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Abstract

With a model of system of cities and one rural area, we consider evolu-
tionary implementation (due to Sandholm [Evolutionary implementation and
congestion pricing, Review of Economic Studies 69 (2002), 667-689]) of optimal
number and size of cities in which the planner leads the economy to a social
optimum in the long-run without forcing lumpy migrations and without the
knowledge of preferences. We show that the planner can achieve evolutionary
implementation of a social optimum by internalizing the externalities evalu-
ated at current prices and population distribution in each period. Unlike the
original concept of Sandholm, we consider a migration dynamic with forward
looking expectations to deal with multiplicity of local optima.

JEL classification: C73, D04, D62, R12.

Keywords: System of cities; Externalities; Implementation; Perfect foresight
dynamic; Potential game; Evolutionary game theory.

1 Introduction

This paper intends to contribute to the theory of system of cities initiated by
Henderson (1974), which is a classical topic of urban economics. The theory of sys-
tem of cities is concerned with optimal city size distribution and difference between
market outcome and optimal one.1 Generally, an optimal city size is determined
so that positive agglomeration economies and negative congestion externalities are
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1See Abdel-Rhaman and Anas (2004) for a survey of this field.
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balanced. Hence, if the positive [resp. negative] externalities dominate at a market
equilibrium, the city size is too small [resp. large]. However, an equilibrium at
which the positive externalities dominate will not be stable because a marginal
increase of city population raises the utility of the city residents and hence, the
population increases further. Therefore, a strong agreement in this literature is that
the number of cities is too small and the sizes of cities are too large at a stable market
equilibrium. In this case, the planner needs to reduce the sizes of the existing cities
and increase the number of cities to fix the inefficiencies. However, since the equi-
librium is stable, the planner cannot induce marginal migrations and therefore, he
needs to force lumpy migrations to construct a new city. Hence, it has been argued
that agents such as local governments and city developers that directly control city
populations are necessary to achieve a social optimum.2

However, as Abdel-Rhaman and Anas (2004) argue, it is not realistic to think
that city developers can completely control the spatial structure of economy. In
the above argument, the planner cannot lead the economy to a social optimum
because we are considering one shot policies. If, instead, we consider a period-
by-period policy such that the planner constantly stimulates the economy, it may
be possible to achieve a social optimum without directly controlling population.
Such a policy is compatible with the standard framework of this literature because
though a base model is static, we consider a dynamic environment in which agents
behave according to a migration dynamic and settle down at equilibrium strategies
(about where to locate) in the long-run. We argue that if the planner internalizes
the externalities evaluated at current prices and population distribution in each
period, he can lead the economy to a social optimum. However, since there are
generally multiple local optima, the economy does not necessarily converge to a
global optimum under myopic dynamics.3 To tackle this problem, we incorporate
forward looking expectations to migration dynamic in the spirit of Matsui and
Matsuyama (1994) by introducing a friction in the sense that agents cannot migrate
in every period.4 Under the resulting dynamic, which is called perfect foresight

2In the New Economic Geography (NEG) literature, it has been demonstrated that a market
can yield under agglomeration for low inter-city trade costs when there exists intra-city congestion
(e.g., Helpman, 1998; Tabuchi, 1998; Pflüger and Südekum, 2008). If the market yields under
agglomeration, the planner needs to increase the sizes of some existing cities and reduce the number
of cities, but he still needs to force a lumpy migration because the equilibrium is stable.

3This point is also mentioned by Hadar and Pines (2004).
4While a myopic dynamic is usually assumed in the literature, dynamics with forward looking
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dynamic, it follows that the economy converges to only a global maximizer.
When we design a policy, we also address the point that the planner cannot de-

termine whether a current spatial configuration is optimal or not without knowing
the preferences of people, to which a little attention has been paid in the literature.5

Specifically, we formulate a base model as a population game in which there exists
a continuum of players and consider evolutionary Nash implementation introduced
by Sandholm (2002, 05b). If the planner succeeds in evolutionary implementation
of a social optimum, the economy converges to the optimum from any initial state.
The planner tries to achieve this with the first-best policy in which he internalizes
externalities evaluated at current prices and population distribution in each period.
Since the externalities are evaluated at the current observable states, the planner
can carry it out without the knowledge of preferences.

This implementation concept is well-suited to our large economy because it
does not require the agents to play Nash strategies at once and unlike standard
revelation mechanisms such as the VCG mechanism, it does not ask the planner to
collect messages. In other words, in view of the fact that our economy has a large
number of people, our mechanism is not labor-intensive for the planner because he
is relieved of the burden of collecting messages and computing allocations to each
message. Moreover, from the players’ point of view, the requirement in terms of
their cognitive skills is moderate since the mechanism allows the players to make
mistakes in forecasting strategies of the opponents in learning periods.

To make the argument clear, we consider the most primitive and simplest pos-
sible model in the literature: there are K ∈ N identical cities and one rural area6;
there is no trade among the cities and the rural area and there is only one indus-
try; agglomeration economies are incorporated by the Marshallian externalities in
aggregate production functions; and congestion externalities are present in com-

expectations have been considered for the ”history versus expectations” issue in the NEG literature.
To my best knowledge, either the dynamic due to Matsui and Matsuyama (1994) or the one due to
Krugman (1991) and Fukao and Bénabou (1993) at which agents can migrate anytime but incur a
migration cost is used. We employ the dynamic of Matsui and Matsuyama (1994) mainly because
it fits well with our framework.

5Hadar and Pines (2004) consider a policy in which the planner uses only information available
to him. But they do not touch on implementation issues.

6Anas and Xiong (2005) consider a model that has two cities and two industries (manufacture
and service). They argue that if one city diversifies over the industries and the other city specializes
in one industry at optimum, a forced lumpy migration will not be necessary. However, such a result
does not follow if the two cities are identical in terms of industrial structure.
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muting. Hence, in the first-best policy we will consider, the planner does the
following in each period: instruct the firms to pay the marginal productivities for
labor to fix the agglomeration externalities; levy the Pigouvian congestion taxes to
commuters to fix the congestion externalities; and distribute surplus or finance loss
through lump sum transfer. The marginal productivities of labor and the Pigou-
vian taxes are evaluated at current population distribution. Under this policy, we
show that the planner can lead the economy to a social optimum without directly
controlling populations and without the knowledge of preferences, as long as he
knows the aggregate production function and the commuting cost, and can observe
current prices and population distribution.

One might recall the Henry George Theorem which states that the loss in produc-
tion due to the marginal cost pricing is exactly financed by the revenue from the
Pigouvian congestion tax and the land rent in each city when the number of cities
is optimal. We can interpret that in the first-best policy, the planner tries to reach
the population distribution such that the Henry George Theorem holds without
the knowledge of preferences. To my best knowledge, this work is the first attempt
to implement social optima in a model of system of cities.

The rest of this paper is organized as follows. Section 2 states the basic setup
of the model, introduces myopic evolutionary dynamics, and defines equilibrium
and social optimum. Some characterizations of equilibria, stability analysis, and
comparison between equilibrium and optimum are also carried out. Section 3
explains the concept of evolutionary Nash implementation and after introducing
the perfect foresight dynamic, states the main result. The relation of our analysis
to the Henry George Theorem is also discussed. Finally, Section 4 concludes. The
proof omitted from the text is provided in Appendix.

2 The Model

We consider an economy that has K potential cities and one rural area where
K is a finite natural number. Our economy is a system of isolated cities, so there
is no trade among the cities and rural area. There is unit mass of homogeneous
households in the economy. Each household has the action space S = {0, 1, 2, ...,K}
where 0 represents the action of residing in rural area and k ∈ S \ {0} represents
the action of residing in city k. Let nk ∈ [0, 1] be the mass of households taking
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the action k ∈ S. Then, ∆ =
{
n ∈ R|S|+ :

∑
k∈S nk = 1

}
is the set of distributions of

households over the actions.7 We call n ∈ ∆ a strategy distribution.
Each city is composed of one residential area and one central business district

(CBD). A representative firm produces consumption good at the CBD. The aggre-
gate production function is given by f (nk) = h(nk)nk where h : [0, 1] → R+ is a C1

and strictly increasing function. We treat the consumption good as numéraire. h( · )
is assumed to be external to the firm, hence the wage rate is given by wk = h(nk).
h( · ) captures positive agglomeration externalities.

Each household in city k lives in the residential area, commute to the CBD, and
inelastically supply one unit of labor. When they commute, they incur the commut-
ing cost T(nk) where T : [0, 1] → R+ is a C1 and strictly increasing function. Then,
since the (per capita) commuting cost is strictly increasing in the city population,
there are negative congestion externalities in commuting. The households in cities
consume housing in the residential area. We assume that total supply of housing
is fixed at H > 0. Then, since the households are homogeneous, the per capita
housing consumption in city k is H/nk. The household budget constraint is

ck + T(nk) + RkH/nk = wk, (1)

where ck is the consumption of numéraire and Rk is the land rent. The rent revenue is
assumed to be thrown away.8 However, when the planner seeks a social optimum,
he will use it to finance his policy. The payoff from living city k is

Uk(n) = ck + v(Ac) + u(H/nk)

= wk − T(nk) − RkH/nk + v(Ac) + u(H/nk),
(2)

where v(Ac) is the utility from city amenity Ac (Robeck, 1982) and u( · ) is a C1 and
strictly quasi-concave function. Note that the land rent Rk is given by u′(H/nk).

On the other hand, there is no consumption and no housing in rural area. The
households in rural area derive their utilities from only rural amenity Ar. Hence,
the payoff from residing in rural area is U0(n) = v(Ar).

7|S| denotes the cardinality of S.
8This assumption is just for simplicity. We also could assume that the rent revenues are equally

distributed to the households.
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2.1 Population Game

We assume that u( · ) is parameterized by a real vector γ.9 Also, it turns out that
only v ≡ v(Ar) − v(Ac) matters for our analysis. Then, we call θ = (v, γ) the type
of the households.10 We assume that θ is an element of a finite set Θ in the Real
space.11 In the following analysis, we assume that the planner knows h( · ) and T( · ),
and can observe n and {Rk}k∈S\{0}, but he does not know θ.

We represent a population game by G = (U, θ) in which the set of players is the
unit mass of households, the action space is S, the payoff vector is U, and the type
space is Θ.12 A Nash equilibrium of G is a strategy distribution n∗ ∈ ∆ such that

n∗k > 0⇒ k ∈ arg max j∈SU j(n∗) for all k ∈ S. (3)

That is, if there is a positive mass of households who take action k, then the action
is a best response under the strategy distribution n∗.

Example 1 (Full agglomeration equilibrium). Suppose h(nk) = exp(εnk) as in Fujita
and Thisse (2002, Ch 8), T(nk) = tnk,u(H/nk) = H/nk, and v < 1. Since Rk =

u′(H/nk) = 1, Uk(n) = ψ(nk)+ v(Ac) for k ∈ S \ {0}where ψ(nk) = h(nk)− T(nk). In this
specification, the magnitude of agglomeration economies is captured by ε while
that of congestion externalities is captured by t. Now, suppose all households
locate in city k∗. We call this state full agglomeration in one city. Then, no household
in city k∗ has incentive to change his location if ψ(1) ≥ max{ψ(0), v}. Hence, full
agglomeration in one city is a Nash equilibrium if t ≤ eε − 1, or the positive
agglomeration economies are large relative to the negative congestion effects. �

2.2 Myopic Evolutionary Dynamics

As we discussed in the introduction, it is difficult for each household to play a
Nash strategy at once in large economies. Hence, we consider a situation in which

9Here, we invoke the fact that a continuous function f : R→ R can be uniformly approximated
by polynomials if the domain is restricted to a compact set.

10Recall that the households are assumed to be homogeneous. Hence, all the households have
the same type. We can introduce heterogeneity by dividing the population into subpopulations
according to type.

11I argue that this assumption is not so restrictive for v intuitively. Suppose v is measured in unit
of dollar. Generally, v takes any values such as $1.2345. But if we round off fractions and consider
only values such as $1.23 as in our daily life, we may assume that v takes only finite number of
values as long as v has upper and lower bounds.

12Sandholm (2001) calls a game that has a continuum of players population game. In this game,
Nash equilibrium is defined with respect to a strategy distribution rather than individual strategies.
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the households play a game repeatedly and gradually learn to play equilibrium
strategies. The resulting state is interpreted as a long-run equilibrium. To describe
a learning process, we consider evolutionary dynamic g : ∆ → R|S| that defines a
motion of strategy distribution. Given a game G, Sandholm (2001) considers a
class of myopic evolutionary dynamics that satisfy the following conditions:

(LC) g is Lipschitz continuous,
(FI) ∆ is forward invariant under ṅ = g(n),

(PC) g(n) , 0⇒ g ·U > 0,
(NC) g(n) = 0⇒ n is a Nash equilibrium of G.

Condition (LC) is a technical assumption to ensure that there exists a unique so-
lution trajectory for each initial condition. Intuitively, this condition requires that
there is no jump in changes of the strategy distributions. Condition (FI) is also a
technical assumption to ensure that any solution trajectory does not leave ∆. To
interpret condition (PC), we note that under condition (FI),

g ·U =
∑
k∈S

gk(n)

Uk(n) − 1
|S|
∑
j∈S

U j(n)

 . (4)

If the households behave rationally, each term in the summation should be positive:
if an action yields a more than average payoff, then the mass of households taking
the action should increase. Condition (PC) requires that this is true only in aggre-
gate. Condition (NC) states that if there is a profitable deviation, some households
change their strategies. By Proposition 4.3 in Sandholm (2001), conditions (FI) and
(PC) imply that the converse is also true. Therefore, under conditions (FI), (PC),
and (NC), n is a rest point of g if and only if n is a Nash equilibrium of G.

Sandholm defines that if an evolutionary dynamic satisfies the above conditions,
it is admissible for G. To see whether myopic evolutionary dynamics are useful
for our model, we consider this class of dynamics instead of taking a particular
dynamic. Specific examples of the admissible dynamics include the projection
dynamic and the Brown-von Neumann-Nash (BNN) dynamic.13

To study stability of equilibria of G in terms of the above class of dynamics,
we utilize the fact that G is a potential game which is defined as follows: Let

13See Sandholm (2005a) for more examples. One important remark is that the replicator dynamic,
which is often used in the NEG models, is not admissible. Under the replicator dynamic, the
boundary states are always rest points and hence, it does not satisfy condition (NC).
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∆ =
{
n ∈ R|S|+ : 1 − η < ∑k∈S nk < 1 + η

}
where η > 0. G is a potential game if it has a

potential function that is a C1 function p : ∆→ R such that

∂p(n)
∂nk

− ∂p(n)
∂nℓ

= Uk(n) −Uℓ(n) for all k, ℓ ∈ S. (5)

p is defined on ∆ so that the derivative of p on the boundary of ∆ is well-defined.
The following lemma shows that our game is a potential game.

Lemma 1. G is a potential game.

Proof. W(n) = n0v(Ar)+
∑K

k=1

∫ nk

0

[
h(y) − T(y) − u′(H/y)H/y + u(H/y)

]
dy+ nkv(Ac) is

a potential function. �

Then, the following results are useful for us:

Lemma 2 (Sandholm, 2001). (i) n is a Nash equilibrium of G if and only if n satisfies
the Kuhn-Tuker conditions for the maximization of W. (ii) The set of Nash equilibria of
G is globally attractive under any admissible dynamic for G. (iii) Suppose there is no
continuum of equilibria. Then, every Nash equilibrium of G that locally maximizes W is
asymptotically stable under any admissible dynamic for G.

Therefore, Nash equilibria of G and their stability can be characterized by using
a potential function W. In particular, Lemma 2 (i) and (ii) imply that if W is strictly
concave, Nash equilibrium of G is unique and is globally attractive under any
admissible dynamic for G.

Example 2 (Stability of full agglomeration equilibrium). Consider the setting in
Example 1. By Lemma 2 (iii), full agglomeration in one city is an asymptotically
stable equilibrium if W is locally maximized there. Then, since

dW =
∑

k∈S\{0}
(ψ(nk) − v)dnk,

it is asymptotically stable if ψ(1) > max{ψ(0), v}, or equivalently, t < eε − 1. �

2.3 Social Optimum

In our paper, we consider the following social welfare function:

SW(n;θ) =
∑
k∈S

nkUk(n). (6)
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The planner would like to achieve a population distribution n ∈ ∆ that maximizes
the above function under the resource constraints:

nkck + nkT(nk) ≤ f (nk) for all k ∈ S \ {0}. (7)

We choose {nk}k∈S\{0} with the constraints
∑

k∈S\{0} nk ≤ 1 and nk ≥ 0 for all k ∈ S \ {0}.
Then, the Kuhn-Tucker condition is

f ′(nk) − T(nk) − nkT′(nk) − u′(H/nk)H/nk + u(H/nk) − v − µ ≤ 0 (8)

for k ∈ S\{0}whereµ ≥ 0 is the Lagrange multiplier for the constraint
∑

k∈S\{0} nk ≤ 1.
The condition holds with equality whenever nk > 0. The condition tells us that all
the externalities must be internalized at a social optimum: in cities, the households
receive the marginal productivity f ′(nk) for their labor supplies and additionally
pay the value of congestion externalities nkT′(nk) for commuting.

Example 3. Consider the setting in Example 1. Then, (8) is written as ψ(nk) +
nkψ′(nk)−v−µ ≤ 0. Thus, if ψ(1)+ψ′(1) < max{ψ(0), v}, the Kuhn-Tucker condition
is violated, hence full agglomeration in one city is not optimal. Therefore, by
Example 2, full agglomeration in one city is a nonoptimal asymptotically stable equilibrium
if max{ψ(0), v} < ψ(1) < max{ψ(0), v} − ψ′(1), or equivalently, eε+εeε−1

2 < t < eε − 1. �

In the above example, the planner needs to reduce the city population, but
since the equilibrium is stable, he cannot induce marginal migrations by one shot
policy as discussed before and hence, it has been argued that we need developers
that directly control city populations to achieve a social optimum. In the next
section, we design an environment in which the planner internalizes externalities
evaluated at current prices and population distribution in each period and achieve
a social optimum in the long-run. When we construct such an environment, we also
address the point that the planner cannot compute optimal population distributions
without the knowledge of the preferences.

3 Evolutionary Implementation

We consider evolutionary Nash implementation (of a social optimum) proposed
by Sandholm (2002, 05b). For this purpose, we consider an environment in which
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the planner carries out a policy to achieve a social optimum and the households
play the associated game. Specifically, we define a game G∗ = (U∗, θ) in which

U∗0(n) = v(Ar) +Ω, (9)

U∗k(n) = w∗k − T(nk) − τ∗k − RkH/nk + v(Ac) + u(H/nk) +Ω, for k ∈ S \ {0}, (10)

where w∗k = f ′(nk), τ∗k = nkT′(nk), and Ω =
∑

k∈S\{0} f (nk) − w∗knk + τ∗knk + RkH. Under
this game, the planner instructs the firms to pay the marginal productivities w∗k
for labors; levies the congestion taxes τ∗k to commuters; and distributes surplus or
finances loss through the lump-sum transfer Ω. Also, the planner takes the land
markets as given to extract information from the prices. Observe that this policy is
feasible without knowledge of the type. We call this scheme the first-best policy.

To define evolutionary implementation, we introduce a social choice correspon-
dence ϕ : Θ ⇒ ∆ which specifies a set of strategy distributions n ∈ ∆ for each type
θ ∈ Θ. Then, Sandholm (2002, 05b) defines that the first-best policy globally imple-
ments a social choice correspondence ϕ if for all θ ∈ Θ, ϕ(θ) is globally attractive
under any admissible dynamic for G∗.14

Naturally, the planner would like to implement the efficient social choice corre-
spondence ϕ∗ defined as follows:

ϕ∗(θ) = arg maxn∈∆SW(n;θ). (11)

Since the planner takes the land markets as given, Rk = u′(H/nk). Therefore, we can
readily see that G∗ is a potential game for which SW is exactly a potential function.
Thus, the set of Nash equilibria of G∗ is globally attractive under any admissible
dynamic for G∗ by Lemma 2 (ii) and every element of ϕ∗(θ) is a Nash equilibrium
of G∗ by Lemma 2 (i). Hence, if every equilibrium of G∗ is a social optimum,
the planner can achieve evolutionary implementation of a social optimum in the
Sandholm’s sense. However, since there generally exist nonoptimal equilibria, it is
possible that the economy converges to a suboptimal equilibrium.

For illustration, let h(nk) = exp(−ε/nk) as in Henderson (1987), T(nk) = tnk,u(H/nk) =
H/nk, K = 2, ε = 0.3, t = 0.6, and v = 0.2. Figure 1 depicts the contour plot of SW as
a function of n1 and n2 for this example in which the function takes smaller value
on darker area. We can see that SW attains the global maximum at the full disper-
sion equilibrium (n1 = n2 = 1/2), but it is locally maximized at no city equilibrium

14Sandholm considers the price scheme in which the planner levies taxes to each action, though
our first-best policy cannot be described as a price scheme.
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(n0 = 1) and equilibria of partial agglomeration in one city (n0 > 0 and nk = 1 − n0

for some k ∈ {1, 2}). Hence, these suboptimal equilibria are asymptotically stable
by Lemma 2 (iii) and therefore, ϕ∗(θ) is not globally attractive.

One straightforward way to avoid this problem is to assume that SW is strictly
concave as in Sandholm (2002, 05b). However, by doing so, we have to restrict
our attention to cases in which full agglomeration in one city will never be optimal
since the cities are identical. Therefore, it is not desirable in our context. Then,
instead of resorting to properties of SW, we incorporate forward looking expec-
tations to an evolutionary dynamic to remove this problem. Roughly speaking,
while every local maximizer of the potential function is attractive under myopic
admissible dynamics, only global maximizer(s) is attractive under the dynamic we
will consider.

Figure 1: Contour Plot of SW

3.1 Perfect Foresight Dynamic

While the admissible evolutionary dynamics are myopic, in this section, we
incorporate forward looking expectations to evolutionary dynamic in the spirit of
Matsui and Matsuyama (1995). Specifically, we introduce a friction in migration
decisions in the sense that the households have to commit to their location decisions
for a random period of time. Opportunities to migrate follows the Poisson process
with a rate parameter λ > 0 and we assume that the process is independent over
the households and there is no aggregate uncertainty so that the average duration
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of commitment is 1/λ. Let ρ > 0 be the rate of time preference. We call δ ≡ ρ/λ
the degree of friction. Oyama (2009) considers the same kind of friction to study
the ”history versus expectations” issue in the New Economic Geography literature
and in the following, we largely adopt his formulation.

We assume that each household has perfect foresight and therefore, he compares
the present values of expected lifetime payoff from each action k ∈ S to make a
location decision at equilibrium. Since the duration of commitment is exponentially
distributed with mean 1/λ, given the first-best policy, the discounted lifetime payoff
from action k ∈ S at time t is computed as

Vk(t) = (λ + ρ)
∫ ∞

0

∫ t+s

t
e−ρ(z−t)U∗k(n(z))dzλeλsds

= (λ + ρ)
∫ ∞

t
e−(λ+ρ)(s−t)U∗k(n(s))ds. (12)

Now, define the set B(t) =
{
α ∈ ∆ : αk > 0⇒ k ∈ arg max j∈SV j(t)

}
. This is the best

response correspondence when the payoff from action k is given by Vk(t). Then,
we consider the following differential inclusion:

ṅ(t) ∈ λ(B(t) − n(t)). (13)

Given an initial state n0 ∈ ∆, n( · ) is a solution trajectory of (13) if there exists
α(t) ∈ B(t) such that ṅ(t) = λ(α(t)−n(t)) for almost all t ≥ 0. In particular, a solution
trajectory is called a perfect foresight path if it is Lipschitz continuous and it does not
leave ∆. By Oyama et al. (2008), there exists a perfect foresight path for each initial
state n0 ∈ ∆. Moreover, it follows that n is a rest point of (13) if and only if n is a
Nash equilibrium of G∗.

We are interested in stability of equilibria of G∗ in terms of the above perfect
foresight dynamic. However, since we are considering a differential inclusion,
solution trajectory is not necessarily unique for each initial state. Hence, we employ
the stability concept proposed by Matsui and Matsuyama (1995) which is weaker
than the standard one. We say that a set A ⊆ ∆ is accessible from n ∈ ∆ if there exists
a prefect foresight path with n0 = n that converges to A.15 A ⊆ ∆ is globally accessible
if it is accessible from any n ∈ ∆. Then, we redefine evolutionary implementation
as follows16:

15We define the distance between a point n ∈ ∆ and a set A ⊆ ∆ by d(n,A) = miny∈A ∥n − y∥.
16Sandholm (2007) considers stochastic evolutionary implementation to deal with cases in which
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Definition 1. The first-best policy globally implements a social choice correspondence
ϕ if for all θ ∈ Θ, ϕ(θ) is globally accessible.

If we restrict our attention to the accessibility, the analysis of stability is reduced
to that of potential function as in the myopic case. Indeed, Oyama (2009) shows that
if a strategy distribution is the unique global maximizer of a potential function, then
it is globally accessible for small degrees of friction. Then, modifying his analysis
so that it is applicable to our case, we can obtain the following result.

Proposition 1. There exists δ̄ > 0 such that the first-best policy globally implements the
efficient social choice correspondence ϕ∗ for all δ ∈ (0, δ̄].

Proof. See Appendix. �

3.2 Henry George Theorem

Before closing the analysis, we discuss the relation of our argument to the
Henry George Theorem which is a very important theorem in this field. Although
the number of cities is a natural number in reality, suppose that it is allowed to
take any nonnegative real number. Then, the Henry George Theorem states that the
loss incurred by the firm due to the marginal cost pricing is exactly financed by the
revenues from the congestion tax and the land rent in each city when the number
of cities is optimal.17 Hence, by comparing the loss and the revenue, the planner
might be able to compute the optimal number of cities. However, it is not possible
if he does not have the knowledge of preferences. Let w∗ = f ′(n∗), τ∗ = n∗T′(n∗), and
R∗ = u′(H/n∗) where n∗ solves f (n∗) − w∗n∗ + τ∗n∗ + R∗H = 0. That is, n∗ is the city
population such that the Henry George Theorem holds. Since there is a rural area
in our model, the optimal number of cities is given by1/n∗ if h(n∗) − T(n∗) − R∗H/n∗ + u(H/n∗) ≥ v,

0 otherwise.
(14)

If the planner knew that it was efficient to construct cities, he could judge whether the
current number of cities was optimal or not by computing Ω evaluated at current

a social welfare function is not strictly concave. In his model, opportunities to revise a strategy
arrive randomly as in our model and hence, his setting is essentially the same as ours. However,
he considers the logit choice rule and uses properties of the Markov process. Our framework is
technically convenient because it allows us to assume that the players are nonatomic.

17See, for example, Fujita and Thisse (2002, Ch 4).
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prices and population distribution. If it is zero, then the current state is optimal.
However, since the planner generally does not know v, the planner may reach a
fallacious conclusion. Moreover, even if the planner knows v, it is not possible for
him to compute the optimal number of cities using the theorem because he needs
to know the formula of Rk, that is, u′(H/nk) to calculate the city population such that
Ω = 0. In the first-best policy we considered, the planner seeks the city population
such that the Henry George Theorem holds without the knowledge of preferences
although the theorem does not exactly hold at optimum since the number of cities
is restricted to be a natural number.

4 Conclusion

We considered evolutionary implementation of optimal number and size of
cities in which the planner leads the economy to a social optimum in the long-run
without forcing lumpy migrations and without the knowledge of preferences. We
showed that the planner can achieve evolutionary implementation of a social opti-
mum by internalizing the externalities evaluated at current prices and population
distribution in each period. Such an implementation issue has received little at-
tention in the literature and this result enables us to reconsider the unsatisfactory
conclusion that we need developers to achieve a social optimum.

Subjects for future research can easily be found in view of the fact that our
model is fairly simple. In particular, our model is a system of isolated identical
cities (and rural area). As Anas and Xiong (2005) and Tabuchi and Thisse (2006)
show, if we allow trade between cities and consider several industries, a rich set
of stable equilibria such as urban hierarchy arise. Hence, it is worth investigating
whether our implementation result is robust to more general settings.

Appendix

A.1 Proof of Proposition 1

The proof is almost the same as that of Oyama (2009), but since he considers
the case in which a global maximizer of potential function is unique, we need to
slightly modify his argument. Also, we need to ensure that his result is true for all
θ ∈ Θ. Fix θ ∈ Θ and let d(n, ϕ∗(θ)) = minn∗∈ϕ∗(θ) ∥n − n∗∥. By Lemma C.7 of Oyama
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(2009), for each n∗ ∈ ϕ∗(θ), there exists B(ε(n∗)), the open ball of n∗ with diameter
ε(n∗) > 0, such that any perfect foresight path with the initial state n0 ∈ B(ε(n∗))
converges to ϕ∗(θ) (i.e., d(n(t), ϕ∗(θ)) → 0). Moreover, by Lemma C.4’ below, for
any ε > 0, there exists δ̄ = δ̄(ε) > 0 such that for all δ ∈ (0, δ̄] and for all n0 ∈ ∆,
there exists a perfect foresight path such that d(n(t), ϕ∗(θ)) < ε for some t ≥ 0. Then,
letting ε∗ = minn∗∈ϕ∗(θ) ε(n∗), for all δ ∈ [0, δ̄(ε∗)) and for all n0 ∈ ∆, there exists a
perfect foresight path n( · ) such that n(t) ∈ B(ε(n∗)) for some t ≥ 0 and for some
n∗ ∈ ϕ∗(θ). Then, by the preceding argument, n(t)→ ϕ∗(θ).

We have shown that for each θ ∈ Θ, there exists δ̄(θ) > 0 such that ϕ∗(θ) is
globally accessible for all δ ∈ (0, δ̄(θ)]. Hence, it remains to show that infθ∈Θ δ̄(θ) > 0.
But this immediately follows since Θ is assumed to be finite. �

Finally, we prove Lemma C.4’, which is a modified version of Lemma C.4 of
Oyama (2009). Fix θ ∈ Θ and consider the game G∗ and its potential function
SW( · ;θ). Then, consider the following optimal control problem:

max J(n( · )) = (λ + ρ)
∫ ∞

0
e−ρtSW(n(t);θ)dt

s.t. n( · ) is Lipschitz continuous, does not leave ∆, and

there exists α(t) ∈ ∆ such that ṅ(t) = λ(α(t) − n(t)) for almost all t ≥ 0.

(15)

It follows that every solution to the above problem is a perfect foresight path. Then,
in our context, Lemma C.4 of Oyama (2009) is stated as follows:

Lemma C.4’. Fix θ ∈ Θ. Then, for any ε > 0, there exists δ̄ = δ̄(ε) > 0 such that for all
δ ∈ (0, δ̄] and for all n0 ∈ N, if n( · ) is an optimal solution to the problem (15), then there
exists t ≥ 0 such that d(n(t), ϕ∗(θ)) < ε.

Proof. Assume the contrary. That is, there exists ε > 0 such that for all δ̄ > 0, there
exists a solution n( · ) to the problem (15) for some λ and ρwith δ = λ/ρ ∈ (0, δ̄] and
for some n0 ∈ ∆ such that d(n(t), ϕ∗(θ)) ≥ ε for all t ≥ 0. Pick some n∗ ∈ ϕ∗(θ). Given
such an ε > 0, let c = c(ε) > 0 be such that

c = max
n∈∆

SW(n;θ) −max
{
SW(n;θ) : d(n, ϕ∗(θ)) ≥ ε

}
;

T = T(ε) ≥ 0 be such that

SW(e−tn0 + (1 − e−t)n∗;θ) ≥ max
n∈∆

SW(n;θ) − c/2
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for all t ≥ T; and δ̄ = δ̄(ε) > 0 be such that(
1 − e−δ̄T

)
2M < e−δ̄Tc/2,

where M > 0 is a constant such that |SW(n;θ)| ≤M for all n ∈ ∆. Given such a δ̄ > 0,
let n( · ) be a solution path with δ ∈ (0, δ̄] and n0 ∈ N such that d(n(t), ϕ∗(θ)) ≥ ε for
all t ≥ 0, as assumed. Let y(t) be a candidate path for a solution of the problem (15)
such that y(t) = e−λtn0 + (1 − e−λt)n∗. Then, by the same argument as the original
proof of Oyama (2009), we reach the contradiction that J(y( · )) > J(n( · )). �
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