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nisms become equivalent when the market becomes large. More specifically, given a set

of object types, the random assignments in these mechanisms converge to each other as

the number of copies of each object type approaches infinity. Thus, the inefficiency of

the random priority mechanism becomes small in large markets. Our result gives some
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1. Introduction

Consider a mechanism designer’s problem to assign indivisible objects to agents who can

consume at most one object each. University housing allocation and student placement

in public schools are examples in real life.1 A typical goal of the mechanism designer is to

assign the objects efficiently and fairly, while eliciting the true preferences of the agents.

The mechanism may need to satisfy other constraints as well. For example, considerations

about fairness may prohibit monetary transfers and instead random assignments may be

required. Also, the assignment often needs to be based on agents’ reports of ordinal

preferences over objects rather than full cardinal preferences, since elicitation of cardinal

preferences may be difficult.2 Two mechanisms have been regarded as promising solutions:

the random priority mechanism (Abdulkadiroğlu and Sönmez 1998) and the probabilistic

serial mechanism (Bogomolnaia and Moulin 2001).

In random priority, agents are ordered with equal probability and, for each realization

of the ordering, the first agent in the ordering receives her most preferred object, the

next agent receives his most preferred object among the remaining ones, and so on. Ran-

dom priority is strategy-proof, that is, reporting ordinal preferences truthfully is a weakly

dominant strategy for every agent. Moreover, random priority is ex-post efficient, that is,

the assignment after the ordering lottery is resolved is Pareto efficient. This mechanism

is simple and widely used in, among others, house allocation in universities and student

placement in public schools. The procedure is also extended to various settings to accom-

modate constraints of specific applications, for example house allocation with existing

tenants (Abdulkadiroğlu and Sönmez 1999) and student placement when some students

have non-strict priorities for some schools (Abdulkadiroğlu, Pathak, and Roth 2005).

Although the random priority mechanism is ex-post efficient, it may result in unam-

biguous efficiency loss ex ante. Bogomolnaia and Moulin (2001) provide an example in

which the random priority assignment is dominated by another random assignment that

improves the chance of obtaining a more preferred object for each agent, in the sense of

first-order stochastic dominance. Bogomolnaia and Moulin introduce the ordinal efficiency

concept: a random assignment is ordinally efficient if it is not first-order stochastically

1See Abdulkadiroğlu and Sönmez (1999) and Chen and Sönmez (2002) for application to house allo-

cation, and Balinski and Sönmez (1999) and Abdulkadiroğlu and Sönmez (2003b) for student placement.

For the latter application, Abdulkadiroğlu, Pathak, and Roth (2005) and Abdulkadiroğlu, Pathak, Roth,

and Sönmez (2005) discuss practical considerations in designing student placement mechanisms in New

York City and Boston.
2The pseudo-market mechanism proposed by Hylland and Zeckhauser (1979) is one of the few mecha-

nisms proposed in the literature in which agents report their cardinal preferences over objects.
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dominated for all agents by any other random assignment. Ordinal efficiency is perhaps

the most relevant efficiency concept in the context of assignment mechanisms based solely

on ordinal preferences.

Bogomolnaia and Moulin propose the probabilistic serial mechanism as an alternative to

the random priority mechanism. The basic idea is to regard each object as a continuum of

“probability shares.” Each agent “eats” her most preferred available object (in probability

share) with speed one at every point in time between 0 and 1. The probabilistic serial

random assignment is defined as the profile of shares of objects eaten by agents by time

1. The probabilistic serial random assignment is ordinally efficient if all the agents report

their ordinal preferences truthfully.

However, the probabilistic serial mechanism is not strategy-proof. In other words,

an agent may receive a more desirable random assignment (with respect to her true

expected utility function) by misreporting her ordinal preferences. Thus it has been

unclear which of these two mechanisms, random priority or probabilistic serial, performs

well in applications.

This paper shows that the random priority mechanism and the probabilistic serial

mechanism become equivalent when the market becomes large. More specifically, given a

set of object types, the random assignments in these mechanisms converge to each other

as the number of copies of each object type approaches infinity. Thus inefficiency of

the random priority mechanism becomes small in large markets. If the random priority

mechanism is easy to implement, then our result gives some supports to the common use

of the random priority mechanism as the market design in practical problems such as

student placement in public schools.

In our model, the large market assumption means that there exist a large number of

copies of each object type. This model includes several interesting cases. For instance,

the replica economies model is a special case, as the number of copies of each object type

is large in an economy that is replicated a large number of times. Also, the assumption

is natural in several practical applications. In student placement in public schools, there

are typically a large number of identical seats at each school. In the context of university

housing allocation, the set of rooms may be partitioned into a number of categories by

building and size, and all rooms of the same type may be treated to be identical.3 Our

model may be applicable to these markets.

3For example, the assignment of graduate housing at Harvard University is based on the preferences

of each student over eight types of rooms: two possible sizes (large and small) and four buildings.
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This paper investigates a number of further issues as well. First, we define the ran-

dom priority and probabilistic serial mechanisms directly in economies with continuum

of agents and objects. We show that random priority and probabilistic serial in finite

economies converge to those in the continuum economy. In that sense, we provide foun-

dation of a modeling approach that directly studies economies with continuum of objects

and agents. Second, we show that our equivalence is tight in the sense that in any finite

economy, random priority and probabilistic serial can be different. We also present several

extensions such as cases with existing priority and multi-unit demands.

The rest of the paper proceeds as follows. Section 2 introduces the model. Section 3

defines the random priority mechanism and the probabilistic serial mechanism. Section 4

presents the main result. Section 5 investigates further topics. Section 6 discusses related

literature. Section 7 provides conclusion. Proofs are found in the Appendix unless stated

otherwise.

2. Model

For each q ∈ N, consider a q-economy, Γq = (N q, (πi)i∈Nq , O), where N q represents

the set of agents and O represents the set of proper object types (we assume that O

is identical for all q). There are |O| = n object types, and each object type a ∈ O has

quota q, that is, q copies of a are available. There exist an infinite number of copies of

a null object ø, which is not included in O. Let Õ := O ∪ {ø}. Each agent i ∈ N has a

strict preference represented by a permutation πi ∈ Π of Õ, where a given permutation

πi : {1, ..., n + 1} 7→ Õ lists for its j-th element πi(j) the agent’s j-th most preferred

object. (That is, agent i prefers a over b if and only if π−1
i (a) < π−1

i (b).) For preference

type π and for any O′ ⊂ Õ,

Chπ(O′) := {a ∈ O′|π−1(a) ≤ π−1(b) ∀b ∈ O′},

is the object that an agent of preference type π chooses if the set O′ of objects are available

to her.

The agents are partitioned into different preference types: N q = {N q
π}π∈Π, where N q

π

is the set of the agents with preference π ∈ Π in the q-economy. Let mq
π := |Nq

π |
q

be the

per-unit number of agents of type π in the q-economy.4 We assume, for each π ∈ Π, there

exists m∞π ∈ R+ such that mq
π → m∞π as q → ∞. For q ∈ N ∪ {∞}, let mq := {mq

π}π∈Π.

4Given a set X, we denote the cardinality of X by |X| or #X.
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For any q ∈ N ∪ {∞}, O′ ⊂ O and a ∈ O′, let

mq
a(O

′) =
∑
π∈Π

{mq
π|a ∈ Chπ(O′)},

be the per unit number of agents whose most preferred object in O′ is a in the q-economy.

Throughout, we do not impose any restriction on the way in which the q-economy, Γq,

grows with q (except the existence of the limit m∞π = limq→∞m
q
π for each π ∈ Π).

A special case of interest is when the economy grows at a constant rate with q. We

say that the family {Γq}q∈N are replica economies if mq
π = m∞π (or equivalently, |N q

π| =
q|N1

π |) for all q ∈ N and all π ∈ Π, and call Γ1 a base economy and Γq its q-fold replica.

Throughout, we focus on a symmetric random assignment in which all the agents with

the same preference type π receive the same lottery over the objects. Formally, a sym-

metric random assignment in the q-economy is a mapping φq : Π 7→ ∆Õ, where

∆Õ is the set of probability distributions over Õ, that satisfies the feasibility constraint∑
π ∈Π φ

q
a(π) · |N q

π| ≤ q, for each a ∈ O, where φqa(π) represents the probability that a

type π-agent receives the object a.5

It is useful to describe the limit economy (∞-economy) separately. For this purpose,

we assume that there exists a continuum of copies of objects in O and agents in N∞.

More precisely, there exists a unit mass of each object in O, and the set of agent types

Π is then endowed with a measure µ : Π 7→ R+ such that µ(π) = m∞π . A symmetric

random assignment in the limit economy is then defined as φ∞ : Π 7→ ∆Õ such

that
∑

π∈Π φ
∞
a (π) ·m∞π ≤ 1 for each a ∈ O.

2.1. Ordinal Efficiency. Consider a q-economy (where q ∈ N ∪ {∞}). A symmetric

random assignment φq ordinally dominates another random assignment φ̂q at mq if for

each preference type π with mq
π > 0 the lottery φq(π) first-order stochastically dominates

the lottery φ̂q(π),

(2.1)
∑

π−1(b)≤π−1(a)

φqb(π) ≥
∑

π−1(b)≤π−1(a)

φ̂qb(π) ∀π,mq
π > 0,∀a ∈ Õ,

with strict inequality for some π, a. The random assignment φq is ordinally efficient at

mq if it is not ordinally dominated at mq by any other random assignment. If φq ordinally

dominates φ̂q at mq, then every agent of every preference type prefers their assignment

under φq to the one under φ̂q according to any expected utility function with utility index

consistent with their ordinal preferences.

5The symmetry assumption that all the agents with the same preference type π receive the same

lottery is often called the “equal treatment of equals” axiom.
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We say that φq is non-wasteful at mq if there exists no preference type π ∈ Π with

mq
π > 0 and objects a, b ∈ Õ such that π−1(a) < π−1(b), φqb(π) > 0 and

∑
π′∈Π φ

q
a(π
′)mq

π′ <

1.

Consider the binary relation B(φq,mq) on Õ defined by

(2.2) aB (φq,mq)b ⇐⇒ ∃π ∈ Π,mq
π > 0, π−1(a) < π−1(b) and φqb(π) > 0.

In a setting in which each object has quota 1 and there exist an equal number of

agents and objects, Bogomolnaia and Moulin show the equivalence of ordinal efficiency

and acyclicity of this binary relation. Their characterization extends straightforwardly to

our setting as follows (the proof is omitted).

Proposition 1. The random assignment φq is ordinally efficient at mq if and only if the

relation B(φq,mq) is acyclic and φq is non-wasteful at mq.

3. Two Competing Mechanisms: Random Priority and Probabilistic Serial

3.1. Random Priority Mechanism. We introduce the random priority mechanism

(Bogomolnaia and Moulin 2001), also called the random serial dictatorship (Abdulka-

diroğlu and Sönmez 1998), which is widely used in practice. Given preferences of all the

agents, the agents are ordered randomly, and each agent selects, according to the order,

the most preferred object among the remaining ones. For our purpose, it is useful to

model the random ordering procedure as follows: First, each agent i randomly draws a

number fi independently from a uniform distribution on [0, 1]. Second, the agent with the

smallest draw receives her most preferred object, the agent with the second-smallest draw

receives his most preferred object from the remaining ones, and so forth (it suffices to only

consider cases in which fi 6= fj for any i 6= j, since fi = fj occurs with probability zero).

This procedure induces a random assignment. We let RP q be the random assignment

under the random priority mechanism in Γq.

The random assignment RP q is characterized as follows. Fix an agent i of arbitrary

preference π, and fix the draws f−i = (fj)j∈N\{i} ∈ [0, 1](|N
q |−1) for all agents other than

i. We then ask how low agent i’s draw should be for her to obtain a given object a ∈ Õ.

Specifically, we characterize the cutoff T̂ qa ∈ [0, 1] for each object a ∈ O, which represents

the largest value of draw that would allow agent i to claim a. It is the critical value in

[0, 1] such that agent i can obtain a if and only if she draws fi less than that value. The

cutoffs depend on the random draws f−i, so they are random. It is useful to characterize

the random assignment RP q through the cutoffs.
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To begin, let m̂q
π′(t, t

′) :=
#{j∈Nq

π′\{i}|fj∈(t,t′]}
q

denote the per-unit number of agents of

type π′ (except i if π′ = π) who have draws in (t, t′]. For any O′ ⊂ O and a ∈ O′, we let

m̂q
a(O

′; t, t′) =
∑
π′∈Π

{m̂q
π′(t, t

′)|a ∈ Chπ′(O′)},

be the per-unit number of agents in N q \ {i} whose most preferred object in O′ is a and

who have draws in (t, t′].

We then characterize the cutoffs for i by the following sequence of steps. Let Ôq(0) =

Õ, t̂q(0) = 0, and x̂qa(0) = 0 for every a ∈ Õ. Given Ôq(0), t̂q(0), {x̂qa(0)}a∈Õ, . . . ,
Ôq(v − 1), t̂q(v − 1), {x̂qa(v − 1)}a∈Õ, we let t̂qø := 1 and for each a ∈ O, define

t̂qa(v) = sup
{
t ∈ [0, 1]

∣∣∣x̂qa(v − 1) + m̂q
a(Ô

q(v − 1); t̂q(v − 1), t) < 1
}
,(3.1)

t̂q(v) = min
a∈Ô(v−1)

t̂qa(v),(3.2)

Ôq(v) = Ôq(v − 1) \ {a ∈ Ôq(v − 1)|t̂qa(v) = t̂q(v)},(3.3)

x̂qa(v) = x̂qa(v − 1) + m̂q
a(Ô

q(v − 1); t̂q(v − 1), t̂q(v)).(3.4)

The last step v̂q := min{v′|t̂q(v′) = 1} is well defined since O is finite. For each a ∈ O, its

cutoff is given by T̂ qa := {t̂q(v)|t̂q(v) = t̂qa(v)} if the set is nonempty, or else T̂ qa = 1.

This characterization is explained as follows. Each step determines the cutoff of an

object. Suppose steps 1 through v − 1 have determined the v − 1 cutoffs for v − 1

objects. In particular, by the end of step v − 1, agents with draws less than t̂q(v − 1)

have consumed entire q copies of these objects and a fraction xqb(v− 1) of each remaining

object b ∈ Oq(v − 1).

Suppose the object a ∈ Ôq(v − 1) is next to be consumed away, by agents with draws

less than its cutoff, t̂q(v) = T̂ qa . An agent with draw f ∈ (t̂q(v − 1), T̂ qa ] will consume

the object if and only if she prefers a to all other remaining objects. The total num-

ber of all such agents is q · m̂q
a(Ô

q(v − 1); t̂q(v − 1), T̂ qa ), and they consume a fraction

m̂q
a(Ô

q(v − 1); t̂q(v − 1), T̂ qa ) of that object. Hence, the total fraction of a consumed by

all agents with draws less than T̂ qa must be

x̂qa(v − 1) + m̂q
a(Ô

q(v − 1); t̂q(v − 1), T̂ qa ).

For T̂ qa to be the cutoff for a, this fraction must be no greater than one and must equal

one if T̂ qa < 1. This condition requires T̂ qa to equal t̂qa(v), defined in (3.1). That a is the

first to be consumed away among the remaining objects is (3.2). The last two equations

reset the remaining set of objects and the fractions consumed by step v, thus continuing

on the recursive procedure.
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For each a,

τ̂ qa (π) := min{t̂q(v) ≤ T̂ qa |a ∈ Chπ(Ôq(v − 1))}

is the minimum value of draw for an agent with preference π, to choose a (again if the

minimum is well defined, or else let τ̂ qa (π) := T̂ qa ). For instance, if all objects that agent

i ∈ N q
π prefers to object a have lower cutoffs than a and b has the highest cutoff among

those preferred to a, then τ̂ qa (π) = T̂ qb . In that case, agent i will obtain a if and only if

her draw fi lies between two cutoffs T̂ qb and T̂ qa , as is depicted in Figure 1.

0

fi such that i receives a︷ ︸︸ ︷
· · ·· · · T̂ qb T̂ qa 1

Figure 1: Cutoffs of objects under RP.

Therefore, the random priority random assignment is defined, for i ∈ N q
π and a ∈ O,

as RP q
a (π) := E[T̂ qa− τ̂ qa (π)], where the expectation E is taken with respect to f−i = (fj)j 6=i

which is distributed i.i.d uniformly on [0, 1].

The random priority mechanism is widely used in practice. Moreover, the mechanism

is strategy-proof, that is, reporting the true ordinal preferences is a dominant strategy

for each agent. Furthermore, it is ex post efficient, that is, the assignment after random

draws are realized is Pareto efficient. However, the mechanism may result in an ordinally

inefficient allocation, as shown by the following example adapted from Bogomolnaia and

Moulin (2001).

Example 1. Consider an economy Γ1 with 2 types of proper objects, a and b, each with

quota one. Let N1 = N1
π ∪ N1

π′ be the set of agents, with |N1
π | = |N1

π′| = 2. Preferences

of the agents are specified by

(π(1), π(2), π(3)) = (a, b, ø),

(π′(1), π′(2), π′(3)) = (b, a, ø).

In this economy, the random assignments under RP 1 can be easily calculated to be

RP 1(π) = (RP 1
a (π), RP 1

b (π), RP 1
ø (π)) =

(
5

12
,

1

12
,
1

2

)
,

RP 1(π′) = (RP 1
a (π′), RP 1

b (π′), RP 1
ø (π′)) =

(
1

12
,

5

12
,
1

2

)
.

Each agent ends up with her less preferred object with positive probability, since two

agents of any given preference type may get the two best draws, in which case the agent
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with the second best draw will take the less preferred object.6 Obviously, any two agents of

different preferences can benefit from trading off the probability share of the less preferred

object with that of the most preferred. In other words, the RP assignment is ordinally

dominated by

φ1(π) =

(
1

2
, 0,

1

2

)
,

φ1(π′) =

(
0,

1

2
,
1

2

)
.

Therefore the random priority assignment RP 1 is ordinally inefficient in this market.

Ordinal inefficiency of RP can be traced to the random and personalized features of

its cutoffs. In Example 1, T̂ 1
a < T̂ 1

b occurs to agents in N1
π with positive probability, and

T̂ 1
a > T̂ 1

b occurs to agents in N1
π′ with positive probability. In the former case, an agent in

N1
π may get b even though she prefers a to b. In the latter case, an agent in N1

π′ may get

a even though she prefers b to a. Hence both aB (RP 1,m1)b and bB (RP 1,m1)a occur,

resulting in cyclicity of the relationship B(RP 1,m1) and hence ordinal inefficiency of RP 1.

As we will see below, the probabilistic serial mechanism will admit a deterministic cutoffs

that are common to all agents, and this feature ensures acyclicity of the binary relation

B.

3.2. Probabilistic Serial Mechanism. Now we introduce the probabilistic serial

mechanism, which is an adaptation of the mechanism proposed by Bogomolnaia and

Moulin to our setting. The idea is to regard each object as a divisible object of “probability

shares.” Each agent “eats” the best available object with speed one at every time t ∈ [0, 1]

(object a is available at time t if less than q share of a has been eaten away by time t).

The resulting profile of shares of objects eaten by agents by time 1 obviously corresponds

to a symmetric random assignment, which we call the probabilistic serial random

assignment.

Formally, the symmetric simultaneous eating algorithm,7 used to determine the

probabilistic serial random assignment, is defined as follows.

PS mechanism in the finite economy. For the q-economy Γq, the assignment

under the probabilistic serial mechanism is defined by the following sequence of steps. Let

6For instance, let N1
π = {1, 2} and N1

π′ = {3, 4}. The draws can be f1 < f2 < f3 < f4, in which case 1

gets a and 2 gets b and 3 and 4 get nothing.
7Bogomolnaia and Moulin (2001) consider a broader class of simultaneous eating algorithms, where

eating speeds may vary across agents and time.
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Oq(0) = Õ, tq(0) = 0, and xqa(0) = 0 for every a ∈ Õ. Given Oq(0), tq(0), {xqa(0)}a∈Õ, . . . ,
Oq(v − 1), tq(v − 1), {xqa(v − 1)}a∈Õ, we let tqø := 1 and for each a ∈ O, define

tqa(v) = sup {t ∈ [0, 1] |xqa(v − 1) +mq
a(O

q(v − 1))(t− tq(v − 1)) < 1} ,(3.5)

tq(v) = min
a∈O(v−1)

tqa(v),(3.6)

Oq(v) = Oq(v − 1) \ {a ∈ Oq(v − 1)|tqa(v) = tq(v)},(3.7)

xqa(v) = xqa(v − 1) +mq
a(O

q(v − 1))(tq(v)− tq(v − 1)).(3.8)

The last step v̄q := min{v′|tq(v′) = 1} is again well defined since O is finite. For each

a ∈ Õ, define its expiration date: T qa := {tq(v)|tq(v) = tqa(v)}. The expiration date for

object a is the time at which the eating of a is complete. When an agent starts eating

a given object a depends on his preference. Note that, unlike the cutoffs in the random

priority mechanism, the expiration dates are deterministic and common to all agents.

Aside from this important difference, though, expiration dates in PS play a similar role

as cutoffs in RP. In particular, they completely pin down the random assignment for the

agents. To begin, for π ∈ Π, we let

τ qa (π) := min{tq(v) ≤ T qa |a ∈ Chπ(Oq(v − 1))}

if the minimum is well defined, or else let τ qa (π) := T qa . Then, agent i’s probability of

getting assigned to a ∈ Õ is simply its duration of consumption of its preference type;

i.e., PSqa(π) = T qa − τ qa (π) if i ∈ N q
π.

PS mechanism in the limit economy. Although our primary interest is in a large

but finite economy, it is useful to define the PS mechanism in the limit economy, for it will

act as a benchmark for subsequent analysis. We again do so recursively. Let O∞(0) = Õ,

t∞(0) = 0, and x∞a (0) = 0 for every a ∈ Õ. Given O∞(0), t∞(0), {x∞a (0)}a∈Õ, . . . ,
O∞(v − 1), t∞(v − 1), {x∞a (v − 1)}a∈Õ, we let t∞ø := 1 and for each a ∈ O, define

t∞a (v) = sup {t ∈ [0, 1] |x∞a (v − 1) +m∞a (O∞(v − 1))(t− t∞(v − 1)) < 1} ,(3.9)

t∞(v) = min
a∈O∞(v−1)

t∞a (v),(3.10)

O∞(v) = O∞(v − 1) \ {a ∈ O∞(v − 1)|t∞a (v) = t∞(v)},(3.11)

x∞a (v) = x∞a (v − 1) +m∞a (O∞(v − 1))(t∞(v)− t∞(v − 1)).(3.12)

Let v̄∞ such that t∞(v̄∞) = 1. Consider the associated expiration dates: For each a ∈ O,

T∞a := {t∞(v)|t∞(v) = t∞a (v)} if the set is nonempty, or else T∞a := 1. Likewise, the

starting time for a for π is defined as

τ∞a (π) := min{t∞(v) ≤ T∞a |a ∈ Chπ(Oq(v − 1))}
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if the minimum is well defined, or else let τ∞a (π) := T∞a . The PS random assignment

in the limit is then defined to be duration of eating each object: for a ∈ O, PS∞a (π) :=

T∞a − τ∞a (π).

Adapting the argument of Bogomolnaia and Moulin (2001), we can show the following

(the proof is omitted).

Proposition 2. For any q ∈ N ∪ {∞}, PSq is ordinally efficient.

Example 2. Consider replica economies {Γq}q∈N with 2 types of proper objects, a and b,

each having quota q in the q-fold replica. Let N q = N q
π ∪N

q
π′ be the set of agents in the

q-fold replica, with N q
π and N q

π′ containing 2q agents each. Assume that the preferences

of the agents are specified by

(π(1), π(2), π(3)) = (a, b, ø),

(π′(1), π′(2), π′(3)) = (b, a, ø).

Note that Γ1 corresponds to the market in Example 1.

For any q ∈ N, the random assignments under PSq can be easily calculated to be

PSq(π) = (PSqa(π), PSqb (π), PSqø(π)) =

(
1

2
, 0,

1

2

)
,

PSq(π′) = (PSqa(π
′), PSqb (π

′), PSqø(π′)) =

(
0,

1

2
,
1

2

)
,

which is ordinally efficient.

Unlike cutoffs in the random priority mechanism, the expiration dates in the proba-

bilistic serial mechanism are deterministic and common to all agents. This explains, for

instance, why there is no cycle on a binary relation B(PSq,mq). To see this, suppose

a B (PSq,mq)b. Then, there must be an agent who prefers a to b but ends up with b

with positive probability. This is possible only if Ta > Tb; or else, by the time the agent

finishes “eating” a (or something even better than a), b will have been completely eaten

away. Based on this logic, a cycle on B(PSq,mq) will require the order on the expiration

dates to be cyclic. And this is impossible.

One main drawback of the probabilistic serial mechanism, as identified by Bogomolnaia

and Moulin (2001), is that the mechanism is not strategy-proof. In other words, an agent

may be made better off by reporting a false ordinal preference.

Before proceeding to our main results, we show that PSq converges to PS∞ as q →∞.

The convergence occurs in all standard metrics; for concreteness, we define the metric by

||φ − φ̂|| := supπ∈Π,a∈O |φa(π) − φ̂a(π)| for any pair of symmetric random assignments φ
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and φ̂. The convergence of PSq to PS∞ is immediate if {Γq}q∈N are replica economies. In

this case, mq
a(O

′) = m∞a (O′) for all q and a, so the recursive definitions, (3.5), (3.6), (3.7),

and (3.8), of the PS procedure for each q-economy all coincide with those of the limiting

economy, namely (3.9), (3.10), (3.11), and (3.12). The other cases are established.

Theorem 1. ||PSq − PS∞|| → 0 as q → ∞. Further, PSq = PS∞ for all q ∈ N if

{Γq}q∈N are replica economies.

This theorem shows that PS in the limit economy captures the limiting behavior of

PS in a large but finite economy. In this sense, Theorem 1 provides a foundation for a

modeling approach that models PS directly in the continuum economy.

4. Main Result: Asymptotic Equivalence

The main purpose of this paper is to investigate how RP and PS compare as the market

size grows. Before we present the main result, we offer an example to show that RP and

PS can be different even in large finite economies.

Example 3. Consider replica economies {Γq}q∈N with 2 types of proper object types,

a and b, each having quota q in the q-fold replica. Let N q = N q
π ∪ N

q
π′ be the set of

agents in the q-fold replica, with N q
π and N q

π′ containing 2q agents each. Assume that the

preferences of the agents are specified by

(π(1), π(2), π(3)) = (a, b, ø),

(π′(1), π′(2), π′(3)) = (b, a, ø).

This is the same environment as the one in Example 2. In Examples 1 and 2, we have seen

that PS is ordinally efficient in all q-economies, while RP results in an ordinally inefficient

random assignment in the base economy.

Figure 1 plots RP q
b (π) as a function of the size of the market q (note that RP q

b (π) =

||RP q − PSq|| in this example). RP q
b (π) remains strictly positive even when q is large

but finite, so that the ordinal inefficiency of RP does not disappear completely in a finite

market. This last observation can be generalized as follows.

Proposition 3. Consider a family {Γq}q∈N of replica economies. Then, RP q is ordinally

efficient for some q ∈ N if and only if RP q′ is ordinally efficient for every q′ ∈ N. That is,

the random priority assignment is ordinally efficient for all replica economies or ordinally

inefficient for all of them.
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Figure 1. Horizontal axis: Market size q. Vertical axis: RP q
b (π) = ||RP q − PSq||.

In particular, Proposition 3 implies that the ordinal inefficiency of RP does not dis-

appear completely in any finitely replicated economy if the random priority assignment

is ordinally inefficient in the base economy. On the other hand, in Figure 1 one can see

that ||RP q − PSq|| decreases as q becomes large in this example. This suggests that

the difference between RP and PS may become small as the market size increases and

vanishes completely in the limit. The following result shows that this conjecture is true

in any sequence of economies (beyond the simple cases of replica economies).

Theorem 2. ||RP q−PS∞|| → 0 as q →∞. Furthermore, ||RP q−PSq|| → 0 as q →∞.

We shall give intuition of Theorem 2. The starting point is a recursive formulation of

the random priority mechanism given by (3.1) -(3.4). The formulation suggests that the

assignment under the random priority mechanism is similar to the one in the probabilistic

serial mechanism, except that in the random priority the random cutoffs replaces the

expiration dates in the probabilistic serial mechanism. The basic idea of the proof is to

show that the cutoff for each object type in RP converges to the expiration date of that

object type in the PS in probability as the size of the market approaches infinity. The

convergence will happen if the consumption of each object type in RP during all relevant

intervals is close to the corresponding consumption in PS. This will happen under RP in

large markets as the law of large numbers kicks in: with a very high probability, objects

are consumed almost proportionately to the number of agents who like that object best

among available ones. The proof makes this intuition precise by showing inductively that,

with high probability, all cutoffs in RP are sufficiently close to corresponding expiration

dates in PS.
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5. Discussion

5.1. Random Priority Mechanism in the Limit. Our main result has been estab-

lished without defining the RP in the limit economy. This omission entails no loss for our

purpose, since we are primarily interested in the behavior of a large, but finite, economy.

Further, defining the RP in the limit economy may require one to describe the aggregate

behavior of independent lottery drawing for a continuum of population, and may thus

need to appeal to a law of large numbers.8

There is a way to define the RP in the limit economy, without appealing to a law of

large numbers, as has been done by Abdulkadiroğlu, Che, and Yasuda (2008). To do so,

we first augment the type of an agent to include his random draw, which is not observed

until the random priority is drawn. Formally, a generic agent in the limit economy has

type (π, f) representing his preference π and the draw f (which is possibly unobserved

by the agent themselves until proper time). The set of agents in the limit economy is

represented by the product space Π× [0, 1] endowed with a product measure µ× ν, such

that µ(π) = m∞π for all π and ν is uniform with ν([0, f ]) = f for each f ∈ [0, 1]. In

words, the measure of agents with draws less than f is precisely f . This corresponds to

the heuristics that the agents in the limit economy obtain random draws in [0, 1] and a

law of large number holds for the aggregate distribution (although it is never formally

invoked). Again, we assume that a lower draw gives a higher priority for an agent.

As with q-economy with q ∈ N, we characterize the RP∞ via the cutoff values of the

draws for each object. A cutoff T̂∞a for object a ∈ O is defined such that an agent can

obtain a (when he/she wishes) if and only if f < T̂∞a . As before, we then define the cutoffs

recursively by a sequence of steps. Let Ô∞(0) = Õ, t̂∞(0) = 0, and x̂∞a (0) = 0 for every

a ∈ Õ. Given Ô∞(0), t̂∞(0), {x̂∞a (0)}a∈Õ, . . . , Ô∞(v − 1), t̂∞(v − 1), {x̂∞a (v − 1)}a∈Õ, we

let t̂∞ø := 1 and for each a ∈ O, define

t̂∞a (v) = sup
{
t ∈ [0, 1]

∣∣∣x̂∞a (v − 1) +m∞a (Ô∞(v − 1))(t− t̂∞(v − 1)) < 1
}
,(5.1)

t̂∞(v) = min
a∈Ô∞(v−1)

t̂∞a (v),(5.2)

Ô∞(v) = Ô∞(v − 1) \ {a ∈ Ô∞(v − 1)|t̂∞a (v) = t∞(v)},(5.3)

x̂∞a (v) = x̂∞a (v − 1) +m∞a (Ô∞(v − 1))(t̂∞(v)− t̂∞(v − 1)).(5.4)

Comparing (3.9)-(3.12) with (5.1)-(5.4) makes it plainly evident that T̂∞a = T∞a , ∀a ∈
O, with the following conclusion:

8See Judd (1985) for a classic reference for the associated conceptual problems, and Sun (2006) for a

recent treatment.
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Proposition 4. RP∞ = PS∞.

This proposition and Theorem 2 imply

Corollary 1. ||RP q −RP∞|| → 0 as q →∞.

Thus RP in the limit economy captures the limiting behavior of RP in a large but finite

economy. In this sense, Proposition 4 gives a foundation for a modeling approach that

models the random priority mechanism directly in the continuum economy, as has been

done, for instance, by Abdulkadiroğlu, Che, and Yasuda (2008).

5.2. Asymptotic Inefficiency in Large Economies. A recurring theme in economics

is that large economies can make things “right” in many settings, and our result shares the

same theme. Nevertheless, it seems that no single economic insight explains the benefit

of large economies. And it is important to investigate what precisely the large economy

buys.

To begin, it is often the case the large economy limits individuals’ abilities and incentives

to manipulate the system. This is clearly the case in the Walrasian mechanism in exchange

economy, as has been shown by Roberts and Postlewaite (1976). It is also the case with the

deferred acceptance algorithm in two-sided matching (Kojima and Pathak (2008)) and the

probabilistic serial mechanism in one-sided matching (Kojima and Manea (2008)). Even

this property is not to be taken for granted, however. The so-called Boston mechanism

provides an example. The Boston mechanism has been used to place students in public

schools. In that mechanism, a school first admits the students who rank it the first, and

if, and only if, there are seats left, does it admit those who rank it second, and so forth.

It is well known that the students have incentives to manipulate the rankings in such a

system, and this manipulation incentives do not disappear as the system becomes large.9

Second, one may expect that, with the diminished manipulation incentives, efficiency

would be easier to attain in a large economy. The asymptotic ordinal efficiency we find

for the RP supports this impression. However, even some reasonable mechanisms fail the

asymptotic ordinal efficiency. Take the case of the deferred acceptance algorithm

with multiple tie-breaking (DA-MTB), an adaptation of the celebrated algorithm

proposed by Gale and Shapley (1962) to the problem of assigning objects to agents such

as student assignment in public schools (see Abdulkadiroğlu, Pathak, and Roth (2005)).

In DA-MTB, each object type randomly and independently orders agents and, given the

ordering, the assignment is decided by conducting the agent-proposing deferred acceptance

9See Kojima and Pathak (2008) for a concrete example on this point.
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algorithm with respect to the submitted preferences and the randomly decided priority

profile. It turns out DA-MTB fails even ex post efficiency, let alone ordinal efficiency.

Moreover, these inefficiencies do not disappear in the limit economy, as has been shown

by Abdulkadiroğlu, Che, and Yasuda (2008).

Third, one plausible conjecture may be that the asymptotic ordinal efficiency is a nec-

essary consequence of a mechanism that produces an ex post efficient assignment in every

finite economy. This conjecture turns out to be false. Consider a family {Γq}q∈N of

replica economies and what we call a replication-invariant random priority mecha-

nism, RIRP q, defined as follows. First, in the given q-economy, define a correspondence

γ : N1 � N q such that |γ(i)| = q for each i ∈ N1, γ(i) ∩ γ(j) = ∅ if i 6= j, and all agents

in γ(i) have the same preference as i. Call γ(i) i’s clones in the q-fold replica. Let each

set γ(i) of clones of agent i randomly draws a number fi independently from a uniform

distribution on [0, 1]. Second, all the clones with the smallest draw receive their most pre-

ferred object, the clones with the second-smallest draw receive their most preferred object

from the remaining ones, and so forth. This procedure induces a random assignment. It

is clear that RIRP q = RP 1 for any q-fold replica Γq. Therefore ||RIRP q − RP 1|| → 0

as q → ∞. Since RP 1 may not be ordinally efficient, the limit random assignment of

RIRP q as q →∞ is not ordinally efficient in general.

Above all, our analysis shows the equivalence of two different mechanisms beyond show-

ing certain asymptotic properties of given mechanisms. Such an equivalence is not ex-

pected even for a large economy, and has few analogues in the literature.

5.3. Existing Priorities. In some applications, the social planner may need to give

higher priorities to a subset of agents over others. For example, when allocating graduate

dormitory rooms, the housing office at Harvard University assigns rooms to first year

students first, and then assign remaining rooms to existing students.

To model such a situation, assume that each student belongs to one of the classes C and,

for each c ∈ C, let gc be a density function over [0, 1]. The asymmetric random priority

mechanism associated with g = (gc)c∈C lets each agent i in class c to draw fi according

to the density function gc independently from others, and the agent with the smallest

draw among all agents receives her most preferred object, the agent with the second-

smallest draw receives his most preferred object from the remaining ones, and so forth.

The random priority mechanism is a special case in which gc is a uniform distribution on

[0, 1] for each c ∈ C.

The asymmetric probabilistic serial mechanism associated with g is defined by simply

letting agents in class c to eat with speed gc(t) at each time t ∈ [0, 1]. The probabilistic
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serial mechanism is a special case in which gc is a uniform distribution on [0, 1] for each

c ∈ C.

It is not difficult to see that our results generalize to a general profile of distributions

g. In particular, given any g, the asymmetric random priority mechanism associated with

g and the asymmetric probabilistic serial mechanism associated with g converge to the

same limit as q →∞.

5.4. Unequal Number of Copies. We focused on a setting in which there are q copies

of each object type in the q-economy. It is straightforward to extend our results as long

as quotas of object types grows proportionately. More specifically, if there exist positive

integers (qa)a∈O such that the quota of object type a is qaq in the q-economy, then our

result extends with little modification of the proof.

On the other hand, we need some assumption about the growth rate of quotas. Suppose

that, for instance, quotas of some objects are q but quotas of others stay at one. Then, one

can easily create an example in which random priority assignment of objects with quota

one does not converge to those under the probabilistic serial mechanism. However, such

an example does not seem to be a large problem, since in the large market, assignment

of object types with small quotas has only limited influence on overall welfare in the

economy.

5.5. Multi-Unit Demands. Consider a generalization of our basic setting, in which

each agent can obtain multiple units of objects. More specifically, we assume that there

is a fixed integer k such that each agent can receive k objects. When k = 1, the model

reduces to the model of the current paper. Assignment of popular courses in schools is

one example of such a multiple unit assignment problem. See, for example, Kojima (2008)

for formal definition of the model.

We consider two generalizations of the random priority mechanism to the current set-

ting. In the once-and-for-all random priority mechanism, each agent i randomly

draws a number fi independently from a uniform distribution on [0, 1] and, given the or-

dering, the agent with the smallest draw receives her most preferred k objects, the agent

with the second-smallest draw receives his most preferred k objects from the remaining

ones, and so forth. In the draft random priority mechanism, each agent i randomly

draws a number fi independently from a uniform distribution on [0, 1]. Second, the agent

with the smallest draw receives her most preferred object, the agent with the second-

smallest draw receives his most preferred object from the remaining ones, and so forth.

Then agents obtain a random draw again and repeat the procedure k times.
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We introduce two generalizations of the probabilistic serial mechanism. In the multiunit-

eating probabilistic serial mechanism, each agent “eats” her k most preferred available

objects with speed one at every time t ∈ [0, 1]. In the one-at-a-time probabilistic se-

rial mechanism, each agent “eats” the best available object with speed one at every time

t ∈ [0, k].

Our analysis can be adapted to this situation to show that the once-and-for-all random

priority mechanism converges to the same limit as the multiunit-eating probabilistic serial

mechanism, whereas the draft random priority mechanism converges to the same limit as

the one-at-a-time probabilistic serial mechanism.

It is easy to see that the multiunit-eating probabilistic serial mechanism may not be

ordinally efficient, while the one-at-a-time probabilistic serial mechanism is ordinally ef-

ficient. This may give an insight to some issues in multiple unit assignment. It is well

known that the once-and-for-all random priority mechanism is ex post efficient, but the

mechanism is rarely used in practice. Rather, the draft mechanism is often used in appli-

cation, for instance sports drafting and allocations of courses in business schools. One of

the reasons may be that the once-and-for-all random priority mechanism is ordinally inef-

ficient even in the limit economy, whereas the draft random priority mechanism converges

to an ordinally efficient mechanism as the economy becomes large, as in course allocation

in schools.

6. Related literature

Pathak (2006) compares random priority and probabilistic serial using data in the

assignment of about 8,000 students in the public school system of New York City. He

finds that many students obtain a better random assignment in the probabilistic serial

mechanism, but he notes that the difference seems small. The current paper complements

his study by identifying one environment under which the difference between these two

mechanisms is small.

Kojima and Manea (2008) find that truthtelling becomes a dominant strategy under

probabilistic serial when there are a large number of copies of each object type. Their

paper left the asymptotic behavior of random priority unanswered. The current paper

give an answer to that question, providing further understanding of random mechanisms

in large markets. Furthermore, our analysis provides intuition for the result of Kojima

and Manea (2008). To see this point, first recall that truthtelling is a dominant strategy

in the random priority mechanism. Since our result shows that the probabilistic serial
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mechanism is close to the random priority mechanism in a large economy, this observation

implies that it is difficult to profitably manipulate the probabilistic serial mechanism.10

Manea (2006) shows that random priority results in an ordinally inefficient assignment

for most preference profiles when there are a large number of object types and the number

of copies of each object type remains one. We note that his result does not contradict

ours because of a number of differences. First, Manea (2006) keeps the number of copies

of each object type constant (at one) and increases the number of object types while our

model increases the number of copies while keeping the number of object types fixed.

Second, his theorem focuses on whether there is some ordinal inefficiency in the random

priority assignment, while we investigate how much difference there is between the random

priority and the probabilistic serial mechanisms, and how they change as the market size

grows.

While analysis of large markets is relatively new in matching and resource allocation

problems, it has a long tradition in many areas of economics. For example, Roberts

and Postlewaite (1976) show that, under some conditions, the Walrasian mechanism is

difficult to manipulate in large exchange economies.11 Similarly, incentive properties of

a large class of double auction mechanisms are studied by, among others, Gresik and

Satterthwaite (1989), Rustichini, Satterthwaite, and Williams (1994), and Cripps and

Swinkels (2006). Two-sided matching is an area closely related to our model. In that

context, Roth and Peranson (1999), Immorlica and Mahdian (2005) and Kojima and

Pathak (2008) show that the deferred acceptance algorithm proposed by Gale and Shapley

(1962) becomes increasingly hard to manipulate as the number of participants becomes

large. Many of these papers show particular properties of given mechanisms, such as

incentive compatibility and efficiency. One of the notable features of the current paper

is that we show the equivalence of apparently dissimilar mechanisms, beyond specific

properties of given mechanisms.

Finally, our paper is part of a growing literature on random assignment mechanisms.12

The probabilistic serial mechanism is generalized to allow for weak preferences, existing

property rights, and multi-unit demand by Katta and Sethuraman (2006), Yilmaz (2006),

and Kojima (2008), respectively. Kesten (2008) introduces two mechanisms, one of which

10However, the result of Kojima and Manea (2008) cannot be derived from the current paper since

they establish a dominant strategy result in a large but finite economies, while our equivalence result

holds only in the limit as the market size approaches infinity.
11See also Jackson (1992) and Jackson and Manelli (1997).
12Characterizations of ordinal efficiency are given by Abdulkadiroğlu and Sönmez (2003a) and McLen-

nan (2002).
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is motivated by the random priority mechanism, and shows that these mechanisms are

equivalent to the probabilistic serial mechanism. In the scheduling problem (a special

case of the current environment), Crès and Moulin (2001) show that the probabilistic

serial mechanism is group strategy-proof and stochastically dominates the random priority

mechanism but these two mechanisms converge to each other as the market size approaches

infinity, and Bogomolnaia and Moulin (2002) give two characterizations of the probabilistic

serial mechanism.

7. Conclusion

The random priority (random serial dictatorship) mechanism is a common method

to assign objects to individuals, while it is recently challenged by a new probabilistic

serial mechanism. We showed that these mechanisms become equivalent when the market

becomes large. More specifically, given a set of object types, the random assignments

in these mechanisms converge to each other as the number of copies of each object type

approaches infinity. Thus inefficiency of the random priority mechanism becomes small

in large markets.

Our equivalence is asymptotic and the random priority and the probabilistic serial

mechanisms do not exactly coincide in large but finite economies. It would be interesting

to see how these competing mechanisms perform in assignment problems in real life such

as student placement in public schools.

Appendix

A. Proof of Theorem 1

It suffices to show that supa∈O |T qa − T∞a | → 0 as q →∞. To this end, let

L > max

{
5, 2 max

{
1

m∞a (O′)
∨m∞a (O′)|O′ ⊂ O, a ∈ O′,m∞a (O′) > 0

}}
,(A1)

and let K := min{1− x∞a (v) | a ∈ O∞(v), v < v̄∞} > 0.

Fix any ε > 0 such that

2L4v̄∞ε < min{ min
v∈1,...,v̄∞

|t∞(v)− t∞(v − 1)|, K}.(A2)

By assumption there exists Q such that, for each q > Q,

|mq
a(O

′)−m∞a (O′)| < ε,∀O′ ⊂ Õ, ∀a ∈ O′.(A3)

Fix any such q. We show that T qa ∈ (t∞(v)− L4vε, t∞(v) +L4vε) if and only if t∞a (v) =

t∞(v). To this end, we argue recursively. Suppose for any v′ ≤ v − 1, T qa ∈ (t∞(v′) −
L4v′ε, t∞(v′)+L4v′ε) if and only if t∞a (v′) = t∞(v′), and further that, for each a ∈ O∞(v−1),
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xqa(k) ∈ (x∞a (v − 1) − L4(v−1)ε, x∞a (v − 1) + L4(v−1)ε), where k is the largest element of

Jv−1 := {i| there exists a s.t. tqa(i) = tq(i) and T∞a = t∞(v − 1)}. We shall then prove

that T qa ∈ (t∞(v) − L4vε, t∞(v) + L4vε) if and only if t∞a (v) = t∞(v), and that, for each

a ∈ O∞(v), xqa(l) ∈ (x∞a (v)− L4vε, x∞a (v) + L4vε), where l is the largest element of Jv.

Let k be the largest element of Jv−1. It then follows that Oq(k) = O∞(v − 1).

Claim 1. For any a ∈ O∞(v − 1), tqa(k + 1) > t∞(v)− L4v−2ε.

Proof. Let a be one of the first objects to expire in O∞(v− 1) under PSq. Assume, for

contradiction, that

tqa(k + 1) ≤ t∞(v)− L4v−2ε.(A4)

Recall, by inductive assumption, that

xqa(k) < x∞a (v − 1) + L4(v−1)ε.(A5)

Thus,

xqa(k + 1) = xqa(k) +mq
a(O

q(k))(tqa(k + 1)− tqa(k))

≤ xqa(k) +mq
a(O

q(k))(t∞(v)− L4v−2ε− t∞(v − 1) + L4(v−1)ε)

≤ xqa(k) +mq
a(O

q(k))[t∞(v)− t∞(v − 1)− L4v−3ε]

< x∞a (v − 1) + L4(v−1)ε+m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)− L4v−3ε] + ε,(A6)

where the first equality follows from definition of PSq (3.8), the first inequality follows

from the inductive assumption and (A4), the second inequality follows from (A1), and

the third inequality follows from (A2), (A3) and (A5).

There are two cases. Suppose first m∞a (O∞(v − 1)) = 0. Then, the last line of (A6)

becomes

x∞a (v − 1) + L4(v−1)ε+ ε,

which is strictly less than 1, since a ∈ O∞(v − 1) and since (A2) holds. Suppose next

m∞a (O∞(v − 1)) > 0. Then, the last line of (A6) equals

x∞a (v − 1) + L4(v−1)ε+m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)− L4v−3ε] + ε

< x∞a (v − 1) +m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)]

≤ 1,

where the first inequality follows from (A1), and the second follows since a ∈ O∞(v − 1).

In either case, we have a contradiction to the fact that a expires at step k + 1. ‖
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Claim 2. Let a be the object that expires the last in the q-economy among the set

{b ∈ O∞(v − 1)|t∞b (v) = t∞(v)}. If a expires at stage l ≥ k + 1 in the q-economy, then

tqa(l) ≤ t∞(v) + L4v−2ε.

Proof. If t∞(v) = 1, then the claim is trivially true. Thus, let us assume t∞a (v) < 1.

This implies m∞a (O∞(v − 1)) > 0. For that case suppose, for contradiction, that

tqa(l) > t∞(v) + L4v−2ε.(A7)

Then,

xqa(l) = xqa(k) +
l∑

j=k+1

mq
a(O

q(j − 1))[tq(j)− tq(j − 1)]

≥ xqa(k) +
l∑

j=k+1

mq
a(O

q(k))[tq(j)− tq(j − 1)]

= xqa(k) +mq
a(O

∞(v − 1))[tq(l)− tq(k)]

> x∞a (v − 1)− L4(v−1)ε+mq
a(O

∞(v − 1))[t∞(v) + L4v−2ε− t∞(v − 1)− L4(v−1)ε]

≥ x∞a (v − 1)− L4(v−1)ε+m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1) + L4v−3ε]

> x∞a (v − 1) +m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)]

= x∞a (v) = 1,

where the first equality follows from (3.8), the first inequality follows since mq
a(O

q(j −
1)) ≥ mq

a(O
q(k)) for any j ≥ k + 1 by Oq(j − 1) ⊆ Oq(k), the second equality from

Oq(k) = O∞(v − 1), the second inequality follows from the inductive assumption and

(A7), the third inequality follows from the assumption (A1), and the fourth inequality

follows from (A1) and the assumption m∞a (O∞(v − 1)) > 0. Thus xqa(l) > 1, which

contradicts the definition of xqa(l). ‖

Claim 3. If a ∈ O∞(v) and v < v̄∞, then T qa > t∞(v) + L4vε.

Proof. Suppose otherwise. Let c be the object in O∞(v) that expires the first in the

q-economy. Let j be the step at which it expires. Then, we must have tqc(j) < 1 and

xqc(j) = 1. Since c is the first object to expire in O∞(v), at each of steps k + 1, . . . , j − 1,

some object in O∞(v−1)\O∞(v) = {a ∈ O∞(v−1)|t∞a (v) = t∞(v)} expires. (If j = k+1,

then no other object expires in between step k and step j.) By the previous analysis, this
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implies tq(k + 1) > t∞(v)− L4v−2ε. Therefore,

xqc(j) = xqc(k) +

j∑
i=k+1

mq
c(O

q(i− 1))(tq(i)− tq(i− 1))

≤ xqc(k) +mq
c(O

q(k))(tq(k + 1)− tq(k)) +mq
c(O

q(j − 1))(tq(j)− tq(k + 1))

≤ x∞c (v − 1) + L4(v−1)ε+ (m∞c (Oq(k)) + ε) ((t∞(v) + L4v−2ε)− (t∞(v − 1)− L4(v−1)ε))

+ (m∞a (Oq(j)) + ε) (L4vε− L4v−2ε)

≤ x∞c (v) + L4v+1ε

≤ 1−K + L4v̄∞ε

< 1,

which contradicts the assumption that c expires at step j. ‖

The arguments so far prove that T qa ∈ (t∞(v) − L4v−2ε, t∞(v) + L4v−2ε) ⊂ (t∞(v) −
L4vε, t∞(v) + L4vε) if and only if T∞a = t∞(v). It now remains to prove the following:

Claim 4. For each a ∈ O∞(v), xqa(l) ∈ (x∞a (v)−L4vε, x∞a (v)+L4vε), where l is the largest

element of Jv.

Proof. Fix any a ∈ O∞(v). Then,

xqa(l) = xqa(k) +
l∑

j=k+1

mq
a(O

q(j − 1))(tq(j)− tq(j − 1))

≤ xqa(k) +mq
a(O

q(k))(tq(k + 1)− tq(k)) +mq
a(O

q(l))(tq(l)− tq(k + 1))

≤ x∞a (v − 1) + L4(v−1)ε+ (m∞a (Oq(k)) + ε) (t∞(v)− t∞(v − 1) + 2L4v−2ε)

+ (m∞a (Oq(l)) + ε) (2L4v−2ε)

< x∞a (v − 1) + (m∞a (O∞(v − 1))) (t∞(v)− t∞(v − 1)) + L4vε

= x∞a (v) + L4vε.

A symmetric argument yields xqa(l) ≥ x∞a (v)− L4vε. ‖

We have thus completed the recursive argument, which taken together proves that

T qa ∈ (t∞(v) − L4vε, t∞(v) + L4vε) if and only if t∞a (v) = t∞(v), for any q > Q for some

Q ∈ N. Since ε > 0 can be arbitrarily small, T qa → T∞a as q →∞. Since there are only a

finite number of objects and a finite number of preference types, ||PSq − PS∞|| → 0 as

q →∞.
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B. Proof of Theorem 2

Let L be a real number satisfying

L > max

{
5, 2 max

{
1

m∞a (O′)
∨m∞a (O′)|O′ ⊂ O, a ∈ O′,m∞a (O′) > 0

}}
,(B1)

and let K := min{1− x∞a (v) | a ∈ O∞(v), v < v̄∞} > 0.

Fix an agent i0 of preference type π0 ∈ Π and consider a random assignment for agents

of type π0. Consider the following events:13

Eq
1(v, π) : m̂q

π(t∞a (v − 1)− L4(v−1)ε, t∞a (v)− L4v−2ε) < m∞π [t∞a (v)− t∞a (v − 1)− L4v−3ε],

Eq
2(v, π) : m̂q

π(t∞a (v − 1) + L4(v−1)ε, t∞a (v) + L4v−2ε) ≥ m∞π [t∞a (v)− t∞a (v − 1) + L4v−3ε], v 6= v̄∞,

Eq
2(v̄∞, π) : {f−i0 ∈ [0, 1]|N

q−1|},

Eq
3(v, π) : m̂q

π(t∞a (v − 1)− L4(v−1)ε, t∞a (v) + L4v−2ε) < m∞π [t∞a (v)− t∞a (v − 1) + 2L4v−2ε],

Eq
4(v, π) : m̂q

π(t∞a (v)− L4v−2ε, t∞a (v) + L4vε) < m∞π × 2L4vε,

Eq
5(v, π) : m̂q

π(t∞a (v)− L4v−2ε, t∞a (v) + L4v−2ε) < m∞π × 3L4v−2ε,

Eq
6(v, π) : m̂q

π(t∞a (v − 1) + L4(v−1)ε, t∞a (v)− L4v−2ε) ≥ m∞π [t∞a (v)− t∞a (v − 1)− L4v−2ε].

Lemma 1. For any ε > 0 such that

2L4v̄∞ε < min{ min
v∈1,...,v̄∞

{t∞(v)− t∞(v − 1)}, K},(B2)

there exists Q such that the following is true for any q > Q: If the realization of f−i0 is

such that events Eq
1(v, π), Eq

2(v, π), Eq
3(v, π), Eq

4(v, π), Eq
5(v, π) and Eq

6(v, π) hold for all

v ∈ {1, . . . , v̄∞} and π ∈ Π with m∞π > 0, then T̂ qa ∈ (t∞(v) − L4vε, t∞(v) + L4vε) if and

only if t∞a (v) = t∞(v).

Proof. There exists Q such that ∑
π∈Π:m∞π =0

mq
π < ε,(B3)

for any q > Q. Fix any such q and suppose that the realization of f−i0 is such that

Eq
1(v, π), Eq

2(v, π), Eq
3(v, π), Eq

4(v, π), Eq
5(v, π) and Eq

6(v, π) hold for all v, π with m∞π > 0

as described in the statement of the Lemma. We show the lemma inductively. Suppose for

any v′ ≤ v−1, T̂ qa ∈ (t∞(v′)−L4v′ε, t∞(v′)+L4v′ε) if and only if t∞a (v′) = t∞(v′), and further

that, for each a ∈ O∞(v−1), x̂qa(k) ∈ (x∞a (v−1)−L4(v−1)ε, x∞a (v−1)+L4(v−1)ε), where k

is the largest element of Ĵv−1 := {i| there exists a s.t. t̂qa(i) = t̂q(i) and T∞a = t∞(v− 1)}.
13Eq2(v̄∞, π) holds for any realization of ordering. The notation is introduced only for expositional

simplicity in what follows.
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We shall then prove that T̂ qa ∈ (t∞(v)− L4vε, t∞(v) + L4vε) if and only if t∞a (v) = t∞(v),

and that, for each a ∈ O∞(v), x̂qa(l) ∈ (x∞a (v)−L4vε, x∞a (v) +L4vε), where l is the largest

element of Ĵv.

Let k be the largest element of Ĵv−1. It then follows that Ôq(k) = O∞(v − 1). Fix any

a ∈ O∞(v − 1).

Claim 5. t̂qa(k + 1) > t∞(v)− L4v−2ε for all a ∈ O∞(v − 1).

Proof. Let a be the first object to expire in O∞(v − 1) under RP q. Assume, for

contradiction, that

t̂qa(k + 1) ≤ t∞(v)− L4v−2ε.(B4)

Recall, by inductive assumption, that

x̂qa(k) < x∞a (v − 1) + L4(v−1)ε.(B5)

Thus,

x̂qa(k + 1) = x̂qa(k) + m̂q
a(Ô

q(k); t̂q(k), t̂qa(k + 1))

≤ x̂qa(k) + m̂q
a(Ô

q(k); t∞(v − 1)− L4(v−1)ε, t∞(v)− L4v−2ε)

< x∞a (v − 1) + L4(v−1)ε+m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)− L4v−3ε] + ε,(B6)

where the first equality follows from (3.4) in the definition of RP q, the first inequality

follows from the inductive assumption and (B4), and the second inequality follows from

the assumption that Eq
1(v, π) holds and conditions (B3) and (B5).

There are two cases. Suppose first m∞a (O∞(v − 1)) = 0. Then, the last line of (B6)

becomes

x∞a (v − 1) + L4(v−1)ε+ ε,

which is strictly less than 1, since a ∈ O∞(v − 1) and since (B2) holds. Suppose next

m∞a (O∞(v − 1)) > 0. Then, the last line of (B6) equals

x∞a (v − 1) + L4(v−1)ε+m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)− L4v−3ε] + ε

< x∞a (v − 1) +m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)]

≤ 1,

where the first inequality follows from (B1), and the second follows since a ∈ O∞(v − 1).

In either case, we have a contradiction to the fact that a expires at step k + 1. ‖
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Claim 6. Let a be the object that expires the last, in RP q with the given order f , in the

q-economy among the set {b ∈ O∞(v − 1)|t∞b (v) = t∞(v)}. Suppose a expires at stage

l ≥ k + 1 in the q-economy. Then,

t̂q(l) ≤ t∞(v) + L4v−2ε.(B7)

Proof. If t∞(v) = 1, then the claim is trivially true. Thus, let us assume t∞(v) < 1.

This implies m∞a (O∞(v − 1)) > 0. For that case suppose, for contradiction, that

t̂q(l) > t∞(v) + L4v−2ε.(B8)

Then,

x̂qa(l) = x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1), t̂q(j))

≥ x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(k); t̂q(j − 1), t̂q(j))

= x̂qa(k) + m̂q
a(O

∞(v − 1); t̂q(k), t̂q(l))

> x∞a (v − 1)− L4(v−1)ε+ m̂q
a(O

∞(v − 1); t∞(v − 1) + L4(v−1)ε, t∞(v) + L4v−2ε)

≥ x∞a (v − 1)− L4(v−1)ε+m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1) + L4v−3ε]

> x∞a (v − 1) +m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)]

= x∞a (v) = 1,

where the first equality follows from (3.4), the first inequality follows since m̂q
a(Ô

q(j −
1); t, t′) ≥ mq

a(Ô
q(k); t, t′) for any j ≥ k + 1 and t ≤ t′ by Ôq(j − 1) ⊆ Ôq(k), the

second equality from Ôq(k) = O∞(v − 1) and the definition of m̂q
a, the second inequality

follows from the inductive assumption and (B8), the third inequality follows from the

assumption that Eq
2(v, π) holds, and the fourth inequality follows from (B1) and the

assumption m∞a (O∞(v − 1)) > 0. Thus x̂qa(l) > 1, which contradicts the definition of

xqa(l). ‖

Claim 7. If a ∈ O∞(v) and v < v̄∞, then T̂ qa > t∞(v) + L4vε.

Proof. Suppose otherwise. Let c be the object in O∞(v) that expires the first in the

q-economy. Let j be the step at which it expires. Then, we must have

t̂qc(j) ≤ t∞(v) + L4vε,(B9)

and x̂qc(j) = 1. Since c is the first object to expire in O∞(v), at each of steps k+1, . . . , j−1,

some object in O∞(v−1)\O∞(v) = {a ∈ O∞(v−1)|t∞a (v) = t∞(v)} expires. (If j = k+1,
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then no other object expires in between step k and step j.) By Claim 5, this implies

t̂q(k + 1) > t∞(v)− L4v−2ε. Therefore,

x̂qc(j) = x̂qc(k) +

j∑
i=k+1

m̂q
c(Ô

q(i− 1); t̂q(i− 1), t̂q(i))

≤ x̂qc(k) + m̂q
c(Ô

q(k); t̂q(k), t̂q(k + 1)) + m̂q
c(Ô

q(j − 1); t̂q(k + 1), t̂q(j))

≤ x̂qc(k) + m̂q
c(Ô

q(k); t∞(v − 1)− L4(v−1)ε, t∞(v) + L4v−2ε)

+m̂q
c(Ô

q(j − 1); t∞(v)− L4v−2ε, t∞(v) + L4vε)

≤ x∞c (v − 1) + L4(v−1)ε+m∞c (O∞(v − 1))[t∞(v)− t∞(v − 1) + 2L4v−2ε]

+m∞c (Ôq(j − 1)× 2L4vε+ ε

≤ x∞c (v) + L4v+1ε

≤ 1−K + L4v̄∞ε

< 1,

where the first equality follows from (3.4), the first inequality follows since m̂q
c(Ô

q(j −
1); t, t′) ≥ mq

c(Ô
q(i− 1); t, t′) for any j ≥ i by Ôq(j − 1) ⊆ Ôq(i− 1), the second inequal-

ity follows from the inductive assumption, Claims 5 and 6, the third inequality follows

from the inductive assumption, Eq
3(v, π), Eq

4(v, π) and (B3), the fourth inequality follows

from (3.12) and (B1), the fifth inequality follows from the definition of K, and the last

inequality follows from the assumption that 2L4v̄∞ε < K. Thus we obtain x̂qc(j) < 1,

which contradicts the assumption that c expires at step j. ‖

The arguments so far prove that T̂ qa ∈ (t∞(v) − L4v−2ε, t∞(v) + L4v−2ε) ⊂ (t∞(v) −
L4vε, t∞(v) + L4vε) if and only if T∞a = t∞(v). It now remains to show the following.

Claim 8. For each a ∈ O∞(v), xqa(l) ∈ (x∞a (v)−L4vε, x∞a (v)+L4vε), where l is the largest

element of Ĵv.
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Proof. Fix any a ∈ O∞(v). Then,

x̂qa(l) = x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1), t̂q(j))

≤ x̂qa(k) + m̂q
a(Ô

q(k); t̂q(k), t̂q(k + 1)) + m̂q
a(Ô

q(l); t̂q(k + 1), t̂q(l))

≤ x̂qa(k) + m̂q
a(Ô

q(k); t∞(v − 1)− L4(v−1)ε, t∞(v) + L4v−2ε)

+m̂q
a(Ô

q(l); t∞(v)− L4v−2ε, t∞(v) + L4v−2ε)

< x∞a (v − 1) + L4(v−1)ε+m∞a (Ôq(k))(t∞(v)− t∞(v − 1) + 2L4v−2ε)

+m∞a (Ôq(l))× 3L4v−2ε+ 2ε

< x∞a (v − 1) + (m∞a (O∞(v − 1))) (t∞(v)− t∞(v − 1)) + L4vε

= x∞a (v) + L4vε,

where the first equality follows from (3.4), the first inequality follows frommq
a(Ô

q(l); t, t′) ≥
mq
a(Ô

q(j); t, t′) for all l ≥ j, the second inequality follows from the inductive assumption

and Claims 5 and 6, the third inequality follows from the inductive assumption, (B3) and

Eq
3(v, π) and Eq

5(v, π), the fourth inequality follows from Ôq(k) = O∞(v − 1) and (B1),

and the last inequality follows from (3.12).

Next we obtain

x̂qa(l) = x̂qa(k) +
l∑

j=k+1

m̂q
a(Ô

q(j − 1); t̂q(j − 1), t̂q(j))

≥ x̂qa(k) + m̂q
a(Ô

q(k); t̂q(k), t̂q(l))

≥ x̂qa(k) + m̂q
a(Ô

q(k); t∞(v − 1) + L4(v−1)ε, t∞(v)− L4v−2ε)

≥ x∞a (v − 1)− L4(v−1)ε+m∞a (O∞(v − 1))[t∞(v)− t∞(v − 1)− 2L4v−2ε]

> x∞a (v)− L4vε,

where the first inequality follows from Ôq(j − 1) ⊆ Ôq(k) for any j ≥ k + 1, the second

inequality follows from the inductive assumption and Claim 5, the third inequality follows

from the inductive assumption and Eq
6(v, π), and the last inequality follows from (3.12)

and (B1). These inequalities complete the proof. ‖

We have thus completed the recursive argument, which taken together proves that

T̂ qa ∈ (t∞(v) − L4vε, t∞(v) + L4vε) if and only if t∞a (v) = t∞(v), for any q > Q for some

Q ∈ N. �
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Proof of Theorem 2. We shall show that for any ε > 0 there exists Q such that, for any

q > Q, for any π0 ∈ Π and a ∈ O,

|PS∞a (π0)−RP q
a (π0)| < (2L4(n+1) + 6n(n+ 1)(n+ 1)!)ε.(B10)

Since n is a finite constant, relation (B10) implies the Theorem.

To show this first assume, without loss of generality, that ε satisfies (B2) and Q is so

large that (B3) holds for any q > Q. We have

RP q
a (π0) = E

[
T̂ qa − τ̂ qa (π0)

]
= E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)

× Pr
 6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)


+ E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)

× Pr
 6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)


= E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)

×
1− Pr

 6⋃
i=1

v̄∞⋃
v=1

⋃
π∈Π:m∞π >0

Eq
i (v, π)


+ E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)

× Pr
 6⋃
i=1

v̄∞⋃
v=1

⋃
π∈Π:m∞π >0

Eq
i (v, π)


= E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)


+

E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)

− E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)



× Pr

 6⋃
i=1

v̄∞⋃
v=1

⋃
π∈Π:m∞π >0

Eq
i (v, π)

 ,
(B11)

where for any event E, Ē is the complement event of E.

First we bound the first term of expression (B11). Since v̄∞ ≤ n+ 1, Lemma 1 implies

that

E

T̂ qa − τ̂ qa (π0)|
6⋂
i=1

v̄∞⋂
v=1

⋂
π∈Π:m∞π >0

Eq
i (v, π)

 ∈ [T∞a − τ∞a (π0)− 2L4(n+1)ε, T∞a − τ∞a (π0) + 2L4(n+1)ε].



30 YEON-KOO CHE AND FUHITO KOJIMA

Second, we bound the second term of expression (B11). By the weak law of large num-

bers, for any ε > 0, there exists Q such that Pr
[
Eq
i (v, π)

]
< ε for any i ∈ {1, 2, 3, 4, 5, 6},

q > Q, v ∈ {1, . . . , v̄∞} and π ∈ Π with m∞π > 0. Since there are at most 6(n+ 1)(n+ 1)!

such events and, in general, the sum of probabilities of a number of events is weakly larger

than the probability of the union of the events (Boole’s inequality), we obtain

Pr

 6⋃
i=1

v̄∞⋃
v=1

⋃
π∈Π:m∞π >0

Eq
i (v, π)

 ≤ 6∑
i=1

v̄∞∑
v=1

∑
π∈Π:m∞π >0

Pr
[
Eq
i (v, π)

]
≤ 6(n+ 1)(n+ 1)!ε.

Since T̂ qa − τ̂ qa (π0) ∈ [0, 1] for any a, q and π0, the second term of equation (B11) is in

[−6(n+ 1)(n+ 1)!ε, 6(n+ 1)(n+ 1)!ε].

From the above arguments, we have that

|PS∞a (π0)−RP q
a (π0)| < (2L4(n+1) + 6(n+ 1)(n+ 1)!)ε,

completing the proof. �

C. Proof of Proposition 3

The proposition uses the following two lemmas. Let {Γq} be a family of replica

economies. Given any q, define a correspondence γ : N1 � N q such that |γ(i)| = q

for each i ∈ N1, γ(i) ∩ γ(j) = ∅ if i 6= j, and all agents in γ(i) have the same preference

as i. Call γ(i) i’s clones in the q-fold replica.

Lemma 2. For all q ∈ N and a, b ∈ Õ, aB (RP 1,m1) b ⇐⇒ aB (RP q,mq) b.

Proof. We proceed in two steps.

(i) aB (RP 1,m1) b =⇒ aB (RP q,mq) b: Suppose first aB (RP 1,m1) b. There exists an

individual i∗ ∈ N1 and an ordering (i1(1), . . . , i
1
(|N1|)) (implied by some draw f 1 ∈ [0, 1]|N

1|)

such that the agents in front of i∗ in that ordering consume all the objects that i∗ prefers

to b but not b, and i∗ consumes b.

Now consider the q-fold replica. With positive probability, we have an ordering (γ̄(i1(1)), . . . , γ̄(i1(|N1|))),

where γ̄(i) is an arbitrary permutation of γ(i). Under this ordering, each agent in γ(i1(j))

will consume a copy of the object agent i1(j) in the base economy will consume, and

all the agents in γ(i∗) will consume b (despite preferring a over b). This proves that

aB (RP q,mq) b.

(ii) aB (RP q,mq) b =⇒ aB (RP 1,m1) b: Suppose aB (RP q,mq) b. Then, with positive

probability, a draw f q ∈ [0, 1]|N
q | entails an ordering in which the agents ahead of i∗ ∈ N q

consume all of the objects that i∗ prefers to b, but not all the copies of b have been
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consumed by them. List these objects in the order that their last copies are consumed,

and let the set of these objects be Ô := {o1, ...., om} ⊂ O, where ol is completely consumed

before ol+1 for all l = 1, . . . ,m− 1. (Note that a ∈ Ô.) Let i∗∗ be such that i∗ ∈ γ(i∗∗).

We first construct a correspondence ξ : Ô 7→ N1 \ {i∗∗} defined by

ξ(o) :=
{
i ∈ N1 \ {i∗∗} | ∃j ∈ γ(i) who consumes o under f q

}
.

Claim 9. Any agent in N q who consumes ol prefers ol to all objects in Õ \ {o1, ..., ol−1}
under f q. Hence, any agent in ξ(ol) prefers ol to all objects in Õ \ {o1, ..., ol−1}.

Claim 10. For each O′ ⊂ Ô, | ∪o∈O′ ξ(o)| ≥ |O′|.

Proof. Suppose otherwise. Then, there exists O′ ⊂ Ô such that k := | ∪o∈O′ ξ(o)| <
|O′| =: l. Reindex the sets so that ∪o∈O′ξ(o) = {a1, ...., ak} and O′ = {o1, ..., ol}. Let

xij denote the number of clones of agent aj ∈ ξ(oi) who consume oi in the q-fold replica

under f q.

Since
∑l

i=1 xij ≤ |γ(aj)| = q,
k∑
j=1

l∑
i=1

xij ≤ kq.

At the same time, all q copies of each object in O′ are consumed, and at most q − 1

clones of i∗∗ could be those contributing to that consumption. Therefore,

l∑
i=1

k∑
j=1

xij ≥ lq − (q − 1) = (l − 1)q + 1 > kq,

We thus have a contradiction. ‖

By Hall’s Theorem, Claim 10 implies that there exists a mapping µ : Ô 7→ N1 \ {i∗∗}
such that µ(o) ∈ ξ(o) for each o ∈ Ô and µ(o) 6= µ(o′) for o 6= o′.

Now consider the base economy. With positive probability, f 1 has a priority ordering,

(µ(o1), ..., µ(om), i∗∗) followed by an arbitrary permutation of the remaining agents. Given

such a priority ordering, the objects in Ô will be all consumed before i∗∗ gets her turn

but b will not be consumed before i∗∗ gets her turn, so she will consume b. This proves

that aB (RP 1,m1) b. �

Lemma 3. RP 1 is wasteful if and only if RP q is wasteful for any q ∈ N.

Proof. We proceed in two steps.

(i) the “only if” Part: Suppose that RP 1 is wasteful. Then, there are objects

a, b ∈ Õ and an agent i∗ ∈ N1 who prefers a over b such that she consumes b under some

ordering (̃i1(1), . . . , ĩ
1
(|N1|)) (implied by some f̃ 1) and that a is not consumed by any agent
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under (̂i1(1), . . . , î
1
(|N1|)) (implied by some f̂ 1). (This is the necessary implication of the

“wastefulness” under RP 1.)

Now consider its q-fold replica, RP q. With positive probability, an ordering (γ̄(̃i1(1)), . . . , γ̄(̃i1(|N1|)))

arises, where γ̄(i) is an arbitrary permutation of γ(i). Clearly, each agent in γ(i∗) must

consume b even though she prefers a over b (since all copies of all objects the agents in

γ(i∗) prefers to b are all consumed by the agents ahead of them). Likewise, with posi-

tive probability, an ordering (γ̄(̂i1(1)), . . . , γ̄(̂i1(|N1|))) arises. Clearly, under this ordering, no

copies of object a are consumed. It follows that RP q is wasteful.

(ii) the “if” Part: Suppose next that RP q is wasteful. Then, there are objects

a, b ∈ Õ and an agent i∗∗ ∈ N q who prefers a over b such that she consumes b under

some ordering (̃iq(1), . . . , ĩ
q
(|Nq |)) (implied by some f̃ q) and that not all copies of object a

are consumed by any agent under (̂iq(1), . . . , î
q
(|Nq |)) (implied by some f̂ q).

Now consider the corresponding base economy and associated RP 1. The argument of

Part (ii) of Lemma 2 implies that there exists an ordering (̃i1(1), . . . , ĩ
1
(|N1|)) under which

agent ĩ∗ = γ−1(i∗∗) ∈ N1 consumes b even though she prefers a over b.

Next, we prove that RP 1 admits a positive-probability ordering under which object a

is not consumed. Let N ′′ := {r ∈ N1|∃j ∈ γ(r) who consumes the null object under f̂ q}.
For each r ∈ N ′′, we let ør denote the null object some clone of r ∈ N1 consume. In other

words, we use different notations for the null object consumed by the clones of different

agents in N ′′. Given this convention, there can be at most q copies of each ør.

Let Ō := O ∪ (∪r∈N ′′ør) \ {a}, and define a correspondence ψ : N1 → Ō by

ψ(r) := {b ∈ Ō|∃j ∈ γ(r) who consumes b under f̂ q}.

Claim 11. For each N ′ ⊂ N1, | ∪r∈N ′ ψ(r)| ≥ |N ′|.

Proof. Suppose not. Then, k := | ∪r∈N ′ ψ(r)| < |N ′| =: l. Reindex the sets so that

∪r∈N ′ψ(r) =: {o1, ...., ok} and N ′ = {r1, ..., rl}. Let xij denote the number of copies of

object oj ∈ ψ(ri) consumed by the clones of ri in the q-fold replica under f̂ q.

Since there are at most q copies of each object, we must have

k∑
j=1

l∑
i=1

xij ≤ kq.

At the same time, all q clones of each agent in N ′, excluding q− 1 agents (who may be

consuming a), are consuming some objects in O′ under f̂ q, we must have

l∑
i=1

k∑
j=1

xij ≥ lq + q − 1 = (l − 1)q + 1 > kq,
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We thus have a contradiction. ‖
Claim 11 then implies, via Hall’s theorem, that there exists a mapping ν : N1 → Ō

such that ν(r) ∈ ψ(r) for each r ∈ N1 and ν(r) 6= ν(r′) if r 6= r′.

Let O′ ⊂ Ō be the subset of all object types in Ō whose entire q copies are consumed

under f̂ q. Order O′ in the order that the last copy of each object is consumed; i.e., label

O′ = {o1, ..., om} such that the last copy of object oi is consumed prior to the last copy

of oj if i < j. Let N̂ be any permutation of the agents in ν−1(Ō \ O′). Now consider

the ordering in RP 1: (̂i1(1), . . . , î
1
(|N1|)) = (ν−1(o1), . . . , ν−1(om), N̂), where the notational

convention is as follows: for any l ∈ {1, . . . ,m}, if ν−1(ol) is empty, then no agent is

ordered.

Claim 12. Under the ordering (̂i1(1), . . . , î
1
(|N1|)) = (ν−1(o1), . . . , ν−1(om), N̂), a is not

consumed.

Proof. For any l = 0, . . . ,m, let Ol be the set of objects that are consumed by agents

ν−1(o1), . . . , ν−1(ol) under the current ordering (note that some of ν−1(o1), . . . , ν−1(ol)

may be nonexistent). We shall show Ol ⊆ {o1, . . . , ol} by an inductive argument. First

note that the claim is obvious for l = 0. Assume that the claim holds for 0, 1, . . . , l− 1. If

ν−1(ol) = ∅, then no agent exists to consume an object at this step and hence the claim is

obvious. Suppose ν−1(ol) 6= ∅. By definition of ν, agent ν−1(ol) weakly prefers ol to any

object in Õ\{o1, . . . , ol−1}. Therefore ν−1(ol) consumes an object in {ol}∪({o1, . . . , ol−1}\
Ol−1) ⊆ {o1, . . . , ol}. This and the inductive assumption imply Ol ⊆ {o1, . . . , ol}.

Next, consider agents that appears in the ordered set N̂ . By an argument similar to the

previous paragraph, each agent i in N̂ consumes an object in ν(i) ∪ ({o1, . . . , om} \Om).

In particular, no agent in N̂ consumes a. ‖
Since the ordering (̂i1(1), . . . , î

1
(|N1|)) = (ν−1(o1), . . . , ν−1(om), N̂) realizes with positive

probability under RP 1, Claim 12 completes the proof of Lemma 3. �

Proof of Proposition 3. If RP q is ordinally inefficient for some q ∈ N, then either it is

wasteful or there must be a cycle of binary relation B(RP q,mq). Lemmas 2 and 3 then

imply that RP 1 is wasteful or there exists a cycle of B(RP 1,m1), and that RP q′ is wasteful

or there exists a cycle of B(RP q′ ,mq′) for each q′ ∈ N. Hence, for each q′ ∈ N, RP q′ is

ordinally inefficient. �
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