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Abstract

Envy-freeness is a well-known fairness concept for
analyzing mechanisms. Its traditional definition re-
quires that no individual envies another individual.
However, an individual (or a group of agents) may
envy another group, even if she (or they) does not
envy another individual. In mechanisms with mon-
etary transfer, such as combinatorial auctions, con-
sidering such fairness requirements, which are re-
finements of traditional envy-freeness, is meaning-
ful and brings up a new interesting research direc-
tion in mechanism design.
In this paper, we introduce two new concepts of
fairness calledenvy-freeness of an individual to-
ward a group, andenvy-freeness of a group toward
a group. They are natural extensions of traditional
envy-freeness. We discuss combinatorial auction
mechanisms that satisfy these concepts. First, we
characterize such mechanisms by focusing on their
allocation rules. Then we clarify the connections
between these concepts and three other proper-
ties: the core, strategy-proofness, and false-name-
proofness.

1 Introduction
Fairness is an important criterion for analyzing mecha-
nisms, and several concepts of it have been studied so far
in economic theory. A concept calledenvy-freeness(or no-
envy condition) has especially been widely discussed[Fo-
ley, 1967]. A mechanism is envy-free if no individual en-
vies another individual. Recently, this concept has also been
discussed in computer science to design fair task scheduling
procedures in multi-machines models[Mu’Alem, 2009].

The traditional definition of envy-freeness only considers
an individual envy toward another individual. However, in
such domains as combinatorial auctions, it is natural to con-
sider different types of envy. For example, assume agent1
wants two itemsg1 andg2 together, where her valuation of
{g1, g2} is 10. But g1 is allocated to agent2 at payment3,
andg2 is allocated to agent3 at payment4. Then agent1
feels envy; she obtains nothing, and a group of agents, i.e.,
agents2 and3 obtainedg1 andg2 and paid only7 in total.

She prefers the outcome of this group of agents to her own
outcome.

In mechanisms without monetary transfer (e.g., cake-
cutting), avoiding such types of envy seems impossible. Cer-
tainly, an individual prefers obtaining the entire cake rather
than having only a piece of it. On the other hand, in mech-
anisms with monetary transfer, such as combinatorial auc-
tions or task scheduling, it would befair to allocate a set of
items/tasks to an agent who is willing to pay more. Thus, we
need stronger concepts for fairness/envy-freeness.

In this paper, we introduce two new concepts of fairness
called envy-freeness of an individual toward a group(ItG-
EFness) andenvy-freeness of a group toward a group(GtG-
EFness), which are natural extensions of traditional envy-
freeness. We refer to the traditional one asenvy-freeness of
an individual toward an individual(ItI-EFness).

In a sense, a Pareto efficient allocation is the best, since
items are allocated to agents who are willing to pay the most
in total. However, in many situations, we cannot achieve
a Pareto efficient allocation, e.g., computing a Pareto effi-
cient allocation is too time consuming, or the possibility of
false-name bids prevents a Pareto efficient allocation[Yokoo,
2003]. In such cases, some item might remain unsold, or sev-
eral items might be sold in a single bundle, even though sell-
ing them separately would be more efficient. Our new fair-
ness concepts guarantee that the obtained allocation islocally
efficient, i.e., most efficient within some alternatives.

We discuss combinatorial auction mechanisms that satisfy
these concepts. First, we characterize mechanisms that satisfy
these concepts by focusing on their allocation rules (Theo-
rems 2 and 3). Our characterization is an extension of the
results by Haakeet al. [2002]. Then we clarify the connec-
tions between these concepts and three other properties; the
core, strategy-proofness, andfalse-name-proofness. A part of
our obtained results is summarized in Figure 1.

As shown in the above example, an envy toward a group
can naturally occur in environments with complementarities.
Also, with monetary transfer, it is possible to design a mech-
anism that prevents such an envy. We believe that our new
fairness concepts brings up a new interesting research direc-
tion in mechanism design.



1.1 Related Works

There are lots of literature on envy-freeness in the fields of
economics and computer science. Haakeet al. [2002] char-
acterized allocation rules of envy-free mechanisms by a prop-
erty calledlocal efficiency. Mu’Alem [2009] showed an ef-
ficient method to check whether an allocation is locally ef-
ficient. Othman and Sandholm[2010] discussed the con-
nection between envy-freeness and the core in iterated com-
binatorial auctions. Cohenet al. [2010] provided a com-
plete characterization for the allocation rules of envy-free
and strategy-proof mechanisms in conjunction with cycle-
monotonicity[Rochet, 1987].

Vind [1971] and Varian[1974] proposed an extension of
envy-freeness calledcoalition fairness(or group no-envy),
which requires that no group of agents envies any other group
of the same size. Lahaie and Parkes[2009] discussed the link
between the core and coalition fairness in fair package assign-
ment model.

Coalition fairness (or group no-envy) is an old concept
but it has been attracting less attention compared to standard
envy-freeness. We suspect that coalition fairness might be
too specific since it restricts the scope of envy-freeness within
same-sized groups (although this restriction seems inevitable
in mechanisms without monetary transfer). Our GtG-EFness
puts no restriction on the size of groups. Thus, it can be con-
sidered as an extension of coalition fairness1. We believe this
extension would make the old fairness concept more attrac-
tive in social choice and mechanism design.

Zhou [1992] proposed another version of envy-freeness
calledstrict no-envyin the literature of fair allocation. Strict
no-envy property requires that no agent envies theaverageof
the allocation given to any group of agents, while our ItG-
EFness requires no agent envies thesum of the allocation
given to any group.

Besides these works, the structure of our concepts closely
resemblesfalse-name-proofness, which is an extension of
strategy-proofness. The concept considers the possibility that
one agent pretends to be multiple agents (see e.g.,[Yokoo,
2003]).

2 Preliminaries

We consider a set of itemsG (|G| = m) for sale and a set
of agents (bidders)N = {1, . . . , n}. Each agenti ∈ N has
her valuation functionvi ∈ Vi that maps sets of items into
R. HereVi is the set of possible valuation functions. We
assume aquasi-linear, private valuemodel withno allocative
externality; the utility of agenti, who obtains a set of items
(bundle)B ⊆ G and paysp, is represented asvi(B) − p. vi

is normalized so thatvi(∅) = 0 holds.
To describe a mechanism, we sometimes use a concept

calledminimal bundle.

Definition 1 (Minimal Bundle). For agenti with valuation
functionvi, B is a minimal bundle fori, if ∀B′ ⊂ B and
B′ ̸= B, vi(B′) < vi(B).

1Note that coalition fairness does not overlap with our ItG-
EFness.
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Figure 1: Summary of connections between ItG-EFness,
GtG-EFness, the core, SPness, FNPness, and Pareto effi-
ciency. Light shadowed area corresponds to core-selecting
mechanisms (Theorem 7). Dark shadowed area is empty
(Theorem 11).

We say agenti is single-mindedif i has at most one mini-
mal bundle with a positive value. We call such a bundle as a
required bundle. In a general domain, agenti can have multi-
ple minimal bundles. In some parts of this paper, we consider
asingle-minded domain, where all agents are single-minded.

Let v = (v1, . . . , vn) ∈ V be a valuation profile and
V = ×i∈NVi be a domain of mechanisms. A (direct reve-
lation) combinatorial auction mechanismM(f, p) consists of
an allocation ruleand apayment rule. An allocation rule is
defined asf : V → A, whereA is a set of the possible as-
signment of items overN . For an assignmenta ∈ A, let ai

indicates the bundle allocated to agenti. Note that an assign-
menta ∈ A must satisfyallocation feasibility;

∪
i∈N ai ⊆ G

and∀i, j wherei ̸= j, ai ∩ aj = ∅. A payment rule is de-
fined asp : V → RN . For a valuation profilev, let fi(v) and
pi(v) respectively denote the bundle allocated to agenti and
the amount agenti must pay in a mechanismM(f, p). We
use notationsf(vi, v−i) andp(vi, v−i) to represent the allo-
cation and payment when the declared valuation of agenti is
vi and the declared valuation profile of other agents isv−i.

In this paper, we restrict our attention to determinis-
tic mechanisms that satisfyindividual rationality with non-
negative payment. Individual rationality (IR) means that no
participant obtains negative utility by reporting her true valu-
ation. Formally,∀i ∈ N , ∀v, vi(fi(v)) − pi(v) ≥ 0. We also
assume a mechanism isalmost anonymousacross agents; ob-
tained results from a mechanism are invariant under the per-
mutation of the identifiers of agents except for the case of
ties. Furthermore, we assume that a bundle allocated to agent
i must be one of her minimal bundles. This assumption does
not affect the quality of outcome, e.g., the efficiency or the
seller’s revenue.

Also, in some part of this paper, we represent a mech-
anism as aprice-oriented, rationing-free(PORF) mecha-
nism [Yokoo, 2003]. A PORF mechanism defines a skele-
ton of a mechanism as follows: (i) for each agent, the price



of each bundle of items is determined independently of her
own valuation, and (ii) the mechanism allocates each agent
a bundle that maximizes her utility independently of the al-
locations of other agents. Prices of bundles must be deter-
mined so that they satisfyallocation feasibility. In a PORF
mechanism, when the valuation profile reported byj ̸= i
is v−i, the price of agenti for a bundleBi is described as
p(v−i, Bi). Yokoo[2003] showed that the PORF representa-
tion is a complete characterization of mechanisms that satisfy
an incentive property calledstrategy-proofness(discussed in
detail in Section 5). Similar price-based representations of
strategy-proof mechanisms have also been presented by oth-
ers, including[Lavi et al., 2003].

Next, let us introduce a fairness concept calledenvy-
freeness. To distinguish it from the other fairness concepts
that we will introduce, we refer to it asenvy-freeness of an
individual toward an individual(ItI-EFness).

Definition 2 (Envy-Freeness of an Individual toward an Indi-
vidual). A mechanismM(f, p) satisfiesenvy-freeness of an
individual toward an individual(ItI-EFness) if∀i, ∀j ̸= i,
and∀v, vi(fi(v)) − pi(v) ≥ vi(fj(v)) − pj(v).

In other words, a mechanism satisfies ItI-EFness (or is ItI-
EF) if no agent prefers the pair of the bundle and the price
of another agent to her own bundle and price. Haakeet
al. [2002] proposed a property calledlocally efficient bun-
dle assignmentand characterized the allocation rules of ItI-
EF mechanisms. To introduce the property, let us define
a notion of permutation. We say that an assignmenta′ =
(a′

1, . . . , a
′
n) ∈ A is a permutation of another assignment

a = (a1, . . . , an) ∈ A if ∀i,∃j, such thata′
i = aj holds.

Definition 3 (Locally Efficient Bundle Assignment). An al-
location a is a locally-efficient bundle assignment(LEBA)
with respect tov if ∀a′, wherea′ is a permutation ofa,∑

i∈N vi(ai) ≥
∑

i∈N vi(a′
i) holds.

Theorem 1 (Haakeet al. 2002). An allocation rulef is ItI-
EF-achievable, i.e., there exists a non-negative IR payment
rule p such that the mechanismM(f, p) is ItI-EF, if and only
if f(v) is an LEBA with respect tov for everyv ∈ V .

To evaluate the performance of mechanisms, we focus on
a worst-case analysis (competitive analysis). Such analysis is
commonly used in recent mechanism design literature, espe-
cially by computer scientists.

Definition 4 (Competitive Ratio of Efficiency). A competitive
ratio of efficiency for a mechanismM(f, p) is c if

min
v∈V

∑
i∈N vi(fi(v))

maxa∈A

∑
i∈N vi(ai)

≥ c.

3 Envy-Freeness Toward A Group
In this section, we define two extensions of ItI-EFness.

Definition 5 (Envy-Freeness of an Individual toward a
Group). A mechanismM(f, p) satisfiesenvy-freeness of an
individual toward a group(ItG-EFness) if∀i, ∀S ⊆ N , and
∀v,

vi(fi(v)) − pi(v) ≥ vi(
∪
j∈S

fj(v)) −
∑
j∈S

pj(v). (1)

In other words, a mechanism satisfies ItG-EFness (or is
ItG-EF) if no agent envies a group of agents. Note that in
Eq. (1), agenti can be included inS. Thus, this type of envy
includes the situation that agenti feels, if I receivedj’s items
(as well as my current items) and additionally paidpj , I would
be happier.

Next, First, let us define . Using this notation, let us define
the competitive ratio of efficiency.

Definition 6 (Envy-Freeness of a Group toward a Group). A
mechanismM(f, p) satisfiesenvy-freeness of a group toward
a group(GtG-EFness) if∀v, ∀S, S′ ⊆ N ,∑

i∈S

(vi(fi(v)) − pi(v)) ≥ V ∗(S,
∪

j∈S′

fj(v)) −
∑
j∈S′

pj(v).

(2)

Note thatV ∗(S, B) is a surplus for a set of agentS when a
set of itemsB are optimally allocated toS:

V ∗(S, B) = max
∑
i∈S

vi(ai)

where
∪

i∈S ai = B and
∩

i∈S ai = ∅.
GtG-EFness requires that no group of agents envies any

other group of agents. Note that in Eq. 2,S andS′ can over-
lap. Thus, this type of envy includes all agents feel that if
items were allocated in a better way, everybody would be hap-
pier. From these definitions, a GtG-EF mechanism satisfies
ItG-EFness, and an ItG-EF mechanism satisfies ItI-EFness.

In a single-minded domain, these inclusion relations are
strict. The VCG mechanism is ItI-EF but not ItG-EF. If agent
i wins bundleBi, ∀j ̸= i, wherej’s required bundle isBj ⊆
Bi, i’s payment is at leastvj(Bj). Thus, agentj has no envy
towardi. On the other hand, consider the example described
in Section 1. If agent2’s valuation forg1 is 6 and agent3’s
valuation forg2 is 7, the allocation and payment of VCG are
exactly the same as this example. Thus, VCG is not ItG-EF.

The SET mechanism, which sells the set of itemsG to a
single agent using the Vickrey (second-price) auction, is ItG-
EF but not GtG-EF. In the above example, the SET mecha-
nism allocatesg1 andg2 to agent 1 at payment7. Then, agents
2 and 3 as a group envy agent 1. Furthermore, a mecha-
nism called thefirst-price combinatorial auction mechanism,
which uses the Pareto efficient allocation rule and collects the
winners’ reported values as payment, satisfies GtG-EFness.

3.1 Characterizing ItG-EFness and GtG-EFness
In this subsection, we characterize ItG-EF/GtG-EF mecha-
nisms by focusing on their allocation rules. First, let us define
the property calledItG-EF/GtG-EF-achievability. We say an
allocation rule isItG-EF/GtG-EF-achievableif there exists
a non-negative IR payment rulep such that the mechanism
M(f, p) satisfies ItG-EFness/GtG-EFness.

To characterize ItG-EF/GtG-EF-achievable allocation
rules, let us define two additional concepts:

• An assignmenta′ is a permutation with mergerof an-
other assignmenta if ∀i,∃Si ⊆ N , a′

i =
∪

j∈Si
aj .

• An assignmenta′ is a permutation with split/mergerof
another assignmenta if

∪
i∈N a′

i =
∪

i∈N ai.



By using these concepts, let us define two properties called
LEBA with merger(LEBA-M) and LEBA with split/merger
(LEBA-SM).

Definition 7 (LEBA with Merger). An allocation a is an
LEBA with Merger (LEBA-M) with respect tov if ∀a′,
wherea′ is a permutation with merger ofa,

∑
i∈N vi(ai) ≥∑

i∈N vi(a′
i) holds.

Definition 8 (LEBA with Split/Merger). An allocationa is
an LEBA with Split/Merger (LEBA-SM) with respect tov
if ∀a′, where a′ is a permutation with split/merger ofa,∑

i∈N vi(ai) ≥
∑

i∈N vi(a′
i) holds.

In other words, an LEBA-SMa allocates a set of items∪
i∈N ai ⊆ G optimally toN , while it allows some item to

remain unsold. The idea of LEBA-SM is similar to a property
calledconsistency, which was introduced in the literature of
fair allocation[Tadenuma and Thomson, 1991]. The follow-
ing theorems clarify the relation between ItG-EFness/GtG-
EFness and LEBA-M/SM. For space reasons, we only show
the proof of Theorem 3.

Theorem 2. If an allocation rulef is ItG-EF-achievable,
thenf(v) is an LEBA-M with respect tov for everyv ∈ V .
Also, the converse is true in a single-minded domain.

Theorem 3. If an allocation rulef is GtG-EF-achievable,
thenf(v) is an LEBA-SM with respect tov for everyv ∈ V .
Also, the converse is true in a single-minded domain.

Proof (if part). In the definition of GtG-EFness, by choosing
S = S′ = N , we obtain∑

i∈N

(vi(ai) − pi(v)) ≥ V ∗(N,
∪

j∈N

aj) −
∑
j∈N

pj(v).

Thus, ∑
i∈N

vi(ai) ≥ V ∗(N,
∪

j∈N

aj)

holds. From the definition ofV ∗, ∀a′, which is a permutation
with split/merger ofa,

V ∗(N,
∪

j∈N

aj) ≥
∑
i∈N

vi(a′
i)

holds. Thus, ∑
i∈N

vi(ai) ≥
∑
i∈N

vi(a′
i)

holds.

Proof (converse part).Consider an allocation rulef that is
LEBA-SM in a single-minded domain. We choose a payment
rule p such thatpi(v) = vi(fi(v)) and show that the mecha-
nismM(f, p) satisfies GtG-EFness.

We derive a contradiction by assuming that∃v, ∃S, S′ ⊆
N , such that

V ∗(S,
∪

j∈S′

aj) −
∑
j∈S′

pj(v) >
∑
i∈S

(vi(ai) − pi(v)),

wherea = f(v), holds. Sincepi(v) = vi(ai), we have

V ∗(S,
∪

j∈S′

aj) >
∑
j∈S′

vj(aj).

Here, we can assume∀i ∈ S, vi(ai) = 0 holds; other-
wise, such an agenti does not have a positive valuation in
V ∗(S,

∪
j∈S′ aj), since the required bundleai is not included

in
∪

j∈S′ aj . Thus, we have the same inequality for the set of
agentsS \ {i}.

Let us consider an assignmenta′, where
∪

j∈S′ aj are op-
timally allocated toS, items

∪
i∈S ai are optimally allocated

to S′ \ S, and the rest of items are allocated in the same way
asa. Note thata′ is a permutation with split/merger ofa.

From the definition ofa′, we have∑
i∈N

vi(a′
i) ≥ V ∗(S,

∪
j∈S′

aj) +
∑
l∈X

vl(al)

>
∑
j∈S′

vj(aj) +
∑
l∈X

vl(al)

=
∑
i∈N

vi(ai),

whereX = N \ (S ∪ S′). This violates the assumption that
f(v) is an LEBA-SM.

3.2 Competitive Analysis

The following theorems show that when the domain is gen-
eral, even iff satisfies LEBA-SM (more specifically,f is
Pareto efficient), there exists no payment rulep such that
M(f, p) satisfies ItG-EFness.

Theorem 4. The competitive ratio of efficiency for any ItG-
EF mechanism in a general domain is at most3/4.

Proof. We derive a contradiction by assuming that mecha-
nism M(f, p) satisfies ItG-EFness and its efficiency ratio is
strictly more than3/4. Consider three agents and two items
g1, g2. Agent 1 values2 for g1 and3 + ϵ for g2. Agent 2 val-
ues3 only for {g1, g2}. Agent 3 values2 only for g2. Since
f ’s efficiency ratio is strictly more than3/4, agent 1 winsg1

and agent 3 winsg2. From IR, agent 3 pays at most2. Also,
from ItG-EFness for agent 2, the sum of their payments must
be at least3. Thus, agent 1’s payment is at least1. In this
case, agent 1 envies agent 3, which contradicts ItG-EFness.
Then, the best possible allocation is to allocateg2 to agent 1,
where the efficiency ratio is(3 + ϵ)/4.

Theorem 5. The competitive ratio of efficiency for any GtG-
EFness mechanism in a general domain is at most1/2.

Proof. We derive a contradiction by assuming that mecha-
nismM(f, p) satisfies GtG-EFness and its efficiency ratio is
strictly more than1/2. Consider three agents and two items
g1, g2. Agent 1 values2 for g1 and2 + 2ϵ for g2. Agent 2
values4 − ϵ only for {g1, g2}. Agent 3 values2 only for g2.
Using a similar argument to Theorem 4, allocatingg1 to agent
1 andg2 to agent 3 is impossible. Also, from GtG-EFness, it
is impossible to allocate both items to agent 2; otherwise, the
group of agents 1 and 3 will envy. Then, the best possible al-
location is to allocateg2 to agent 1, where the efficiency ratio
is (1 + ϵ)/2.



3.3 Non-trivial GtG-EF Mechanism
The previous subsection shows that the competitive ratio of
a GtG-EF mechanism in a general domain is at most1/2.
This implies that even the first price combinatorial auction
mechanism does not satisfy GtG-EFness. Thus, the GtG-
EFness condition seems very restrictive and one might imag-
ine that developing a non-trivial GtG-EF mechanism in a gen-
eral domain is impossible. However, we show that this pes-
simistic conjecture is not true; there exists a non-trivial GtG-
EF mechanism called theaverage-max minimal-bundle(AM-
MB) mechanism[Ito et al., 2005]. Quite surprisingly, this
mechanism is also strategy-proof, while the first price combi-
natorial auction mechanism is not.
Definition 9 (Average-Max-Minimal-Bundle (AM-MB)
mechanism). The Average-Max-Minimal-Bundle (AM-MB)
mechanism is defined as a PORF mechanism, in which for
agenti, the price of bundleBi is defined as:

|Bi| · max
Bj⊆G,j ̸=i

vj(Bj)/|Bj |,

whereBi ∩ Bj ̸= ∅ andBj is a minimal bundle for agentj.
As stated in[Ito et al., 2005], the AM-MB mechanism is

a strategy-proof, greedy allocation mechanism (i.e., easy to
compute) and achieves better efficiency and revenue in ex-
pectation, although its worst-case efficiency ratio can be arbi-
trarily small.

We show that the AM-MB mechanism is GtG-EF.
Theorem 6. The AM-MB mechanism is GtG-EF in a general
domain.

Proof. Let us assume AM-MB is not GtG-EF and derive a
contradiction. We assume,∃v, ∃S, S′ ⊆ N , the following
inequality holds:∑

i∈S

(vi(ai) − pi(v)) < V ∗(S,
∪

j∈S′

aj) −
∑
j∈S′

pj(v), (3)

wherea = f(v). Here, denoteS′
I = S∩S′, andS′

C = S′\SI .
In the left-hand side of Eq. (3), each term in the summation is
non-negative. Thus,∑

i∈S

(vi(ai) − pi(v)) ≥
∑
i∈S′

I

(vi(ai) − pi(v))

holds. Assume agenti ∈ S receivesBi in V ∗(S,
∪

j∈S′ aj).
Then, the right-hand side of Eq. (3) can be re-written as:

V ∗(S,
∪

j∈S′

aj) −
∑
j∈S′

pj(v)

=
∑
i∈S

vi(Bi) −
∑
j∈S′

I

pj(v) −
∑

j∈S′
C

pj(v).

Thus, we obtain:∑
i∈S′

I

vi(ai) +
∑

j∈S′
C

pj(v) <
∑
i∈S

vi(Bi) (4)

From the definition of AM-MB, we can rewrite Eq. (4) as:∑
i∈S′

I

∑
g∈ai

vi(ai)/|ai| +
∑

j∈S′
C

∑
g∈aj

pj(v)/|aj |

<
∑
i∈S

∑
g∈Bi

vi(Bi)/|Bi| (5)

Each term within the summation of the right-hand side of
Eq. (5) corresponds to an itemg ∈

∪
j∈S′ aj . Then, for each

g ∈
∪

j∈S′ aj , consider agentj who receives the itemg in
a = f(v). Agentj is either inS′

I or S′
C . If j ∈ S′

I ,

vj(aj)/|aj | ≥ vi(Bi)/|Bi|
holds for alli ∈ S such thatBi ∩aj ̸= ∅; otherwise,j cannot
obtainaj . Note thatvj(aj)/|aj | appears in the left-hand side
of Eq. (5). Also, ifj ∈ S′

C ,

pj(v)/|aj | ≥ vi(Bi)/|Bi|
holds (sincevi(Bi)/|Bi| is used for calculatingpj(v)). Note
thatpj(v)/|aj | also appears in the left-hand side of Eq. (5). In
summary, for each termvi(Bi)/|Bi| in the right-hand side of
Eq. (5), there also exists a corresponding term in the left-hand
side, which is no less thanvi(Bi)/|Bi|. Also, these left-hand
terms are non-overlapping. This is a contradiction.

4 Connection with the Core
In this section, we discuss the connection between GtG-
EFness and the core. Let us introduce the definition ofcore-
selecting auctions[Day and Milgrom, 2008].

Definition 10 (Blocking Coalition). For a mechanism
M(f, p) and a valuation profilev, wherea = f(v) and
Gr = G \

∪
i∈N ai, S ⊆ N is a blocking coalition if there

existsS′ ⊆ N , such that the following condition holds:∑
i∈S

(vi(ai) − pi(v)) < V ∗(S, Gr ∪
∪

j∈S′

aj) −
∑

j∈S∪S′

pj(v).

Here,Gr is a set of items that are not allocated to any agent.
If S is a blocking coalition, the members ofS can ask the
seller to allocateGr ∪

∪
j∈S′ aj to them instead ofS′ by pay-

ing slightly more than
∑

j∈S∪S′ pj(v). Then, both the seller
and the members ofS are better off. Thus, the outcome of
this mechanism is unstable.

Definition 11 (Core-selecting mechanism). A mechanism
M(f, p) is core-selectingif ∀v, there exists no blocking coali-
tion.

The next theorem shows that the core selection implies
GtG-EFness in a single-minded domain.

Theorem 7. In a single-minded domain, a mechanism is
core-selecting if and only if it is Pareto efficient and GtG-EF.

Proof sketch.In a single-minded domain, wlog, we can as-
sume each agenti in a blocking coalitionS obtains∅ (if not,
S \ {i} is also a blocking coalition). Also, we can assume
Gr = ∅ in a core-selecting or Pareto efficient mechanism.
Thus, the left-hand side of the blocking coalition condition
must be0 and the condition is simplified to:∑

j∈S′

pj(v) < V ∗(S,
∪

j∈S′

aj).

Also, in a single-minded domain, wlog, we can assume
each agenti ∈ S in Eq. (2) obtains∅. Then, the left-hand
side of Eq. (2) must be0, and the condition is simplified to:∑

j∈S′

pj(v) ≥ V ∗(S,
∪

j∈S′

fj(v)).



It is clear that GtG-EFness is equivalent to the fact that there
exists no blocking coalition.

Theorem 8. In a general domain, there exists no core-
selecting ItG-EF mechanism.

Proof. From Theorem 4, there exists no Pareto efficient ItG-
EF mechanism. Also, a core-selecting mechanism must
achieve a Pareto efficient allocation. Thus, there exists no
core-selecting ItG-EF mechanism.

5 Connection with SPness
Strategy-proofness(SPness) is a property that deals with in-
centives of agents. A mechanism satisfies SPness (or is SP)
if reporting true valuationvi is a weakly dominant strategy
for any agenti and for any valuation profilev−i. First, let
us clarify the connection between ItI-EFness and SPness. We
omit the proof since it is almost identical to the proof of The-
orem 13.

Theorem 9. Any SP mechanism is ItI-EF in a single-minded
domain, but not vice versa.

Rochet [1987] proposed a property of allocation rules
calledcycle-monotonicityand characterized SP mechanisms.
However, Cohen et al.[2010] showed that even if an alloca-
tion rulef is LEBA and cyclic-monotone, there might be no
appropriate payment rulep such thatM(f, p) is both ItI-EF
and SP. Since ItG-EFness is more restrictive than ItI-EFness,
this statement is also true for ItG-EFness. Indeed, although
the Pareto efficient allocation rule is LEBA-M and cyclic-
monotone, there is no appropriate payment rule even in a
single-minded domain (see Theorem 11).

Our next objective is to obtain a complete characterization
of ItG-EF SP mechanisms.

5.1 Characterization
As we stated in Section 2, Yokoo [2003] gave a complete
characterization of SPness by introducing a class of PORF
mechanisms. To characterize ItG-Ef SP mechanisms, let us
define the following property.

Definition 12 (No-Envy Pricing Rule Toward A Group). A
PORF mechanism satisfiesno-envy pricing rule toward a
group(NEP) if ∀v, ∀i ∈ N , and∀S ⊆ N , if Bj maximizes
j’s utility ∀j ∈ S, then∑

j∈S

p(v−j , Bj) ≥ vi(
∪
j∈S

Bj)

holds.

By using this property, we obtain the following characteri-
zation theorem.

Theorem 10. In a single-minded domain, an SP mechanism
M(f, p) is ItG-EF if and only if its prices satisfy NEP.

Proof sketch.In a single-minded domain, an agent whose
utility is positive does not envy any group of agents. Then,
the left-hand side of Eq. (1) becomes0. Thus, the ItG-EFness
condition is simplified to:∑

j∈S

pj(v) ≥ vi(
∪
j∈S

(fj(v))),

which is identical to NEP.

Neither the first-price combinatorial auction mechanism
nor the VCG mechanism satisfy NEP. On the other hand, the
SET mechanism satisfies NEP in a single-minded domain,
since the winner’s price equalsmaxj∈N\{i} vj(Bj), where
Bj is j’s required bundle.

5.2 Competitive Analysis
In this subsection, we discuss the competitive ratio achieved
by an ItG-EF SP mechanism. Putting aside SPness, we
already revealed that there exists a Pareto efficient ItG-EF
mechanism in a single-minded domain. However, taking into
account SPness, there no longer exist such Pareto efficient
mechanisms even in a single-minded domain.

As an upper bound, we obtain the following result.

Theorem 11. The competitive ratio of efficiency for any ItG-
EF SP mechanism is at most2/3.

Proof. Consider three agents and two items{g1, g2}. Agents
1 and 3 value1 for g1 andg2, respectively. Agent 2 values
1 for a bundle{g1, g2}. Thus, if a mechanism achieves an
efficiency ratio better than2/3, both agents 1 and 3 must win.
Let us define the payments of agents 1 and 3 asp1 andp3,
respectively. From ItG-EFness, they must satisfyp1+p3 ≥ 1.
Thus, eitherp1 or p3 must be greater than or equal to1/2.
Wlog, we assumep1 ≥ 1/2.

Next, consider the case where agent 1 has a valuationp1−ϵ.
From SPness, the payment in which agent1 wins the itemg1

must be uniquely determined when the other agents’ reports
are fixed. Thus, from IR, agent 1 with valuationp1−ϵ cannot
win the itemg1 and the efficiency is at most1. In a Pareto
optimal allocation, the efficiency is1+p1−ϵ. Thus, efficiency
ratio is 1/(1 + p1 − ϵ), which cannot be strictly more than
2/3.

Theorem 12. In a single-minded domain, the lower bound of
the competitive ratio of efficiency for an ItG-EF SP mecha-
nism is2/(m + 1).

Proof. In a single-minded domain, the competitive ratio of a
FNP mechanism calledadaptive reserve price(ARP) mecha-
nism[Iwasakiet al., 2010] is 2/(m + 1). From Theorem 13,
this mechanism is also ItG-EF.

6 Connection with FNPness
False-name-proofness(FNPness) generalizes strategy-
proofness by assuming a bidder can submit multiple
bids under fictitious identifiers, e.g., multiple e-mail ad-
dresses[Yokoo, 2003]. A mechanism satisfies FNPness (or
is FNP) if for each agent, reporting her true valuation using
a single identifier (although the agent can use multiple iden-
tifiers) is a weakly dominant strategy. From the definition,
a FNP mechanism is SP. We show that FNPness implies
ItG-EFness in a single-minded domain.

Theorem 13. Any FNP mechanism is ItG-EF in a single-
minded domain, but not vice versa.



Proof. First, we derive a contradiction by assuming that a
FNP mechanismM(f, p) is not ItG-EF. We assume∃v, ∃i,
and∃S ⊆ N , such that

vi(fi(v)) − pi(v) < vi(
∪
j∈S

fj(v)) −
∑
j∈S

pj(v)

holds. Then, the left-hand side of the above equation must be
0; if the left-hand side is positive, the right-hand side cannot
exceed the left-hand side.

Next, let us consider the case where a set of agentsS drops
out and agentk, who has exactly the same valuation asi,
joins. Since the mechanism is almost anonymous, the utilities
of agentsi andj must be the same. Since agents are single-
minded, their utilities cannot be positive at the same time.
Thus,

vk(fk(vk, vN\S)) − pk(vk, vN\S) = 0,

wherevN\S indicates the valuation profile reported by a set
of agentN \S. However, agentk can make the situation iden-
tical to the above case by using false identifiers and obtain the
set of bundles

∪
j∈S fj(v) at payment

∑
j∈S pj(v), which is

strictly smaller thanvk(
∪

j∈S fj(v)). This violates FNPness.
The converse is not true since AM-MB is ItG-EF (GtG-EF)

but not FNP even if the domain is single-minded.

7 Conclusions and Future Works
In this paper, we introduced two new concepts of fairness
called envy-freeness of an individual toward a groupand
envy-freeness of a group toward a group, which are natu-
ral extensions of traditional envy-freeness. We characterized
them and clarified their connections with the core, strategy-
proofness, and false-name-proofness.

Our new fairness concepts bring up a new interesting
direction in mechanism design. Although we obtained a
fair amount of initial results, there remain many interest-
ing research questions. For example, we want to obtain the
full characterization of allocation rules for ItG-EFness/GtG-
EFness with/without SPness in a general domain. Also, we
want to narrow the gap between the lower/upper bounds of
the competitive ratio. Furthermore, we hope to investigate the
envy-freeness of a group toward an individual (GtI-EFness),
which would be related to a manipulation that is symmetric to
false-name bidding, i.e., a coalition of agents negotiates and
sends one representative to a mechanism.
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