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Abstract

We consider a problem in environmental policy design by applying optimal stopping rules.
The purposes of this paper are (1) to provide an economic foundation for the precautionary
principle and the 1992 Rio Declaration on Environment and Development, (2) to derive the
optimal timing rule that governments should adopt in order to deal with emissions of SO2

or CO2 and increases in greenhouse gas concentrations under ambiguity in continuous time,
and (3) to show that this optimal timing rule has a reservation property. Furthermore,
we analyze the effect of an increase in ambiguity on the optimal timing of adopting some
environmental policy, and show that an increase in ambiguity decreases the optimal timing
of adopting the environmental policy.
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1. Introduction

The policy stance of taking preventive action based on the worst case scenario before the

resolution of uncertainty about possible environmental damages is referred to as the precaution-

ary principle. 1 Principle 15 in the 1992 Rio Declaration on Environment and Development is

based on this principle and states that “where there are threats of serious or irreversible damage,

lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures

to prevent environmental degradation.” Although the precautionary principle is not necessar-

ily theoretically supported, European countries and Canada adopt the precautionary principle

when they consider environmental policies. On the other hand, there exist some countries, for

example, the US that takes a position that if there exists lack of full scientific certainty, then en-

vironmental policies should be postponed. The difference in environmental policy stances among

nations without sound theoretical foundations leads to severe conflicts at international organiza-

tions where environmental polices are discussed. If the precautionary principle is supported by

a sound theoretical foundation, then it is possible to discuss environmental problems fruitfully

and to come up with effective measures for global warming. The purpose of this paper is to

provide a foundation for the Rio Declaration and the precautionary principle by incorporating

three characteristics of environmental problems, ambiguity, irreversibility, and the flexibility in

deciding the timing of adopting environmental policies into a continuous-time model of ambi-

guity in order to discuss environmental policies for global warming based on a sound economic

foundation. 2

The importance of the distinction between risk and ambiguity is pointed out by Ellsberg

(1961), which provides some evidence that people tend to prefer to act on known rather than

unknown or vague probabilities. Uncertainty captured by a set of probability measures is called

Knightian uncertainty or ambiguity (henthforth, ambiguity). On the other hand, uncertainty

captured by a unique probability measure is called risk. Ambiguity can be analyzed in the

framework of Maxmin Expected Utility (henceforth MMEU). MMEU axiomatized by Gilboa

1For example, see Hanley, Shogren and White (2007).
2Based on robust control theory, Gonzalez (2007) shows that the policy maker can implement the precautionary

principle to regulate a stock pollutant from a point of view of model uncertainty. For the details of robust control
theory and model uncertainty, see Hansen and Sargent (2008).
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and Schmeidler (1989) states that if a certain set of axioms is satisfied, then decision maker’s

beliefs are captured by a set of probability measures and her preferences are represented by the

minimum of expected utilities over the set of probability measures. MMEU has deepened our

understanding of decision maker’s behaviors under ambiguity. 3 If governments are assumed to

be less confident about climate changes in the future and they are assumed to make decisions

very cautiously, then the validity of environmental policies based on the precautionary principle

can be well analyzed by MMEU. Since climate changes in the future cannot be easily foreseen and

the environment cannot be easily recovered once destroyed, the assumptions that governments

are less confident about climate changes in the future and they make decisions very cautiously

make sense. Therefore, this paper adapts a continuous-time model of ambiguity proposed by

Chen and Epstein (2002) in order to provide an economic foundation for the precautionary

principle. 4

Environmental policies are usually evaluated on the basis of cost-benefit analysis (the

net present value (NPV) approach), which states that a policy should be adopted if the present

value of the expected flow of benefits exceeds the present value of the expected flow of costs.

However, as pointed out by Pindyck (2000, 2002), this standard approach does not consider three

significant characteristics of environmental problems. First, there exist economic uncertainty

over future costs and benefits of adopting environmental policies, and ecological uncertainty

over the evolution of ecological systems. We do not exactly know costs and effects of adopting

environmental policies nor know the economic damages caused by increases or decreases in

average temperature. Second, there exist two irreversibilities to be considered in environmental

policy design. One is the irreversibility with respect to environmental damage. For instance,

emissions of CO2 will increase greenhouse gas concentrations, which is considered to lead to

global warming and to damage ecological systems. The damage to environmental systems caused

by global warming cannot be reversible, which implies that adopting environmental policies right

now rather than waiting has sunk benefits. The standard cost-benefit analysis based on the NPV

3For example, see Epstein and Wang (1994), and Nishimura and Ozaki (2004).
4In static frameworks, Ghirardato et al. (2004), Klibanoff et al. (2005), and Klibanoff et al. (2006) provide

more general frameworks than MMEU. In this paper, we adopt a continuous-time model of ambiguity proposed
by Chen and Epstein (2002) in order to analyze behaviors under ambiguity whithin a continuous-time framework.
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approach ignores this kind of opportunity benefits.5 The other is the irreversibility with respect

to economic damage. For example, the installation of scrubbers by coal-burning utilities will

be sunk costs on society, which implies that adopting environmental policies immediately rather

than waiting for the arrival of new information about environmental damage and economic

consequences generates opportunity costs. 6 Again, the traditional cost-benefit analysis ignores

this kind of opportunity costs. Finally, the adoption of environmental policies is not now-or-

never decisions. That is, the government has the option to postpone the adoption of policies

and can wait for the arrival of new information. 7

By incorporating ambiguity, irreversibility, and the flexibility in deciding the timing of

adopting policies into a continuous-time model of ambiguity, this paper shows that an increase

in ambiguity decreases the value of adopting some environmental policy. Furthermore, this

paper shows that an increase in ambiguity decreases the optimal timing of the environmental

policy above which the environmental policy is immediately adopted and below which the en-

vironmental policy is not adopted, which implies that Principle 15 in the 1992 Rio Declaration

on Environment and Development and the precautionary principle are theoretically supported

within the framework of MMEU. The second claim implies that the government’s less confidence

in the prospect of the economic situation will encourage the government to adopt the optimal

environmental policy immediately, and make her hasten to adopt the optimal environmental

policy. Our results are stark contrasts to Pindyck (2000) that shows that in a continuous-time

model of risk, an increase in risk does not affect the value of adopting an environmental pol-

icy, and an increase in risk increases the optimal timing of adopting the environmental policy,

which implies that an increase in risk will discourage the government to adopt the optimal

environmental policy, and make her postpone adopting the environmental policy.

The organization of this paper is as follows. Section 2 provides a continuous-time model

under ambiguity, and derives the value of adopting environmental policies under ambiguity in

continuous time. In order to analyze the value of adopting the environmental policy under

5This notion is pointed out by Arrow and Fisher (1974), and Henry (1974).
6For example, we will have the arrival of new information about innovations of new technologies in the near

future that might enable us to remove sulfur more inexpensively and efficiently.
7For example, we will receive some data about global warming, or some innovation about scrubbers, which will

enable us to put off adopting environmental policies and to avoid imposing sunk costs on society immediately.
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ambiguity in continuous time, mathematical definitions and results are provided. Section 3

derives the value of the optimal environmental policy under a continuous-time model of ambi-

guity. Moreover, we show that the optimal timing rule the government should adopt exists and

that this optimal timing rule has a reservation property. Section 4 analyzes the effects of an

increase in ambiguity on the value of adopting the environmental policy and the optimal timing

of adopting the environmental policy, respectively. Section 5 compares this paper with Pindyck

(2000, 2002) that analyze optimal environmental policies under risk, and concludes this paper.

All proofs are relegated to Appendices.

2. The Value of Adopting Environmental Policies under Ambiguity in Continuous

Time

In this section, in order to analyze the government’s optimal environmental policies

within the framework of ambiguity in continuous time, we provide a continuous-time model

under ambiguity, and derive the value of adopting environmental policies under ambiguity in

continuous time.

Let (Ω,FT , P ) be a probability space, and let (Bt)0≤t≤T be a standard Brownian motion

with respect to P . We consider the standard filtration (Ft)0≤t≤T for a standard Brownian

motion (Bt)0≤t≤T . Let Θ be a set of density generators. 8 For such a set Θ, define the set of

probability measures, PΘ on (Ω,FT ), generated by Θ, by

PΘ =
{
Qθ

∣∣ θ ∈ Θ
}

, (1)

where Qθ is derived from P . 9 In this paper, decision maker’s beliefs are captured by not a single

probability measure, but the set of probability measures equivalent to a probability measure P .

That is, decision maker’s beliefs can be deviated from the true probability measure P within

probability measures equivalent to P .
8For the definition of density generators, see Appendix A.
9Let θ be a density generator in Θ. Let (zθ

t )0≤t≤T be a stochastic process defined by (22) in Appendix A.
Then, a probability measure Qθ on (Ω,FT ) defined by

(∀A ∈ FT ) Qθ(A) =

∫
Ω

zθ
T (ω)χA(ω) dP (ω) = EP [χAzθ

T ],

is equivalent to P . Conversely, any probability measures equivalent to P can be obtained by a density generator
in this way. Note that χ denotes the indicator function.
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A set of density generators ΘKt is strongly rectangular if there exist a nonempty compact

subset 10 K of R and a compact-valued, convex-valued, measurable correspondence 11 K :

[0, T ] � K such that 0 ∈ Kt and

ΘKt =
{

(θt) ∈ L2 | θt(ω) ∈ Kt (m ⊗ P )-a.s.
}

, (2)

where m is the Lebesgue measure restricted on B([0, T ]). Any element in ΘKt satisfies Novikov’s

condition, which follows since Kt is a subset of a compact subset K of R for all t. Note that the

set Kt is independent of the state ω, contrary to the set Kt(ω) in (23). 12

Let us introduce two concepts; i.i.d. ambiguity and κ-ignorance. Ambiguity charac-

terized by ΘK is i.i.d. ambiguity if there exists a compact subset K of R such that 0 ∈ K

and

ΘK =
{

(θt) ∈ L2 | θt(ω) ∈ K (m ⊗ P )-a.s.
}

, (4)

where m is the Lebesgue measure restricted on B([0, T ]). Note that the set ΘK is independent

of state and time. In the case of κ-ignorance, which is a special case of i.i.d. ambiguity ΘK , we

can parameterize the degree of ambiguity, that is, the set K is specified as K = [−κ, κ] for all

κ > 0. The positive real number κ is considered to represent the degree of ambiguity because the

larger κ is, the larger the set of probability measures is. By considering the case of κ-ignorance,

we can perform comparative static analyses on the effects of ambiguity.

Let (Mt)0≤t≤T be a deterministic process of the stock of an environmental pollutant (for

example, SO2 or CO2 in the atmosphere) and let Et be the amount of the emitted pollutant at

time t. We assume that the evolution of the stock of the environmental pollutant (Mt)0≤t≤T

10This assumption corresponds to uniform boundedness in Chen and Epstein (2002). Under this assumption,
we can show that any θ ∈ ΘKt satisfies Novikov’s condition.

11That is, {t ∈ [0, s] |Kt ∩ U �= ∅} ∈ B([0, s]) holds for any closed subset U of K. Note that B([0, s]) denotes
the smallest σ-algebra containing [0, s].

12Let 0 ≤ s ≤ t ≤ T and let X be an FT -measurable function. If a set of density generators Θ satisfies the
strong rectangularity, then the following recursive structure holds:

min
θ∈Θ

EQθ

[X | Fs] = min
θ∈Θ

EQθ
[
EQθ

[X | Ft]

∣∣∣∣Fs

]
= min

θ∈Θ
EQθ

[
min
θ′∈Θ

EQθ′
[X | Ft]

∣∣∣∣Fs

]
(3)

as long as the minima exist. The first equality holds by the law of iterated integrals. Although the second equality
holds by the rectangularity that is weaker than the strong rectangularity, the strong rectangularity is needed in
order to show Proposition 1. See Nishimura and Ozaki (2007) in details.
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satisfies the following: 13

dMt = (βEt − δMt)dt, (5)

where β ∈ (0, 1] denotes the absorption rate of the environmental pollutant, and δ ∈ [0, 1]

denotes the natural decay rate of the stock of the environmental pollutant over time.14 In other

words, a fraction β of the emitted pollutant at time t, Et, goes into the atmosphere, and a

fraction δ of the environmental pollutant at time t, Mt, in the atmosphere diffuses into the

ocean, the forests, and so forth. 15 We assume that until an environmental policy is adopted,

the constant initial level E0 continues to be emitted, and that once the environmental policy is

adopted, the amount of the emitted pollutant is reduced to a new and permanent level E1 that

satisfies 0 ≤ E1 ≤ E0. For simplicity, we assume that E1 = 0.

We assume that economic uncertainty follows a geometric Brownian motion,

dXt = αXtdt + σXtdBt, (6)

where α and σ are constant real numbers. This stochastic process (Xt)0≤t≤T is assumed to

capture economic uncertainty over future costs and benefits of policy adoptions. Changes in

Xt over time might reflect changes in technologies. For instance, if Mt denotes the stock of

CO2 in the atmosphere, then changes in Xt might reflect the innovation of technologies that

would drastically reduce the social cost of Mt, or might reflect population increase that would

raise the social cost of Mt. Without loss of generality, it is assumed that σ > 0. Within

the framework of ambiguity in continuous time, by Girsanov’s Theorem (see Appendix A), the

stochastic differential equation capturing economic uncertainty over future costs and benefits

over adopting environmental policies turns out to be

dXt = (α − σθt)Xtdt + σXtdBθ
t

for any θ ∈ Θ.

13For simplicity, we ignore the stochastic fluctuation of Mt.
14In addition to the evolution of the stock of the environmental pollutant (Mt)0≤t≤T , Nordhaus (1991) considers

a particular temperature adjustment process.
15For extreme cases, β = 1 means that 100% of the emitted pollutant at time t remains in the atmosphere, and

δ = 1 means that 100% of the stock of the environmental pollutant at time t in the atmosphere depreciates.
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We assume that the flow of the social cost associated with the stock variable Mt,

C(Mt, Xt), is linear in Mt, 16 that is

C(Xt, Mt) = −XtMt. (7)

We assume that the government is ambiguity averse. In other words, her beliefs are

captured by the set of probability measures PΘ, (1), and she maximizes the infimum of expected

returns over PΘ. Furthermore, we impose the strong rectangularity on Θ, which implies that Θ

is equal to ΘKt . Thus, the value of adopting the environmental policy that is enforced at time

t until time T is

W (Xt, Mt, t) ≡ inf
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs, Ms)ds

∣∣∣∣Ft

]
,

where C(Xt, Mt) is defined by (7), r > 0 is the discount rate, and EP [·| Ft] is the expectation

with respect to P conditioned on Ft. The government is assumed to decide whether or not to

adopt the environmental policy from time t to time T . After time T , the environmental policy

will be evaluated, and a new environmental policy will be considered.

Proposition 1. Suppose that the government is ambiguity averse, and her beliefs are charac-

terized by ΘKt, where ΘKt is a strongly rectangular set of density generators defined by (2) for

some (Kt). Then the value of adopting the environmental policy that is enforced at time t until

time T is provided by

W (Xt, Mt, t) = −
∫ T

t
XtMt exp

(
−(r + δ − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds, (8)

where (θt)∗ is defined by

(∀t ∈ [0, T ]) (θt)∗ ≡ argmin {σx |x ∈ Kt} = {minKt} .

Proof. See Appendix B.

16As pointed out in Pindyck (2000), for most environmental problems, the damage from a pollutant is considered
to rise more than proportionally with the stock of the pollutant. If the cost function C(Xt, Mt) is assumed to
be quadratic in Mt, C(Xt, Mt) = −XtM

2
t , then the optimal policy rule will depend on the stock Mt. However,

the assumption that the cost function is quadratic in Mt will not affect our main result in this paper. Thus, for
simplicity, we assume that the cost function is linear in Mt.
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In the next section, based on the value of adopting the environmental policy (8), we

derive the value of the optimal environmental policy by solving the Hamilton-Jacobi-Bellman

(henceforth, HJB) equation.

3. The Optimal Environmental Policy under the Strong Rectangularity

In this section, we derive the value of the optimal environmental policy under the strong

rectangularity. Furthermore, in order to solve the HJB equation analytically and to provide the

further characterization of the value of adopting the environmental policy, we have to assume

that (1) ambiguity is characterized by i.i.d. ambiguity, (2) the government’s planning horizon

is infinite, and (3) the environmental policy once adopted never expires. 17

3.1 The Value of the Optimal Environmental Policy under the Strong

Rectangularity

The optimal time is the solution to the optimal stopping problem of finding an (Ft)-stopping

time, t′ ∈ [0, T ] that maximizes the value of the environmental policy at period 0

min
Q∈PΘ

EQ

[∫ T

0
e−rsC(Xs, Ms)ds − e−rt′I

∣∣∣∣F0

]
,

where I > 0 denotes the flow of sunk costs associated with policy adoption. It is also assumed

that r > α + σκ, 18 where κ denotes a degree of ambiguity. Thus, the value at t of the optimal

environmental policy Vt, is defined by

Vt ≡ max
t′∈[t,T ]

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs, Ms)ds − e−r(t′−t)I

∣∣∣∣Ft

]
, (9)

where C(Xt, Mt) is defined by (7). Appendix B shows that Vt is a solution to the following

Hamilton-Jacobi-Bellman equation,

Vt = max
{

Wt − I,−XtMtdt + min
θ∈Θ

EQθ
[dVt | Ft] + Vt − rVtdt

}
. (10)

17Assumption (3) implies that policy adoption is irreversible, which may be extreme. For example, environmen-
tal policies could be enhanced or weakened as time goes by. However, it seems that irreversibility with respect to
adoption of environmental policies is common. For example, once a carbon tax is introduced, it cannot be easily
abolished. For more discussions about assumption (3) from the mathematical point of view, see Nishimura and
Ozaki (2007).

18This assumption is stronger than the usual assumption r > α. However, the assumption r > α + σκ is not
so strong for sufficiently small κ > 0. The crux of the matter is that κ �= 0, which differentiates analyses in
ambiguity from analyses in risk.
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Further assumptions enable us to solve this type of the Hamilton-Jacobi-Bellman equation,

otherwise difficult to solve analytically. We discuss this topic in the following subsections.

3.2 The Further Characterization of the Value of Adopting the Environmental

Policy

In this subsection, we derive the value of adopting the environmental policy by assuming

that ambiguity is characterized by i.i.d. ambiguity, the government’s planning horizon is infinite,

and the environmental policy once adopted never expires.

Under i.i.d. ambiguity, it follows that

θ∗ = argmin {σx|x ∈ K} = minK. (11)

Note that θ∗ is independent of time and state. Under i.i.d. ambiguity, (8) reduces to

W (Xt, Mt, t) = −
∫ T

t
XtMt exp (−(r + δ − α + σθ∗)(s − t)) ds

= −
∫ T

t
XtMt exp(−η(s − t))ds

= −XtMt

η
(1 − exp(−η(T − t))) , (12)

where η ≡ r + δ − α + σθ∗. Thus, the value of adopting the environmental policy reduces to

Wt ≡ W (Xt, Mt) = −XtMt

η
(13)

as T goes to ∞, since r > α + σκ, σ > 0, κ > 0, δ > 0, and 0 ∈ K, which implies the positivity

of η. Note that (13) does not directly depend on the calendar time t. This stationarity of Wt

enables us to solve the HJB equation (10) analytically.

3.3 The Further Characterization of the Value of the Optimal Environmental

Policy

In this subsection, we derive the value of the optimal environmental policy Vt under i.i.d.

ambiguity and the infinite-time horizon. In order to solve the HJB equation (10) analytically,

we assume that ambiguity is characterized by i.i.d. ambiguity, the planning horizon is infinite,

and the environmental policy once adopted never expires, which implies that Vt depends on Xt
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and Mt, not on the calendar time t directly. Thus, the value at t of the optimal environmental

policy Vt defined by (9) turns out to be stationary, which implies that we can denote Vt as

Vt = V (Xt, Mt), where V : R+ × R+ → R is a real-valued function. Accordingly, the HJB

equation (10) turns out to be

Vt ≡ V (Xt, Mt) = max
{

Wt − I,−XtMtdt + min
θ∈Θ

EQθ
[dVt | Ft] + V (Xt, Mt) − rV (Xt, Mt)dt

}
,(14)

where V : R+ × R+ → R is some real-valued function. From the HJB equation (14), it follows

that

−XtMtdt + min
θ∈Θ

EQθ
[dVt | Ft] = rV (Xt, Mt)dt, (15)

in the continuation region. The left-hand side of this equation is the social cost assosiated with

the stock of the pollutant plus the government’s expected minimum gain of having the rights

to carry out the optimal environmental policy, and the right-hand side is the opportunity cost

measured in terms of government’s discount rate.

In Appendix B, we show that in the continuation region, 19

min
θ∈Θ

EQθ
[dVt|Ft] =

∂V

∂Xt
(α − σθ∗)Xtdt +

1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt.

Thus in the continuation region, it follows that

1
2
σ2X2

t

∂2V

∂X2
t

+ (α − σθ∗)Xt
∂V

∂Xt
− rV (Xt, Mt) +

∂V

∂Mt
(βE0 − δMt) − XtMt = 0.

We solve this differential equation with the following boundary conditions,

V (0, Mt) = 0, (16)

V (X∗, Mt) = −X∗Mt

η
− I, and (17)

∂V

∂Xt
(X∗, Mt) =

∂W

∂Xt
(X∗, Mt), (18)

where X∗ is the critical value of X at or above which the optimal environmental policy should

be adopted. Condition (16) reflects the fact that if Xt is always zero, then the flow of the social

cost associated with the stock variable Mt, C(Xt, Mt), is zero. Thus the value of the optimal
19In order to derive this equation, we assume that ∂V/∂Xt is negative in the continuation region, and V is

twice differentiable in the continuation region. We can show that these two assumptions actually hold.
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environmental policy will remain to be zero. Condition (17) is the value matching condition,

and Condition (18) is the smooth pasting condition. 20 By solving the differential equation

with the three boundary conditions, we obtain the value of the optimal environmental policy as

follows:

V (Xt, Mt) =

⎧⎪⎪⎨
⎪⎪⎩

AXγ
t − XtMt

r + δ − (α − σθ∗)
− βE0Xt

(r − (α − σθ∗))(r + δ − (α − σθ∗))
if Xt < X∗

Wt − I if Xt ≥ X∗,

where

A =
(

I

γ − 1

)1−γ

γ−γ

(
βE0

(r − (α − σθ∗))(r + δ − (α − σθ∗))

)γ

,

X∗ =
(

γI

γ − 1

)(
(r − (α − σθ∗))(r + δ − (α − σθ∗))

βE0

)
, (19)

γ =
−(α − σθ∗ − σ2/2) +

√
(α − σθ∗ − σ2/2)2 + 2rσ2

σ2
, (20)

and γ is the positive part of the solutions to the quadratic equation (1/2)σ2x(x − 1) + (α −
σθ∗)x − r = 0.21 The uniqueness of the reservation value X∗, the twice-differentiability of V ,

and the negativity of ∂V/∂Xt follow from this value of the optimal environmental policy.

The value function in the continuation region consists of three components. The first

term is the value of the option to adopt the optimal environmental policy. The second term is

the present value of the flow of the social cost from the current stock of the pollutant. The third

is the present value of the flow of the social cost from emission E0. The value function in the

stopping region consists of two terms. The first term is the value of adopting the environmental

policy defined by (13), and the second is the direct cost resulting from adopting the optimal

environmental policy.

4. Sensitivity Analyses

In this section, we analyze the effects of an increase in ambiguity on the value of adopting

the environmental policy and the optimal timing of adopting the environmental policy, respec-

tively.

20For the value matching condition and the smooth pasting condition, see Dixit and Pindyck (1994).
21In Appendix B, we show that γ > 1.

11



We assume that the government’s beliefs are represented by κ-ignorance in order to

analyze the effects of ambiguity on the value of adopting the environmental policy and the

optimal timing of adopting the environmental policy, respectively.

Under the assumption of κ-ignorance, θ∗ defined by (11) is further characterized by

θ∗ ≡ argmin{σx |x ∈ [−κ, κ]} = −κ.

Thus, (13) and (20) turn out to be

W (Xt, Mt) = − XtMt

r + δ − (α + σκ)

γ =
−(α + σκ − σ2/2) +

√
(α + σκ − σ2/2)2 + 2rσ2

σ2
,

respectively. In the following proposition, we show that an increase in ambiguity decreases the

value of adopting the environmental policy, and an increase in ambiguity decreases the optimal

timing of adopting the environmental policy.

Proposition 2. We assume that the environmental policy once adopted never expires, the plan-

ning horizon is infinite, and that ambiguity is characterized by κ-ignorance. Then, an increase

in ambiguity decreases the value of adopting the environmental policy Wt, and an increase in

ambiguity decreases the optimal timing of adopting the environmental policy X∗ if and only if

the following condition is satisfied:

γ

r + 1
2σ2γ2

<
(γ − 1)(2r + δ − 2(α + σκ))

(r − (α + σκ))(r + δ − (α + σκ))
. (21)

Proof. See Appendix B.

The condition (21) is always satisfied if we set the rate of depreciation δ to zero. This

assumption is appropriate in the case that the pollutant Mt represents CFC (chlorofluorocarbon)

or mercury that cause severe damage on the environment and do not depreciate at all once they

are released into the atmosphere and the ocean. 22

Corollary 1. Suppose that δ = 0. Then, an increase in ambiguity always decreases the optimal

timing of adopting the environmental policy X∗.
22Pindyck (2002) sets the rate of depreciation δ to zero in order to derive an analytical solution within the

framework of risk.
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Proof. See Appendix B.

The first claim in Proposition 2 states that the government’s less confidence in the

prospect of the economic situation lowers the value of the effect of adopting the environmental

policy. Corollary 1 states that the government’s less confidence in the prospect of the economic

situation will encourage the government to adopt the optimal environmental policy immediately.

This result implies that if governments are less confident about climate change in the future and

they make decision very cautiously, then environmental policies to avoid global warming should

be adopted immediately. Therefore, it can be considered that this result provides an economic

foundation for the Rio Declaration and the precautionary principle.

5. Conclusion

This paper analyzes a problem in environmental policy design by applying optimal stop-

ping rules under ambiguity in continuous time. Our result shows that an increase in ambiguity

decreases the optimal timing of adopting an environmental policy, which implies that the gov-

ernment’s less confidence in the prospect of the economic situation will make the government

hasten the adoption of the optimal environmental policy. Furthermore, our result provides an

economic foundation for the Rio Declaration on Environment and Development and the precau-

tionary principle by incorporating ambiguity, irreversibility, and the flexibility in deciding the

timing of adopting the environmental policy into a continuous-time model of ambiguity.

This paper are related to Pindyck (2000, 2002) that analyze a problem in environmental

policy design by applying optimal stopping rules under risk in continuous time. While this

paper shows that an increase in ambiguity decreases the value of adopting the environmental

policy, Pindyck (2000) shows that an increase in risk does not affect the value of adopting

the environmental policy. It is intuitively appropriate that the government’s less confidence

in the prospect of the economic situation does have any effects on the value of adopting the

environmental policy. Moreover, while this paper shows that an increase in ambiguity decreases

the optimal timing of adopting the environmental policy, Pindyck (2000) shows that an increase

in risk increases the optimal timing of adopting the environmental policy. It is also intuitively

appropriate that the government’s less confidence in the prospect of the economic situation will

13



encourage the government to adopt the optimal environmental policy immediately, contrary to

Pindyck (2000) that implies that an increase in risk will make the government postpone the

adoption of the optimal environmental policy.
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Appendix A.

Let (Ω,FT , P ) be a probability space, and let (Bt)0≤t≤T be a standard Brownian motion

with respect to P . Let (Ft)0≤t≤T be the standard filtration for a standard Brownian motion

(Bt)0≤t≤T . Let L be the set of real-valued, measurable, and (Ft)-adapted stochastic processes

on (Ω,FT , P ) with an index set [0, T ], and let L2 be a subset of L that is defined by

L2 =
{

(θt)0≤t≤T ∈ L
∣∣∣∣

∫ T

0
θ2
t dt < +∞ P -a.s.

}
.

Given θ = (θt) ∈ L2, define a stochastic process (zθ
t )0≤t≤T by

(∀t ∈ [0, T ]) zθ
t = exp

(
−1

2

∫ t

0
θ2
sds −

∫ t

0
θsdBs

)
. (22)

By Ito’s lemma, we can define (zθ
t )0≤t≤T as a unique solution to the stochastic differential

equation, dzθ
t = −zθ

t θtdBt with zθ
0 = 1.

A stochastic process (θt) ∈ L2 is called a density generator if (zθ
t ) is (Ft)-martingale.

Novikov’s condition is one of the sufficient conditions for (zθ
t ) to be (Ft)-martingale. For exapmle,

see Karatzas and Shreve (1991).

A set of density generators ΘKt(ω) is rectangular if there exists a set-valued stochastic

process (Kt)0≤t≤T such that

ΘKt(ω) =
{

(θt) ∈ L2 | θt(ω) ∈ Kt(ω) (m ⊗ P )-a.s.
}

, (23)

and, there exists a nonempty compact subset K of R such that for each t, Kt : Ω � K is compact-

valued and convex-valued, the correspondence (t, ω) � Kt(ω), when restricted to [0, s] × Ω, is

B([0, s])⊗Fs-measurable for any 0 < s ≤ T , and 0 ∈ Kt(ω) (m⊗P )-a.s., where m is the Lebesgue

measure restricted on B([0, T ]). Note that i.i.d. ambiguity (4) is a special case of rectangularity

(23). Nishimura and Ozaki (2007) proves the following lemma.

Lemma 1. Let 0 ≤ s ≤ t ≤ T and let X be an FT -measurable function. If a set of density

generators Θ satisfies the rectangularity, then the following recursive structure holds:

min
θ∈Θ

EQθ
[X | Fs] = min

θ∈Θ
EQθ

[
EQθ

[X | Ft]
∣∣∣∣Fs

]
= min

θ∈Θ
EQθ

[
min
θ′∈Θ

EQθ′
[X | Ft]

∣∣∣∣Fs

]
(24)

as long as the minima exist.

Let θ be a density generator and define a probability measure Qθ on (Ω,FT ) by

(∀A ∈ FT ) Qθ(A) =
∫

Ω
zθ
T (ω)χA(ω) dP (ω) = EP [χAzθ

T ].

Note that Qθ is equivalent to P . Conversely, any probability measures equivalent to P can be

obtained by a density generator in this way.
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For any θ ∈ Θ, define a stochastic process (Bθ
t )0≤t≤T by

(∀t ∈ [0, T ]) Bθ
t = Bt +

∫ t

0
θsds.

Since (zθ
t ) is (Ft)-martingale, it follows from Girsanov’s theorem that it is a standard Brownian

motion with respect to (Ft) on (Ω,FT , Qθ). By Girsanov’s theorem, the stochastic differential

equation capturing economic uncertainty over future costs and benefits of polic adoptions turns

out to be

dXt = (α − σθt)Xtdt + σXtdBθ
t (25)

for any θ ∈ Θ. By (25), and by applying Ito’s lemma to lnNt considering Qθ as the true

probability measure, it follows that

(∀θ ∈ Θ)(∀t ∈ [0, T ]) Xt = X0 exp
((

α − 1
2
σ2

)
t − σ

∫ t

0
θsds + σBθ

t

)
. (26)

Appendix B: Derivations of Mathematical Results

Proof of Proposition 1

The following lemma is based on Lemma 1 in Nishimura and Ozaki (2007).

Lemma 2. For any s ≥ t and for any θ ∈ ΘKt,

EQθ

[
exp

(
−

∫ s

t
σθhdh + σ

(
Bθ

s − Bθ
t

)) ∣∣∣∣Ft

]

≤ EQθ∗
[
exp

(
−

∫ s

t
σ(θh)∗dh + σ

(
Bθ∗

s − Bθ∗
t

)) ∣∣∣∣Ft

]
,

where θ∗ ≡ argmin {σx|x ∈ K} = minK.

Proof. Let s ≥ t and let θ ∈ ΘKt . Then, by the definition of (θt)∗, it follows that

(∀ω) exp
(
−

∫ s

t
σθrdr + σ

(
Bθ

s − Bθ
t

))
≤ exp

(
−

∫ s

t
σ(θr)∗dr + σ

(
Bθ

s − Bθ
t

))
.

Thus

EQθ

[
exp

(
−

∫ s

t
σθrdr + σ

(
Bθ

s − Bθ
t

)) ∣∣∣∣Ft

]

≤ EQθ

[
exp

(
−

∫ s

t
σ(θr)∗dr + σ

(
Bθ

s − Bθ
t

)) ∣∣∣∣Ft

]

= exp
(
−

∫ s

t
σ(θr)∗dr

)
exp

(
1
2
σ2(s − t)

)

= EQθ∗
[
exp

(
−

∫ s

t
σ(θr)∗dr + σ

(
Bθ∗

s − Bθ∗
t

)) ∣∣∣∣Ft

]
,

where the inequality follows from the monotonicity of conditional expectation.23

23For example, see Billingsley (1995, p.447).
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Proof of Proposition 1. 24

W (Xt, Mt, t)

= inf
Q∈PΘ

EQ

[∫ T

t
exp(−r(s − t))C(Xs, Ms)ds

∣∣∣∣Ft

]

= inf
θ∈Θ

EQθ

[
−

∫ T

t
exp(−r(s − t))XsMsds

∣∣∣∣Ft

]

= inf
θ∈Θ

∫ T

t
EQθ

[
−XsMs exp(−r(s − t))

∣∣∣∣Ft

]
ds

= inf
θ∈Θ

−
∫ T

t
XtMsE

Qθ

[
exp(−r(s − t)) exp

(
(α − σ2/2)(s − t) − σ

∫ s

t
θhdh + σ(Bθ

s − Bθ
t )

) ∣∣∣∣Ft

]
ds

= inf
θ∈Θ

−
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t)

)
EQθ

[
exp

(
−σ

∫ s

t
θhdh + σ(Bθ

s − Bθ
t )

) ∣∣∣∣Ft

]
ds

= −
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t)

)
EQθ∗

[
exp

(
−σ

∫ s

t
(θh)∗dh + σ(Bθ∗

s − Bθ∗
t )

) ∣∣∣∣Ft

]
ds

= −
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t) −

∫ s

t
σ(θh)∗dh

)
EQθ∗

[
expσ

(
Bθ∗

s − Bθ∗
t

) ∣∣∣∣Ft

]
ds

= −
∫ T

t
XtMs exp

(
(α − σ2/2 − r)(s − t) −

∫ s

t
σ(θh)∗dh

)
exp

(
σ2(s − t)/2

)
ds

= −
∫ T

t
XtMs exp

(
−(r − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds

= −
∫ T

t
XtMt exp (−δ(s − t)) exp

(
−(r − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds

= −
∫ T

t
XtMt exp

(
−(r + δ − α)(s − t) −

∫ s

t
σ(θh)∗dh

)
ds,

where the second equality holds by (1), the third equality holds by Fubini’s theorem for con-

ditional expectation,25 the fourth equality holds by (26), the sixth equality holds by Lemma 1,

the seventh equality follows from the fact that (θ∗) is a degenerate stochastic process, the eighth

equality holds by the fact that (Bθ∗
t ) is a Brownian motion with respect to Qθ∗ , and the tenth

equality follows since Ms = Mt exp(−δ(s − t)) for all s ≥ t. 26

Derivation of HJB in case of Ambiguity

Vt

= max
t′∈[t,T ]

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs, Ms)ds − e−r(t′−t)I

∣∣∣∣ Ft

]

= max
{

min
Q∈PΘ

EQ

[∫ T

t
e−r(s−t)C(Xs, Ms)ds

∣∣∣∣Ft

]
− I,

24The idea of the proof is based on Nishimura and Ozaki (2007).
25See Ethier and Kurtz (1986) and Nishimura and Ozaki (2007) in details.
26The solution to dMt/dt = βE0−δMt is Ms = −μ+(Mt +μ) exp(−δ(s−t)) for all s ≥ t, where μ ≡ −(β/δ)E0.

Since we assume E0 = 0 if the environmental policy is adopted, Ms = Mt exp(−δ(s − t)) for all s ≥ t.
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−XtMtdt + max
t′≥t+dt

min
Q∈PΘ

EQ

[∫ T

t+dt
e−r(s−t)C(Xs, Ms)ds − e−r(t′−t)I

∣∣∣∣Ft

]}

= max
{

Wt − I,

−XtMtdt + max
t′≥t+dt

min
Q∈PΘ

EQ

[∫ T

t+dt
e−r(s−t)C(Xs, Ms)ds − e−r(t′−t)I

∣∣∣∣Ft

]}

= max
{

Wt − I,

−XtMtdt + max
t′≥t+dt

min
θ∈Θ

EQθ

[∫ T

t+dt
e−r(s−t)C(Xs, Ms)ds − e−r(t′−t)I

∣∣∣∣Ft

]}

= max
{

Wt − I, −XtMtdt

+e−rdt max
t′≥t+dt

min
θ∈Θ

EQθ

[
EQθ

[∫ T

t+dt
e−r(s−t−dt)C(Xs, Ms)ds − e−r(t′−t−dt)I

∣∣∣∣Ft+dt

] ∣∣∣∣Ft

] }

= max
{

Wt − I, −XtMtdt

+e−rdt max
t′≥t+dt

min
θ∈Θ

EQθ

[
min
θ′∈Θ

EQθ′
[∫ T

t+dt
e−r(s−t−dt)C(Xs, Ms)ds − e−r(t′−t−dt)I

∣∣∣∣Ft+dt

] ∣∣∣∣Ft

]}

= max
{

Wt − I, −XtMtdt

+e−rdt min
θ∈Θ

EQθ

[
max

t′≥t+dt
min
θ′∈Θ

EQθ′
[∫ T

t+dt
e−r(s−t−dt)C(Xs, Ms)ds − e−r(t′−t−dt)I

∣∣∣∣Ft+dt

] ∣∣∣∣Ft

]}

= max
{

Wt − I, −XtMtdt + e−rdt min
θ∈Θ

EQθ
[Vt+dt| Ft]

}

= max
{

Wt − I, −XtMtdt + (1 − rdt)
(

min
θ∈Θ

EQθ
[dVt| Ft] + Vt

)}

= max
{

Wt − I, −XtMtdt + min
θ∈Θ

EQθ
[dVt| Ft] + Vt − rVtdt

}
,

where the first equality follows from the definition of Vt, the third equality follows from (13),

the fourth follows from the definition of PΘ, the fifth holds by the law of iterated integrals, the

sixth follows from the rectangularity (24), the eighth follows from the definition of Vt, the ninth

holds by approximating e−rdt by (1 − rdt), and the last equality holds by eliminating higher

order terms than dt. �

Derivation of Vt under Ambiguity

By Ito’s lemma,

dVt =
∂V

∂Xt
dXt +

1
2

∂2V

∂X2
t

dX2
t +

∂V

∂Mt
dMt

=
∂V

∂Xt

(
(α − σθt)Xtdt + σXtdBθ

t

)
+

1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt.
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Thus, it follows that

min
Q∈PΘ

EQ [dVt|Ft]

= min
θ∈ΘK

EQθ
[dVt|Ft]

= min
θ∈ΘK

EQθ

[
∂V

∂Xt

(
(α − σθt)Xtdt + σXtdBθ

t

)
+

1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt

∣∣∣∣Ft

]

= min
θ∈ΘK

∂V

∂Xt
(α − σθt)Xtdt +

1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt

=
∂V

∂Xt
max
θ∈ΘK

(α − σθt)Xtdt +
1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt

=
∂V

∂Xt

(
α + max

θ∈ΘK
(−σθt)

)
Xtdt +

1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt

=
∂V

∂Xt

(
α − min

θ∈ΘK
(σθt)

)
Xtdt +

1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt

=
∂V

∂Xt
(α − σθ∗)Xtdt +

1
2

∂2V

∂X2
t

σ2X2
t dt +

∂V

∂Mt
(βE0 − δMt) dt, (27)

where the first equality follows from the assumption of i.i.d. ambiguity, the fourth equality holds

by the negativity of ∂V/∂Xt in the continuation region, and the last equality follows from the

definition of θ∗. Therefore, in the continuation region, it follows form (15) and (27) that

1
2
σ2X2

t

∂2V

∂X2
t

+ (α − σθ∗)Xt
∂V

∂Xt
− rV (Xt, Mt) +

∂V

∂Mt
(βE0 − δMt) − XtMt = 0,

with the following boundary conditions:

V (0, Mt) = 0,

V (X∗, Mt) = −X∗Mt

η
− I, and

∂V

∂Xt
(X∗, Mt) =

∂W

∂Xt
(X∗, Mt).

We guess the solution to this equation as follows:

V (Xt, Mt) = AXγ
t + BXtMt + DXt,

where A,B and D are some constants. Then

1
2
σ2X2

t Aγ(γ − 1)Xγ−2
t + (α − σθ∗)

(
AγXγ−1

t + BMt + D
)

Xt

−r (AXγ
t + BXtMt + DXt) − XtMt + (βE0 − δMt)BXt = 0.

⇔ AXγ
t

(
1
2
σ2γ(γ − 1) + (α − σθ∗)γ − r

)

+((α − σθ∗ − r − δ)B − 1)XtMt + (βBE0 + D(α − σθ∗ − r))Xt = 0.

Thus,

1
2
σ2γ(γ − 1) + (α − σθ∗)γ − r = 0

19



(α − σθ∗ − r − δ)B − 1 = 0 ⇔ B = − 1
r + δ − α + σθ∗

βBE0 + D(α − σθ∗ − r) = 0 ⇔ D = − βE0

(r − (α − σθ∗))(r + δ − (α − σθ∗))
.

By the boundary conditions, the negative part of the solution to (1/2)σ2γ(γ−1)+(α−σθ∗)γ−r =

0 is ruled out. Furthermore, it follows that

A =
(

I

γ − 1

)1−γ

γ−γ

(
βE0

(r − (α − σθ∗))(r + δ − (α − σθ∗))

)γ

X∗ =
(

γI

γ − 1

) (
(r − (α − σθ∗))(r + δ − (α − σθ∗))

βE0

)
. �

Proof of γ > 1.

This claim follows since

γ =
−(α − σθ∗ − σ2/2) +

√
(α − σθ∗ − σ2/2)2 + 2rσ2

σ2

>
−(α − σθ∗ − σ2/2) +

√
(α − σθ∗ − σ2/2)2 + 2(α − σθ∗)σ2

σ2

=
−(α − σθ∗ − σ2/2) + |α − σθ∗ + σ2/2|

σ2
= 1, (28)

where the inequality holds by the assumption that r > α + σκ = α − σθ∗, and the last equality

holds since α, σ > 0 and θ∗ = −κ < 0, which implies that |α− σθ∗ + σ2/2| = α− σθ∗ + σ2/2. �

Proof of ∂λ/∂σ < 0.

Recall that λ is the positive part of the solutions to the quadratic equation (1/2)σ2x(x − 1) +

αx − r = 0. Thus, λ satisfies the following:

1
2
σ2λ(λ − 1) + αλ − r = 0.

By differentiating both sides with respect to σ considering λ as a function of σ, it follows that

σλ(λ − 1) +
1
2
σ2(λ − 1)

∂λ

∂σ
+

1
2
σ2λ

∂λ

∂σ
+ α

∂λ

∂σ
= 0,

from which we obtain

∂λ

∂σ
=

−σλ(λ − 1)
1
2σ2(λ − 1) + 1

2σ2λ + α

=
−σλ2(λ − 1)

1
2σ2λ(λ − 1) + 1

2σ2λ2 + αλ

=
−σλ2(λ − 1)
r + 1

2σ2λ2
< 0,

where the inequality follows from λ > 1 and σ > 0. �
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Lemma 3.

∂γ

∂κ
=

−σγ2

1
2σ2γ2 + r

< 0.

Proof. Recall that γ is the positive part of the solutions to the quadratic equation: 27

1
2
σ2x(x − 1) + (α + σκ)x − r = 0.

Thus, γ satisfies the following:

1
2
σ2γ(γ − 1) + (α + σκ)γ − r = 0. (29)

By differentiating both sides with respect to κ considering γ as a function of κ, it follows that

1
2
σ2 ∂γ

∂κ
(γ − 1) +

1
2
σ2γ

∂γ

∂κ
+ σγ + (α + σκ)

∂γ

∂κ
= 0,

from which we obtain

∂γ

∂κ
=

−σγ
1
2σ2(γ − 1) + 1

2σ2γ + α + σκ

=
−σγ2

1
2σ2γ(γ − 1) + 1

2σ2γ2 + (α + σκ)γ

=
−σγ2

1
2σ2γ2 + r

< 0.

Proof of Proposition 2

It follows from (13) that ∂W/∂κ < 0. Next, differentiating (19) with respect to κ leads to

∂X∗

∂κ

= − I

(γ − 1)2

(
(r − (α + σκ))(r + δ − (α + σκ))

βE0

)
∂γ

∂κ

+
(

γI

γ − 1

)(−σ(r + δ − (α + σκ)) − σ(r − (α + σκ))
βE0

)

= − I

βE0(γ − 1)

(
(r − (α + σκ))(r + δ − (α + σκ))

γ − 1
∂γ

∂κ
+ σγ (2r + δ − 2(α + σκ))

)
.

Thus, ∂X∗/∂κ < 0 if and only if

∂γ

∂κ
> − σγ(γ − 1)(2r + δ − 2(α + σκ))

(r − (α + σκ))(r + δ − (α + σκ))
.

Lemma 2, σ > 0 and γ > 1 imply that ∂X∗/∂κ if and only if

γ

r + 1
2σ2γ2

<
(γ − 1)(2r + δ − 2(α + σκ))

(r − (α + σκ))(r + δ − (α + σκ))
. �

27We are grateful to Hiroyuki Ozaki for his suggestion on this proof.
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Proof of Corollary 1

It suffices to show that

γ

r + 1
2σ2γ2

<
2(γ − 1)

r − (α + σκ)
.

It follows that

1
2
σ2γ2(γ − 1) − r >

1
2
σ2γ(γ − 1) − r

⇒ 1
2
σ2γ2(γ − 1) − r > −γ(α + σκ)

⇒ 1
2
σ2γ2(γ − 1) + r(γ − 1) > rγ − γ(α + σκ)

⇒ (γ − 1)
(

r +
1
2
σ2γ2

)
> γ(r − (α + σκ)) >

1
2
γ(r − (α + σκ)),

where the first inequality holds by γ > 1, and the second holds by (29). Since r > α + σκ and

r + (1/2)σ2γ2 > 0, it follows that

γ

r + 1
2σ2γ2

<
2(γ − 1)

r − (α + σκ)
. �
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