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Abstract

The theories of Nash noncooperative solutions and of rationalizability intend
to describe the same target problem of ex ante individual decision making, but
they are distinctively di erent. We consider what their essential di erence is by
giving parallel derivations of their resulting outcomes. The derivations pinpoint
that the di erence is only in the use of quantiers for each player�’s prediction
about the other�’s possible decisions; the universal quantier for the former and
the existential quantier for the latter. Using this di erence, we argue that the
former is compatible with the free-will postulate for game theory that each player
has free will for his decision making, and that for the latter, the interpretation in
terms of determinism would be more natural. In the present approach, however,
the distinction between decisions and predictions still remains interpretational. For
an explicit distinction, we undertake, in the companion paper, a study of those
theories in a framework of common knowledge logic.
JEL Classication Numbers: B40, C70, C72
Key words: Nash equilibrium, Solvability, Rationalizability, Prediction/Decision
Criterion, Innite Regress, Simultaneous Equations

1. Introduction

We make critical comparisons between the theory of Nash noncooperative solutions due
to Nash [17] and the theory of rationalizable strategies due to Bernheim [3] and Pearce
[18]. Either is intended to be a theory about ex ante individual decision making in
a game, i.e., decision making before the actual play of the game. The di erence in
their resulting outcomes has been well analyzed and known. However, their conceptual
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di erence has not been much discussed. In this paper, we evaluate these theories from
the perspective of ex ante decision making and connect them to the basic postulates
of game theory. We conne our scope of analysis to idealized decision making, partly
because it is the focus of our targeted theories. We address the question of logical
coherence, for the two theories, with conceptual bases of game theory.

First, we review the literature of these theories. It is well known that Nash [17]
provides the concept of Nash equilibrium and proves its existence in mixed strategies.
However, it is less known that the main focus of [17] is on ex ante individual deci-
sion making. He develops various other concepts such as interchangeability, solvability,
subsolutions, symmetry, and values, which are ingredients of a theory of ex ante indi-
vidual decision making, though the aim is not explicitly stated in [17]. This view is
discussed only in a few papers such as Johansen [10] and Kaneko [11]1. We call the
entire argumentation the Nash noncooperative theory2.

On the other hand, in the literature, the theory of rationalizability is typically
regarded as a faithful description of ex ante individual decision making in games, and is
interpreted as expressing the idea of the common knowledge of �“rationality�”. According
to Mas-Colell et al. [13], p.243, �“The set of rationalizable strategies consists precisely of
those strategies that may be played in a game where the structure of the game and the
player�’s rationality are common knowledge among the players.�” This view is common in
many standard game theory/micro-economics textbooks.

We nd a puzzling feature of these two theories: Both theories target ex ante in-
dividual decision making, and are regarded as successful by some or many researchers.
However, their formal denitions, predicted outcomes, and explanations di er consider-
ably. This puzzling feature raises the following question: Are any components or basic
postulates conceptually wrong in either (or both) of them? This paper attempts to
answer this question.

We pinpoint the di erence between the two theories; it emerges through formulating
a new prediction/decision criterion for each theory. For the Nash theory, it is given as
the following circular requirements:

N1 : player 1 chooses his best strategy against all of his predictions
about player 2�’s choice based on N2 ;

N2 : player 2 chooses his best strategy against all of his predictions
about player 1�’s choice based on N1 .

1Millham [15] and Jansen [9] study the mathematical structure of the solution and subsolutions, but
do not touch the view.

2The mathematical denition of Nash equilibrium allows di erent interpretations such as a steady
state in a repeated situation. Some variant interpretations may sneak into our consideration of the Nash
noncooperative theory, which prevents us from crystallizing the theory. See Johansen [10] and Kaneko
[12] for those interpretations.

2



A possible decision for 1 is determined by N1 but requires a prediction about 2�’s possible
decision which is determined by N2 The symmetric form N2 determines a possible
decision for 2 with a prediction about 1�’s possible decision. These are regarded as a
system of simultaneous equations with players�’ decisions/predictions as unknown. In
Section 3, we show the theorem that N1 and N2 characterize the Nash noncooperative
solution as the greatest set satisfying them if the game is solvable (the set of Nash
equilibria is interchangeable); and if not, a maximal set satisfying them is a subsolution.

The rationalizable strategies are characterized by R1 and R2 which are obtained
from N1 -N2 simply by replacing the quantier �“for all�” by �“for some�”:

R1 : player 1 chooses his best strategy against some of his predictions
about player 2�’s choice based on R2 ;

R2 : player 2 chooses his best strategy against some of his predictions
about player 1�’s choice based on R1 .

These requirements are closely related to the BP-property (�“best-reponse property�” in
Bernheim [3] and Pearce [18]), and the characterization result is given in Section 3.

The characterization results unify the Nash noncooperative theory and rationaliz-
ability theory, and pinpoint their di erence: It is the choice of the universal or existential
quantiers for predictions about the other player�’s possible decisions. A basic method-
ological postulate of game theory is that each player has free will, which is associated
with decision making. The quantier �“for all�” in N1 -N2 can be understood as coher-
ent in the application of this postulate between the players, but �“for some�” in R1 -R2
is di cult to be reconciled with it.

In Section 4, we argue that the theory of rationalizability is better understood from
the perspective of complete determinism. Indeed, the epistemic justication for rational-
izability begins with a complete description of players�’ actions as well as mental states,
and characterizes classes of those states by certain assumptions. On the other hand, the
Nash noncooperative solutions correspond to predictions that result from players�’ active
inferences based on certain axioms about their own and other players�’ decision-making.
This insight has been emphasized by Johansen [10], and will be further discussed in the
companion paper [8] of the present paper.

As a result, our problem is a choice between two methodological assumptions, the
free-will postulate and complete determinism. This choice are discussed in Morgenstern
[16] and Heyek [7] in the context of economics and/or social science in general. Based
upon their arguments, we will conclude that the large part of social science is incom-
patible with complete determinism. From this perspective, the Nash noncooperative
theory is preferable to rationalizability.

The Nash theory might be regarded as having a defect in that it does not generate
denite predictions for unsolvable games. However, we argue that this is not a defect;
rather, it points out that additional principles, other than the decision criteria given
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above, are needed for unsolvable games. The study of those additional principles is
beyond this research project, but we remark that many applied works that use game
theory appeal to principles such as symmetry (which is already discussed in Nash [17])
and Pareto optimality.

Related to this issue is the notion of rationality in game theory. In the theory of ratio-
nalizability, rationality is more or less equivalent to payo maximization; here, we take
a broader view of rationality, which includes, but not limited to, the decision/prediction
criterion and logical abilities to understand their implications, while payo maximiza-
tion is only a component of rationality. With this broader view, one can incorporate
additional principles or criteria such as symmetry or Pareto optimality and investigate
whether those principles are consistent with more basic ones.

The paper is written as follows: Section 2 introduces the theories of Nash nonco-
operative solutions and rationalizable strategies; we restrict ourselves to nite 2-person
games for simplicity. Section 3 formulates N1 -N2 and R1 -R2 and gives two the-
orems characterizing the Nash noncooperative theory and rationalizability. In Section
4, we discuss implications from them considering foundational issues. Section 5 gives a
summary and states continuation to the companion paper.

2. Preliminary Denitions

Here, we dene basic concepts in a nite 2-person game. We do not allow mixed
strategies in this paper, but the main results hold with mixed strategies. In Section 3.3,
we discuss necessary changes in our formulation to accommodate mixed strategies.

Let = ( { } { } ) be a nite 2-person game, where = {1 2} is the
set of players, is the nite set of pure strategies and : 1 × 2 is the payo
function for player We assume 1 2 = . When we take one player the
remaining player is denoted by . Also, we write ( ; ) for ( 1 2) The property
that is a best-response against , i.e.,

( ; ) ( 0 ; ) for all 0 (2.1)

is denoted by Best( ; ) Since 1 2 = the expression Best( ; ) has no ambiguity.
We say that ( 1 2) is a Nash equilibrium in i Best( ; ) holds for We dene
( ) to be the set of all Nash equilibria in The set ( ) may be empty.

Nash Noncooperative Solutions: Let be a subset of 1 × 2 We say that is
interchangeable i

( 1 2) (
0
1

0
2) imply ( 1 0

2) (2.2)

It is known that this is equivalent for to have the product form. For completeness,
we give it as a lemma. The only-if part is essential: If ( 1 2) 1× 2 then for some
0
1 1 and 0

2 2 we have ( 1 0
2) and ( 01 2) which, together with (2.2),
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implies ( 1 2)

Lemma 2.1. Let 1 × 2 and let = { : ( ; ) for some } for
= 1 2 Then, satises (2.2) if and only if = 1 × 2

Now, let E = { : ( ) and satises (2.2)} We say that is the Nash
solution i is nonempty and is the greatest set in E i.e., 0 for any 0 E and
6= We say that is a Nash subsolution i is a nonempty maximal set in E i.e.,

there is no 0 E such that ( 0. We call these the Nash noncooperative solutions.

Table 2 1 Table 2 2
s21 s22

s11 (2 2) (1 1)

s12 (1 1) (0 0)

s21 s22
s11 (1 1) (1 1)

s12 (1 1) (0 0)

When ( ) 6= ( ) is the Nash solution if and only if ( ) satises (2.2). When the
Nash solution exists for game , is called solvable. The game of Table 2 1 is solvable.
Thus, a game is not solvable if and only if ( ) = or the nonempty greatest set does
not exist On the other hand, for a game with ( ) 6= a subsolution exists always;
specically, for any ( 1 2) ( ) there is a subsolution with ( 1 2)

0 This
may not be unique: The game of Table 2 2 is not solvable and has two subsolutions:

{(s11 s21) (s11 s22)} and {(s11 s21) (s12 s21)}, and both include (s11 s21).
In Section 3, we argue that the Nash solution can be regarded as describing ex ante

individual decision making; here we give two comments about its interpretation. First,
for a solvable game, each component of the solution consists of a pair of strategies,
( 1 2) rather than a single strategy. This means that from player 1�’s perspective,
1 describes player 1�’s possible decision while 2 is player 1�’s prediction of player 2�’s
possible decisions. As shown later, a distinction between a decision and a prediction is
crucial from the perspective of ex ante decision making in a game.

Second, the Nash theory does not provide a denite recommendation for possible
decisions if the game is unsolvable and if a subsolution exists. Suppose that has
exactly two subsolutions, say, 1 = 1

1 ×
1
2 and

2 = 2
1 ×

2
2 with

1 6= 2 for
= 1 2. One may think that the Nash theory would recommend the set = 1 2

for player as the set of possible decisions to play . However, we nd neither 0
1 or

0
2 so that

0
1 × (

1
2

2
2 ) or (

1
1

2
1 )×

0
2 satises interchangeability.

Rationalizable Strategies: Now, we turn to rationalizability. Although there are
various denitions of rationalizability, we take the iterative one: A sequence of sets of
strategies, {( 1( ) 2( ))} =0, is inductively dened as follows: for = 1 2 0( ) =

and

( ) = { : Best( ; ) holds for some 1( )} for any 1 (2.3)
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We obtain rationalizable strategies by taking the intersection of these sets, i.e., ( ) =T
=0 ( ) for = 1 2; that is, we say a pure strategy is rationalizable i

( ) Note that ( ) is nonempty for all and = 1 2, which is shown by
induction over .

It is known that each { ( )} is monotonically decreasing. Because each ( )
is nite and nonempty, ( ) becomes constant after some ; as a result, ( ) is
nonempty. In fact, this can be taken as 2min(| 1| | 2|) + 1 These facts are more
or less known. However, they are signicant for our purposes (in particular for the
companion paper), and we give a proof for completeness.

Lemma 2.2.(1): { ( )} is a decreasing sequence, i.e., ( ) +1( ) for all ;

(2): ( ) = +1( ) 6= for all = 2min(| 1| | 2|) + 1

Proof (1): We show by induction over that the two sequences { ( )} = 1 2
are decreasing with respect to the set-inclusion relation. Once this is shown, since
is nite, we have ( ) =

T
=0 ( ) 6= . For the base case of = 0 we have

0( ) = 1( ) for = 1 2 Now, suppose the hypothesis that this inclusion holds
up to and = 1 2 Let +1( ) By (2.3), Best ( ; ) holds for some ( )

Since 1( ) ( ) by the supposition, Best ( ; ) holds for some 1( )
This means ( )

(2): Since each ( ) is a nonempty nite set, we have, by (1), there is some such that
( ) = +1( ) 6= for all Now we show that this can be 2min(| 1| | 2|)+1

Let | 1| | 2| The other case is symmetric. It su ces to show that 1( ) = +1
1 ( )

and 2( ) = +1
2 ( ) since these imply +

1 ( ) = + +1
1 ( ) and +

2 ( ) =
+
2 ( ) for all 0
Suppose 1( ) ! +1

1 ( ) This implies 1
2 ( ) ! 2( ) which further implies

2
1 ( ) ! 1

1 ( ) By induction, we can prove: for = 0 | 1|

2
1 ( ) ! 2 +1

1 ( ) and 2 1
2 ( ) ! 2

2 ( ) (2.4)

The cardinality of 2| 1|
1 ( ) = 1

1( ) is
¯̄
1
1( )

¯̄
= | 1|+

¯̄
+1
1 ( )

¯̄
| 1|+1 which

is impossible since 1
1( ) 1 Thus, 1( ) = +1

1 ( ) By the parallel argument, we
have 2( ) = +1

2 ( )

Criterion for Decision/Prediction Making: Our discussion of ex ante decision
making in games begin with a decision/prediction criterion. While our concern is about
comparisons between the Nash theory and rationalizability, some simpler example of
decision criteria may be helpful. A classical example of a decision criterion is the
maximin criterion due to von Neumann-Morgenstern [20]: It recommends a player to
choose a strategy maximizing the guarantee level (that is, the minimum payo for a
strategy). In = ( { } { } ) let be a nonempty subset of = 1 2
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The set is interpreted as the set of possible decisions for player . The criterion is
formulated as follows:

NM1: for each 1 1 1 maximizes min 2 2 1( 1; 2);

NM2: for each 2 2 2 maximizes min 1 1 2( 2; 1)

These are not interactive at all, since NM = 1 2 can recommend a decision without
depending upon NM and also player needs to know only his�’s own payo function.
Thus, no prediction is involved for decision making with these criteria.

A more sophisticated criterion may allow a player to consider the other�’s criterion.
One possibility is the following:

NM1: for each 1 1 1 maximizes min 2 2 1( 1; 2);

N2: for each 2 2 Best( 2 1) holds for all 1 1

The second requires player 2 to predict player 1�’s possible decisions and to choose
his decision against that prediction, while player 1 still adopts the maximin criterion.
In this sense, their interpersonal thought stops at depth 2 In the Nash theory and
rationalizability theory, we would meet some circularity and their interpersonal thought
goes beyond depth 2 Note that N2 is a mathematical formulation of N2 and will be
used in the characterization of the Nash theory.

We should comment on the choice of 1 or 2 when there are multiple candidates
for them. Without other information than the criterion and components of the game,
the outside observer cannot make a further choice of particular strategies. In the case
of NM1-NM2, should consist of all strategies maximizing min 2 2 1( 1; 2); is
the greatest set satisfying NM . In the case of NM1-N2, this should also be applied to
player 2�’s predictions about 1�’s choice: 1 in N2 should be the greatest set satisfying
NM1. We will adopt this practice of taking the greatest set for in Section 3. This
is not a mere mathematical practice, but is very basic for the consideration of ex ante
decision making: It is stated as Johansen�’s [10] postulate in Section 4.1.

3. Parallel Derivations of the Nash Noncooperative Solutions and Ra-
tionalizable Strategies

Our discussion of ex ante decision making in games begin with decision criteria. We
give two parallel decision criteria, and derive the Nash noncooperative solutions and
the rationalizable strategies from those criteria. Our characterization results pinpoint
the di erence between the two theories. This di erence is used as the basis of our
evaluation of these two theories of ex ante individual decision making in Section 4. We
give remarks on the mixed strategy versions of those derivations in Section 3.3.
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3.1. The Nash Noncooperative Solutions

The decision criterion for the Nash solution formalizes the statements N1 and N2 in
Section 1. Let be a subset of = 1 2 interpreted as the set of possible decisions:
N1 and N2 are now formalized as:

N1: for each 1 1 Best( 1; 2) holds for all 2 2;

N2: for each 2 2 Best( 2; 1) holds for all 1 1

These describe how each player chooses possible decisions; when one player�’s viewpoint
is xed, one of N1-N2 is interpreted as decision making, and the other is interpreted as
prediction making. For example, from player 1�’s perspective, N1 describes his decision
making, and N2 describes his prediction making.

Mathematically, N1 and N2 can be regarded as a system of simultaneous equations
with unknown 1 and 2. First we give a lemma showing that ( 1 2) satises N1-N2
if and only if it consists only of Nash equilibria.

Lemma 3.1. Let be a nonempty subset of for = 1 2 Then, ( 1 2) satises
N1-N2 if and only if any ( 1 2) 1 × 2 is a Nash equilibrium in

Proof. (Only-If): Let ( 1 2) be any strategy pair in 1 × 2. By N1, 1( 1 2) is
the largest payo over 1(

0
1 2)

0
1 1 By the symmetric argument, 2( 1 2) is the

largest payo over 0
2�’s. Thus, ( 1 2) is a Nash equilibrium in

(If): Let ( 1 2) 1 × 2 be a Nash equilibrium. Since 1( 1 2) 1(
0
1 2) for all

0
1 1 we have N1. We have N2 similarly.

Regarding N1-N2 as a system of simultaneous equations with unknown 1 and 2,
there may be multiple solutions; indeed, any pair of Nash equilibrium as a singleton
set is a solution for N1-N2. However, the sets 1 and 2 should be based only on the
information of the game structure This implies that we should look for the pair of
greatest sets ( 1 2) satises N1-N23. The following theorem characterizes conditions
for the greatest pair to exist and and strategies in that pair in terms of Nash solutions.
In the theorem, is a subset of 1 × 2 and = { : ( ; ) for some }
for = 1 2

Theorem 3.2 (The Nash Noncooperative Solutions): (0): has a Nash equilib-
rium if and only if there is a nonempty pair ( 1 2) satisfying N1-N2.

(1): Suppose that is solvable. Then the greatest pair ( 1 2) satisfying N1-N2 exists
and = 1 × 2 is the Nash solution ( ).

(2): Suppose that has a Nash equilibrium but is unsolvable. Then is a Nash sub-
solution if and only if ( 1 2) is a nonempty maximal pair satisfying N1-N2.

3 If any additional information is available, then we extend N1-N2 to include it and should consider
the pair of greatest sets satisfying the new requirements.
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Proof. (0): If ( 1 2) is a Nash equilibrium of then 1 = { 1} and 2 = { 2} satisfy
N1-N2. Conversely, a nonempty pair ( 1 2) satises N1-N2. By Lemma 3.1, any pair
( 1 2) 1 × 2 is a Nash equilibrium of

(1):(If): Let ( 1 2) be the greatest pair satisfying N1-N2. It satises to show ( ) =

1 × 2 By Lemma 3.1, any ( 1 2) 1 × 2 is a Nash equilibrium. Conversely, let
( 01

0
2) ( ) and 0 = { 0} for = 1 2 Since this pair ( 0

1
0
2) satises N1-N2, we

have ( 01
0
2)

0
1 × 0

2 1 × 2 Hence, ( ) = 1 × 2

(Only-If): Since is the Nash solution, it satises (2.2). Hence, is expressed as
= 1 × 2 by Lemma 2.1. Since it consists of Nash equilibria, ( 1 2) satises

N1-N2 by Lemma 3.1. Since ( ) = = 1 × 2 ( 1 2) is the greatest pair having
N1-N2.

(2): (If): Let ( 1 2) be a maximal pair satisfying N1-N2, i.e., there is no ( 0
1

0
2)

satisfying N1-N2 with 1 × 2 ( 0
1 ×

0
2. By Lemma 3.1, 1 × 2 is a set of Nash

equilibria. Let 0 be a set of Nash equilibria satisfying (2.2) with 1 × 2
0. Then,

0 is also expressed as 0
1 × 0

2. Since
0
1 × 0

2 satises N1-N2 by Lemma 3.1, we
have 0 for = 1 2 by maximality for ( 1 2) By the choice of 0 we have
1 × 2 =

0 Thus, is a maximal set satisfying interchangeability(2.2).

(Only-If): Since is a subsolution, it satises (2.2). Hence, is expressed as =

1 × 2 Also, by Lemma 3.1, ( 1 2) satises N1-N2. Since = 1 × 2 is a subso-
lution, ( 1 2) is a maximal set satisfying N1-N2.

The pair ( 1 2) satisfying N1-N2 consists of the empty sets if there is no Nash
equilibrium in . When has a Nash equilibrium but is unsolvable, there are multiple
pairs of maximal sets ( 1 2) satisfying N1-N2. We do not have those problems in
NM1-NM2 in Section 2.3, for which the greatest pair always exists and is nonempty. It
may be the reason for this di erence that N1-N2 are interactive but NM1-NM2 are not
at all. In this respect, the theory of rationalizable strategies, to be discussed in Section
3.2, is similar to NM1-NM2, though it is more interactive than NM1-NM2.

In the case of an unsolvable game with a Nash equilibrium, there are multiple
candidate sets of possible decisions and predictions, even though the decision criterion
and game structure are commonly understood between the players. Each maximal pair
( 1 2) satisfying N1-N2 may be a candidate, but it requires further information for the
players to choose among them. Thus, N1-N2 alone is not su cient to provide a denite
recommendation in unsolvable games. Theorem 3.2 gives a demarcation between the
cases of having a denite recommendation and not.

One possible way to reach a recommendation for an unsolvable game is to impose
additional criterion, such as the symmetry requirement in Nash [17], to select a certain
subset of Nash equilibria. The game of Table 2.2 is unsolvable, but it has a unique
symmetric equilibrium (s11 s21). Hence, if we add the symmetry criterion, we convert
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an unsolvable game to a solvable game.

Table 3 1 Table 3 2
s21 s22

s11 (5 5) (0 5)

s12 (5 0) (0 0)

s21 s22
s11 (5 5) (0 5)

s12 (5 0) (0 0)

Another possible criterion is Pareto-optimality. In the thought process of decision
making, the players may add the (strong) Pareto-criterion to their decision criterion.
In the game of Table 3.1, (s11 s21) (weakly) Pareto-dominates the other equilibria, and
(s12 s21) does in the game of Table 3.2. We obtain a unique decision in both games.
This suggests a possibility to obtain the value of the 2-person game for each player,
as discussed in Nash [17]. Indeed, in general, if the Nash solution exists in a 2-person
game, we can select a unique payo vector by the Pareto criterion.

To achieve solvability by adding additional criteria seems di cult in general. Nev-
ertheless, N1-N2 serves the starting point which allows further investigation of their
compatibility with additional principles in specic classes of games, which may become
a fruitful direction for future research.

One alternative to obtain a denite recommendation in unsolvable games other than
additional criteria is to introduce pre-play communication between the players. This
requires a development of a language to communicate about which subsolution would
be played. This approach, however, meets conceptual issues regarding modeling com-
munication. The game of Table 3 3 has three subsolutions indexed by (1) (2) (3) : To
communicate which subsolution would be played requires the information of all the ele-
ments of the targeted subsolution. The success of such a communication depends upon
the choice of names or language referring to subsets of strategies or subsolutions. In
this paper, we do not touch this problem.

Table 3 3
s21 s22 s23

s11
(1)(1 1) (1)(1 1)(2) (0 0)

s12 (0 0) (3)(1 1)(2) (3)(1 1)

3.2. Rationalizable Strategies

Let us consider the following modication of N1-N2: for 1 and 2

R1: for each 1 1 Best( 1; 2) holds for some 2 2;

R2: for each 2 2 Best( 2; 1) holds for some 1 1

This criterion di ers from N1-N2 only in that the quantier �“for all�” before players�”
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predictions in N1-N2 is replaced by �“for some�”. In fact, R1-R2 is the pure-strategy
version of the BP-property given by Bernheim [3] and Pearce [18]. The greatest pair
( 1 2) satisfying R1-R2 exists and coincides with the sets of rationalizable strategies
( 1( ) 2( )). A more general version of the following theorem is reported in Bernheim
[3] (Proposition 3.1); we include the proof for self-containment.

Theorem 3.3 (Rationalizability): ( 1( ) 2( )) is the greatest pair satisfying R1-
R2.

Proof. Suppose that ( 1 2) satises R1-R2. First, we show by induction that 1 ×
2 1( ) × 2( ) for all 0 which implies 1 × 2 1( ) × 2( ). Since
0( ) = for = 1 2, 1 × 2

0
1( ) × 0

2( ). Now, suppose 1 × 2

1( ) × 2( ). Let . Due to the R1-R2, there is an such that
Best( ; ) holds. Because ( ), we have ( ). Thus, +1( ).

Conversely, we show that ( 1( ) 2( )) satises R1-R2. Let ( ) =
T

=0 ( ).
Then, for each = 0 1 2 , there exists such that Best( ; ) holds. Since
is a nite set, we can take a subsequence { } =0 in { } =0 such that for some

= for all Then, belongs to ( ) =
T

=0 ( ) Also, Best ( ; ) holds.
Thus, ( 1( ) 2( )) satises R1-R2.

Existence of a Theoretical Prediction: Theorem 3.3 and Lemma 2.2 imply that the
greatest pair satisfying R1-R2 exists and consists of nonempty sets. Interchangeability
is automatically satised by construction. In this respect, the rationalizability theory
may appear preferable to the Nash theory, since it avoids issues due to the emptiness
or nonexistence of the Nash solution. However, we can/should take a di erent view:
Emptiness or nonexistence involved in the Nash theory may help identify situations
where additional principles other than best-response against predictions are required to
obtain a recommendation. The Nash theory may be more useful than the rationalizabil-
ity theory in that it demarcates between those two cases. We will return to this issue
once more in Section 4.2.

Set-theoretical Relationship to the Nash Solutions: It follows from Theorem 3.3
that each strategy of a Nash equilibrium is a rationalizable strategy. Hence, the Nash
solution, if it exists, is a subset of the set of rationalizable strategy proles. However,
the converse does not necessarily hold. Indeed, consider the game of Table 3 4 where
the subgame determined by the 2 and 3 strategies for both players is the �“matching
pennies�”.

Table 3 4 Table 3 5
s21 s22 s23

s11 (5 5) ( 2 2) ( 2 2)

s12 ( 2 2) (1 1) ( 1 1)

s13 ( 2 2) ( 1 1) (1 1)

s21 s22 s23
s11 (5 5) (1 2 1 2) (1 2 1 2)

s12 (1 2 1 2) (1 1) ( 1 1)

s13 (1 2 1 2) ( 1 1) (1 1)
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This game has a unique Nash equilibrium, (s11 s21) Hence, the set consisting of this
equilibrium is the Nash solution.

It follows from the above observation that both s11 and s21 are rationalizable strate-
gies. Moreover, the other four strategies, s12 s13 and s22 s23 are also rationalizable:
Consider s12 It is a best response to s22 which is a best response to s13 and s13 is
a best response to s23, which is a best response to s12 That is, we have the following
relations:

Best(s12; s22) Best(s22; s13) Best(s13; s23) and Best(s23; s12)

By Theorem 3.3, those four strategies are rationalizable. In sum, all the strategies are
rationalizable in this game.

This example shows that even for solvable games, the Nash solution may di er from
rationalizable strategies. As we shall see later, the game of Table 3 4 becomes unsolvable
if mixed strategies are allowed, while the rationalizable strategies remain the same.

3.3. Mixed Strategy Versions

Theorems 3.2 and 3.3 can be carried out in mixed strategies without much di culty.
The use of mixed strategies may give some merits and demerits to each theory. Here,
we give comments on the mixed strategy versions of the two theories.

The mixed strategy versions can be obtained by extending the strategy sets 1 and
2 to the mixed strategy sets ( 1) and ( 2); where ( ) is the set of probability
distributions over Requirements N1-N2 are modied as follows: for ( )
= 1 2

N1 : for each 1 ( 1) Best( 1; 2) holds for all 2 2

N2 : for each 2 ( 2) Best( 2; 1) holds for all 1 1

where ( ) is the support of i.e., { : ( ) 0 for some } for
= 1 2 As stated above, the rest of the discourse is modied by replacing with
( ) for = 1 2 That is, we can modify Theorem 3.2 by replacing pure strategies by

mixed strategies.
The mixed strategy version of rationalizability is the original in Bernheim [3] and

Pearce [18]. Especially, the use of mixed strategies is crucial for their interpretation of
beliefs about the other player�’s decisions. The pure strategy version discussed in this pa-
per is known as point-rationalizability due to Bernheim [3]. However, the interpretation
of mixed strategies is not the main issue in this paper.

The mixed strategy version of rationalizability is also characterized by modifying
N1 -N2 as follows: for ( ) = 1 2

R1 : for each 1 ( 1) Best( 1; 2) holds for some 2 2;
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R2 : for each 2 ( 2) Best( 2; 1) holds for some 1 1

Theorem 3.3 can be obtained for R1 -R2 without much di culty.
A simple observation is that a rationalizable strategy in pure strategies (i.e., in the

sense of Section 2) is a rationalizable strategy in mixed strategies. Similarly, since a
Nash equilibrium in pure strategies is also a Nash equilibrium in mixed strategies, it
may be conjectured that if a game has the Nash solution in the pure strategies, it
might be a subset of the Nash solution in mixed strategies. In fact, this conjecture is
answered negatively.

Consider the game of Table 3.4. This game has seven Nash equilibria in mixed
strategies:

((1 0 0) (1 0 0)) ((0 1
2
1
2) (0

1
2
1
2)) ((

4
18

7
18

7
18) (

4
18

7
18

7
18))

((18
7
8 0) (

3
10

7
10 0)) ((

1
8 0

7
8) (

3
10 0

7
10)) ((

3
10

7
10 0) (

1
8 0

7
8)) ((

3
10 0

7
10) (

1
8
7
8 0))

This set does not satisfy interchangeability (2.2). For example, ((1 0 0) (1 0 0)) and
((0 1

2
1
2) (0

1
2
1
2)) are Nash equilibria, but ((0

1
2
1
2) (1 0 0)) is not a Nash equilibrium.

Thus, (2.2) is violated, and the set of all mixed strategy Nash equilibria is not the Nash
solution.

This result depends upon the choice of payo s: In Table 3.5, (s11 s21) is the unique
Nash equilibrium in mixed strategies, while all strategies are still rationalizable.

4. Evaluations of N1-N2 and R1-R2 as Prediction/Decision Criteria

In our unied approach, we found that the di erence between the Nash and rational-
izability theories is the choice of quantier �“for all�” or �“for some�” for each player�’s
predictions. Based on this, we evaluate these theories from the viewpoint of ex ante
individual decision making, and their logical coherence with the conceptual bases of
game theory. First we consider the principles of prediction/decision making in general
and focus on the distinction between decision and prediction and the resulted innite
regress in particular. Then, we return to the pinpointed di erence between the two
theories. We start with viewing Johansen�’s [10] argument on the Nash theory, which
is the rst attempt to understand ex ante decision/prediction making in game theory.
Our discussions help clarify some of his postulates, and vice versa.

4.1. Johansen�’s Argument

Johansen [10] gives the following four postulates for decision/prediction making in games
and assert that the Nash noncooperative solution can be derived from those postulates4

4He assumed that the game has the unique Nash equilibrium for his assertion (p.435), but he noted
that interchangeability is actually enough (p.437) for it.
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for solvable games.

Postulate J1. A player makes his decision on the basis of, and only on the
basis of information concerning the action possibility sets of two players 1 2 and their
payo functions 1 2

Postulate J2. In choosing his own decision, a player assumes that the other is rational
in the same way as he himself is rational.

Postulate J3. If any5 decision is a rational decision to make for an individual player,
then this decision can be correctly predicted by the other player.

Postulate J4. Being able to predict the actions to be taken by the other player,
a player�’s own decision maximizes his payo function corresponding to the predicted
actions of the other player.

Here we understand Johansen�’s assertion that the Nash solution is characterized by
these postulates as the statement of Theorem 3.2.(1), though Johansen [10] does not
give a mathematical formulation of argument.

First, we clarify a key di erence between Johansen�’s [10] argumentation and other
justications for solution concepts in the game theory literature. In many other justi-
cations, the term �“rationality�” is synonymous to �“payo maximization.�” This is not the
case for Johansen�’s, since the two terms �“rational�” and �“payo maximization against
prediction�” appear in J2 and J4. Indeed, it is more faithful to his argumentation to re-
gard these four postulates together as an attempt to dene �“rationality�”, while �“payo
maximization�” is just a component of it6.

We now compare J1-J4 with N1-N2 and R1-R2. Postulate J1 is well taken in N1-N2
and R1-R2 if we ignore its subtle part �“only on the basis of...�”, because both criteria are
described only with the components of the game structure = ( { } { } )
We will revisit this subtle part a few times below. Postulate J2 requires the decision
criterion be symmetric between one player and his imaginary player; this is an intrap-
ersonal coherency requirement in the mind of each player. Postulate J3 requires each
player�’s prediction about the other�’s decision be correctly made; this is an interpersonal
coherency requirement. Both systems N1-N2 and R1-R2 satisfy these two requirements.
Finally, Postulate J4 corresponds to the requirement that actions in maximize player
�’s payo against elements in predicted by player ; the di erence in the quantiers
before the predicted decisions that appear in N1-N2 and R1-R2 will be discussed in
great detail later.

Postulate J1 is relevant in several di erent places in our approach. One apparent

5This �“any�” was �“some�” in Johansen�’s orginal Posutlate 3. According to logic, this should be �“any�”.
However, this is mistakenly expressed as �“some�” in many scientists (even mathematicians).

6This may be the reason for Bernheim�’s [4], p.486, criticism against these postulates as too ambiguous
to avoid various di erent ways of reading. We will comment on the �“common knowledge of rationality�”
for rationalizability in the companion paper [8].
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place is the consideration of the greatest set satisfying N1-N2 in Theorem 3.2: A choice
of a proper subset needs some additional information to the given game structure. We
will return to Postulate J1 when it becomes relevant.

The di erence between J2 and J3 is delicate and we give some explanation here. Take
the criterion N1-N2 (the argument is for R1-R2 is symmetric). Postulate J2 implies that
from player 1�’s perspective, N2 is symmetric to N1, while J3 requires that if player 1
uses N2 for his prediction, i.e., he believes that player 2�’s decisions are determined by
N2, player 2 actually uses N2 for his decision. If we drop J2, it would be possible to
have the combination N1-R2 for player 1: That is, player 1 uses N1 for his decision
making but R2 for his prediction making. Similarly, we can assume that player 2 uses
R2 for his decision making and N1 for prediction making. These violate J2 but still
satisfy J37. Criterion NM1-N2 in Section 2 can be interpreted in a similar manner.

On the other hand, the elimination of J3 allows the possibility that the players use
entirely di erent criteria: For example, 1 adopts N1-N2, while 2 adopts R1-R2. These
possibilities require arguments about interpersonal thinking that are beyond the scope
of the present framework, but will be discussed in the companion paper [8].

4.2. Prediction/Decision Criterion

Here, we discuss some principles for prediction making and decision making, and high-
light the inevitable innite regress in decision/prediction making in a game situation
with N1-N2 or R1-R2. For this discussion, the di erence between N1-N2 and R1-R2 is
not signicant; we focus on N1-N2, but will comment on R1-R2 as we proceed.

Prediction Making (Putting Oneself in the Other�’s Shoes): System N1-N2 is
understood as describing both prediction making and decision making: from player 1�’s
perspective, N1 requires a property for his possible decisions 1, but it includes his
predictions about player 2�’s decisions 2. N1 alone does not determine 1, but needs
other criterion to determine 2. Player 1 makes prediction about 2�’s possible decisions,
by putting himself into player 2�’s shoes. This argument could not stop here; since 1�’s
prediction about player 2�’s predictions a ects 1�’s own ultimate decisions, player 1 needs
to know how player 2�’s predictions are made, and to assume that 2 assumes that 1 uses
N1. Continuing this argument ad innitum, we meet the innite regress described in
Diagram 4.1: The determination of 1 by N1 needs the determination of 2 by N2,
which needs the further determination of 1 by N1, and so on. This innite regress is
encountered by R1-R2 as well.

Double Uses of N1-N2: The innite regress in Diagram 4.1 is made from the view-
point of player 1�’s decision making. A symmetric argument from player 2�’s viewpoint
is constructed. Here, N1 is a decision criterion for 1 and is a prediction criterion for 2,

7So far, we have no example where N1-R2 yields a di erent outcome from either N1-N2 or R1-R2.
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while N2 is a decision criterion for 2 and a prediction criterion for 1. Thus, both N1
and N2 are used both as decision and prediction criteria. This is required by J2, as
discussed in Section 4.1.

Diagram 4.1 Diagram 4.2

N1 N1 N1 · · ·
% % %

N2 N2 N2
=

N1

N2

Diagram 4.3 Diagram 4.4

R1 R1 R1 · · ·
% % %

R2 R2 R2
=

R1

R2

In our formalism, no explicit distinction can be made between player 1�’s and 2�’s
perspectives, which remains in interpretation. Without this distinction, the innite
regress in Diagram 4.1 collapses into a system of simultaneous equations described by
Diagram 4.2. As shown in Theorem 3.2, circularity in N1-N2 corresponds to the concept
of Nash equilibrium. The theory of rationalizability is parallel in this respect; although
the original denition of rationalizable strategies, given in Section 2, takes the form of
Diagram 4.3, Theorem 3.3 states that it collapses to Diagram 4.4.

One way to avoid the collapses from Diagram 4.1 (3, respectively) into Diagram 4.2
(4) is reformulated our considerations in an epistemic logic framework, in which we can
explicitly discuss the relationship between the above innite regress and the common
knowledge of N1-N2 (R1-R2). This will be given in the companion paper [8].

Ex Ante Decision Making, Inferences, and Solvability: Given that our goal is to
understand ex ante decision-making, each player has to reach his possible decisions based
on his prediction about the other�’s decisions. To reach those decisions and predictions,
each player infers the other�’s decisions as well as his own decisions from his criterion and
knowledge of the game structure. Rationality is understood as an assumption about
the criterion and his ability to conduct such inference.

This inference takes place in a player�’s mind. We allow him to reach multiple
decisions from the inference; thus the outcome of the inference is the set of all such
decisions. Moreover, for both systems N1-N2 and R1-R2, the outcome of this inference
includes not only his nal decisions but also prediction about the other�’s decisions.

In situations such as the Battle of Sexes game, individualistic decision making is
incapable of recommending a set of denite decisions without communication between
the players. Theorem 3.2 exactly demarcates between the case where individualistic
decision making does serve a denite set of decisions (when the game is solvable) and
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the case where it does not (when the game is unsolvable). For example, according to
Theorem 3.2.(2), the Nash solution does not give a denite recommendation in the Battle
of Sexes game. On the other hand, the theory of rationalizability tells no di culties:
Indeed, the recommendation from R1-R2 is the set of rationalizable strategies, which is
always nonempty.

4.3. The Free-will Postulate vs. Complete Determinism

The di erence between N1-N2 and R1-R2 lies in the choice between the quantiers
�‘for all�’ and �‘for some�’ for one�’s predictions about the other�’s possible decisions. Here,
we argue that this di erence stems from a methodological choice between two meta-
theoretical foundations: One foundation is the free-will postulate, and the other is
complete determinism.

The Free-will Postulate: This is a very basic principle in game theory, stating that
players are free to make any choice by their own will. Another basic assumption in game
theory, utility maximization, may e ectively void this postulate, but even if each player
is very smart, it is still possible that one�’s own decision together with prediction about
the other�’ decision cannot be completely determined. This possibility is rst argued
in Morgenstern [16]. Moreover, whenever the social science involves value judgements
for an individual being and/or society, it relies on the free-will postulate as a founda-
tion8. Here, we argue that the Nash theory is consistent with this postulate, while the
rationalizability theory is encountered with some di culties to be reconciled with this
postulate.

First, we consider two applications of the postulate at two di erent layers in terms
of interpersonal thinking:

( ): It is applied by the outside observer to the (inside) players;

( ): It is applied by an inside player to the other player.

In application ( ) the outside theorist respects the free will of each player; the theorist
can make no further renement than the inside player. This corresponds to the �‘great-
estness�’ requirement for ( 1 2) in Theorems 3.2.(1) and Theorem 3.3. In ( ), when
one player has multiple predictions about the other�’s possible decisions, the free-will pos-
tulate, applied to interpersonal decision making, requires the player to take all possible
predictions into account. Apparently, N1-N2 is formulated in this manner. However,
R1-R2 violates the postulate in ( ); each player can use any arbitrary decision of the
other to rationalize his own decision.

However, this analysis may not fully appreciate the methodological assumptions be-
hind the rationalizability theory. Indeed, although, as for N1-N2, the rationalizability

8The free-will postulate is needed for deontic concepts such as responsibility for individual choice
and also for individual and social e orts for future developments.
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theory recommends the greatest set that satises R1-R2, its foundation di ers from
that for N1-N2. We argue in the following that it would be natural to interpret the
rationalizability theory from the viewpoint of complete determinism.

Complete Determinism: The quantier �‘for some�’ in R1-R2 can have two di erent
interpretations:

( ): it requires only the mere existence of a rationalizing strategy;

( ): it suggests a specic rationalizing strategy predetermined for some other reason.

From the denition of rationalizability alone, It is not possible to judge which of ( )
and ( ) is more faithful to the theory. Consider rst interpretation ( ): The rationaliz-
ing strategy is arbitrarily chosen among the candidate predictions, and this treatment
reminds us the Aesops�’ sour grapes; the fox nds one convenient reason to persuade
himself. Interpretation ( ) states that the player can make a decision if he nds any
reason for it. This interpretation of �“rationalization�” is at odds with the purpose of
a theory of ex ante decision-making for games, for which the theory is serious about
a best choice responding to prediction about the other�’s decisions. Such a theory is
supposed to provide a rationale for players�’ possible decisions as well as predictions. In-
terpretation ( ) avoids this issue, with which we cannot take rationalizability seriously
as a theory of ex ante decision-making.

Interpretation ( ) is more serious: According to ( ), there are some further compo-
nents, not explicitly included in the game description and R1-R2, which determine
a specic rationalizing strategy. Unless this rationalizing strategy is homogeneous for
each step in Diagram 4.3, the rationalization process generates an innite regress. A
specic rationalizing strategy for each step is uniquely predetermined for some reason.
Uniqueness is crucial, for otherwise the player would have to arbitrarily choose among
di erent strategies or to look for a further reason to choose some of them. In this sense,
( ) is understood as presuming a complete description of mental states about interper-
sonal thinking corresponding to the steps in Diagram 4.3. Indeed, there is a literature,
beginning from Aumann [2]9 to justify the rationalizability theory or alike along this
line (see Tan-Werlang [19]).

Taking the existential quantier �‘for some�’ seriously, we meet a deterministic view.
Determinism has been tenanted as the foundational standpoint of natural science. How-
ever, Determinism is incompatible with the free-will postulate, and also the additional
background information is incompatible with Johansen�’s postulate J1. To think about

9 In the problem of common knowledge in the information partition model due to Robert Aumann,
the information partitions themselves are assumed to be common knowledge. He wrote in [1], p.1237:
�“Included in the full description of a state of the world is the manner in which information is im-
parted to the two persons�”. This can be interpreted as meaning that the primitive state includes
every information. A person receives some partial information about , but behind this, everything is
predetermined. This view is shared with Harsanyi [6] and Aumann [2].
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this incompatibility, we should reect upon the deterministic view from the viewpoint
of social science and science as a whole. For simplicity we shall consider only complete
determinism.

It is inevitable to encounter value judgments in social science. However, if we take
complete determinism, social problems can and should be analyzed purely from the
viewpoint of causal relationships as in natural science; it is incapable of discussing
value judgement and associated rights/obligations from this perspective. In this sense,
complete determinism is not compatible with social science.

Besides this foundational di culty, it is not very fruitful as a methodology for social
science in general, which is aptly described by Hayek [7], Section 8.93: �“Even though
we may know the general principle by which all human action is causally determined by
physical processes, this would not mean that to us a particular human action can ever
been recognizable as the necessary result of a particular set of physical circumstances.�”
In fact, complete determinism is justied only because of its non-refutability by with-
drawing from concrete problems into its own abstract world.

In fact, neither complete determinism nor the free-will postulate can be justied by
its own basis. Either should be evaluated with coherency of the entire scope and the
scientic and/or theoretical discourse.

Starting Postulates for a Scientic Study and Basic Beliefs for a Player: A
scientic study is an attempt not to describe every detail of the world, but to draw a
simplied picture of a target problem so as to captures an (seemingly) essential structure
of it. A discourse of a scientic study starts with basic postulates, with which a simplied
picture of the target world is drawn. Even though the researcher may have more basic
views or principles, each study must take this form of a discourse. For example, a
study in chemistry needs its own starting postulates. The claim, made by complete
reductionism, that every study in chemistry could be treated from the viewpoint of
quantum mechanics is absurd from the viewpoint of practical research in chemistry.
Similarly, complete determinism may explain practically nothing in human behavior, as
quoted in Hayek [7]. We take the free-will postulate, which is automatically assumed
when discussing decision-making, as a basic component of game theory.

Similar to the above argument, we view a player as having some understanding of the
game structure which he is now playing. A normal form game = ( { } { } )
is regarded as abstracted from a real social situation by taking relevant information. Jo-
hansen�’s postulate J1 requires the discourse of a study of ex ante decision making starts
with the descriptive elements in . Player�’s understanding of is parallel to the theo-
rist�’s understanding of his theory. This is one possible starting assumption. From this
perspective, we conclude that the Nash noncooperative theory is a faithful description of
ex ante decision-making, while it would be natural to regard the rationalizability theory
as presuming determinism and it does not give a coherent picture of decision-making
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for games.

5. Conclusions

We presented the unied framework of the Nash noncooperative theory and rational-
izability theory. Then, we pinpointed that the di erence between them is the choice
of the quantier �“for all�” or �“for some�” for predictions about the other player�’s possi-
ble decisions. In Section 4, we discussed various conceptual problems by viewing the
quantier �“for all�” or �“for some�” from the perspectives of the free-will postulate and
complete determinism.

As already stated, in our current framework no formal distinction is made for one�’s
predictions and the other�’s decisions. Similarly, the knowledge of the game structure
and rationality is also purely interpretational here. To formalize the distinction between
decisions and predictions, and to evaluate the (common) knowledge requirements more
explicitly, we need a certain extended framework. In the companion paper [8], we will
adopt the epistemic logic approach. Specically, we will use the (propositional) common
knowledge logic CKL. It enables us to study the meaning of the common knowledge of
the structure of the game and the player�’s rationality, stated in the quotation from
Mas-Collel, et al [13]. We can also discuss the relationship between the innite regress
mentioned in Section 4.2 and the common knowledge of N1-N2 (or R1-R2).

The CKL approach sheds di erent lights on the problems of the free-will postulate
and/or complete determinism. We adopt the proof theoretical (syntactical) formulation
of the logic, where each player is facilitated with some logical inference ability and infers
logical conclusions for his decisions from his basic beliefs. This view is coherent to what
we described in Section 4.3. Also, we provide the semantic approach to prove some
unprovability results. In sum, the logical approach is needed so as to have more explicit
and extensive discussions on the problem of ex ante individual decision making than in
those in Section 4.
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