli−1 satisfies all of the following three conditions, then we say that

player i− 1 triggers the punishment:

1. player i− 1 takes αi−1(l) = αi−1(x) and player i− 1’s action frequency is close to the

ex ante distribution αi−1(x);

2. fi−1(Yi−1 | ai−1(x)) is close to Qi
i−1(ai−1(x), α−(i−1,i)(x));

3. Xi−1(l) < − ū
L
.

Symmetrically to the discussion in Section 5, whenever player i−1’s history satisfies these

conditions, player i − 1 believes that player i take αi(l) 6= αi(x), given players −(i − 1, i)

take α−(i−1,i)(x). Let us call these three conditions Conditions 1, 2 and 3 for player i − 1’s

punishment.

6.5.2 Transition of θi−1 ∈ {G,B}

As seen in Section 6.4, θi−1 = B implies that once θi−1 = B is induced, then we will make

player i indifferent between any sequence {λ(l)}Ll=1.

Here, we list the events after which player i − 1 has θi−1 = B. If none of these events

happens, then θi−1 = G:

1. there is round l where (i) λ(l) = ∅, (ii) xi−1 = G and the true score was excessively high

in round l, that is, Xi−1(l) > ū
L
T , and (iii) player i announced that player i believes
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that player i − 1’s score was regular, that is, ĥli does not satisfy neither Condition 1

nor 2 for the belief of Xi−1(l). As in Section 5, this means player i made a mistake in

the announcement;

2. there is round l where (i) λ(l) = ∅ or i and (ii) there exists player j ∈ −i such that at

least one of the following conditions is satisfied:

(a) who took αj(l) 6= αj(x) or the actual frequency of player j’s action was not close

to αj(x) or

(b) fj(Yj | aj(x)) is not close to Qi
j(aj(x), α−(i,j)(x)).

Let us call these conditions Conditions 1, 2-(a) and 2-(b) for θi−1. Since players −i tell

the truth,15 from Section 6.5.1, whenever player j ∈ −i announces that player j believes that

player j − 1’s score is excessively high, then either 2-(a) or 2-(b) above is satisfied. Hence,

θi−1 = G implies that λ(l) = ∅, i or punish. In addition, Condition 2-(a) for θi−1 implies

that if θi−1 = G, then players −i take α−i(l) = α−i(x) if λ(l) = ∅ or i and α−i(l) = α∗−i if

λ(l) = punish.

6.6 Player i’s Belief about {Xj(l), αj(l)}j∈−i

We consider player i’s belief about scores and actions by the other players {Xj(l), αj(l)}j∈−i.

If player i’s true history hli satisfies neither Condition 1 nor 2 for the belief of Xi−1(l), that is,

if player i does not announce that player i−1’s score is excessively high if she tells the truth,

then player i puts a belief no less than 1 − exp(−Θ(T )) on the event that, given λ(l) = ∅,

either |Xn(l)| ≤ ū
L
T for all n ∈ −i or there exists j ∈ −i with αj(l) 6= αj(x):

Lemma 5 For all ū and L, there exists η̄ such that, for all η < η̄, there exist ρ̄ and ε̄ such

that, for all ρ < ρ̄ and ε < ε̄, there exists {C̄n}n∈I such that for any history hli satisfying

neither Condition 1 nor 2 for the belief of Xi−1(l), conditional on λ(l) = ∅, player i after
15We consider player i’s incentive here.
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hli puts a belief no less than 1 − exp(−Θ(T )) on the event that either |Xn(l)| ≤ ū
L
T for all

n ∈ −i or there exists j ∈ −i with αj(l) 6= αj(x).

Proof. See Section 10.5.

There are two implications about player i’s incentive to tell the truth about ĥli. Consider

the case where player i’s truthtelling strategy ĥli = hli does not announce that player i believes

that the score is excessively high.

The first implication is about player i’s belief about player i − 1’s score. There are

following two cases on which player i puts a high belief:

1. Xi−1(l) ≤ ū
L
T and player i does not need to announce it, or

2. there exists j ∈ −i with αj(l) 6= αj(x). From Condition 2-(a) for θi−1, θi−1 = B is

determined and player i is indifferent between any message ĥli since {π̄i(x, α−i(l), l)}l
in (38) makes player i indifferent between any sequence {λ(l)}Ll=1.

In both cases, given the fourth line of (38) which gives a slight incentive to tell the truth,

player i has the incentive to tell the truth.

The second implication is about the punishment. {Xn(l)}n∈−i affects whether player n

triggers the punishment. Suppose hli satisfies neither Condition 1 nor 2 for the belief of

Xi−1(l). Then, there are following two cases on which player i puts a high belief:

1. Xn(l) ≥ − ū
L
T with n ∈ −i and no player n ∈ −i triggers the punishment;

2. there exists j ∈ −i with αj(l) 6= αj(x). Again, player i is indifferent between any

sequence {λ(l)}Ll=1.

To see why this is important, suppose player i would put a high belief on Xn(l) < − ū
L
T

for some n ∈ −i but α−i(l) = α−i(x). If xi−1 = G, then since player i’s equilibrium payoff

is originally high, when the players switch from α(x) to to α∗, player i’s payoff becomes

lower.16 Since Condition 2 for λ(l + 1) says that, if player i told a lie and announced that

16On the other hand, if xi−1 = B, then since player i’s equilibrium payoff is originally low, player i is
indifferent between λ(l + 1) = ∅ and λ(l + 1) = punish. See the proof of Proposition 1.
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player i believes that the score is excessively high, then player i could induce λ(l + 1) = i

and λ(l + 1) 6= punish while if player i tells the truth, then λ(l + 1) = punish.17 Hence,

player i would have an incentive to tell a lie to prevent λ(l + 1) = punish.

Next, we consider player i−1’s incentive to trigger the punishment whenever Conditions

1, 2 and 3 for player i− 1’s punishment are satisfied.

Lemma 6 For all ū and L, there exists η̄ such that, for all η < η̄, there exist ρ̄ and ε̄ such

that, for all ρ < ρ̄ and ε < ε̄, there exists {C̄n}n∈I such that for any history hli−1 satisfying

Conditions 1, 2 and 3 for player i − 1’s punishment, conditional on λ(l) = ∅, player i − 1

after hli−1 puts a belief no less than 1−exp(−Θ(T )) on the event that there exists j ∈ −(i−1)

with αj(l) 6= αj(x).

Proof. See Section 10.6.

This lemma implies that, together with the conditions for θi−2 (with i− 1 replaced with

i− 2) implies that player i− 1 right before sending ĥli−1 at the end of around l puts a belief

no less than 1− exp(−Θ(T )) on the event that θi−2 = B, that is, player i− 1 is indifferent

between any λ(l + 1). Hence, given the fourth line of (38), player i − 1 has an incentive to

tell the truth about hli−1 and induce λ(l + 1) = punishment.

7 Variables

In this section, we show that all the variables can be taken so that all the requirements that

have been imposed are satisfied: ū, L, η, ρ and ε. First, ū is determined in Lemma 2.

Second, fix L so that

max

{
v∗i , max

x:xi−1=B
ui(a(x))

}
+ 2

ū

L
< vi < vi < min

x:xi−1=G
ui (a (x))− 2

ū

L
.

This is possible because of (7).

17Again, if there is player j ∈ −i with xj−1 = G and hlj satisfying either Condition 1 or 2 for the belief of

Xj−1(l), then θi−1 = B and player i is indifferent between any message ĥli.
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Third, given ū and L, fix η̄ so that (i) Lemma 5 holds, that (ii) for all η < η̄, we have

(1− LNη) max

{
v∗i , max

x:xi−1=B
ui(a(x))

}
+ 2

ū

L
+ LNη3ū

< vi < vi < (1− LNη) min
x:xi−1=G

ui (a (x))− 2
ū

L
− LNη3ū.

Fourth, fix η < η̄. Then, we can take ρ̄ and ε̄ so that Lemmas 5 and 6 hold. Take ε < ε̄

and ρ < ρ̄ so that

(1− LNη) max

{
v∗i , max

x:xi−1=B
ui(a(x))

}
+ 2

ū

L
+ LNη3ū

< vi < vi < (1− LNη) min
x:xi−1=G

ui (α (x))− 2
ū

L
− LNη3ū. (39)

Take {C̄n}n∈I so that Lemmas 5 and 6 hold.

Finally, take K1 suffi ciently large so that Lemma 4 holds.

Since TP = LT and T = (1− δ)−
1
2 , we have limδ→1 δ

TP = 1. Therefore, discounting for

the payoffs in the next review phase goes to zero.

8 Optimality of σi(xi)

We have defined σi(xi) and πmain
i except for π̄i(x, λ(l), l) and π̄i(x, α−i(l), l). In this section,

based on Lemmas 5 and 6, we show that if we properly define π̄i(x, λ(l), l) and π̄i(x, α−i(l), l),

then σi(xi) and πmain
i satisfy (4), (5) and (6), which finishes the proof of 1. The intuition is

the same as Section 5.

Proposition 1 For suffi ciently large δ, there exist π̄i(x, λ(l), l) and π̄i(x, α−i(l), l) such that

(4), (5) and (6) are satisfied.

Proof. See Section 10.7.

42



9 Concluding Remarks

We have shown the Nash-threat folk theorem with communication for a general game. There

are two possible extensions from the current results.

The first is to dispense with cheap talk. That is, the players communicate via actions

rather than via cheap talk. In such an extension, there is a following diffi culty. When player

i − 1 tries to send the message that player i − 1’s state is xi−1 = B, player i, whose value

is low when xi−1 = B, wants to manipulate the signal distributions of players −(i − 1, i)

by deviation in order to prevent players −i from coordinating on the state unfavorable to

player i. To deal with this problem, we need the pairwise full rank condition: no matter

what player i does, player j ∈ −(i− 1, i) can statistically distinguish player i− 1’s actions.

Note that the current paper only assumes the individual full rank (Assumption 3).

The second is to consider the minimax-threat folk theorem. In such a case, since the

action profile to minimax player i can be different from that to minimax player j 6= i, if

something suspicious happens, the players need to figure out whether they should punish

player i or player j, whereas in the Nash-threat folk theorem, the players can punish all

of them by switching to the static Nash equilibrium. For this reason, we again need the

pairwise full rank condition to statistically distinguish player i’s deviations and player j’s

deviations.

See Sugaya (2012b), Sugaya (2012c) and Sugaya (2012d) for how to formally prove the

minimax-threat folk theorem without cheap talk.
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10 Appendix

10.1 Proof of Lemma 1

To see why this is enough for Theorem 1, define the strategy in the infinitely repeated game

as follows: define

p(G, hTP+1
i−1 : δ) ≡ 1 +

1− δ
δTP

πi(G, h
TP+1
i−1 : δ)

v̄i − vi
,

p(B, hTP+1
i−1 : δ) ≡ 1− δ

δTP
πi(B, h

TP+1
i−1 : δ)

v̄i − vi
. (40)

If (6) is satisfied, then for suffi ciently large δ, p(G, hTP+1
i−1 : δ), p(B, hTP+1

i−1 : δ) ∈ [0, 1] for

all hTP+1
i−1 . We see the repeated game as the repetition of TP -period “review phases.” In

each phase, player i has a state xi ∈ {G,B}. Within the phase, player i with state xi
plays according to σi (xi) in the current phase. After observing h

TP+1
i in the current phase,

the state in the next phase is equal to G with probability p(xi, h
TP+1
i : δ) and B with the

remaining probability.

Player i − 1’s initial state is equal to G with probability pi−1
v and B with probability

1− pi−1
v such that

pi−1
v v̄i + (1− pi−1

v )vi = vi.

Then, since

(1− δ)
TP∑
t=1

δt−1ui (at) + δTP
[
p(G, hTP+1

i−1 : δ)v̄i + (1− p(G, hTP+1
i−1 : δ))vi

]
=

(
1− δTP

) 1− δ
1− δTP

{
TP∑
t=1

δt−1ui (at) + πi(G, h
TP+1
i−1 : δ)

}
+ δTP v̄i
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and

(1− δ)
TP∑
t=1

δt−1ui (at) + δTP
[
p(B, hTP+1

i−1 : δ)v̄i + (1− p(B, hTP+1
i−1 : δ))vi

]
=

(
1− δTP

) 1− δ
1− δTP

{
TP∑
t=1

δt−1ui (at) + πi(B, h
TP+1
i−1 : δ)

}
+ δTP vi,

(4) and (5) imply that, for suffi ciently large discount factor δ,

1. conditional on the opponent’s state, the above strategy in the infinitely repeated game

is optimal;

2. if player i− 1 is in the state G, then player i’s payoff from the infinitely repeated game

is v̄i and if player i− 1 is in the state B, then player i’s payoff is vi;

3. the payoff in the initial period is pi−1
v v̄i + (1− pi−1

v )vi = vi as desired.

10.2 Proof of Lemma 2

Construction of πi[α] By linear independence of (qi−1 (ai, a−i))ai∈Ai for all a−i ∈ A−i

(Assumption 3), for all α ∈ ∆(A), there exists πi[α] : Yi−1 → R such that

ui(ai, α−i) + E [πi[α](yi−1) | ai, α−i] = 0.

Without loss, we assume that πi[α](yi−1) is upper hemi-continuous with respect to α. Since

∆ (A) 3 α is compact, there exists ū such that πi[α] : Yi−1 → (−ū, ū) for all α ∈ ∆ (A).

Re-taking ū if necessary, we can add or subtract a constant so that (30) is satisfied. In

addition, since maxa∈A |ui(a)| is bounded, we can make sure that (32) are satisfied, again

re-taking ū if necessary.

Construction of πδi (t, a−i,t, yi−1,t) Again, by linear independence of (qi−1 (ai, a−i,t))ai∈Ai ,

we can construct πδi (t, a−i,t, yi−1,t) with (33). Since
(
1− δt−1

)
ui (at) converges to 0 as δ goes
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to unity for all t ∈ {1, ..., TP} with TP = Θ(T ) and T = (1− δ)−
1
2 , we have

lim
δ→1

sup
t∈{1,...,TP },a−i,t,yi−1,t

∣∣πδi (t, a−i,t, yi−1,t)
∣∣ = 0,

which implies (34).

10.3 Proof of Lemma 3

Fix ai, α−(i,j) arbitrarily and we omit (ai, α−(i,j)). Let M be the maximum absolute value of

the elements of Qj
i . Since aff(

{
qi(ai, aj, α−(i,j))

}
aj∈Aj

) ⊂ aff ({1yi}yi∈Yi), we can assume that

the first row of Qj
i is parallel to (1, ..., 1) and that the first element of qji is 1. Define

M∗ ≡ 1

2M + 2
E +

M + 1

2M + 2


1, 0, ..., 0

...

1, 0, ..., 0


Q̃j
i ≡ M∗Qj

i ,

q̃ji ≡ M∗qji ,

that is, the (l, n) element of Q̃j
i is

(Qji)l,n+M+1

2M+2
∈ (0, 1) and the lth element of q̃ji is

(qji)l+1

2M+2
∈

(0, 1).

Since M∗ is invertible, Qj
iyi − qji = 0 is equivalent to Q̃j

iyi − q̃ji = 0. Hence, we have

Qj
i =

{
yi ∈ R|Yi|+ : Qj

iyi = qji

}
=
{

yi ∈ R|Yi|+ : Q̃j
iyi = q̃ji

}
≡ Q̃j

i .

10.4 Proof of Lemma 4

Define K̄1

2/K̄1 ≡ min
fi(Yi|ai)

∥∥Qj
i (ai, α−(i,j))fi(Yi | ai)− qji (ai, α−(i,j))

∥∥
subject to d(fi(Yi | ai),Qj

i (ai, α−(i,j))) ≥ ε and fi(Yi | ai) being included in the simplex

on Yj. Since the objective function is continuous and the set of fi(Yi | ai) satisfying the

46



constraints is compact, the minimum is well defined. Since d(fi(Yi | ai),Qj
i (ai, α−(i,j))) ≥ ε

implies
∥∥Qj

i (ai, α−(i,j))fi(Yi | ai)− qji (ai, α−(i,j))
∥∥ > 0, K̄1 <∞.

Since the triangle inequality guarantees that (35) and (36) imply
∥∥Qj

i (ai, α−(i,j))fi(Yi | ai)− qji (ai, α−(i,j))
∥∥ <

2/K1, which means d(fi(Yi | ai),Qj
i (ai, α−(i,j))) < ε.

10.5 Proof of Lemma 5

The belief of player i about player j’s action αj given λ(l) = ∅ and α−(i,j) = α−(i,j)(x) is

calculated by

log
Pr(αj | {ai,t, yi,t}t∈T (l) , α−(i,j)(x))

Pr(αj(x) | {ai,t, yi,t}t∈T (l) , α−(i,j)(x))

= log
∏
ai,yi

(qi(yi | ai, αj, α−(i,j)(x)))fi(ai,yi)T

(qi(yi | ai, αj(x), α−(i,j)(x)))fi(ai,yi)T
+ log

η

2(1− η)

= T
∑
ai,yi

fi(ai, yi)
(
log qi(yi | ai, αj, α−(i,j)(x))− log qi(yi | ai, αj(x), α−(i,j)(x))

)
+ log

η

2(1− η)
(41)

where fi (ai, yi) is the frequency of (ai, yi) in periods T (l).

Imagine player j takes

αj(x,λj) ≡
(

1−
∑

aj 6=aj(x)
(2ρ+ λj(aj))

)
aj(x) +

(∑
aj 6=aj(x)

(2ρ+ λj(aj)) aj

)

for some λj ∈ [ρ, ρ]|Aj |−1 and consider

Lji (x,λj) ≡
∑

ai,yi∈Yi(ai)

fi(ai, yi) log qi(yi | ai, αj(x,λj), α−(i,j)(x)) (42)
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with

OLji (x,λj) ≡
(∑
ai,yi

fi(ai, yi)
qi(yi | ai, aj, α−(i,j)(x))− qi(yi | ai, aj(x), α−(i,j)(x))

qi(yi | ai, αj(x,λj), α−(i,j)(x))

)
aj 6=aj(x)

.

(43)

We need to show the following two arguments given that hli satisfies neither Condition

1 nor 2 for the belief of Xi−1(l): first, if there exists j with
∥∥OLji (x,0)

∥∥ > η, then player

i believes that αj(l) 6= αj(x) with a high probability. Second, if
∥∥OLji (x,0)

∥∥ ≤ η for all j,

then player i believes that Xi−1(l) is close to the ex ante value 0.

The event that hli satisfies neither Condition 1 nor 2 for the belief of Xi−1(l) is equivalent

to satisfying both of the following two conditions:

1. player i takes αi(l) = αi(x) and player i’s action frequency is close to the ex ante

distribution αi(x);

2. there exists j ∈ −i such that fi(Yi | ai(x)) is close to Qj
i (ai(x), α−(i,j)(x)).

In the following part of this subsection, when we say Conditions 1 and 2, we refer to

these conditions above rather than Conditions 1 and 2 for the belief of Xi−1(l).

Proof of the First Part We show that, if there exists j with
∥∥OLji (x,0)

∥∥ > η, then

player i puts a belief no less than 1 − exp(−Θ(T )) on the event that αj(l) 6= αj(x) given

α−(i,j)(l) = α−(i,j)(x).

By (41), it suffi ces to show that there exists η̄ > 0 such that, for any η < η̄, there exists

ρ̄ > 0 such that for all ρ < ρ̄, there exist C̄j and k > 0 such that if
∥∥OLji (x,0)

∥∥ > η, then

there exists tj ∈ C̄j with

Lji (x,λj)− L
j
i (x,0) ≥ kT,

where λj is equal to ρtj.
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Take Taylor expansion of Lji (x,λj) with λj = ρtj around 0:

∑
ai,yi

fi(ai, yi) log qi(yi | ai, αj(λ))

=
∑
ai,yi

fi(ai, yi) log qi(yi | ai, αj(x)) + OLji (x,0) · ρtj +
1

2
(ρt>j )Hj

i (x, ρ̃tj)(ρtj)

for some ρ̃ ∈ [0, ρ]. Here, Hj
i (x, ρ̃tj) is Hessian matrix for the second derivative of L

j
i (x,λj)

with respect to λj.

Consider the lower bound of the second term:

min
OLji (x,0):‖OLji (x,0)‖≥η

max
tj∈C̄j

OLji (x,0) · ρtj

≥ ρ

(
min

OLji (x,0):‖OLji (x,0)‖≥η
max
tj∈Cj

OLji (x,0) · ρtj − max
‖OLji (x,0)‖

∥∥OLji (x,0)
∥∥max

tj∈Cj
min
t̄∈C̄j
‖tj − t̄j‖

)

= ρ

(
η − max
‖OLji (x,0)‖

∥∥OLji (x,0)
∥∥max

tj∈Cj
min
t̄∈C̄j
‖tj − t̄j‖

)
.

Since
∥∥OLji (x,0)

∥∥ is bounded for all ρ ∈ [0, 1] and the signal distribution (fi(ai, yi))ai,yi, if

we take C̄j suffi ciently dense, we have

min
OLji (x,0):‖OLji (x,0)‖≥η

max
tj∈C̄j

OLji (x,0) · ρtj >
1

2
ηρ

for all ρ ∈ [0, 1].

Next, consider the upper bound of the third term: Assumption 2 guarantees that there

exists K2 such that, for all x ∈ R|Aj |−1, maxρ̃∈[0,1],tj∈Cj ,{ai,t,yi,t}t∈T (l) x>Hj
i (x, ρ̃tj)x ≤ K2 ‖x‖2.

Therefore, for ρ ≤ ρ̄ ≡ η/4K2 and k ≡ η
4
ρ, we have Lji (x,λj)−L

j
i (x,0) ≥ kT , as desired.

Proof of the Second Part Hence, we will show that if
∥∥OLji (x,0)

∥∥ ≤ η for all j and

Conditions 1 and 2 above are satisfied, then player i believes that Xn(l) is close to the ex

ante value 0 for all n ∈ −i given α−i(x).
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Fix j so that fi(Yi | ai(x)) is close to Qj
i (ai(x), α−(i,j)(x)). Since

∥∥OLji (x,0)
∥∥ ≤ η, we

have

∥∥∥∥∥∥
(∑
ai,yi

fi(ai, yi)
qi(yi | ai, aj, α−(i,j)(x))− qi(yi | ai, aj(x), α−(i,j)(x))

qi(yi | ai, α−i(x))

)
aj 6=aj(x)

∥∥∥∥∥∥ ≤ η.

By Assumption 2, for suffi ciently small ρ and ε, this implies that∥∥∥∥∥∥
(∑

yi

fi(yi | ai(x))
∆x
i (yi, aj)

qi(yi | ai(x), α−i(x))

)
aj 6=aj(x)

∥∥∥∥∥∥ ≤ 2η (44)

with

∆x
i (yi, aj) ≡ qi(yi | ai(x), aj, α−(i,j)(x))− qi(yi | ai(x), aj(x), α−(i,j)(x)).

In addition, since Condition 2 implies (37), there exist t ∈ R|Aj |−1 and ε ∈ R|Yi| with ‖ε‖ < ε

such that

fi(yi | ai(x)) =
∑

ãj∈A∗(x)

t(ãj)∆
x
i (yi, ãj) + qi(ai(x), α−i(x)) + ε, (45)

where A∗j(x) is the set of aj 6= aj(x) so that for all aj ∈ A∗j(x), (∆x
i (yi, aj))yj∈Yj is linearly

independent.

By Assumption 2, for suffi ciently small ε, (44) and (45) imply

−3η ≤
∑
yi

∑
ãj∈A∗(x)

t(ãj)∆
x
i (yi, ãj)∆

x
i (yi, aj)

qi(yi | ai(x), α−i(x))
≤ 3η

for all aj 6= aj(x).

Multiplying t(aj) and adding them up with respect to aj ∈ A∗j(x) yield

−3η
∑

ãj∈A∗(x)

|t(aj)| ≤
∑
yi

(∑
ãj∈A∗(x) t(aj)∆

x
i (yi, aj)

)2

qi(yi | ai(x), α−i(x))
≤ 3η

∑
ãj∈A∗(x)

|t(aj)| .
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Since there exists K3 such that |t(aj)| ≤ K3 for all the signal distributions satisfying (45),

this implies ∥∥∥∥∥∥
∑

ãj∈A∗(x)

t(aj)(qi(ai(x), aj)− qi(ai(x), aj(x)))

∥∥∥∥∥∥ ≤ 3ηK4

for some K4. Since (∆x
i (yi, aj))yj∈Yj is linearly independent, there exists K5 such that

|t(aj)| ≤ 3ηK5 for all ãj ∈ A∗(x), that is, fi(Yi | ai(x)) is close to the ex ante distribu-

tion qi(ai(x), α−i(x)).

For suffi ciently small η, ε and ρ, since player i takes ai(x) suffi ciently often and fi(Yi |

ai(x)) is close to the ex ante distribution qi(ai(x), α−i(x)), player i’s expectation of |Xn (l)|

is no more than 1
2
ū
L
T from (31) for all n ∈ −i. By the central limit theorem, this means

player i believes that |Xn (l)| ≤ ū
L
T with probability 1− exp(−Θ(T )), as desired.

10.6 Proof of Lemma 6

Since player i− 1 triggers the punishment if she tells the truth about hli−1, h
l
i−1 satisfies the

following three conditions:

1. player i− 1 takes αi−1(l) = αi−1(x) and player i− 1’s action frequency is close to the

ex ante distribution αi−1(x);

2. fi−1(Yi−1 | ai−1(x)) is close to Qi
i−1(ai−1(x), α−(i−1,i)(x));

3. Xi−1(l) < − ū
L
.

By the same proof as in Lemma 5, if
∥∥OLii−1(x,0)

∥∥ ≤ η, then Conditions 1 and 2 imply

that fi−1(Yi−1 | ai−1(x)) is close to the ex ante distribution qi−1(ai−1(x), α−(i−1)(x)), which

contradicts Condition 3 for suffi ciently small ρ. Hence,
∥∥OLii−1(x,0)

∥∥ > η and so player i−1

believes that player i took αi(l) 6= αi(x).
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10.7 Proof of Proposition 1

For (6), it suffi ces to have

|π̄i(x, λ(l), l)| , |π̄i(x, α−i(l), l)| ≤ ūLT, (46)

π̄i(x, λ(l), l), π̄i(x, α−i(l), l)

 ≤ 0 if xi−1 = G,

≥ 0 if xi−1 = B,
(47)

and ∣∣∣vi({λ(l̃)}l−1

l̃=1
, {hl̃−i}ll̃=1

, ĥli)
∣∣∣ ≤ exp(−Θ(T )) (48)

for all x ∈ {G,B}N , {λ(l)}Ll=1 ∈ {G,B}L, l ∈ {1, ..., L} and {hl−i, ĥli}Ll=1. To see why (46),

(47) and (48) are suffi cient, notice the following: first, (46) and (48) with T = (1− δ)−
1
2

implies that

lim
δ→1

1− δ
δTP

sup
xi−1,h

TP+1
i−1

∣∣πi(xi−1, h
TP+1
i−1 : δ)

∣∣ = 0,

as desired.

Second, for xi−1 = G, πi(xi−1, h
TP+1
i−1 : δ) defined in (38) is always non-positive: if θi−1 =

B, then πi(xi−1, h
TP+1
i−1 : δ) ≤ 0 since sign(xi−1)1{θi−1=B}3ūLT is suffi ciently small. If θi−1 =

G, then either λ(l) = ∅, i or punish by Condition 2 in Section 6.5.2. Since θi−1 = G,

whenever Xi−1(l) > ū
L
T happens, λ(l + 1) = i is induced by Condition 1 for θi−1. Hence,

sign(xi−1)2ūT +
L∑
l=1

Xi−1(l) ≤ −2ūT + (L− 1)
ū

L
T + ūT ≤ − ū

L
T,

which means πi(xi−1, h
TP+1
i−1 : δ) is always non-positive.

Third, for xi−1 = B, πi(xi−1, h
TP+1
i−1 : δ) defined in (38) is always non-negative: if θi−1 = B,

then πi(xi−1, h
TP+1
i−1 : δ) ≥ 0 since sign(xi−1)1{θi−1=B}3ūLT is suffi ciently large. If θi−1 = G,

then either λ(l) = ∅ or punish by Condition 2 for θi−1. From Section 6.5.1, whenever
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Xi−1(l) < − ū
L
T happens, λ(l + 1) = punish is induced. Hence,

sign(xi−1)2ūT +

L∑
l=1

Xi−1(l) ≥ 2ūT − (L− 1)
ū

L
T − ūT ≥ ū

L
T,

which means πi(xi−1, h
TP+1
i−1 : δ) is always non-negative.

Next, we will verify the optimality of σi(xi) and derive player i’s payoffs by backward

induction.

When player i sends hLi in round L (the last round), the only relevant part of the reward

is ∑
t∈T (L)

−T−2
∥∥1a−i,t,y−i,t − E[1a−i,t,y−i,t | âi,t, ŷi,t, α−i,t]

∥∥2
, (49)

which makes it optimal to tell the truth about hLi .

Given the truthtelling incentive, πreport
i [α−i,t](yi−1,t) cancels out the difference in (49) for

different actions by (28). Therefore, the fourth line of (38) does not affect player i’s incentive

in round L.

In round L, there are following cases:

1. if θi−1 = B, then the second line of (38) makes any action optimal;

2. if θi−1 = G, then Section 6.5.2 implies that λ(L) = ∅, i or punish, and α−i(L) = α−i(x)

if λ(L) = ∅ or i and α−i(L) = α∗−i if λ(L) = punish. Hence,

(a) if λ(L) = ∅, then the third line of (38) makes any action optimal;

(b) if λ(L) = i, since (38) is not sensitive to player i − 1’s history in round L and

α−i(L) = α−i(x), it is optimal for player i to take the static best response to

α−i(x);

(c) if λ(L) = punish, since (38) is not sensitive to player i − 1’s history in round L

and α−i(L) = α∗−i, it is optimal for player i to take the static best response to

α∗−i, that is, α
∗
i .
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Hence, σi(xi) is optimal.

Now, consider player i’s payoff from round L. Given θi−1 = B, we define π̄i(x, α−i(L), L)

so that player i’s payoff in round L, defined as

1

T
E

∑
t∈T (l)

ui(at) + π̄i(x, α−i(L), L) +Xi−1(L) | α−i(L)

 ,
is equal to 0. That is, player i’s value is independent of α−i(L). By Lemma 2, |π̄i(x, α−i(L), L)| ≤

ūT .

Given θi−1 = G,

1. if λ(L) = ∅, then

1

T
E

∑
t∈T (l)

ui(at) +Xi−1(L) | α−i(L)

 = ui(α(x))

 ≥ min
x:xi−1=G

ui(α(x)) if xi−1 = G

≤ max
{
v∗i ,maxx:xi−1=B ui(a(x))

}
if xi−1 = B

since player i takes αi(x) and α−i(L) = α−i(x);

2. if λ(L) = i, then

1

T
E

∑
t∈T (l)

ui(at) | α−i(L)

 ≥ ui(α(x)) ≥ min
x:xi−1=G

ui(α(x))

since player i takes the static best response to α−i(x) and α−i(L) = α−i(x). Note that,

from Section 6.5.1, λ(L) = i implies xi−1 = G;

3. if λ(L) = punish, then

1

T
E

∑
t∈T (l)

ui(at) | α−i(L)

 = v∗i ≤ max

{
v∗i , max

x:xi−1=B
ui(α(x))

}
.

Therefore, there exists π̄i(x, λj(L), L) with (46) and (47) such that player i’s payoff in
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round L is equal to min
x:xi−1=G

ui(α(x)) if xi−1 = G and λ(L) 6= punish,

max
{
v∗i ,maxx:xi−1=B ui(α(x))

}
if xi−1 = B or λ(L) = punish

for all λ(L).

In total, player i’s payoff in round L satisfies
0 if θi−1 = B,

min
x:xi−1=G

ui(α(x)) if θi−1 = G, xi−1 = G and λ(L) 6= punish,

max
{
v∗i ,maxx:xi−1=B ui(α(x))

}
if θi−1 = G and “xi−1 = B or and λ(L) = punish.”

(50)

Again, all the cases with λ(L) = j ∈ −i is included in the cases with θi−1 = B.

Given this value, let us define vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ): with V L
i ({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i )

be player i’s payoff in round L given {λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
and player i’s message ĥL−1

i ,

vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ) = max
h̃L−1i

E
[
V L
i ({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, h̃L−1

i ) | ĥL−1
i

]
−E

[
V L
i ({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ) | ĥL−1
i

]
.

That is, imagine ĥL−1
i is the true history of player i. vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ) gives

player i’s payoff in round L under the most profitable message h̃L−1
i . We will show that (48)

is satisfied. Consider the following two cases:

1. if there is j ∈ −i who announces that player j believes that Xj−1(L) is excessively high,

then from Section 6.5.2, θi−1 = B is determined and from (50), player i’s continuation

payoff in round L is 0 regardless of ĥL−1
i . Hence, vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ) = 0;

2. if there is no j ∈ −i who announces that player j believes that Xj−1(L) is excessively

high, then

(a) suppose that xi−1 = G and the message of player i’s history, ĥL−1
i , means that
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player i believes that Xi−1(L) is excessively high. In such a case, there are fol-

lowing three considerations:

i. given θi−1 = B, player i’s continuation payoff in round L is independent of

h̃L−1
i .

Given θi−1 = G, player i’s continuation payoff in round L depends on h̃L−1
i

in the following way: if λ(L) 6= punish, she gets min
x:xi−1=G

ui(α(x)) while

if λ(L) = punish, then player i gets max
{
v∗i ,maxx:xi−1=B ui(a(x))

}
. From

Section 4, player i’s payoff is maximized by not triggering the punishment.

From Section 6.5.1, ĥL−1
i minimizes the probability of λ(L) = punish;

ii. now consider the transition of θi−1. By (2) and (50), player i’s payoff is

higher with θi−1 = G than with θi−1 = B. From Section 6.5.2, probability of

θi−1 = B is minimized by sending ĥL−1
i ;

Therefore, in 2-(a), vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ) = 0;

(b) suppose that xi−1 = G and the message of player i’s history, ĥL−1
i , means that

player i does not believe that Xi−1(L) is excessively high and that player i does

not trigger the punishment. In such a case, there are following two considerations:

i. given θi−1, player i’s continuation payoff in round L depends on h̃L−1
i as in

2-(a)-i. However, by Lemma 5, player i puts the belief no less than 1 −

exp(−Θ(T )) on the event that there is no player among −i who triggers the

punishment or θi−1 = B is determined and player i’s payoff in round L is

0 regardless of h̃L−1
i (if ĥL−1

i is the true history). Hence, player i believes

that there is no h̃L−1
i which increases the continuation payoff by more than

exp(−Θ(T )) compared to ĥL−1
i ;

ii. now consider the transition of θi−1. Again, player i’s payoff is higher with

θi−1 = G than with θi−1 = B. However, from Section 6.5.2 and Lemma

5, player i puts the belief no less than 1 − exp(−Θ(T )) on the event that

Condition 1 for θi−1 = B is not the case or θi−1 = B is already determined
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independently of ĥL−1
i . Hence, player i believes that there is no h̃L−1

i which

increases the continuation payoff by more than exp(−Θ(T )) compared to

ĥL−1
i ;

Therefore, in 2-(b),
∣∣∣vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i )
∣∣∣ ≤ exp(−Θ(T ));

(c) suppose that xi−1 = G and the message of player i’s history, ĥL−1
i , means that

player i does not believe that Xi−1(L) is excessively high and that player i triggers

the punishment. In such a case, there are following two considerations:

i. given θi−1, player i’s continuation payoff in round L depends on h̃L−1
i as in

2-(a)-i. However, by Lemma 6, player i puts the belief no less than 1 −

exp(−Θ(T )) on the event that θi−1 = B is determined and player i’s payoff

in round L is 0 regardless of h̃L−1
i . Hence, player i believes that there is

no h̃L−1
i which increases the continuation payoff by more than exp(−Θ(T ))

compared to ĥL−1
i ;

ii. now consider the transition of θi−1. As stated above, player i puts the belief

no less than 1−exp(−Θ(T )) on the event that θi−1 = B is already determined

independently of h̃L−1
i . Hence, player i believes that there is no h̃L−1

i which

increases the continuation payoff by more than exp(−Θ(T )) compared to

ĥL−1
i ;

Therefore, in 2-(c),
∣∣∣vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i )
∣∣∣ ≤ exp(−Θ(T ));

(d) suppose that xi−1 = B. In such a case, there are following two considerations:

i. given θi−1, player i’s continuation payoff in round L is independent of h̃L−1
i

by (50);

ii. now consider the transition of θi−1. From Section 6.5.2, the transition of

θi−1 = B is independent of h̃L−1
i if xi−1 = B;

Therefore, in 2-(d), vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ) = 0.

In total, we have (48). This implies the following three facts:
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1. ∑
t∈T (L−1)

−T−2
∥∥1a−i,t,y−i,t − E[1a−i,t,y−i,t | âi,t, ŷi,t, α−i,t]

∥∥2
(51)

is suffi ciently large to incentivize player i to tell the truth about hLi ;

2. given the truthtelling incentive, πreport
i [α−i,t](yi−1,t) cancels out the difference in the

(49) for different actions by (28). Therefore, the fourth line of (38) does not affect

player i’s incentive in round L− 1.

3. given the truthtelling incentive, vi({λ(l̃)}L−2

l̃=1
, {hl̃−i}L−1

l̃=1
, ĥL−1

i ) cancels out differences

in player i’s expected payoffs in round L for different histories of player i from the

perspective of player i in round L − 1. Therefore, player i in round L − 1 wants to

maximize

1

T
E

 ∑
t∈T (L−1)

ui(at) + π̄i(x, α−i(L− 1), L− 1) +Xi−1(L− 1) | α−i(L− 1)

 . (52)

Hence, as in round L, we can define π̄i(x, λj(L− 1), L− 1) and π̄i(x, α−i(L− 1), L− 1)

with (46) and (47) so that player i’s payoff in round L− 1, defined as (52), is equal to
0 if θi−1 = B,

min
x:xi−1=G

ui(α(x)) if θi−1 = G, xi−1 = G and λ(L− 1) 6= punish,

max
{
v∗i ,maxx:xi−1=B ui(a(x))

}
if θi−1 = G and “xi−1 = B or λ(L− 1) = punish.”

By the same argument, there exists vi({λ(l̃)}L−3

l̃=1
, {hl̃−i}L−2

l̃=1
, ĥL−2

i ) with (48) such that it is

optimal for player i to tell the truth about hL−2
i and player i in round L−2 wants to maximize

(52) with L− 1 replaced with L− 2.

Recursively, for each l, we can make sure that σi(x) is optimal and player i’s payoff in
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round l is equal to
0 if θi−1 = B,

min
x:xi−1=G

ui(α(x)) if θi−1 = G, xi−1 = G and λ(l) 6= punish,

max
{
v∗i ,maxx:xi−1=B ui(a(x))

}
if θi−1 = G and “xi−1 = B or λ(l) = punish.”

From Section 6.5.2 and the central limit theorem, θi−1 = B happens with probability no

more than NLη. Given θi−1 = G, by the central limit theorem, λ(l) = punish happens only

with probability exp(−Θ(T )). Therefore, from (39), we can further modify π̄i (x, λ(1), 1)

with (47) and (46) such that σi(xi) gives v̄i (vi, respectively) if xi−1 = G (B, respectively)

without affecting the incentives. Hence, we are done.
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