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Abstract

It has been argued in the economic literature that job search through infor-
mal job networks improves the employer–employee match quality, especially
in high wage sectors. This paper argues that inventors’ research collabora-
tion networks reduce the uncertainty of firms about the match qualities of
inventors prior to hiring. We estimate the effect of inventors’ collaboration
networks on their productivity and mobility using the U.S. patent application
database. It is found that network-recruited inventors are more productive
and have longer tenure than publicly recruited inventors. The evidence from
fixed-effect regressions shows that the higher productivity and longer tenure
of network-recruited inventors are not solely attributable to their unobserved
ability. These results are consistent with the job match hypothesis between
inventors and firms through their collaboration networks.
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1 Introduction

It is widely accepted that the mobility of inventors is an important source of knowl-
edge transfer among research firms (e.g., Arrow, 1962; Levin, Klevorick, Nelson,
Winter, Gilbert, and Griliches, 1987; Almeida and Kogut, 1999). Firms use in-
ventors’ mobility to acquire external knowledge for new innovations (Rosenkopf
and Almeida, 2003; Song, Almeida, and Wu, 2003). Yet, it may not be obvious
which inventors firms should hire from their large potential employee pool. The
problem that they may face when hiring inventors is that the job match value is
not ascertained prior to employment. Some hired inventors may be poor matches
for the job they hold and thus turn out to be not as good as they initially appeared
to be. Few studies have considered the job matching process between inventors
and firms. Because a better job match leads to higher inventive productivity, one
of the fundamental issues in the industrial organization literature is to identify a
mechanism that facilitates a good match between inventors and firms. Hence, the
following questions should be addressed: Which source of information do inven-
tors and firms employ to reduce uncertainty about the match quality? How does
such a matching mechanism influence inventors’ mobility and productivity?

Recent developments in the networks literature may offer a clue to the above
research questions. One of the most widely documented facts about job search is
that networks of personal connections, often called old-boy networks or informal
job networks, can be used by employers to assess their job applicants’ motivation,
ability, and likelihood of success. For example, Rees (1966) found that recruit-
ing through informal job networks accounts for about 50 percent and 80 percent
of all hires in white-collar and blue-collar occupations, respectively. Granovet-
ter (1995), in his survey of residents in Newton, Massachusetts, in the late 1960s,
also found that more than half of jobs were obtained through personal connections.
Theoretical studies of networks analysis have studied the implications of the preva-
lence of informal job networks in the labor market by focusing on such functions
of networks as (i) transmission of job opening information (Calvo-Armengol and
Jackson, 2004; Tassier and Menczer, 2008), (ii) screening and signaling employ-
ees’ unobserved abilities (Saloner, 1985; Montgomery, 1991; Casella and Hanaki,
2006), and (iii) reducing uncertainty about employee–employer match quality (Si-
mon and Warner, 1992; Mortensen and Vishwanath, 1994).1 This paper follows
the networks literature and analyzes the effect of inventors’ job networks on their
mobility and productivity.

This paper develops a simple model of search for a good match value. In the
theoretical model we assume that an inventor and a firm match through either net-

1See Ioannides and Loury (2004) for an extensive review of the literature.

2



work recruitment or public recruitment. We posit an inventor as network-recruited
if he was employed by a firm through the reference of his collaborator (or collabo-
rators) with whom he had worked in past research activity. Both inventors and firms
are uncertain about their match value prior to hiring. However, the match value is
less uncertain for network-recruited inventors than for publicly recruited inventors.
A recruiting firm can infer the match value of a potential employee more precisely
if references from his past collaborators is available, and, at the same time, an in-
ventor who uses his collaborator network can estimate more precisely how well (or
how bad) matched he is for the offered position by a potential employer. The main
predictions of our model are (1) network-recruited inventors have higher produc-
tivity, at least initially, than publicly recruited inventors because a good match is
more likely to occur, and (2) they have longer tenure because they are less likely to
be disappointed with their revealed match value and thus are less likely to quit.

This paper examines the predictions of the theoretical model by making use
of the U.S. patent application database provided by National Bureau of Economic
Research (NBER). We recompile the patent data by each inventor. Because the
name of the patent assignee, which is typically the inventor’s employer, is listed in
each patent application, we can track down the companies by which each inventor
had been employed over time and thus can identify the inventors’ employment
histories. In the process of tracing down inventors’ mobility, identification error,
often called the “Who is Who” problem (Trajtenberg, Shiff, and Melamed, 2006),
because of the possibility of multiple name spellings for the same person and the
possibility of the same name for different persons, cannot be avoided . To minimize
the error, we deliberately use a computer matching procedure that has been recently
proposed by Trajtenberg, Shiff, and Melamed (2006).2

The main findings of this paper are as follows: comparing employment du-
rations, network-recruited inventors have significantly longer tenure than publicly
recruited inventors. As for inventors’ productivity, which is measured by the num-
ber of successful patent applications made in a year, network-recruited inventors
are more productive than publicly recruited inventors. But the productivity pre-
mium of a network-recruited inventors disappears within two or three years after
job change. Finally, the evidence from the fixed-effect regression that controls for
individual heterogeneity suggests that the productivity premium is not only a re-
sult of network-recruited workers having higher unobserved abilities than publicly
recruited inventors. All results are consistent with the job match hypothesis that
collaboration networks reduce uncertainty about the match value between inven-
tors and firms.

2Recently, several papers (McHale, 2006; Schankerman, Shalem, and Trajtenberg, 2006; Marx,
Strumsky, and Fleming, 2007; Hoisl, 2007) have employed a similar identification method.
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This paper is related to two strands of literature. First, it is related to the empir-
ical labor literature which estimates the effects of informal job referral on workers’
tenure and wage profiles. Many studies find that workers who use references have
longer employment tenure than those who do not use references (Datcher, 1983;
Topel and Ward, 1992; Simon and Warner, 1992; Loury, 2006). In contrast, the
results are mixed for the effect of job references on workers’ wage profiles. Some
studies present evidence that workers with a referral have higher wage premiums,
at least initially, than workers without a referral (Simon and Warner, 1992; Mar-
maros and Sacerdote, 2002). In contrast, other studies conclude that higher wages
are not necessarily associated with job references. Bridges and Villemez (1986);
Marsden and Hurlbert (1988) find no general and initial wage premium for referred
workers. Kugler (2003) finds that higher wage premiums for referred workers is
only between, not within, industrial sectors. Loury (2006) shows that only young
males who are referred by older-generation male relatives enjoy higher wages, but
no significant job reference effect exists for other groups of workers. Finally, Pel-
lizzari (2004) finds that, using the data of European Union countries, both wage
premiums and penalties exist for referred workers across countries and industries.
Most of these papers study the effect of informal job referrals for general workers,
with the exception of Simon and Warner (1992) who use the 1972 Survey of Nat-
ural and Social Scientists and Engineers and study the role of informal recruitment
methods through personal references in the job search of “scientific researchers”.
Our paper departs from these empirical studies in that we study inventors who
actively engage in research activities and estimate how the existence of personal
connections influences their research productivity and employment duration after
moving into a new firm. Given that our focus is on inventors, we directly esti-
mate the effect of network references on productivities rather than wages. We also
refine the definition of a job reference network. In the previous studies, job refer-
ences through friends, family, acquaintances and relatives are mainly considered to
convey the job match information. In contrast, we use inventors’ research collab-
oration networks as a channel for job information flows. Given that the growing
importance of teams in research is one of the major trends in science nowadays,
we hypothesize that past research collaboration provides rich information for both
inventors and R&D-intensive firms to judge the job potential of an inventor at a
research position.

The second strand of the literature to which this paper relates is the empirical
industrial organization literature which studies the extent of the mobility of inven-
tors and its implications on innovation. Kim and Marschke (2005) analyze the
role of patenting for firms to protect their inventive knowledge against spillovers
through labor mobility. They find that firms’ patenting and inventors’ mobility
are positively correlated. Hoisl (2007) studies the mobility of inventors by using
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the German patent application data and finds that there are simultaneous relation-
ships between inventors’ mobility and productivity. It is shown that inventors with
higher productivity are less likely to move, and at the same time, movers are more
productive than nonmovers. Schankerman, Shalem, and Trajtenberg (2006) study
inventors’ mobility in the U.S. software industry and find no evidence that the
quality of patents increases after their job changes. This suggests that inventor mo-
bility does not necessarily improve the match quality between inventors and firms.
While these studies focus on the relationship between inventor mobility and pro-
ductivity, this paper, in contrast, studies the effects of the job search method on
the mobility and productivity of inventors. According to our hypothesis, match
value is improved when firms and inventors meet through a third-party reference.
Therefore, inventor mobility alone may not necessarily lead to improvement of the
employer–employee match value.

The rest of this paper is organized as follows. Section 2 develops a theoretical
job match model of inventors and provides the hypotheses to be tested. Section
3 describes the dataset we used for estimation. Section 4 explains our empirical
strategies and presents the estimation results. Section 5 concludes.

2 Matching Model

2.1 Behavioral Model

Following the study of Simon and Warner (1992), we use the simple job matching
model by Jovanovic (1984). The simplicity of this model allows us to obtain a
number of comparative static results, which are later used for the empirical analy-
sis.

Consider a situation where an inventor is searching for a job. We assume that
the ith inventor and the jth firm are matched randomly. The ith inventor is maxi-
mize his expected sum of discounted wages given by:

U =
∞∑

t=0

βtwijt. (1)

where β is the discounting factor, and wijt is inventor i’s wage at firm j in period
t.

We assume that the inventor i’s match productivity at firm j is given by θij ,
which is unknown to both the inventor and firm in period t = 0. They can observe
noise-ridden version of the true match value, which is given by θij + εi where εi

is a white noise. It is also assumed that they can observe the true match value θij

after the inventor work at the firm for one period. The firm chooses to pay to the
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inventor i to maximize the expected profit subject to a constraint of zero expected
profit. It is shown by Jovanovic (1984) that one of the best strategy of the firm is
to pay to the inventor the expected productivity of the match value given the firm’s
error-ridden prediction of it, that is, qij = E(θij |θij + εi) in the period t = 1, and
to pay the actual productivity θij in the period t ≥ 2. Therefore, the wage profile
paid by the firm is:

wijt =

{
qij if t = 1
θij if t ≥ 2.

(2)

In what follows, the subscripts i and j are suppressed for notational simplicity.
The probability structure of the job matching process is specified as follows.

Let θ be a match value. The value is assumed to be firm specific. That is, whenever
the inventor applies to a firm, a new productivity θ is drawn independently from
an identical normal distribution with mean µ and variance σθ, that is, N(µ, σ2

θ).
However, once it is drawn, the value does not change over time while at the firm.
As noted above, θ is unobservable, and the firm estimates θ using its noisy signal
(θ + ε). The estimate is paid to the inventor as an entrance wage. We assume that
the noise ε is independently and identically distributed (i.i.d.) following N(0, σ2

ε).
Because of the normality assumptions of θ and ε, the posterior distribution of the
estimate on the productivity θ is also normally distributed with mean q and variance
s2. Bayes’ law implies the following well-known equalities:

s2 =
(

1
σ2

θ

+
1
σ2

ε

)−1

, q = s2

(
µ

σ2
θ

+
θ + ε

σ2
ε

)
.

Thus, the p.d.f. of the posterior distribution of θ is given by f(θ|q, s2) = φ ((θ − q)/s)
and the c.d.f. is given by F (θ|q, s2) = Φ ((θ − q)/s). Note that the estimate q is
a random variable itself, and it follows a normal distribution with mean µ and
variance σ2

q = σ4
θ/(σ2

ε + σ2
θ). The p.d.f. and c.d.f. of the belief q are given by

g(q|µ, σ2
q ) = φ ((q − µ)/σq) and G(q|µ, σ2

q ) = Φ ((q − µ)/σq), respectively. The
true match value θ is assumed to be perfectly revealed both to the inventor and to
the firm at the beginning of period t = 2.

Given the wage schedule, equation (2), the inventor maximizes the expected
sum of discount wages, which is given by equation (1). We assume that, since the
constant match value is paid to the worker as a wage after period t = 2, no decision
occurs after the second period. The decision problem can be solved backwardly.
Suppose that the inventor is employed in period t = 1. At the beginning of period
t = 2, the inventor decides to continue or quit the job when the firm offers him
the match value θ. Let J(θ) be the present value of staying in the job. The present
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value of accepting the offer θ is given by θ+βJ(θ), where β is the discount factor.
If he rejects it, he receives nothing, and becomes unemployed in the next period.
Let W be the present value of being unemployed at the beginning of a period.
Because of the assumption that the match value is invariant once it is realized, we
have the following recursive equation for J(θ) such that:

J(θ) = max {θ + βJ(θ), βW} (3)

The decision of staying or leaving the job at the end of period t = 1 is character-
ized by a reservation value, θ∗, below which the inventor leaves the job. J(θ) is,
therefore:

J(θ) =

{
θ

1−β if θ ≥ θ∗

βW if θ < θ∗
, (4)

where the reservation value is given by:

θ∗ +
βθ∗

1 − β
= βW

⇒ θ∗ = β(1 − β)W. (5)

Given the inventor’s decision in period t = 2, we now turn to the decision
problem at the beginning of t = 1. Suppose that the inventor is offered an entrance
wage q by the firm. If he accepts the job offer, his expected present value is given
by q + β E[J(θ)]. Because the posterior distribution of θ is N(q, s2), the expected
value of the decision to stay at the job is computed by:

E[J(θ)] =
∫

J(θ)dF (θ|q, s2)

=
∫

J(θ)dΦ((θ − q)/s) . (6)

Therefore, the present value of accepting the offer q is given by:

V (q) = max {q + β E[J(θ)], βW}

= max
{

q + β

∫
J(θ)dF (θ|q, s2), βW

}
. (7)

The value function V (q) is monotonically increasing in q, and thus the decision
whether to accept the job offer is characterized by the reservation wage q∗ that
satisfies:

q∗ + β

∫
J(θ)dF (θ|q∗, s2) = βW. (8)
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Given that J(θ) is determined by equation (4), we have the following relationship:

q∗ = θ∗ − β

1 − β

∫
θ∗

(θ − θ∗)dF (θ|q∗, s2). (9)

Because the second term of the right-hand side of equation (9) is positive, θ∗ >
q∗. That is the reservation value in the second period is always larger than the
reservation wage in the first period.

2.2 Role of Collaboration Networks

Suppose that when a firm recruits inventors, its current employees can recommend
someone with whom they have collaborated before. Of course, the firm can hire
an inventor without a referral. We categorize inventors into two groups based on
whether they are recruited with or without a referral from their collaborators. Let
us call those inventors recruited with a referral network-recruited (k = N ) and
those without publicly recruited (k = P ).

Let σ2
εk be the error variance to the productivities of inventors in group k . We

assume that referrals based on past collaboration are informative so that firms can
predict the productivity of a network-recruited inventor more precisely than that of
a publicly recruited inventor. That is, σ2

εN < σ2
εP is assumed. For inventors in

group k, let qk be the entrance wage, and let θk be the match value.
We first analyze how employment duration is affected by the recruiting method.

Recall that the firm and inventor can perfectly observe the true match value θ at
the beginning of the second period. The inventor leaves the job if it is less than
the reservation value θ∗. Therefore, the probability that an inventor leaves at the
employed firm is given by∫ θ∗

dF (θ|qk, s
2
k) = Φ

(
θ∗ − µ

sk

)
.

It can be easily shown that this probability is increasing function of σ2
εk. Because

σ2
εN < σ2

εP , the public recruited inventors are more likely to leave the employed
firm than the network recruited inventors. This observation leads to the following
propositon about employment duration.

Proposition 1 The network-recruited inventors will have longer employment du-
ration than the publicly-recruited inventors.

Logically, a network-recruited inventor is less likely to quit his job than a publicly-
recruited inventor because he, employed through a collaboration network, is more
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likely to have a “good match”, and is thus less likely to be disappointed with his
match value with the firm. Therefore we have the following proposition.

We now turn to the effect of referrals on the average productivity in the first
period. For simplicity, we assume that firms employ referred and nonreferred in-
ventors with probability p and 1−p, respectively. Then the value of unemployment,
W , is given by:

W = pE[V (qN )] + (1 − p) E[V (qP )],

= p

∫
V (qN )dG(qN |µ, σ2

qN ) + (1 − p)
∫

V (qP )dG(qP |µ, σ2
qP ),

where σ2
qk = σ4

θ/(σ2
εk + σ2

θ) for k = N,P . It is important to note that the reser-
vation value θ∗ does not depend on the existence of referrals because it is given by
equation (5). On the other hand, the reservation wage q∗ depends on whether the
inventor is network recruited or publicly recruited. According to equation (9) the
reservation wages are provided by:

q∗k = θ∗ − β

1 − β

∫
θ∗

(θ − θ∗)dF (θ|q∗k, s2
k),

where s2
k is the variance of the posterior distribution of θ for type k inventors.

Note that
∫
θ∗(θ − θ∗)dF (θ|q∗, s2) is increasing in s2 = (1/σ2

ε + 1/σ2
θ)

−1, and
thus increasing in σ2

ε . The order of prediction precision σ2
εN < σ2

εP implies that
q∗N > q∗P . It thus implies that the reservation wages of network-recruited inventors
are higher than those of publicly recruited inventors.

Given the entry wage q offered by a firm, a type k inventor accepts the offer,
and is employed by the firm if it is above the reservation wage q > q∗k for k = N,P .
Therefore, the mean productivities for type k inventor are given by

E(θ|q > q∗k) =

∫
θ
[∫

q∗k
φ ((θ − q)/sk) φ ((q − µ)/σqk

) dq
]
dθ

Φ
(
(µ − q∗k)/σqk

) .

The numerator can be computed as:∫
q∗k

[∫
θφ ((θ − q)/s) dθ

]
φ ((q − µ)/σqk

) dq.

Because q =
∫

θφ ((θ − q)/s) dθ, we obtain the following result:

E(θ|q > q∗k) =

∫
q∗k

qφ ((q − µ)/σqk
) dq

Φ
(
(µ − q∗k)/σqk

) = E(q|q > q∗k). (10)
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It can be easily seen that E(q|q > q∗k) is an increasing function of q∗k, and so is
E(θ|q > q∗k) given the result (10). As shown above, we have q∗N > q∗P . It is thus
implied that:

E(θ|q > q∗N ) > E(θ|q > q∗P ).

This result implies the following proposition.

Proposition 2 The network-recruited inventors exhibit a higher initial productivity
than the publicly recruited inventors, on average.

The intuitive reason for network-recruited inventors tending to show higher pro-
ductivity than publicly recruited inventors is as follows: if the firm is more certain
about a recruited person’s match value, a mismatch is less likely to occur. Thus,
the referrals allow the firm to select more inventors having a “good match”, and,
at the same time, allow more inventors to self-select themselves into the jobs in
which they are more productive.

We turn to the mean productivity of inventors in the second period. The be-
havioral model implies that the inventors whose match values are less than θ∗

have left the firm. Therefore, the productivity in the second period is given by
E(θ|q > q∗k, θ > θ∗). Note that the conditional density function of θ given the
event that (q > q∗k) ∩ (θ > θ∗) occurs is provided by:

R

q∗
k

f(θ|q,s2
k)g(q|µ,σ2

qk)dq

Prob[(q>q∗k)∩(θ>θ∗)] =
R

q∗
k

φ((θ−q)/sk)φ((q−µ)/σqk)dq

Prob[(q>q∗k)∩(θ>θ∗)] if θ ≥ θ∗

0 if θ < θ∗.
(11)

We show in the appendix that the mean productivity in the second period is given
by:

E(θ|q > q∗k, θ > θ∗) =

∫
q∗k

[q + sλ ((q − µ)/sk)]φ ((q − µ)/σqk
) dq∫

q∗k
Φ((µ − q)/sk) φ ((q − µ)/σqk

) dq
, (12)

where λ(t) ≡ φ(t)/(1 − Φ(t)) is the inverse Mill’s ratio. Recall that the mean
productivity in the first period is given by equation (10). Comparing equation (10)
with equation (12), and because sλ ((q − µ)/σqk

) ≥ 0 for any q, we can say that:

E(θ|q > q∗k) ≤ E(θ|q > q∗k, θ > θ∗).

We therefore have the following proposition.

Proposition 3 The average productivity weakly increases with tenure.
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It should be noted that, because our model assumes no human capital accumulation,
the average productivity grows with tenure to the extent that inventors having lower
match values leave their firm as time passes.

Following Simon and Warner (1992), we consider the use of referrals in terms
of the limiting case where σ2

εN → 0, while σ2
εP is strictly positive for the publicly

recruited inventors. Noting that s2
N = (1/σ2

θ +1/σ2
εN )−1, σ2

εN → 0 implies s2
N →

0. Furthermore, σ2
εN → 0 implies σ2

qN → 0, and thus Φ((q − µ)/σqN ) → 1.
Therefore, according to equation (12), we can see that, for the network-recruited
inventors,

E(θ|q > q∗N ) = E(θ|q > q∗N , θ > θ∗).

This implies the following proposition.

Proposition 4 The publicly recruited inventors have higher productivity growth
than the network-recruited inventors as tenure increases.

The intuitive reason why the average productivity growth is higher for publicly
recruited inventors than network-recruited inventors is that the former are more
likely to be “mismatched” , and many of them switch firms, sooner or later, once
their true match value is revealed. Thus, the group average of the productivity of
publicly recruited inventors increases with tenure. On the other hand, network-
recruited inventors who have good match values are less likely to switch firms.
Therefore their productivity is less susceptible to change.

3 Data

We base our analysis on the NBER Patent Data File.3 This dataset covers all the
patent applications between 1963 to 1999 and granted up to December 1999. For
each patent, the list of inventors, assignee, and year of application are recorded,
along with other information such as address of inventor, type of assignee, and
technological category of the patent. We supplement the month of patent applica-
tion with the USPTO PatentBIB database. The NBER Patent Data File contains the
patent citations that were applied for after 1975. Because the citation information
is required to identify unique inventors, as described below, the patents that were
applied for before 1974 were excluded from our sample. It should be noted that
many patents that were applied for in 1998 and 1999 are missing from the database
because there is often a lag of a few years before patents are granted.4 Therefore,

3For detailed information, see Hall, Jaffe, and Trajtenberg (2001)
4For example, Hall, Jaffe, and Trajtenberg (2001) show that the average time lag between the

application and grant date in the late 1990s was 1.8 years.
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we use the patents that were applied for between 1975 (the first year in which
citation information is available) and 1997 (the latest year in which the effect of
truncation is not substantial) in our analysis.

3.1 Employment History

In order to analyze the mobility of inventors, we are required to identify, for each
inventor in the dataset, his affiliation over time from the information contained in
the patents. This, however, is not a simple task because the same inventor may
have his name spelled differently across his patents, or different inventors may
have the same name. To overcome this difficulty, we follow the computerized
matching procedure (CMP) proposed by Trajtenberg, Shiff, and Melamed (2006)
in identifying inventors. In doing so, CMP utilizes not only the name of inventors
recorded in the patents, but also patent citations, and inventors’ addresses, while
allowing for the possibility of spelling errors in names.5 In addition, to increase
the accuracy of matching individual inventors, we focus on the inventors whose
addresses are in the U.S.

Once inventors are identified, the history of granted patents is generated for
each inventor. Furthermore, based on the application dates and assignees of those
patents, we create his employment history. Our basic strategy is to consider the
longest possible employment durations by assuming that an inventor was employed
by an assignee for all the period during which he applied for patents assigned to
the assignee.

It should be noted, however, that if companies undergo a merger or acquisi-
tion, the acquired company appears under the name of the acquiring company after
the official date of merger. To avoid identifying changes in the assignee’s name
because of M&A as changes in the inventor’s employer, we supplement our data
by SDC Platinum, the Worldwide Mergers and Acquisitions Database, issued by
Thomson-Reuters. Among all the M&As since 1979 that are reported in SDC Plat-
inum, we select the cases where the acquiring company obtains all the stock of the
target company. We then consider those two companies to be in a parent–subsidiary
relationship and treat them as one company after the merger. We also subsample
the inventors whose lists of assignees are categorized as private companies located
in the U.S.6

Let us now describe, in detail, how we construct the employment histories for

5The details of this procedure are summarized in the appendix.
6To identify the type of assignees listed in the patent application data we utilize the corporate and

noncorporate name matching results available from Bronwyn Hall’s web page of The Patent Name-
Matching Project (http://elsa.berkeley.edu/∼bhhall/pat/namematch.html). In
this analysis, we exclude assignees categorized as government institutions, universities and hospitals.
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inventors. As noted above, our basic strategy is to consider the longest possible em-
ployment durations. We list all the assignees of the patents listed in the individual
history. Then, given the listed assignees, we take the earliest and the latest patent
application dates, and consider the interval between the two dates as a candidate
job spell (CJS).7

After identifying all the CJSs and sorting them based on their starting date,
(1) we first eliminate all the CJSs that are contained entirely within a longer CJS.
We assume that those patents that have created such shorter CJSs are the result
of interassignee collaborations, and the inventor continued to be employed by the
original employer during such collaborations.8 (2) Among the remaining CJSs, we
drop CJSs that overlap with each other. We do this because we are unable to deter-
mine when the inventor moved from one assignee to another. This criterion is quite
stringent, and creates many empty, and often long, intervals in inventors’ employ-
ment histories. Yet we have chosen to follow the rule because our aim is not to have
a complete employment history of all the inventors but to analyze the job tenures
and productivities of inventors for the periods of employment that are defined as
clearly as possible. We consider the CJSs that have survived these two elimination
processes as valid job spells (to be called job spells, below). Furthermore, during
each job spell, we assume that the inventor was employed by the corresponding
assignee.

The procedure is summarized in Figure 1. The inventor shown in the figure
applied for 11 patents under five different assignees. Given that Pij indicates the
application date of the j-th patent that this inventor applied for under assignee i,
the figure shows that we have five CJSs. Because CJS3 is contained in CJS2, it is
dropped. Furthermore, because CJS4 and CJS5 overlap with each other, they are
dropped as well. As a result, CJS1 and CJS2, shown in bold and with arrows, are
considered as job spells, during which the inventor obtained three and four patents,
respectively.

Given the data construction procedure presented above, we find 51,896 inven-
tors who experienced at least one job change. For those inventors, 115,307 job
spells are identified9.It is found that More than 95 percent of those inventors had
only either two or three spells.

7We allow CJSs whose spell length is zero, which happens when an inventor applied for all the
patents from an assignee within a month.

8A similar assumption is made by previous studies (e.g., Hoisl, 2007).
9We find that the total number of CJSs is 118,447. This implies that the identified job spells

(115,307) account for 97 percent of the total CJSs.
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3.2 Recruitment Method

We can obtain information concerning the recruiting method, whether network re-
cruited or publicly recruited, from the patent collaboration histories embodied by
colisted inventors. In doing so, we define the set of collaborators of inventor i on
date t by all the inventors who are colisted in the patents investor i has applied for
(and later granted) before date t. For example, for the inventor shown in Figure 1,
the set of collaborators on date P21 constitutes all of the coinventors listed in the
three patents applied for during spell 1 (those applied for on P11, P12, and P13).
Given the set of his collaborators, we identify collaborator i as network recruited
if at least one of his collaborators is employed by the same firm at the beginning of
inventor i’s job spell. If this is not the case, inventor i is considered to be recruited
publicly.

It is possible that more recently established collaborations may generate more
meaningful referral. Therefore, in the analyses below, we also consider more re-
stricted sets of collaborators in defining network recruitment. Namely, in addition
to the set of collaborators defined above (we call these “overall collaborations”),
we also consider sets of collaborators at time t based on the successful patents that
have been applied for within 12, 24, and 36 months prior to date t.

Using the definition of the overall collaboration network that encompasses all
the past collaborations, we find that 10,758 jobs are originated via network recruit-
ment, which corresponds to 9.33 percent of total jobs. If the collaboration network
is restricted to 12, 24 and 36 months, the network-recruited jobs are 2,538 (2.20
percent), 5,081 (4.41 percent) and 6,794 (5.89 percent) respectively.

4 Empirical Results

In this section, we first examine the prediction presented by our theoretical model
that employment durations are different between network-recruited inventors and
publicly recruited inventors. We then examine the predictions of the model that
productivities are also different between these two groups of inventors.

4.1 Employment Duration Results

Network-recruited inventors, with relatively better match values, should be less
likely to leave firms than publicly recruited inventors, as presented by Proposi-
tion 1. We test this hypothesis using employment duration data. Because no in-
ventors are recruited via collaboration network for the first jobs, we examine this
hypothesis only for subsequent jobs of inventors who switched their jobs at least
once. So, the first job spells are excluded from the estimation samples.
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Figure 2 plots the survival curves for employment duration after job transition
for network-recruited inventors and publicly recruited inventors respectively. We
follow the definition of network recruitment as presented in the previous section.
Because the observed job spell data are interval censored,10 we employ a non-
parametric maximum likelihood estimator for interval censored data proposed by
Turnbull (1976). It is shown that the employment duration is almost uniformly
longer for network-recruited inventors than for publicly recruited inventors.

Table 1 contrasts the median employment durations between publicly recruited
inventors and network recruited inventors for the four collaboration networks we
have considered. It shows that the median employment duration is always longer
for network-recruited inventors than for publicly recruited inventors. We use the
log-rank statistic (Peto and Peto, 1972) to test the equality of the survival functions
between these two groups, and find that all of these tests are strongly rejected
at the 1 percent significance level. We find that median employment duration is
71 months for publicly recruited inventors and 93 months for network-recruited
inventors. That is, it takes about six years (eight years) for half of publicly recruited
(network-recruited) inventors, respectively, to leave firms.

We also estimate hazard regression models of inventors’ job turnover, control-
ling for their characteristics. The hazard function is given by Weibull specification
with h(tif |Xif ) = exp(Xifβ + δNETif )αtα−1

if where tif is inventor i’s employ-
ment duration at firm f , and Xif is a vector of time-invariant individual charac-
teristics. We explicitly control the network recruited dummy, NETif which takes
a value of one if inventor i is a network-recruited inventor at firm f and zero oth-
erwise. According to Proposition 1, we expect that δ < 0, that is, the network
recruited inventors are less likely to leave the employed job than the publicly re-
cruited inventors. As other explanatory variables, Xif , we include the years of
research experience before being employed by firm f . It is given by the number of
years since the inventor i applied patents for the first time until the time when he
is employed by firm f . We also include research field dummies. The research field
dummy is defined for the six main technological categories (m = 6): chemical (ex-
cluding drugs), computers and communications, drugs and medical, electrical and

10Our job spell data are interval censored because the value is known to lie in an interval, instead
of being observed exactly. To understand this, for example, consider a researcher who changed
firms twice, say, firstly from firm f1 to firm f2, and secondly from firm f2 to firm f3. Given the
employment histories constructed by the patent file, we know that he entered firm f2 sometime after
the calendar month, r1, at which time he applied for a patent at firm f1 for the last time, and sometime
before l2 at which time he applied for a patent at firm f2 for the first time. Similarly, we know that
he stayed at firm f2 at least until r2 at which time he applied for a patent at firm f2 for the last time,
and not after l3 at which time he applied for a patent at firm f3 for the first time. In that case, the job
spell at firm f2, denoted by t2, is interval censored data with (l2 − r2) < t2 < (l3 − r1).
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electronics, mechanical, and others.11 The mth field dummy takes a value of one
if inventor i has applied for a patent in the mth field at firm f in year t. Finally, we
include the total number of patents and the annual average number of patents that
inventor i applied before firm f . They are used as proxies for inventor’s research
ability.

Table 2 presents the estimation results of the hazard regression model. As in
the survival curve analysis, interval censoring is taken into account for estima-
tion. We use the total number of previously applied patents in column (1) and use
the average number of previously applied patents in column (2) to control for the
inventor’s ability, respectively. In both specifications, it is presented that the coef-
ficient δ is negative and statistically significant, and thus the network recruitment
method significantly decreases the hazard of leaving the employment. Therefore,
it is interpreted that the network-recruited inventors are likely to stay longer than
the publicly recruited inventors. In column (3)-(5), we use various network recruit-
ment measures that limit the intervals after the collaborations were made. It is also
presented that the estimates of the coefficients of network-recruited dummies are
significantly negative in all specifications. These estimates imply that the network
recruited inventors are about 40 percent less likely to leave the job than the publicly
recruited inventors.

4.2 Productivity Results

Our theoretical model presents two main empirically testable hypotheses about in-
ventors’ productivity. The first hypothesis is given by Proposition 2 that network-
recruited inventors have higher initial productivity than publicly recruited inven-
tors. The second hypothesis is given by Proposition 4 that within-firm productiv-
ity growth rates are different between publicly recruited inventors and network-
recruited inventors; in particular, the former has a steeper productivity-tenure pro-
file than the latter.

To examine these hypotheses, we introduce a regression framework. The de-
pendent variable of the regression is the number of successful patent applications
made by an inventor in one year, which is considered to be a measure of the in-
ventor’s productivity. Because the dependent variable is an integer variable with
many zeros and ones, we use Poisson-based specification as in Hausman, Hall, and
Griliches (1984); Hall and Ziedonis (2001). Consider an inventor i who works at
firm f . We assume that the expected number of patents, Pift, applied for by the in-
ventor in year t, conditional on the characteristics of the inventor and firm is given

11We follow the technological category definition of Hall, Jaffe, and Trajtenberg (2001)
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by:

E(Pift|Xift,Wft, NETif ) = exp(α + Xiftβ + Wftγ + ρNETif ), (13)

where Xift is a vector of individual-firm time-specific variables and Wft is a vector
of firm time-specific variables.

A key variable in our specification above is the network-recruited dummy,
NETif , which takes a value of one if inventor i is a network-recruited inventor
at firm f and zero otherwise. The scalar coefficient ρ of the network-recruited
dummy can be interpreted as the productivity premium for network-recruited in-
ventors over publicly recruited inventors. According to Proposition 2, we expect
that there is a positive productivity premium.

As individual-firm-time specific variables, Xift, we include the years of poten-
tial research experience since the inventor i applied patents for the first time; and
the years of tenure at firm f . Both years are measured as of period t. While the
years of research experience are accumulated over time, the years of tenure are re-
setted to be zero whenever the inventor switched his jobs. We also include research
field dummies for m = 6 categories. The total and the annual average numbers of
patents that the inventor i applied befor firm f are included in the regression. As
in the hazard regression, they are used as proxies for the inventor’s innate research
ability. As firm-time-specific variables Wft, we include the total number of patents
that were applied by all inventors employed at firm f during year t. This variable
is considered to be a proxy for the research capacity of the firm. It is expected that
the higher the firm’s research capacity, the more patents the firm produces, and vice
versa.12 Following the previous literature (e.g., Hall and Ziedonis, 2001), we also
include annual dummies, which accounts for the growth of patenting propensities.

We estimate the Poisson regression model (13) presented above using the dataset
described in Section 3. We again restrict samples to the inventors who experienced
at least one job transition because no inventor is recruited via his collaboration net-
work for the first job. It thus implies that we estimate the effect of referrals on
inventors’ productivity after switching firms.13 As should be clear from the above
discussion, the data have an unbalanced panel structure with individual-firm-year
being the unit of analysis. The data include 286,955 units of observation for 51,896
inventors. Table 3 shows the summary statistics of the patent counts and main ex-
planatory variables used in the regression analysis.

12Often research capacity of a firm is measured by its R&D expenditure. We do not use it here
because in our sample there are firms that are not listed on the stock market and such data are not
available.

13The effect of network job referrals on the first employment productivity of workers, although
they are not necessarily inventors, is analyzed by Simon and Warner (1992); Loury (2006).
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Table 4 presents the estimation results of the baseline model.14 In addition to
the variables that are explained above, we included the first year tenure dummy
that takes a value of one for the inventor who was in the first year of employment.
The variable is included to control for our job spell construction property that at
least one patent is included in the first tenure year. We report the heteroskedasticity
robust standard errors in parentheses. They are known to be consistent even under
misspecification of the distributional assumption.15

Column (1) shows the estimation result using the network recruited dummy
constructed from the overall collaboration network. In this specification we in-
clude the total number of patents applied in the previous job as a proxy for the
inventor’s research ability. It is presented that the estimated coefficient of years
of potential research experience is negative and statistically significant while the
estimated coefficient of years of tenure is insignificant. In column (2) we include
the square terms of these variables to allow for non-linear effects of these variables
on productivity. It is shown that the change in productivity is not linear with the
change in potential research experience but follows convex relationship. On the
other hand, the years of tenure is found to have almost no significant impact on
patent productivity. We recognize that these experience and tenure years variables
might be strongly correlated with unobserved ability of the inventor, and thus may
be endogenous 16. So, these estimates should be taken with caution. In later section
we will consider more seriously the problem of the individual unobserved factors
that make some explanatory variables endogenous.

As for the other control variables, the estimates are consistent with our prior
expectation. The estimated coefficient of the aggregate number of patents held by
a firm presents that, as expected, inventors who worked at a high-research-capacity
firm are more productive than those who worked at a low-research-capacity firm.
The estimated coefficients of research field dummies show that “Chemical” is the
most patent active research area during the sample period, followed by “Drugs and
Medical” and “Computers and Communications.”

In column (3) we use the average number of previously applied patents, instead
of the total number of previously applied patents, as a proxy for their research abil-
ity. The estimation result shows that the coefficient is positive and statistically
significant. The estimated coefficients of all other explanatory variables are qual-

14In this and the following tables, the estimates of the annual dummies and research field dummies
are not reported. All estimation results are reported in appendix.

15See Gourieroux, Monfort, and Trognon (1984) for a detailed discussion.
16For example, a person with higher ability will stay being an active patent inventor longer, so that

his research experience will become larger. Even though we include the numbers of the previously
applied patents to control for the inventors’ ability, we may not be able to exclude the possibility that
there is still unobserved individual ability left.

18



itatively identical to those in the previous specifications. So, we might be able to
say that there is no significant difference in regression estimates no matter of which
variable, either total or average, is used to controll for inventors’ ability. Given that
the average number of patents is more susceptible to interval censoring of employ-
ment duration than the total number of patents, we will use the total number of
previously applied patents as a proxy for inventors’ ability in what follows.

An impoprtant finding in Table 4 is that, in column (1) – (3), the estimates of
productivity premium for the network recruited inventors, ρ, are all positive and
statistically significant. This finding is consistently observed in columns (4) – (6)
in which collaborations only from limited intervals before the job switch are con-
sidered. It should be noted that the estimated productivity premiums are positive
even after controlling the proxies for the inventors’ ability. All these estimation
results confirm that network recruited inventors are more productive than publicly
recruited inventors. More interestingly, we find that the productivity premium for
network recruited inventors increases as the coverage period of collaboration net-
works becomes shorter. It suggests that better job matches are more likely to occur
between inventors and firms if referrals are based on more recent collaborations.
This result is consistent with our view that the collaboration network is a method by
which agents get information about unobserved match quality, and the more recent
the information is, the more certain they are about the quality of their match.

We now turn to the second hypothesis that within-firm productivity growth is
different between network-recruited and publicly recruited inventors. In order to
examine this hypothesis, we add the interaction terms of the network-recruited
dummy and tenure dummies to the baseline regression model (13). The regression
model is then given by:

E(Pift|Xift,Wft, NETif ) =

exp(α + Xiftβ + Wftγ +
K∑

k=1

ρk(NETif · Tenureiftk), (14)

where Tenureiftk is the kth tenure year dummy for inventor i at firm f , and takes
one if inventor i is employed in kth year by firm f . In this within-firm productivity
growth regression, the coefficient ρk of the interaction term captures the produc-
tivity premium for network-recruited inventors over publicly recruited inventors
observed in the kth tenure year. A higher value of ρk means that the network-
recruited inventors have a higher productivity than publicly recruited inventors in
tenure year k. As can be shown easily,

∑
k ρk = ρ. Although the model assumes

that agents learn about the true value of productivity after one period, such learning
may take place over several years in reality. Therefore, given the hypothesis that
within-firm productivity growth is faster for the publicly recruited inventors than
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for the network-recruited inventors, it is predicted that the coefficient ρk is weakly
decreasing with tenure year k, i.e., ρ1 ≥ ρ2 ≥ · · · ≥ ρK .

Table 5 presents the estimation results for the within-firm productivity growth
regression model (14). The set of controls other than the network-recruited dummy
are the same as before. Because of the space limitation, only the estimates of the
coefficient ρks up to 10 years are presented. The full estimation results are found
in appendix.

The estimation results show that the estimates of the coefficients ρk of the
interaction terms are only significant for the initial tenure years for all specifi-
cations. In the best specifications, given by Column (2), (4), (5) and (6), these
coefficients for the first four to six tenure years are positive and statistically sig-
nificant, while they become negative but insignificant for later tenure years. These
estimation results imply that the initial positive productivity premium for network-
recruited over publicly recruited inventors diminishes with tenure years, and the
productivity difference between the two groups disappears in the end. This result
is consistent with the hypothesis that publicly recruited inventors have a steeper
tenure-productivity profile than network-recruited inventors, and thus supports the
hypothesis presented by our theoretical model.

4.3 Controlling for Unobserved Heterogeneity

The estimation results presented above indicate that the positive productivity pre-
mium for the network recruited inventors are consistent with our theory that the
past research collaborations may create better matches between inventors and firms.
However, it is possible to deliver an alternative explanation to such a story. As
often argued in the previous literature (e.g., Montgomery, 1991; Saloner, 1985),
more productive workers may receive more referral offers, and thus referrals may
be strongly correlated with the unobserved ability of an inventor. If this is the case,
the observed productivity difference between the network recruited and publicly
recruited inventors can be explained by the difference in the unobserved ability
between these groups. As discussed in Simon and Warner, however, the observed
difference in the average productivity growth between the two groups cannot ex-
plained by the alternative theory presented above. It can be consistently explained
by the exit of mismatched inventors as our matched-base theory predicts. Thus,
the previous estimation results on different within-firm productivity growth pat-
tern may support for our theory that firms and inventors might rely on research
collaboration networks to collect information about their match quality.

In what follows, furthermore, we will present more direct support for our pro-
ductivity match hypothesis. Given a panel structure of our data set, we may be able
to control for the time-invariant unobserved individual factors, including inventor’s
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innate research abilities, by incorporating fixed effects in the productivity regres-
sion model. For that purpose we augmented the baseline regression model (13) by
adding an individual time-invariant fixed effect:

E(Pift|Xift,Wft, NETif ) = exp(αi + Xiftβ + Wftγ + ρNETif ). (15)

The fixed-effect, αi, captures inventor i’s unobserved heterogeneity that affects his
overall research productivity. By the same token, we incorporate the fixed-effect
term αi into the within-firm productivity growth regression model (14) .

Table 6 and 7 presents the estimation results from the fixed-effect specifica-
tions.17 Table 6 presents the estimation results for the baseline model while Table
7 presents the estimation results for the within-firm productivity growth model.

Table 6 shows that, for all definitions of network recruitment reported in columns
(1)–(4), the productivity premium ρ is again positive and statistically significant,
at least, at the 1 percent level. Furthermore, the effect increases among the more
recent collaborations, as was found in Table 4. Thus, our hypothesis that the col-
laboration networks bring about better matches between inventors and firms is sup-
ported even after controlling for unobserved heterogeneity among inventors.

Table 7 shows the estimated coefficients of the interaction term, ρk. The inter-
action terms up to of the nineth tenure year are positive and statistically significant
at less than the 10 percent level for all the specifications for the overall collabora-
tion network, and they are significant up to the eight tenure year if the collaboration
with limited intervals are used. Furthermore, it can be seen that the estimated pro-
ductivity premiums are not significant after those years. In particular, the estima-
tion results show that the productivity premium for the network-recruited inventors
are persistent only in the early phase of tenure, and disappears quickly after these
periods. These results confirm our hypothesis that network-recruited inventors are
initially more productive than publicly recruited inventors, but the productivity ad-
vantage disappears with tenure, and as the fixed effect estimation results show, the
convergence of productivity between the two groups occurs within from eight to
nine years. It suggests that inventors learn their match productivity rather quickly
after moving into a new firm.

Looking at the estimated coefficients of explanatory variables other than net-
work recruitment dummies, it can be also noticed that the coefficient of the total
number of patents in the previous employment are negative and statistically signif-
icant for all specifications under the fixed effect specification 18. This is contrast

17The full estimation results are presented in the appendix.
18The same estimation results are also found in the fixed-effects regression where we use the aver-

age number of the patents that were applied in the previous jobs, instead. The estimated coefficient
is found to be negative and statistically significant.
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with the estimates in Table 4 and Table 5 when we ignore the unobserved individual
factors, and found that the estimated coefficients were positive and statistically sig-
nificant. One explanation for these findings is that the total number of previously
applied patents may capture some part of individual ability, so that it is positively
associated with inventors’ productivity. Yet, once time-invariant individual ability
is controlled by fixed effect, the variable may represent a genuine match value in
the previous employment. Thus the estimation results indicate that, after inven-
tors’ ability is taken into account, the match values between the past and present
employment may be negatively correlated. Our simple search model does not pre-
dict this empirical regularity, so that the further extension of the theoretical model
is needed in the future research.

Finally it is apparent from Table 6 and Table 7 that there is a significant pos-
itive relationship between research experience and patent productivity. Further-
more, although the relationship is less clear in Table 6, it is presented in Table 7
that within-firm tenure is significantly associated with productivity though the as-
sociation is nonlinear with concave relationship. This finding is partly compatible
with Proposition 3 stating that the average productivity increases with tenure, al-
though the existence of the peak in the average productivity over tenure cannot be
fully explained by our model. Perhaps, other factors, such as job adjustment or job
training, may affect the tenure-productivity profile. The development of a model
that fully accounts for those factors is left for future research, once such data is
available.

5 Conclusion

This paper develops a simple model of job match between inventors and firms
through research collaboration networks. The model’s prediction is tested using
panel data of affiliations and productivities of inventors constructed from the NBER
patent database. The empirical analysis supports the prediction of the theoretical
model. It was found that inventors who moved to companies where their collab-
orators were employed had about two years longer tenure in median employment
duration than those who moved to companies with which they had no personal con-
nections. Moreover, on average the former group produced more patents by about
20 percent than the latter group. Finally, the fixed-effect estimates of the produc-
tivity premium show that unobserved individual characteristics cannot explain all
of the productivity difference between network-recruited inventors and publicly
recruited inventors. Thus some of the productivity premium can be attributed to
improved match quality by the reference through the collaboration network.

Our findings suggest that firms use interfirm research collaboration networks
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not only as a way of exploiting external knowledge, as previously reported (Singh,
2005), but also as a way of recruiting inventors with good match values. This
unique role of collaboration networks as a recruiting method has been played down
by previous studies. The empirical analysis of this paper thus offers a speculation
that firms with higher connectivity in R&D networks can recruit better matched
inventors than those with lower connectivity. This may explain the observed re-
lationship between firms’ inventive productivity and their network connectivity in
R&D networks (Ahuja, 2000; Schilling and Phelps, 2007). Thus a future extension
of this paper will analyze the relationship between firms’ R&D network position
and employer–employee match value in patent production. This will be a step for-
ward in understanding the mechanism of how the global R&D network structure
influences firm-level innovation.
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Table 1: Median Employment Durations

OVERALL LIMITED INTERVAL†

COLLBORATION COLLABORATION

WITHIN 36 WITHIN 24 WITHIN 12
Publicly Recruited 71 75 78 82
Network Recruited 93 110 117 124
Log-Rank -10.33 -8.16 -7.99 -5.32

(3.56) (2.84) (2.56) (1.73)

NOTE.– Standard errors are in parentheses. All test results are statistically significant
for χ2 test at less than one percent level (p < .01). † Collaborations from limited
intervals before the job switch are considered. The Intervals are within 36 months, 24
months, and 12 months before the job switch.
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Table 2: Weibull Hazard Regression Results

OVERALL LIMITED INTERVAL

COLLBORATION COLLABORATION†

WITHIN 36 WITHIN 24 WITHIN 12
(1) (2) (3) (4) (5)

Network referral dummy: δ −.5058 −.4675 −.4325 −.4269 −.4395
(.031) (.030) (.039) (.044) (.060)

Field dummies:
Chemical −1.2045 −1.1882 −1.2110 −1.2136 −1.2171

(.031) (.031) (.031) (.031) (.031)
Comp.& Comm. −1.0751 −1.0771 −1.0783 −1.0782 −1.0783

(.035) (.035) (.035) (.035) (.035)
Drugs & Medical −1.0293 −1.0223 −1.0362 −1.0367 −1.0387

(.039) (.039) (.038) (.038) (.038)
Elec. & Electronics −1.1066 −1.1008 −1.1000 −1.1003 −1.0996

(.031) (.031) (.031) (.031) (.031)
Mechanical −1.1505 −1.1476 −1.1476 −1.1490 −1.1489

(.030) (.030) (.030) (.030) (.030)
Others −1.0775 −1.0782 −1.0763 −1.0769 −1.0748

(.031) (.030) (.030) (.030) (.030)
Previously applied patents:

Total number .0287 .0273 .0269 .0259
(.002) (.002) (.002) (.002)

Annual average .0326
(.004)

Potential research years −.0893 −.0819 −.0965 −.0958 −.0900
(.009) (.009) (.009) (.009) (.009)

Potential research years squared .0036 .0035 .0039 .0039 .0037
(.000) (.000) (.000) (.000) (.000)

log α a .4142 .4125 .4183 .4200 .4231
(.010) (.010) (.010) (.010) (.010)

Constant −5.0659 −5.0755 −5.1001 −5.1243 −5.1809
(.074) (.074) (.075) (.074) (.074)

Log-likelihood -16489 -16510 -16573 -16592 -16619
Observations 33178 33178 33178 33178 33178

NOTE.– Robust standard errors are in parentheses. All variables are statistically significant at less
than one percent level (p < .01).
a The duration dependence is represented by parameter α.
† Collaborations from limited intervals before the job switch are considered. The Intervals are
within 36 months, 24 months, and 12 months before the job switch.
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Table 3: Summary Statistics

TOTAL NETWORK PUBLICLY

VARIABLE RECRUITED RECRUITED

Number of patents made by 1.003 1.126 .989
an individual in a year (1.083) (1.206) (1.067)

Network referral dummies:
overall .102 – –

(.303)
within 36 months .064 – –

(.245)
within 24 months .050 – –

(.217)
within 12 months .026 – –

(.159)
Previously applied patents:
Total number 1.716 4.769 1.368

(3.706) (6.338) (3.087)
Annual average .906 2.139 .765

(2.153) (3.438) (1.900)
Potential research years 5.713 8.109 5.439

(5.353) (5.269) (5.294)
Tenure years 3.344 3.045 3.378

(3.176) (2.653) (3.229)
Number of patents made by .088 .078 .090
a firm in a year (in thousand) (.185) (.183) (.186)

Research field dummies:
Chemical .316 .349 .312

(.465) (.477) (.463)
Comp.& Comm. .194 .182 .195

(.395) (.386) (.396)
Drugs & Medical .131 .178 .125

(.337) (.383) (.331)
Elec. & Electronics .288 .248 .293

(.453) (.432) (.455)
Mechanical .307 .273 .311

(.461) (.446) (.463)
Others .295 .265 .298

(.456) (.441) (.458)
N 286954 29393 257561
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Table 4: Baseline Productivity Regression Estimates

OVERALL LIMITED INTERVAL †
COLLABORATION COLLABORATION

WITHIN 36 WITHIN 24 WITHIN 12
(1) (2) (3) (4) (5) (6)

Network referral dummy: ρ .0782∗∗∗ .0809∗∗∗ .1009∗∗∗ .0934∗∗∗ .0991∗∗∗ .1016∗∗∗

(.0065) (.0065) (.0065) (.0080) (.0091) (.0121)
Previously applied patents:

Total number .0113∗∗∗ .0111∗∗∗ .0113∗∗∗ .0114∗∗∗ .0117∗∗∗

(.0006) (.0006) (.0007) (.0007) (.0007)
Annual average .0078∗∗∗

(.0009)
Potential research years −.0065∗∗∗ −.0111∗∗∗ −.0088∗∗∗ −.0100∗∗∗ −.0097∗∗∗ −.0094∗∗∗

(.0005) (.0011) (.0011) (.0011) (.0011) (.0011)
Potential research years squared .0003∗∗∗ .0003∗∗∗ .0002∗∗∗ .0002∗∗∗ .0002∗∗∗

(.0001) (.0001) (.0001) (.0001) (.0001)
Tenure years .0017 −.0038 −.0064 −.0046 −.0049 −.0053

(.0011) (.0033) (.0033) (.0033) (.0033) (.0033)
Tenure years squared .0003∗ .0003 .0004∗ .0004∗ .0004∗

(.0002) (.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .4737∗∗∗ .4600∗∗∗ .4594∗∗∗ .4592∗∗∗ .4590∗∗∗ .4577∗∗∗

(.0056) (.0075) (.0075) (.0075) (.0075) (.0075)
Number of patents made by firm .1726∗∗∗ .1716∗∗∗ .1720∗∗∗ .1728∗∗∗ .1727∗∗∗ .1718∗∗∗

(.0109) (.0109) (.0109) (.0109) (.0109) (.0109)
Constant −.3525∗∗∗ −.3311∗∗∗ −.3289∗∗∗ −.3307∗∗∗ −.3294∗∗∗ −.3254∗∗∗

(.0095) (.0124) (.0124) (.0124) (.0124) (.0124)
Log-likelihood -355449 -355435 -355628 -355441 -355449 -355478
Observations 286954 286954 286954 286954 286954 286954

NOTE.– All estimation results are presented in Appendix C. Other variable included in each column are the same as those in
Table C1. Robust standard errors are in parentheses.
† Collaborations from limited intervals before the job switch are considered. The Intervals are within 36 months, 24 months,
and 12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05. ∗ ∗ ∗ p < .01.
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Table 5: Within-firm Productivity Growth Regression Estimates

OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4) (5) (6)
Interaction terms of network and tenure
dummies: ρk

year 1 .0571∗∗∗ .0623∗∗∗ .0819∗∗∗ .0630∗∗∗ .0693∗∗∗ .0726∗∗∗

(.0070) (.0071) (.0071) (.0090) (.0105) (.0147)
year 2 .0797∗∗∗ .0756∗∗∗ .0974∗∗∗ .1248∗∗∗ .1303∗∗∗ .1527∗∗∗

(.0177) (.0179) (.0180) (.0219) (.0248) (.0352)
year 3 .1708∗∗∗ .1713∗∗∗ .1920∗∗∗ .2138∗∗∗ .2174∗∗∗ .2219∗∗∗

(.0195) (.0195) (.0196) (.0245) (.0265) (.0331)
year 4 .1294∗∗∗ .1334∗∗∗ .1545∗∗∗ .1512∗∗∗ .1492∗∗∗ .1469∗∗∗

(.0243) (.0244) (.0244) (.0295) (.0330) (.0430)
year 5 .0901∗∗∗ .0966∗∗∗ .1182∗∗∗ .0961∗∗ .0957 .0105

(.0320) (.0321) (.0321) (.0421) (.0497) (.0470)
year 6 .0858∗∗ .0934∗∗ .1144∗∗∗ .0869∗ .0673 .0797

(.0369) (.0370) (.0371) (.0561) (.0777)
year 7 .0823 .0900∗ .1053∗∗ .0471 .0073 −.0518

(.0502) (.0504) (.0504) (.0663) (.0816) (.0855)
year 8 .0856 .0920 .1079∗∗ .1028 .1123 .1248

(.0519) (.0521) (.0522) (.0680) (.0690) (.0902)
year 9 −.0581 −.0538 −.0385 −.0470 .0410 .0335

(.0648) (.0649) (.0650) (.0787) (.0883) (.1259)
year 10 −.0624 −.0602 −.0464 −.0168 −.0035 −.1208

(.0720) (.0721) (.0722) (.0913) (.1102) (.1505)
Previously applied patents:

Total number .0112∗∗∗ .0111∗∗∗ .0112∗∗∗ .0114∗∗∗ .0117∗∗∗

(.0006) (.0006) (.0006) (.0007) (.0007)
Annual average .0078∗∗∗

(.0009)
Potential research years −.0065∗∗∗ −.0113∗∗∗ −.0090∗∗∗ −.0102∗∗∗ −.0098∗∗∗ −.0095∗∗∗

(.0005) (.0011) (.0011) (.0011) (.0011) (.0011)
Potential research years squared .0003∗∗∗ .0004∗∗∗ .0003∗∗∗ .0002∗∗∗ .0002∗∗∗

(.0001) (.0001) (.0001) (.0001) (.0001)
Tenure years .0030∗∗∗ −.0030 −.0055 −.0029 −.0037 −.0042

(.0011) (.0035) (.0035) (.0035) (.0034) (.0034)
Tenure years squared .0004∗ .0003 .0003 .0004∗ .0004∗

(.0002) (.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .4841∗∗∗ .4686∗∗∗ .4685∗∗∗ .4701∗∗∗ .4671∗∗∗ .4628∗∗∗

(.0059) (.0080) (.0080) (.0078) (.0077) (.0076)
Number of patents made by firm .1720∗∗∗ .1708∗∗∗ .1711∗∗∗ .1713∗∗∗ .1714∗∗∗ .1706∗∗∗

(.0109) (.0109) (.0109) (.0109) (.0109) (.0109)
Constant −.3642∗∗∗ −.3403∗∗∗ −.3387∗∗∗ −.3433∗∗∗ −.3391∗∗∗ −.3319∗∗∗

(.0098) (.0130) (.0130) (.0128) (.0127) (.0126)
Log-likelihood -355405 -355390 -355581 -355393 -355410 -35546
Observations 286954 286954 286954 286954 286954 286954

NOTE.– All estimation results are presented in Appendix C. Other variable included in each column are the same as those in
Table C2. Robust standard errors are in parentheses.
† Collaborations from limited intervals before the job switch are considered. The Intervals are within 36 months, 24 months,
and 12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05. ∗ ∗ ∗ p < .01.
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Table 6: Fixed-effect Productivity Regression Estimates

OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4)
Network referral dummy: ρ .1259∗∗∗ .1519∗∗∗ .1801∗∗∗ .2094∗∗∗

(.0093) (.0111) (.0124) (.0166)
Previously applied patents a −.0385∗∗∗ −.0382∗∗∗ −.0381∗∗∗ −.0374∗∗∗

(.0008) (.0008) (.0008) (.0008)
Potential research years .0155∗∗∗ .0165∗∗∗ .0169∗∗∗ .0178∗∗∗

(.0015) (.0015) (.0015) (.0015)
Potential research years squared .0011∗∗∗ .0010∗∗∗ .0010∗∗∗ .0010∗∗∗

(.0001) (.0001) (.0001) (.0001)
Tenure years .0064∗∗ .0053∗ .0051∗ .0046

(.0031) (.0031) (.0031) (.0031)
Tenure years squared −.0007∗∗∗ −.0007∗∗∗ −.0006∗∗∗ −.0006∗∗∗

(.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .5395∗∗∗ .5390∗∗∗ .5392∗∗∗ .5382∗∗∗

(.0071) (.0071) (.0071) (.0071)
Number of patents made by firm .3058∗∗∗ .3083∗∗∗ .3096∗∗∗ .3104∗∗∗

(.0172) (.0172) (.0172) (.0172)
Log-likelihood -236446 -236444 -236432 -236458
Observations 286954 286954 286954 286954

NOTE.– All estimation results are presented in Appendix C. Other variable included in each col-
umn are the same as those in Table C3. Standard errors are in parentheses.
a Total numbers of previously applied patents is used.
† Collaborations from limited intervals before the job switch are considered. The Intervals are
within 36 months, 24 months, and 12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05.
∗ ∗ ∗ p < .01.
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Table 7: Fixed-effect Productivity Growth Regression

OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4)
Interaction terms of network and tenure
dummies: ρk

year 1 .1033∗∗∗ .1185∗∗∗ .1448∗∗∗ .1659∗∗∗

(.0111) (.0133) (.0149) (.0205)
year 2 .1558∗∗∗ .2096∗∗∗ .2389∗∗∗ .2890∗∗∗

(.0165) (.0195) (.0217) (.0285)
year 3 .2398∗∗∗ .2886∗∗∗ .3112∗∗∗ .3393∗∗∗

(.0181) (.0218) (.0242) (.0320)
year 4 .1807∗∗∗ .2022∗∗∗ .2208∗∗∗ .2518∗∗∗

(.0222) (.0277) (.0310) (.0416)
year 5 .1237∗∗∗ .1350∗∗∗ .1560∗∗∗ .1067∗∗

(.0268) (.0336) (.0382) (.0524)
year 6 .1111∗∗∗ .1329∗∗∗ .1457∗∗∗ .2008∗∗∗

(.0317) (.0404) (.0467) (.0612)
year 7 .0824∗∗ .0613 .0658 .0496

(.0375) (.0487) (.0568) (.0783)
year 8 .0775∗ .1096∗∗ .1570∗∗ .2066∗∗

(.0434) (.0539) (.0616) (.0815)
year 9 −.0954∗ −.0602 .0415 .0688

(.0548) (.0677) (.0750) (.1014)
year 10 −.0969 −.0443 −.0179 −.1013

(.0630) (.0759) (.0864) (.1261)
Previously applied patents a −.0386∗∗∗ −.0383∗∗∗ −.0382∗∗∗ −.0374∗∗∗

(.0008) (.0008) (.0008) (.0008)
Potential research years .0148∗∗∗ .0160∗∗∗ .0167∗∗∗ .0176∗∗∗

(.0015) (.0015) (.0015) (.0015)
Potential research years squared .0011∗∗∗ .0011∗∗∗ .0010∗∗∗ .0010∗∗∗

(.0001) (.0001) (.0001) (.0001)
Tenure years .0105∗∗∗ .0087∗∗∗ .0076∗∗ .0064∗∗

(.0033) (.0032) (.0032) (.0031)
Tenure years squared −.0008∗∗∗ −.0007∗∗∗ −.0007∗∗∗ −.0007∗∗∗

(.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .5570∗∗∗ .5544∗∗∗ .5511∗∗∗ .5458∗∗∗

(.0076) (.0074) (.0073) (.0072)
Number of patents made by firm .3036∗∗∗ .3057∗∗∗ .3079∗∗∗ .3084∗∗∗

(.0172) (.0172) (.0172) (.0172)
Log-likelihood -236375 -236377 -236380 -236426
Observations 286954 286954 286954 286954

NOTE.– All estimation results are presented in Appendix C. Other variable included in each col-
umn are the same as those in Table C4. Standard errors are in parentheses.
a Total numbers of previously applied patents is used.
† Collaborations from limited intervals before the job switch are considered. The Intervals are
within 36 months, 24 months, and 12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05.
∗ ∗ ∗ p < .01.
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A Appendix: Computation of the Mean Productivity

The denominator of the conditional density (11) is computed by:

Prob [(q > q∗) ∩ (θ > θ∗)] =
∫

θ∗

∫
q∗

φ ((θ − q)/s) φ ((q − µ)/σqk
) dqdθ.

Therefore, the mean productivity in the second period is given by:

E(θ|q > q∗, θ > θ∗) =

∫
θ∗ θ

∫
q∗ φ ((θ − q)/s) φ ((q − µ)/σqk

) dqdθ

Prob [(q > q∗) ∩ (θ > θ∗)]

=

∫
θ∗ θ

∫
q∗ φ ((θ − q)/s) φ ((q − µ)/σqk

) dqdθ∫
θ∗

∫
q∗ φ ((θ − q)/s) φ ((q − µ)/σqk

) dqdθ

=

∫
q∗

[∫
θ∗ θφ ((θ − q)/s) dθ

]
φ ((q − µ)/σqk

) dq∫
q∗

[∫
θ∗ φ ((θ − q)/s) dθ

]
φ ((q − µ)/σqk

) dq
.(16)

We can use the following equalities:∫
θ∗

φ ((θ − q)/s) dθ = Φ((µ − q)/σqk
) ,∫

θ∗
θφ ((θ − q)/s) dθ = q + sλ ((q − µ)/σqk

) .

We obtain equation (12) by substituting these equations into equation (16)

B Computerized Matching Process

The essence of the computerized matching process (CMP) proposed by Trajten-
berg, Shiff, and Melamed (2006) is to adjust for possible spelling errors in in-
ventors’ names listed in patents in order to avoid identifying an inventor as two
different inventors while minimizing the possibilities of identifying two different
inventors as the same person by utilizing other information such as addresses, as-
signees, and patent classes.

The former is done by converting the last name and first name of the listed in-
ventors into “soundex” codes following the rule described in Trajtenberg, Shiff, and
Melamed (2006, p. 17, Table 3.1). This conversion allows us to group inventors
whose names are spelled in a similar manner into one depending on the numbers
assigned to them. We then utilize other information to distinguish inventors with
the same “soundex” code. The information we employ in matching inventors are
(1) full address, (2) self-citations, (3) shared collaborators, (4) middle names, (5)
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surname modifier, (6) assignee, (7) city, and (8) patent class. Each information
gives a score to a pair of names (soundex code), and depending on the‘ total score
obtained, we decide whether two inventors are the same person or not. The name-
matching criteria we have employed are summarized in Table B. 1. While criterion
A follows Trajtenberg, Shiff, and Melamed (2006), criterion B is more stringent.
Let us describe the scoring procedure in more detail below.

When full street addresses are identical between the inventors listed in two
different patents, the pair obtains a score of 120.19 When a patent is citing an older
patent applied for by the inventor with a similar soundex code, then we consider
that these two patents are applied for by the same person (self-citation) and the pair
of names obtains a score of 120.20 In addition, if two patents are each applied for by
two or more inventors and one of them is identified individually, then the remaining
inventors are considered to have collaborated with the identified inventor. If there
is a pair of inventors (listed in both patents) who have similar soundex codes, then
we consider them to be one person who has collaborated repeatedly with an already
identified inventor (shared collaborators) and this inventor obtains a score of 120.

If the pair of records share more than two letters from the middle name (full
middle name), a score of 100 is given, and if they share the same surname modifier,
they get a score of 50. In the case where two records share only the middle name
initials, assignee, city, or patent classes, the score depends on whether such records
are “rare” or not. Namely, we assume, for example, that a city is “rare,” if the
number of records that share the same city is smaller than the cutoff value. The
cutoff value is set to the median of the frequency distribution of the city name.
Otherwise, it is considered to be “common.” If a pair of records shares either the
middle name initials, assignee, or city, it obtains a score of 100 if it is considered
to be “rare” and 80 if it is “common”. In the case of patent class, the pair obtains a
score of 80 or 50, respectively. These scores are summarized in Table B. 2

We also consider the cases in which we categorize the names to be “rare” or
“common” as in Trajtenberg, Shiff, and Melamed (2006). Similarly to the cases
of cities and assignees, a name is considered to be “rare,” if it appears less fre-
quently in the data than the median of the frequency distribution. Furthermore,
when a name is considered to be “rare”, the likelihood that two records correspond
to one inventor is higher. Therefore, less strict criteria are set for other information.
Namely, the middle name initials, assignee, city, and patent class obtain a higher
score (the one corresponding to “rare” cases) if they are below the 75 percentile of
the frequency distribution, instead of the median.

In total, we consider four cases, depending on which matching criterion is uti-

19It should be noted that the value of the score itself has no significant meaning.
20There are only 121 pairs of patents that satisfy this criterion.
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lized and whether rareness of names is considered or not. The results of the four
cases are summarized in Table B. 3. As the table shows, the four cases we have
considered do not differ substantially in terms of number of unique inventors identi-
fied. The procedure that uses criteria A and treats “rare” names differently (second
row in the table) identifies the least number of inventors; however the difference
between the one that identifies the highest number of inventors (the one using cri-
teria B and does not treat “rare” names differently, reported in the third row in the
table) is less than one percent of the total number of inventors identified. Our anal-
ysis is based on the procedure that uses criteria A and does not treat “rare” names
differently (the base line case reported in the first row).
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Table B. 1: Matching Criteria in CMP

Criteria A (Trajtenberg, Shiff, and Melamed, 2006) Cutoff value
(1) Identical Last name and First name, and non zero part
of soundex code is more than 5 digits

100

(2) Identical Last name, and non zero part of soundex code
is more than 2 digits

120

(3)Others 180
Criteria B (this paper) Cutoff value
(1) Identical Last, First, and middle name, and non zero part
of soundex code is more than 5 digits

100

(2) Identical Last name, and non zero part of soundex code
is more than 2 digits

120

(3) Others 180

Table B. 2: List of Scores in CMP

score
Full Address 120
Self Citation 120
Shared Partners 120
Full middle name 100
Surname Modifier 50

rare common
Middle name initial 100 80
Assignee 100 80
City 100 80
Patent Class 80 50

Table B. 3: CMP Results

cutoff values Number of
for rare names for common names unique inventors

Criteria A 50 50 746,991
Criteria A 75 50 744,381
Criteria B 50 50 748,646
Criteria B 75 50 746,368
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Table C. 1: Productivity Regression: All Estimation Results

OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4) (5) (6)
Network referral dummy: ρ .0782∗∗∗ .0809∗∗∗ .1009∗∗∗ .0934∗∗∗ .0991∗∗∗ .1016∗∗∗

(.0065) (.0065) (.0065) (.0080) (.0091) (.0121)
Previously applied patents:

Total number .0113∗∗∗ .0111∗∗∗ .0113∗∗∗ .0114∗∗∗ .0117∗∗∗

(.0006) (.0006) (.0007) (.0007) (.0007)
Annual average .0078∗∗∗

(.0009)
Potential research years −.0065∗∗∗ −.0111∗∗∗ −.0088∗∗∗ −.0100∗∗∗ −.0097∗∗∗ −.0094∗∗∗

(.0005) (.0011) (.0011) (.0011) (.0011) (.0011)
Potential research years squared .0003∗∗∗ .0003∗∗∗ .0002∗∗∗ .0002∗∗∗ .0002∗∗

(.0001) (.0001) (.0001) (.0001) (.0001)
Tenure years .0017 −.0038 −.0064 −.0046 −.0049 −.0053

(.0011) (.0033) (.0033) (.0033) (.0033) (.0033)
Tenure years squared .0003 .0003 .0004 .0004 .0004

(.0002) (.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .4737∗∗∗ .4600∗∗∗ .4594∗∗∗ .4592∗∗∗ .4590∗∗∗ .4577∗∗∗

(.0056) (.0075) (.0075) (.0075) (.0075) (.0075)
Number of patents made by firm .1726∗∗∗ .1716∗∗∗ .1720∗∗∗ .1728∗∗∗ .1727∗∗∗ .1718∗∗∗

(.0109) (.0109) (.0109) (.0109) (.0109) (.0109)
Field dummies:

Chemical .2914∗∗∗ .2916∗∗∗ .2952∗∗∗ .2919∗∗∗ .2920∗∗∗ .2923∗∗∗

(.0049) (.0048) (.0048) (.0048) (.0048) (.0048)
Comp.& Comm. .2294∗∗∗ .2300∗∗∗ .2308∗∗∗ .2300∗∗∗ .2299∗∗∗ .2298∗∗∗

(.0057) (.0057) (.0057) (.0057) (.0057) (.0057)
Drugs & Medical .2886∗∗∗ .2890∗∗∗ .2925∗∗∗ .2888∗∗∗ .2886∗∗∗ .2891∗∗∗

(.0075) (.0075) (.0075) (.0075) (.0075) (.0075)
Elec. & Electronics .1899∗∗∗ .1902∗∗∗ .1916∗∗∗ .1901∗∗∗ .1900∗∗∗ .1900∗∗∗

(.0048) (.0048) (.0048) (.0048) (.0048) (.0048)
Mechanical .1882∗∗∗ .1884∗∗∗ .1886∗∗∗ .1884∗∗∗ .1884∗∗∗ .1884∗∗∗

(.0047) (.0047) (.0047) (.0047) (.0047) (.0047)
Others .1779∗∗∗ .1783∗∗∗ .1778∗∗∗ .1783∗∗∗ .1783∗∗∗ .1779∗∗∗

(.0051) (.0051) (.0051) (.0051) (.0051) (.0051)
Annual dummies
year 2 −.1388∗∗∗ −.1434∗∗∗ −.1445∗∗∗ −.1428∗∗∗ −.1439∗∗∗ −.1463∗∗∗

(.0133) (.0133) (.0133) (.0133) (.0133) (.0133)
year 3 −.1907∗∗∗ −.1935∗∗∗ −.1945∗∗∗ −.1933∗∗∗ −.1943∗∗∗ −.1964∗∗∗

(.0145) (.0145) (.0145) (.0145) (.0145) (.0145)
year 4 −.2379∗∗∗ −.2382∗∗∗ −.2390∗∗∗ −.2384∗∗∗ −.2393∗∗∗ −.2413∗∗∗

(.0152) (.0152) (.0152) (.0152) (.0152) (.0152)
year 5 −.2460∗∗∗ −.2441∗∗∗ −.2446∗∗∗ −.2443∗∗∗ −.2452∗∗∗ −.2473∗∗∗

(.0147) (.0146) (.0146) (.0146) (.0146) (.0146)
year 6 −.2709∗∗∗ −.2672∗∗∗ −.2675∗∗∗ −.2674∗∗∗ −.2683∗∗∗ −.2703∗∗∗

(.0135) (.0135) (.0135) (.0135) (.0135) (.0135)
year 7 −.2962∗∗∗ −.2913∗∗∗ −.2911∗∗∗ −.2916∗∗∗ −.2926∗∗∗ −.2945∗∗∗

(.0130) (.0130) (.0130) (.0130) (.0130) (.0130)

37



(Continued from previous page)
OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4) (5) (6)
year 8 −.3329∗∗∗ −.3269∗∗∗ −.3268∗∗∗ −.3271∗∗∗ −.3280∗∗∗ −.3301∗∗∗

(.0122) (.0122) (.0122) (.0122) (.0122) (.0122)
year 9 −.3510∗∗∗ −.3447∗∗∗ −.3448∗∗∗ −.3452∗∗∗ −.3460∗∗∗ −.3479∗∗∗

(.0118) (.0119) (.0119) (.0119) (.0119) (.0119)
year 10 −.3552∗∗∗ −.3484∗∗∗ −.3483∗∗∗ −.3488∗∗∗ −.3496∗∗∗ −.3517∗∗∗

(.0114) (.0115) (.0115) (.0115) (.0115) (.0115)
year 11 −.3261∗∗∗ −.3192∗∗∗ −.3189∗∗∗ −.3195∗∗∗ −.3203∗∗∗ −.3220∗∗∗

(.0110) (.0111) (.0111) (.0111) (.0111) (.0111)
year 12 −.3414∗∗∗ −.3346∗∗∗ −.3343∗∗∗ −.3346∗∗∗ −.3354∗∗∗ −.3370∗∗∗

(.0108) (.0109) (.0109) (.0109) (.0109) (.0109)
year 13 −.3220∗∗∗ −.3156∗∗∗ −.3157∗∗∗ −.3154∗∗∗ −.3160∗∗∗ −.3173∗∗∗

(.0107) (.0107) (.0107) (.0107) (.0107) (.0107)
year 14 −.2896∗∗∗ −.2837∗∗∗ −.2848∗∗∗ −.2834∗∗∗ −.2842∗∗∗ −.2852∗∗∗

(.0103) (.0104) (.0104) (.0104) (.0104) (.0104)
year 15 −.2687∗∗∗ −.2633∗∗∗ −.2647∗∗∗ −.2627∗∗∗ −.2633∗∗∗ −.2644∗∗∗

(.0102) (.0102) (.0102) (.0102) (.0102) (.0102)
year 16 −.2599∗∗∗ −.2548∗∗∗ −.2572∗∗∗ −.2544∗∗∗ −.2549∗∗∗ −.2557∗∗∗

(.0101) (.0101) (.0101) (.0101) (.0101) (.0101)
year 17 −.2554∗∗∗ −.2510∗∗∗ −.2542∗∗∗ −.2506∗∗∗ −.2510∗∗∗ −.2516∗∗∗

(.0098) (.0098) (.0098) (.0098) (.0098) (.0098)
year 18 −.2405∗∗∗ −.2368∗∗∗ −.2394∗∗∗ −.2366∗∗∗ −.2368∗∗∗ −.2371∗∗∗

(.0097) (.0097) (.0097) (.0097) (.0097) (.0097)
year 19 −.2108∗∗∗ −.2077∗∗∗ −.2103∗∗∗ −.2074∗∗∗ −.2076∗∗∗ −.2070∗∗∗

(.0093) (.0094) (.0094) (.0094) (.0094) (.0094)
year 20 −.1605∗∗∗ −.1579∗∗∗ −.1613∗∗∗ −.1575∗∗∗ −.1574∗∗∗ −.1561∗∗∗

(.0091) (.0091) (.0091) (.0091) (.0091) (.0091)
year 21 −.0054 −.0030 −.0054 −.0029 −.0025 −.0004

(.0094) (.0094) (.0094) (.0094) (.0094) (.0094)
year 22 −.0482∗∗∗ −.0462∗∗∗ −.0483∗∗∗ −.0464∗∗∗ −.0459∗∗∗ −.0438∗∗∗

(.0091) (.0091) (.0091) (.0091) (.0091) (.0091)
Constant −.3525∗∗∗ −.3311∗∗∗ −.3289∗∗∗ −.3307∗∗∗ −.3294∗∗∗ −.3254∗∗∗

(.0095) (.0124) (.0124) (.0124) (.0124) (.0124)
Log-likelihood -355449 -355435 -355628 -355440.73 -355449 -355478
Observations 286954 286954 286954 286954 286954 286954

NOTE.– Robust standard errors are in parentheses.
† Collaborations from limited intervals before the job switch are considered. The Intervals are within 36 months, 24
months, and 12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05. ∗ ∗ ∗ p < .01.
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Table C. 2: Within-firm Productivity Growth Regression Estimates: All Estimation
Results

OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4) (5) (6)
Interaction terms of network and tenure
dummies: ρk

year 1 .0571∗∗∗ .0623∗∗∗ .0819∗∗∗ .0630∗∗∗ .0693∗∗∗ .0726∗∗∗

(.0070) (.0071) (.0071) (.0090) (.0105) (.0147)
year 2 .0797∗∗∗ .0756∗∗∗ .0974∗∗∗ .1248∗∗∗ .1303∗∗∗ .1527∗∗∗

(.0177) (.0179) (.0180) (.0219) (.0248) (.0352)
year 3 .1708∗∗∗ .1713∗∗∗ .1920∗∗∗ .2138∗∗∗ .2174∗∗∗ .2219∗∗∗

(.0195) (.0195) (.0196) (.0245) (.0265) (.0331)
year 4 .1294∗∗∗ .1334∗∗∗ .1545∗∗∗ .1512∗∗∗ .1492∗∗∗ .1469∗∗∗

(.0243) (.0244) (.0244) (.0295) (.0330) (.0430)
year 5 .0901∗∗ .0966∗∗ .1182∗∗∗ .0961∗ .0957 .0105

(.0320) (.0321) (.0321) (.0421) (.0497) (.0470)
year 6 .0858∗ .0934∗ .1144∗∗ .0869 .0673 .0797

(.0369) (.0370) (.0371) (.0469) (.0561) (.0777)
year 7 .0823 .0900 .1053∗ .0471 .0073 −.0518

(.0502) (.0504) (.0504) (.0663) (.0816) (.0855)
year 8 .0856 .0920 .1079∗ .1028 .1123 .1248

(.0519) (.0521) (.0522) (.0680) (.0690) (.0902)
year 9 −.0581 −.0538 −.0385 −.0470 .0410 .0335

(.0648) (.0649) (.0650) (.0787) (.0883) (.1259)
year 10 −.0624 −.0602 −.0464 −.0168 −.0035 −.1208

(.0720) (.0721) (.0722) (.0913) (.1102) (.1505)
year 11 −.0078 −.0093 .0053 −.0456 .0206 .1084

(.0961) (.0960) (.0970) (.1289) (.1173) (.1589)
year 12 −.0935 −.1004 −.0827 −.1334 −.1395 −.0902

(.1010) (.1009) (.1010) (.1283) (.1508) (.1858)
year 13 −.1300 −.1424 −.1233 −.1812 −.0859 −.1777

(.1087) (.1086) (.1085) (.1335) (.1560) (.2091)
year 14 −.1082 −.1261 −.1106 −.1747 −.2083 −.2084

(.1478) (.1480) (.1483) (.1487) (.1855) (.2636)
year 15 −.1240 −.1503 −.1354 −.2201 −.1780 −.0326

(.1760) (.1761) (.1764) (.1874) (.2131) (.2708)
year 16 .3835 .3471 .3625 −.1771 −.3193 −.1398

(.3914) (.3910) (.3916) (.2933) (.3317) (.4866)
year 17 −.4398∗ −.4857∗ −.4685∗ −.4422 −.6250∗ −.5043

(.2073) (.2078) (.2072) (.2404) (.2666) (.3600)
year 18 −.0599 −.1153 −.1030 −.1283 .0225 −.4438

(.2006) (.2009) (.2000) (.2253) (.2185) (.4110)
year 19 −.6005 −.6671 −.6476 −.6646 −.8942 −.6866

(.3806) (.3810) (.3763) (.3811) (.6014) (.5612)
year 20 −.0136 −.0937 −.0709 −.0897 −.0860 −.0408

(.0952) (.0992) (.0907) (.0993) (.0995) (.1082)
year 21 −.9343 −1.0303 −1.0279 −1.0241 −1.0197 −1.0128

(.5539) (.5547) (.5574) (.5546) (.5546) (.5544)
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(Continued from previous page)
OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4) (5) (6)
year 22 −.2844 −.3964∗ −.3965∗ −.3891∗ −.3840∗ −.3742∗

(.1549) (.1598) (.1571) (.1600) (.1599) (.1600)
Previously applied patents:

Total number .0112∗∗∗ .0111∗∗∗ .0112∗∗∗ .0114∗∗∗ .0117∗∗∗

(.0006) (.0006) (.0006) (.0007) (.0007)
Annual average .0078∗∗∗

(.0009)
Potential research years −.0065∗∗∗ −.0113∗∗∗ −.0090∗∗∗ −.0102∗∗∗ −.0098∗∗∗ −.0095∗∗∗

(.0005) (.0011) (.0011) (.0011) (.0011) (.0011)
Potential research years squared .0003∗∗∗ .0004∗∗∗ .0003∗∗∗ .0002∗∗∗ .0002∗∗

(.0001) (.0001) (.0001) (.0001) (.0001)
Tenure years .0030∗∗ −.0030 −.0055 −.0029 −.0037 −.0042

(.0011) (.0035) (.0035) (.0035) (.0034) (.0034)
Tenure years squared .0004 .0003 .0003 .0004 .0004

(.0002) (.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .4841∗∗∗ .4686∗∗∗ .4685∗∗∗ .4701∗∗∗ .4671∗∗∗ .4628∗∗∗

(.0059) (.0080) (.0080) (.0078) (.0077) (.0076)
Number of patents made by firm .1720∗∗∗ .1708∗∗∗ .1711∗∗∗ .1713∗∗∗ .1714∗∗∗ .1706∗∗∗

(.0109) (.0109) (.0109) (.0109) (.0109) (.0109)
Field dummies:

Chemical .2919∗∗∗ .2921∗∗∗ .2957∗∗∗ .2924∗∗∗ .2925∗∗∗ .2927∗∗∗

(.0049) (.0048) (.0048) (.0048) (.0048) (.0048)
Comp.& Comm. .2296∗∗∗ .2301∗∗∗ .2310∗∗∗ .2301∗∗∗ .2301∗∗∗ .2298∗∗∗

(.0057) (.0057) (.0057) (.0057) (.0057) (.0057)
Drugs & Medical .2889∗∗∗ .2892∗∗∗ .2928∗∗∗ .2890∗∗∗ .2887∗∗∗ .2891∗∗∗

(.0075) (.0075) (.0075) (.0075) (.0075) (.0075)
Elec. & Electronics .1901∗∗∗ .1904∗∗∗ .1918∗∗∗ .1903∗∗∗ .1902∗∗∗ .1901∗∗∗

(.0048) (.0048) (.0048) (.0048) (.0048) (.0048)
Mechanical .1885∗∗∗ .1886∗∗∗ .1888∗∗∗ .1887∗∗∗ .1887∗∗∗ .1885∗∗∗

(.0047) (.0047) (.0047) (.0047) (.0047) (.0047)
Others .1782∗∗∗ .1786∗∗∗ .1781∗∗∗ .1784∗∗∗ .1784∗∗∗ .1778∗∗∗

(.0051) (.0051) (.0051) (.0051) (.0051) (.0051)
Annual dummies
year 2 −.1359∗∗∗ −.1409∗∗∗ −.1419∗∗∗ −.1395∗∗∗ −.1411∗∗∗ −.1446∗∗∗

(.0133) (.0133) (.0133) (.0133) (.0133) (.0133)
year 3 −.1870∗∗∗ −.1902∗∗∗ −.1911∗∗∗ −.1894∗∗∗ −.1912∗∗∗ −.1947∗∗∗

(.0145) (.0145) (.0145) (.0145) (.0145) (.0145)
year 4 −.2344∗∗∗ −.2350∗∗∗ −.2357∗∗∗ −.2347∗∗∗ −.2364∗∗∗ −.2397∗∗∗

(.0152) (.0152) (.0152) (.0152) (.0152) (.0152)
year 5 −.2429∗∗∗ −.2412∗∗∗ −.2417∗∗∗ −.2412∗∗∗ −.2427∗∗∗ −.2457∗∗∗

(.0146) (.0146) (.0146) (.0146) (.0146) (.0146)
year 6 −.2681∗∗∗ −.2645∗∗∗ −.2647∗∗∗ −.2646∗∗∗ −.2660∗∗∗ −.2689∗∗∗

(.0135) (.0135) (.0135) (.0135) (.0135) (.0135)
year 7 −.2936∗∗∗ −.2887∗∗∗ −.2885∗∗∗ −.2888∗∗∗ −.2902∗∗∗ −.2930∗∗∗

(.0130) (.0130) (.0130) (.0130) (.0130) (.0130)
year 8 −.3306∗∗∗ −.3246∗∗∗ −.3245∗∗∗ −.3247∗∗∗ −.3259∗∗∗ −.3288∗∗∗

(.0123) (.0123) (.0123) (.0123) (.0123) (.0122)
year 9 −.3492∗∗∗ −.3427∗∗∗ −.3428∗∗∗ −.3430∗∗∗ −.3441∗∗∗ −.3469∗∗∗

(.0118) (.0119) (.0119) (.0119) (.0119) (.0119)
year 10 −.3534∗∗∗ −.3465∗∗∗ −.3463∗∗∗ −.3466∗∗∗ −.3477∗∗∗ −.3505∗∗∗
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(Continued from previous page)
OVERALL LIMITED INTERVAL†

COLLABORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4) (5) (6)
(.0114) (.0115) (.0115) (.0115) (.0115) (.0115)

year 11 −.3241∗∗∗ −.3172∗∗∗ −.3168∗∗∗ −.3173∗∗∗ −.3183∗∗∗ −.3208∗∗∗

(.0110) (.0110) (.0111) (.0111) (.0111) (.0111)
year 12 −.3392∗∗∗ −.3324∗∗∗ −.3320∗∗∗ −.3322∗∗∗ −.3334∗∗∗ −.3359∗∗∗

(.0108) (.0109) (.0109) (.0109) (.0109) (.0109)
year 13 −.3204∗∗∗ −.3139∗∗∗ −.3139∗∗∗ −.3135∗∗∗ −.3144∗∗∗ −.3162∗∗∗

(.0107) (.0107) (.0108) (.0107) (.0108) (.0107)
year 14 −.2881∗∗∗ −.2821∗∗∗ −.2832∗∗∗ −.2813∗∗∗ −.2824∗∗∗ −.2841∗∗∗

(.0103) (.0104) (.0104) (.0104) (.0104) (.0104)
year 15 −.2669∗∗∗ −.2615∗∗∗ −.2628∗∗∗ −.2605∗∗∗ −.2614∗∗∗ −.2631∗∗∗

(.0102) (.0102) (.0102) (.0102) (.0102) (.0102)
year 16 −.2582∗∗∗ −.2531∗∗∗ −.2554∗∗∗ −.2523∗∗∗ −.2530∗∗∗ −.2546∗∗∗

(.0101) (.0101) (.0101) (.0101) (.0101) (.0101)
year 17 −.2539∗∗∗ −.2496∗∗∗ −.2527∗∗∗ −.2485∗∗∗ −.2491∗∗∗ −.2506∗∗∗

(.0098) (.0098) (.0098) (.0098) (.0098) (.0098)
year 18 −.2391∗∗∗ −.2355∗∗∗ −.2381∗∗∗ −.2346∗∗∗ −.2349∗∗∗ −.2358∗∗∗

(.0097) (.0097) (.0097) (.0097) (.0097) (.0097)
year 19 −.2088∗∗∗ −.2057∗∗∗ −.2084∗∗∗ −.2051∗∗∗ −.2056∗∗∗ −.2060∗∗∗

(.0093) (.0094) (.0094) (.0094) (.0094) (.0094)
year 20 −.1581∗∗∗ −.1557∗∗∗ −.1590∗∗∗ −.1553∗∗∗ −.1554∗∗∗ −.1549∗∗∗

(.0091) (.0091) (.0091) (.0091) (.0091) (.0091)
year 21 −.0028 −.0004 −.0028 −.0001 −.0002 .0013

(.0094) (.0094) (.0094) (.0094) (.0094) (.0094)
year 22 −.0465∗∗∗ −.0444∗∗∗ −.0465∗∗∗ −.0449∗∗∗ −.0447∗∗∗ −.0431∗∗∗

(.0091) (.0091) (.0091) (.0091) (.0091) (.0091)
Constant −.3642∗∗∗ −.3403∗∗∗ −.3387∗∗∗ −.3433∗∗∗ −.3391∗∗∗ −.3319∗∗∗

(.0098) (.0130) (.0130) (.0128) (.0127) (.0126)
Log-likelihood -355405 -355390 -355581 -355393 -355410 -355451
Observations 286954 286954 286954 286954 286954 286954

NOTE.– Robust standard errors are in parentheses.
† Collaborations from limited intervals before the job switch are considered. The Intervals are within 36 months, 24 months, and
12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05. ∗ ∗ ∗ p < .01.
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Table C. 3: Productivity Regression Estimates from Fixed-effects Model: All Esti-
mation Results

OVERALL LIMITED INTERVAL†

COLLBORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4)
Network referral dummy: ρ .1259∗∗∗ .1519∗∗∗ .1801∗∗∗ .2094∗∗∗

(.0093) (.0111) (.0124) (.0166)
Previously applied patents a −.0385∗∗∗ −.0382∗∗∗ −.0381∗∗∗ −.0374∗∗∗

(.0008) (.0008) (.0008) (.0008)
Potential research years .0155∗∗∗ .0165∗∗∗ .0169∗∗∗ .0178∗∗∗

(.0015) (.0015) (.0015) (.0015)
Potential research years squared .0011∗∗∗ .0010∗∗∗ .0010∗∗∗ .0010∗∗∗

(.0001) (.0001) (.0001) (.0001)
Tenure years .0064∗ .0053 .0051 .0046

(.0031) (.0031) (.0031) (.0031)
Tenure years squared −.0007∗∗∗ −.0007∗∗∗ −.0006∗∗∗ −.0006∗∗

(.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .5395∗∗∗ .5390∗∗∗ .5392∗∗∗ .5382∗∗∗

(.0071) (.0071) (.0071) (.0071)
Number of patents made by firm .3058∗∗∗ .3083∗∗∗ .3096∗∗∗ .3104∗∗∗

(.0172) (.0172) (.0172) (.0172)
Field dummies:
Chemical .1970∗∗∗ .1973∗∗∗ .1977∗∗∗ .1979∗∗∗

(.0101) (.0101) (.0101) (.0101)
Comp.& Comm. .1632∗∗∗ .1642∗∗∗ .1642∗∗∗ .1651∗∗∗

(.0122) (.0122) (.0122) (.0122)
Drugs & Medical .1701∗∗∗ .1708∗∗∗ .1709∗∗∗ .1710∗∗∗

(.0155) (.0155) (.0155) (.0155)
Elec. & Electronics .1815∗∗∗ .1820∗∗∗ .1819∗∗∗ .1830∗∗∗

(.0099) (.0099) (.0099) (.0099)
Mechanical .1685∗∗∗ .1698∗∗∗ .1713∗∗∗ .1714∗∗∗

(.0089) (.0089) (.0089) (.0089)
Others .1808∗∗∗ .1814∗∗∗ .1825∗∗∗ .1823∗∗∗

(.0092) (.0092) (.0092) (.0092)
Annual dummies
year 2 .0104 .0099 .0098 .0093

(.0163) (.0163) (.0163) (.0163)
year 3 −.0412∗∗ −.0424∗∗ −.0427∗∗ −.0429∗∗

(.0160) (.0160) (.0160) (.0160)
year 4 −.1031∗∗∗ −.1048∗∗∗ −.1053∗∗∗ −.1056∗∗∗

(.0157) (.0157) (.0157) (.0157)
year 5 −.1328∗∗∗ −.1347∗∗∗ −.1351∗∗∗ −.1358∗∗∗

(.0153) (.0153) (.0153) (.0153)
year 6 −.1734∗∗∗ −.1754∗∗∗ −.1757∗∗∗ −.1766∗∗∗

(.0149) (.0149) (.0149) (.0149)
year 7 −.2158∗∗∗ −.2179∗∗∗ −.2183∗∗∗ −.2198∗∗∗

(.0147) (.0147) (.0147) (.0147)
year 8 −.2738∗∗∗ −.2759∗∗∗ −.2761∗∗∗ −.2782∗∗∗

(.0144) (.0144) (.0144) (.0144)
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(Continued from previous page)
OVERALL LIMITED INTERVAL†

COLLBORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4)
year 9 −.3143∗∗∗ −.3166∗∗∗ −.3172∗∗∗ −.3193∗∗∗

(.0142) (.0142) (.0142) (.0142)
year 10 −.3373∗∗∗ −.3396∗∗∗ −.3401∗∗∗ −.3428∗∗∗

(.0139) (.0139) (.0139) (.0139)
year 11 −.3137∗∗∗ −.3158∗∗∗ −.3168∗∗∗ −.3193∗∗∗

(.0134) (.0134) (.0134) (.0134)
year 12 −.3359∗∗∗ −.3377∗∗∗ −.3386∗∗∗ −.3414∗∗∗

(.0132) (.0132) (.0132) (.0132)
year 13 −.3386∗∗∗ −.3403∗∗∗ −.3411∗∗∗ −.3439∗∗∗

(.0127) (.0127) (.0127) (.0127)
year 14 −.3170∗∗∗ −.3178∗∗∗ −.3187∗∗∗ −.3217∗∗∗

(.0123) (.0123) (.0123) (.0123)
year 15 −.3086∗∗∗ −.3089∗∗∗ −.3100∗∗∗ −.3135∗∗∗

(.0121) (.0121) (.0121) (.0121)
year 16 −.3233∗∗∗ −.3234∗∗∗ −.3242∗∗∗ −.3277∗∗∗

(.0120) (.0120) (.0120) (.0120)
year 17 −.3366∗∗∗ −.3359∗∗∗ −.3371∗∗∗ −.3407∗∗∗

(.0120) (.0120) (.0120) (.0120)
year 18 −.3361∗∗∗ −.3350∗∗∗ −.3361∗∗∗ −.3403∗∗∗

(.0119) (.0119) (.0119) (.0119)
year 19 −.3143∗∗∗ −.3125∗∗∗ −.3136∗∗∗ −.3167∗∗∗

(.0118) (.0118) (.0118) (.0118)
year 20 −.2718∗∗∗ −.2696∗∗∗ −.2701∗∗∗ −.2723∗∗∗

(.0117) (.0117) (.0117) (.0117)
year 21 −.1026∗∗∗ −.1011∗∗∗ −.1017∗∗∗ −.1028∗∗∗

(.0115) (.0115) (.0115) (.0115)
year 22 −.1516∗∗∗ −.1508∗∗∗ −.1514∗∗∗ −.1514∗∗∗

(.0122) (.0122) (.0122) (.0122)
Log-likelihood -236446 -236444 -236432 -236458
Observations 286954 286954 286954 286954

NOTE.– Standard errors are in parentheses.
a Total numbers of previously applied patents is used.
† Collaborations from limited intervals before the job switch are considered. The Intervals are
within 36 months, 24 months, and 12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05.
∗ ∗ ∗ p < .01.
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Table C. 4: Within-Firm Productivity Growth Estimates from Fixed-effects Re-
gression: All Estimation Results

OVERALL LIMITED INTERVAL†

COLLBORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4)
Interaction terms of network and tenure
dummies: ρk

year 1 .1033∗∗∗ .1185∗∗∗ .1448∗∗∗ .1659∗∗∗

(.0111) (.0133) (.0149) (.0205)
year 2 .1558∗∗∗ .2096∗∗∗ .2389∗∗∗ .2890∗∗∗

(.0165) (.0195) (.0217) (.0285)
year 3 .2398∗∗∗ .2886∗∗∗ .3112∗∗∗ .3393∗∗∗

(.0181) (.0218) (.0242) (.0320)
year 4 .1807∗∗∗ .2022∗∗∗ .2208∗∗∗ .2518∗∗∗

(.0222) (.0277) (.0310) (.0416)
year 5 .1237∗∗∗ .1350∗∗∗ .1560∗∗∗ .1067∗

(.0268) (.0336) (.0382) (.0524)
year 6 .1111∗∗∗ .1329∗∗ .1457∗∗ .2008∗∗

(.0317) (.0404) (.0467) (.0612)
year 7 .0824∗ .0613 .0658 .0496

(.0375) (.0487) (.0568) (.0783)
year 8 .0775 .1096∗ .1570∗ .2066∗

(.0434) (.0539) (.0616) (.0815)
year 9 −.0954 −.0602 .0415 .0688

(.0548) (.0677) (.0750) (.1014)
year 10 −.0969 −.0443 −.0179 −.1013

(.0630) (.0759) (.0864) (.1261)
year 11 −.0674 −.1006 −.0081 .1658

(.0716) (.0875) (.0976) (.1320)
year 12 −.2238∗ −.2372∗ −.2082 −.0725

(.0905) (.1082) (.1281) (.1785)
year 13 −.2787∗∗ −.2644∗ −.1160 −.1244

(.1061) (.1253) (.1407) (.2074)
year 14 −.2223 −.2666 −.2795 −.1592

(.1322) (.1498) (.1726) (.2508)
year 15 −.2852 −.3410 −.2380 −.0681

(.1516) (.1750) (.1893) (.2526)
year 16 .1524 −.3540 −.4745∗ −.2576

(.1418) (.2029) (.2362) (.3114)
year 17 −.6984∗∗ −.6615∗ −.8180∗ −.6305

(.2489) (.2740) (.3228) (.4176)
year 18 −.1382 −.1487 .1025 −.2694

(.2461) (.2608) (.2713) (.4605)
year 19 −.5802 −.5945 −.6748 −.4903

(.4584) (.4585) (.5896) (.5918)
year 20 .2957 .2832 .3231 .3800

(.4309) (.4310) (.4314) (.4730)
year 21 −.5475 −.5591 −.5176 −.4729
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(Continued from previous page)
OVERALL LIMITED INTERVAL†

COLLBORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4)
(1.0226) (1.0226) (1.0228) (1.0235)

year 22 −.0460 −.0555 −.0139 .0317
(.7390) (.7390) (.7393) (.7402)

Previously applied patents a −.0386∗∗∗ −.0383∗∗∗ −.0382∗∗∗ −.0374∗∗∗

(.0008) (.0008) (.0008) (.0008)
Potential research years .0148∗∗∗ .0160∗∗∗ .0167∗∗∗ .0176∗∗∗

(.0015) (.0015) (.0015) (.0015)
Potential research years squared .0011∗∗∗ .0011∗∗∗ .0010∗∗∗ .0010∗∗∗

(.0001) (.0001) (.0001) (.0001)
Tenure years .0105∗∗ .0087∗∗ .0076∗ .0064∗

(.0033) (.0032) (.0032) (.0031)
Tenure years squared −.0008∗∗∗ −.0007∗∗∗ −.0007∗∗∗ −.0007∗∗∗

(.0002) (.0002) (.0002) (.0002)
The first tenure year dummy .5570∗∗∗ .5544∗∗∗ .5511∗∗∗ .5458∗∗∗

(.0076) (.0074) (.0073) (.0072)
Number of patents made by firm .3036∗∗∗ .3057∗∗∗ .3079∗∗∗ .3084∗∗∗

(.0172) (.0172) (.0172) (.0172)
Field dummies:
Chemical .1983∗∗∗ .1982∗∗∗ .1985∗∗∗ .1985∗∗∗

(.0101) (.0101) (.0101) (.0101)
Comp.& Comm. .1638∗∗∗ .1646∗∗∗ .1643∗∗∗ .1651∗∗∗

(.0122) (.0122) (.0122) (.0122)
Drugs & Medical .1714∗∗∗ .1719∗∗∗ .1715∗∗∗ .1715∗∗∗

(.0155) (.0155) (.0155) (.0155)
Elec. & Electronics .1822∗∗∗ .1825∗∗∗ .1821∗∗∗ .1833∗∗∗

(.0099) (.0099) (.0099) (.0099)
Mechanical .1700∗∗∗ .1714∗∗∗ .1725∗∗∗ .1721∗∗∗

(.0089) (.0089) (.0089) (.0089)
Others .1818∗∗∗ .1820∗∗∗ .1830∗∗∗ .1825∗∗∗

(.0092) (.0092) (.0092) (.0092)
Annual dummies
year 2 .0165 .0152 .0139 .0118

(.0163) (.0163) (.0163) (.0163)
year 3 −.0346∗ −.0367∗ −.0383∗ −.0406∗

(.0160) (.0160) (.0160) (.0160)
year 4 −.0972∗∗∗ −.0999∗∗∗ −.1015∗∗∗ −.1035∗∗∗

(.0158) (.0157) (.0157) (.0157)
year 5 −.1279∗∗∗ −.1308∗∗∗ −.1320∗∗∗ −.1339∗∗∗

(.0153) (.0153) (.0153) (.0153)
year 6 −.1694∗∗∗ −.1723∗∗∗ −.1731∗∗∗ −.1749∗∗∗

(.0150) (.0150) (.0149) (.0149)
year 7 −.2125∗∗∗ −.2151∗∗∗ −.2160∗∗∗ −.2183∗∗∗

(.0147) (.0147) (.0147) (.0147)
year 8 −.2713∗∗∗ −.2738∗∗∗ −.2741∗∗∗ −.2770∗∗∗

(.0145) (.0144) (.0144) (.0144)
year 9 −.3124∗∗∗ −.3148∗∗∗ −.3154∗∗∗ −.3183∗∗∗

(.0142) (.0142) (.0142) (.0142)
year 10 −.3353∗∗∗ −.3376∗∗∗ −.3381∗∗∗ −.3412∗∗∗

(.0140) (.0139) (.0139) (.0139)
year 11 −.3120∗∗∗ −.3139∗∗∗ −.3147∗∗∗ −.3177∗∗∗
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(Continued from previous page)
OVERALL LIMITED INTERVAL†

COLLBORATION COLLABORATION
WITHIN 36 WITHIN 24 WITHIN 12

(1) (2) (3) (4)
(.0135) (.0134) (.0134) (.0134)

year 12 −.3341∗∗∗ −.3358∗∗∗ −.3368∗∗∗ −.3403∗∗∗

(.0132) (.0132) (.0132) (.0132)
year 13 −.3377∗∗∗ −.3389∗∗∗ −.3397∗∗∗ −.3427∗∗∗

(.0127) (.0127) (.0127) (.0127)
year 14 −.3160∗∗∗ −.3159∗∗∗ −.3168∗∗∗ −.3203∗∗∗

(.0124) (.0124) (.0124) (.0123)
year 15 −.3073∗∗∗ −.3067∗∗∗ −.3079∗∗∗ −.3119∗∗∗

(.0121) (.0121) (.0121) (.0121)
year 16 −.3220∗∗∗ −.3210∗∗∗ −.3220∗∗∗ −.3262∗∗∗

(.0120) (.0120) (.0120) (.0120)
year 17 −.3354∗∗∗ −.3336∗∗∗ −.3346∗∗∗ −.3392∗∗∗

(.0120) (.0120) (.0120) (.0120)
year 18 −.3348∗∗∗ −.3324∗∗∗ −.3334∗∗∗ −.3381∗∗∗

(.0119) (.0119) (.0119) (.0119)
year 19 −.3124∗∗∗ −.3097∗∗∗ −.3109∗∗∗ −.3152∗∗∗

(.0118) (.0118) (.0118) (.0118)
year 20 −.2695∗∗∗ −.2670∗∗∗ −.2675∗∗∗ −.2704∗∗∗

(.0117) (.0117) (.0117) (.0117)
year 21 −.1001∗∗∗ −.0980∗∗∗ −.0987∗∗∗ −.1001∗∗∗

(.0115) (.0115) (.0115) (.0115)
year 22 −.1505∗∗∗ −.1491∗∗∗ −.1497∗∗∗ −.1502∗∗∗

(.0122) (.0122) (.0122) (.0122)
Log-likelihood -236375 -236377 -236380 -236426
Observations 286954 286954 286954 286954

NOTE.– Standard errors are in parentheses.
a Total numbers of previously applied patents is used.
† Collaborations from limited intervals before the job switch are considered. The Intervals are
within 36 months, 24 months, and 12 months before the job switch. ∗ p < .1. ∗ ∗ p < .05.
∗ ∗ ∗ p < .01.
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