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Abstract

We develop an equilibrium-econometric analysis in the context of rental housing
markets with indivisibilities. The theory provides some bridge between a (com-
petitive) market equilibrium theory and a statistical/econometric analysis. First,
we develop this theory: The listing service of apartments, which we call the hous-
ing magazine, provides the information to both households (and landlords) and
the econometric analyzer. Our theory explains this double use of the information
sources. We apply our theory to the data in the rental housing markets in the Tokyo
area, and we examine the law of diminishing marginal utility for the household. It
does not hold at a significant degree for the marginal utility with respect to the size
of apartment, but it does strictly with respect to the commuting time-distance and
consumption other than the housing services.

Key-Words: Rental Housing Market, Indivisibilities, Competitive Equilibrium, To-
tal Sum of Square Residuals, Law of Diminishing Marginal Utility

1. Introduction

1.1. Basic Motivations

We develop an equilibrium-econometric analysis in the context of rental housing mar-
kets, and test it with some data in the rental housing markets in the Tokyo area. Our
analysis has the following salient features:

(i): An econometric method is developed directly through a market (equilibrium) the-
ory;
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(ii): We take statistical components into account both for economic agents in models
and the econometric analyzer, which explains the source of error erms. Then we show
that a market theory with the elimination of statistical components is regarded as an
idealization and can be used for an econometric analysis;

(iii): We define the measure of the discrepancy between the prediction by the theory
and the best statistical estimator, and show in the example of the Tokyo area that the
prediction could be regarded as more than satisfactory.

Feature (ii) tells why and how we can use an market theory for an econometric analysis.
Feature (iii) is a requirement from econometrics. Here, focussing on these features, we
discuss our motivations and background of our research.

One fundamental problem involved in an application of a market theory to real eco-
nomic problems with some econometric method is: What is the source of an error term
in the econometric analysis? This question is often ignored, or is answered in the same
way as classical statistics: The source is attributed to the partial observations of the
econometric analyzer, which is regarded as the kind of measurement errors1. On the
other hand, in some markets such as rental housing markets, economic agents (house-
holds/landlords) may be, at the time of decision making, in the same informational
situation with the econometric analyzer. In this case, error terms represent the effects
of variables not included in available information to either to economic agents or the
econometric analyzer.

We find a nice example in the Tokyo area for the above mentioned situation. In
the Tokyo area, the rental housing market is held, day by day, in a highly decentralized
manner, i.e., many households (demanders) and many landlords (suppliers) look for
better opportunities in places to places2. Various weekly magazines, daily news papers
and internet services for listing apartments for rents are available as mediums for in-
formation transmission of supplied units together with rental prices from suppliers to
demanders3. With the help of those mediums, the rental housing markets function well,
even though prices are not uniform over the “same” category of apartment units. We
will call these mediums simply the housing magazine.

The housing magazine gives concise and coarse information about each listed apart-
ment unit, following a fixed number of criteria, price, size, location, age, geography etc.
The number of listed units is large, e.g., 100 — 1, 200 listed units around one railway

1In the logit model and its generalizations, error terms are inlcuded in the utility functions of economic
agents (e.g., Berry [3]). These may look similar to ours, since they deal also with discrete choices. But
in our approach, as described now, error-terms are not included in utility function.

2 In the city of Tokyo (about 12 millions of residents), the percentage of households renting apartments
is about 55% in 2005, and in the entire Japan, this number is about 37%.

3There are many still decentralized real estate agents. In our analysis, we do not explicitly count
real-estate companies. But we should remember that behind the market description, many real-estate
companies are included.
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Figure 1.1: Two Faces of the Equi-Economeric Analysis

station are found in our example, which will be given in Section 2.2. This large number
has various implications. One is that the information about each unit is concise and
coarse, but is far from the description of its full characteristics4.

While data of rental housing prices show that they are non-uniform over the “same”
apartment units, the market can be regarded as a “perfectly competitive market”. These
statements may appear contradictory, but can be reconciled, which is Feature (ii).

Feature (iii) is about more details of our development. Hence, we will describe more
details of our equilibrium-econometric analysis, and then consider Feature (iii).

1.2. Development of the Equilibrium-Econometric Analysis

We treat the attributes listed in the magazine as systematic components and the others
as non-systematic components. We assume that the systematic components are de-
scribed by a market equilibrium theory, and that the other part is described as error
terms. We follow the tradition of econometrics for this division. In our actual numerical
treatment, we will choose only two main variables as systematic components.

As the description of the systematic part, we adopt the theory of assignment markets,
which has come from the tradition from Böhm-Bawerk [22], von Neumann-Morgenstern
[25] and Shapley-Shubik [21]. It is a significant difference from the urban economics
literature of bid-rent theory from Alonso [1] that housings are treated as indivisible
commodities.5. More specifically, we adopt a theoretical model given by Kaneko [8]6,

4A weekly housing magazine typically has about 500 pages listing 18 units in each page, but is still
quite partial in the great Tokyo metoropolitan area.

5See Laan-Talman-Yang [15] and its references for recent papers for the literature of assingment
markets. For a recent survery on the urban economics literature from Alonso [1], see Arnott [2]

6The general theory was also discussed in Kaneko-Yamamoto [13], and is applied to the rental housig

3



which differs from the formers in that the assumption of no income effects is removed.
In the model, apartments units are classified into a finite number, T, of categories.
Apartment units are traded for rent payments measured by the composite commodity.
In this manner, the housing market can be expressed as a market model with indivisible
goods.

The systematic part of the housing market is summarized as:

E = (M,u, I;N,C), (1.1)

where M is the set of households, u the vector of utility functions, I the income dis-
tribution for households, and N is the set of landlords, C the vector of cost functions
for landlords. The details of (1.1) and the market equilibrium theory will be given in
Section 2. In this systematic part, the market price is uniform over each category of
apartments.

In the housing magazine, the prices listed are non-uniform over each category of
apartments. Those non-uniform prices are resulted by nonsystematic components other
than the components listed in (1.1). We assume that the effects of non-systematic
components are summarized by one random variable ²k for each category k. That is,
the apartment rent for a unit d in category k is determined by pk + ²kd, where pk is
the competitive rent price for category k and ²kd is an independent random variable
identical to ²k. Since only pk + ²kd is observed in the housing magazine, we regard
the price pk as latent. The market model with the housing magazine is denoted by
E(²) = (M,u, I;N,C; ²).

From our research point of view, the housing market model E(²) has two faces:
(1): It is purely the trading place with the mediums for information transmissions.

(2): It is a target of a study of the econometric analyzer.

These faces are described by the dotted square and the solid rectangle in Figure 1.1. In
both faces, the housing magazine serves information about rental prices to the house-
holds/landlord and the econometric analyzer. However, these two faces are asymmetric.

In (1), households and landlords look at the magazine, while in (2), the econometric
analyzer studies the housing magazine. Since the housing magazine lists a very large
number of apartment units, households (landlords) behave entirely differently from the
econometric analyzer. Typically, each household (landlord) takes a price distribution
from the housing magazine in his subjective manner. If a household looks at the aver-
age of the prices of randomly taken 10 apartment units from one category, its variant
becomes 1/10 of the original distribution.

Thus, a household’s (landlord’s) limited cognitive ability leads to a price distribution
with a much smaller variant. Hence, the uniform price assumption for each category

market model in Kaneko [9] and Kaneko-Ito-Osawa [12]. Certain results in [9] and [12] will be used in
this paper.
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seems to be an approximation. Formally, this interpretation will be expressed by the
correspondence theorem (Theorem 3.1) taking the form of a limit theorem. Here, we
should interpret a limit as meaning just relatively large number. In our example, per-
haps, 10 or 20 units are enough.

Once the correspondence theorem is obtained, we can use a housing market model
E without error terms as representing a market structure. Then we can conduct an
econometric study by focusing on the solid rectangle of Figure 1.

Now, we are in a state to discuss our econometric problem. We formulate it in the
following manner: Let Γ be a class of market models E of the form (1.1). Each model
E in Γ has a competitive equilibrium (p, x, y), where p = (p1, ..., pT ) is a rental price
vector for categories 1, ..., T and (x, y) is an allocation. Then the total sum of square
residuals TR(PD, p) from p = (p1, ..., pT ) to the data PD given by the housing magazine
is defined: Then we have the following problem:

Minimize TR(PD, p) subject to E in Γ and that (p, x, y) is (1.2)

a competitive equilibrium in E compatible with the data.

This will be formulated in Section 4.
We need still to consider two additional problems:

(A): discrepancy η between the predicted rent vector and the data;

(B): choice of a set of market models Γ.

A discrepancy measure η is developed in Section 4. In our application to the data in
Tokyo, the value of the measure will be shown to be 1.025 ∼ 1.032, i.e., only 2.5% ∼
3.2% of the optimal estimator, by specifying certain classes of market models with
homogeneous utility functions.

As an application, we examine the law of diminishing marginal utility for the house-
hold. It does not hold at a significant degree for the marginal utility with respect to the
size of apartment, but it does strictly with respect to the commuting time-distance and
consumption other than the housing services, especially, the degree for consumption is
very large. This estimation result is in strong contrast with a result in the hedonic price
approach, e.g., Kanemoto-Nakamura ??. This will be discussed in Section 5.

For problem (B), we will consider two classes of market models. We will show the
Ex Post Rationalization Theorem in Section 6 that by a choice of Γ that by choosing
a set of market models Γ in a slightly general manner, we could make the value of the
discrepancy measure to be exactly 1. However, this has no prediction power. The class Γ
for this theorem may be regarded as very restrictive from the viewpoint of mathematical
economics or game theory, but the theorem itself implies that Γ is too large to make
the estimation problem nontrivial. It may be compared with the fact that in linear
regression, if the class of linear functions is generalized into the class of piecewise linear
functions, it can “explain” the data with the 100% accuracy, but it has no “prediction
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power”. It is simply an ex post rationalization. For this reason, a restrictive choice of
Γ is important.

We will also consider the status of the standard linear regression in our equilibrium-
econometric analysis. The answer is simple: When the households have the common
linear utility functions with respect to attributes of housing and consumption, our econo-
metric analysis becomes linear regression.

The paper is organized as follows: In Section 2, the market equilibrium theory
of Kaneko [8] will be given, and the example from the Tokyo area will be given. In
Section 3, a market equilibrium theory with perturbed prices will be given. In Section 4,
statistical/econometric treatments will be developed as well as a measure of discrepancy
will be defined. In Section 5, we apply those concepts to a data set in the Tokyo
metropolitan area. In Section 6, we will consider two classes of utility functions. Section
8 gives conclusions and concluding remarks.

2. Equilibrium Theory of Rental Housing Markets

In Section 2.1, we describe the market structure E of (1.1), and state the existence
results of a competitive equilibrium in E due to Kaneko [8]. In Section 2.2, we describe
a rental housing market in the Tokyo area.

2.1. Basic Theory: the Assignment Market

In the rental housing market model without error terms E = (M,u, I;N,C), various
kinds of apartments are traded with the composite commodity called money for some
fixed length of time period. The components of E are as follows:

M1: M = {1, ...,m}- the set of households, and each i ∈M has a utility function ui and
an income Ii > 0 measured by money;

M2: N = {1, ..., T} - the set of landlords and each k ∈ N has a cost function Ck.

Each i ∈M looks for (at most) one unit of an apartment, and each k in N supplies some
units of apartments to the market. The apartments are classified into categories, 1, ..., T .
These categories of apartments are interpreted as potentially supplied. Several units in
one category of apartments may be on the market. When no confusion is expected, we
use the word “apartment” for either one unit or a category of apartments.

The emphasis of the model E is rather on the households and their behavior. We
simplify the descriptions of landlords: As far as competitive equilibrium is concerned,
we can assume without loss of generality that only one landlord k provides apartments
of category k (see Kaneko et al [12], p.146).

Each household i ∈ M chooses a consumption bundle from the consumption set
X := {0, e1, ..., eT} ×R+, where ek is the unit T -vector with its k-th component 1 for
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k = 1, ..., T and R+ is the set of nonnegative real numbers. We may write e0 for 0. A
typical element (ek,mi) means that household i rents one unit from the k-th category
and enjoys the consumption mi = Ii−pk after paying the rent pk for ek from his income
Ii > 0. The zero vector e0 = 0 means that he does not rent any apartment in this market
E.

The initial endowment of each household i ∈ M is given as (0, Ii) with Ii > 0. His
utility function ui : X → R is assumed to satisfy:

Assumption A (Continuity and Monotonicity): For each x ∈ {0, e1, ..., eT},
ui(xi,mi) is a continuous and strictly monotone function of mi and ui(0, Ii) > ui(ek, 0)
for k = 1, ..., T.

The last inequality, ui(0, Ii) > ui(ek, 0), means that going out of the market is preferred
to renting an apartment by paying all his income.

The set of landlords is given as N = {1, ..., T}, where only one landlord k provides
apartments of category k (k = 1, ..., T ). Each landlord k has a cost function Ck(yk) :
Z∗+ → R+ with Ck(0) = 0 < Ck(1), where Z∗+ = {0, 1, ..., z∗} and z∗ is an integer
greater than the number of households m. The cost of providing yk units is Ck(yk). No
fixed costs are required when no units are provided to the market.7 The finiteness of
Z∗+ will be used only in Theorem 3.1.

We impose the following on the cost functions:

Assumption B (Convexity): For each landlord k ∈ N,
Ck(yk + 1)− Ck(yk) ≤ Ck(yk + 2)− Ck(yk + 1) for all yk ∈ Z∗+.

This is a discrete version of the standard convexity assumption on a cost function, and
means that the marginal cost of providing an additional unit is increasing.

We write the set of all economic models E = (M,u, I;N,C) satisfying Assumptions
A and B by Γ0. For an econometric analysis, we will choose some subclass of Γ0, which
is crucial, as mentioned in Section 1.

Now, we define a competitive equilibrium in a market model E = (M,u, I;N,C). Let
(p, x, y) = ((p1, ..., pT ), (x1, ..., xm), (y1, ..., yT )) be a triple of p ∈ RT+, x ∈ {0, e1, ..., eT}m
and y ∈ (Z∗+)T . We say that (p, x, y) is a competitive equilibrium in E iff

(Utility Maximization Under the Budget Constraint): for all i ∈M,
(1): Ii − pxi ≥ 0;
(2): ui(xi, Ii − pxi) ≥ ui(x0i, Ii − px0i) for all x0i ∈ {0, e1, ..., eT} with Ii − px0i ≥ 0;
(Profit Maximization): for all k ∈ N,

7The cost functions here should not be interpreted as measuring costs for building new apartments.
In our rental housing market, the apartment units are already built and fixed. Therefore, Cj(yj) is the
valuation of apartment units yj below which he is not willing to rent yj unit for the contract period.
This will be clearer in the numerical example in Section 2.3.
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pkyk − Ck(yk) ≥ pky0k − Ck(y0k) for all y0k ∈ Z∗+;

(Balance of the Total Demand and Supply):
P
i∈M xi =

PT
k=1 yke

k.

Note pxi :=
PT
k=1 pkxik. These conditions constitute the standard notion of competitive

equilibrium.
The above housing market model is a special case of Kaneko [8] and Kaneko-

Yamamoto [13], where the existence of a competitive equilibrium is proved. Therefore,
we have the following.

Theorem 2.1 (Existence): In each E = (M,u, I; N,C) in Γ0, there is a competitive
equilibrium (p, x, y).

The purpose of this paper is to study not general properties of equilibrium in
E = (M,u, I;N,C) but more specific behavior of a competitive rent (price) vector. For
this reason, it would be convenient to choose one specific competitive price vector. It is
possible to choose a unique maximal competitive rent vector, though a corresponding
competitive allocation may not be unique.

We say that p = (p1, ..., pT ) is a competitive rent vector iff (p, x, y) is a compet-
itive equilibrium for some x ∈ {0, e1, ..., eT}m and y ∈ (Z∗+)

T . Also, we say that
p = (p1, ..., pT ) is a maximal competitive rent vector iff p ≥ p0 for any competitive
rent vector p0. By definition, a maximal competitive rent vector would be unique if it
ever exists. In a standard equilibrium model, the existence of such a price vector cannot
be expected. However, we have the existence of a maximal competitive rent vector in
E = (M,u, I;N,C). This fact has been known in slightly different models since the
pioneering work of Shapley-Shubik [21] and Gale-Shapley [5].8 Also, see Miyake [17].

Theorem 2.2 (Existence of a Maximal Competitive Rent Vector). There is a
maximal competitive price vector in each E = (M,u, I;N,C) in Γ0.

It is also shown in the same manner that a minimal competitive rent vector exists.
Although the subsequent analysis holds for either maximal or minimal competitive rent
vector, we focus on the maximal one. In the following, we will use the following function
ψ defined over Γ0 assigning the maximal competitive rent vector p to each each E =
(M,u, I;N,C) in Γ0.

8The models of these papers as well as that of the present paper belong to the literature of assignment
markets (see Roth-Sotomayor [20] for an extensive survey). In this literature, it is shown that the core
of a two-sided assignment market has the specific geometric structure that the core has the maximal
and minimal payoff vectors for one side of players. Also, it holds that the core is equivalent to the set of
competitive allocations in a typical assignment market, though this equivalence requires each landlord
to produce at most one unit in the model of the present paper (see Kaneko [8]). We can expect the
existence of a maximal rent vector from these facts. Our housing market keeps this property for the
competitive rent vectors.
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Figure 2.1: The Chuo Line

2.2. Application to a Rental Housing Market in Tokyo (1)

We exemplify the theory described above in a rental housing market in Tokyo. This
example will be continued in Section 5.

Consider the JR (Japan Railway) Chuo line running from Tokyo station to the west
direction, along which residential areas are spread out. See Figure 2.1. The line has 30
stations from Tokyo station up to Takao station, which is almost on the west boundary
of the Tokyo great metropolitan area. Here, we consider only a submarket of the entire
market: We take six stations and three types of sizes for apartments. We explain how
we formulate this submarket by means of a housing market model E = (M,u, I;N,C)
given in Section 2.1.

Look at Table 2.1: The first column shows the time distance measured by minutes
from Tokyo station to each station, i.e., 18, 23, 31, 52, 64 and 70 (minutes). It is assumed
that people commute to Tokyo station (office area) from their apartments. The first
raw designates the sizes of apartments, and the three intervals are represented by the
medians 15, 35 and 55 (m2) when we plug them into a utility function.9 Thus, the
apartments are classified into T = 6× 3 = 18 categories.

We assume that the households have the common basic utility function as follows:

U0(t, s,mi) = −2.2t+ 4.0s+ 100
√
mi, (2.1)

where t takes possible values 18, 23, 31, 52, 64, 70 and s takes values, 15, 35, 55. A pair
(t, s) determines a category. By calculating the first part −2.2t + 4.0s of U(t, s, c), we
obtain hk for the corresponding cell of Table 2.1. These hk’s give the ordering over the
18 categories: For example, −2.2t+ 4.0s takes the largest value at (t, s) = (18, 55); we
label k = 1 to the category of (t, s) = (18, 55). Similarly, −2.2t + 4.0s takes the 7-th

9The first interval is taken from 5 to 25. In the Japanese standard, one-room apartments are
categolized into this class.
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value at (t, s) = (64, 55), and thus k = 7. Those labels are denoted by the first numbers
k of those cells. Thus, we have the correspondence λ between the characteristics (t, s)
and category k.

Based on this correspondence λ, we can define the utility function u : X = {e0, e1, ...,
e18} ×R+ → R as follows:

u(ek,mi) = hk + 100
√
mi, (2.2)

where λ(t, s) = k and hk = −2.2t+4.0s for k ≥ 1 and h0 is chosen so that h0+100
√
Im >

h1.

Table 2.1: k hk wk

time
(min) \

size
(m2) < 25 25− 45 45− 65

18:Nakano 11 20.4 1176 5 100.4 761 1 180.4 269

23:Ogikubo 12 9.4 1153 6 89.4 739 2 169.4 367

31:Mitaka 14 -8.2 716 8 71.8 571 3 151.8 267

52:Tachikawa 16 -54.4 460 10 25.6 283 4 105.6 260

64:Hachio-ji 17 -80.8 1095 13 -0.8 346 7 79.2 184

70:Takao 18 -94.0 103 15 -14.0 105 9 66.0 102

The derived utility function in (2.2) satisfies Assumption A. The concavity of 100
√
mi

expresses the law of diminishing marginal utility of consumption, which will be discussed
in Section 5.

The third entry wk of category k in Table 2.1 is the number of units listed for sale in
the housing magazine; particularly, the Yahoo Real Estate (15, June 2005). The largest
number of supplied units is w11 = 1176 for the smallest apartments in the Nakano area,
and the smallest number is w9 = 102 for the largest apartments in the Takao area.
The total number of apartment units on the market is

P18
k=1wk = 8957. These large

numbers will be important for statistical treatments in later sections.
We assume that the same number of households are coming to the market to look

for apartments and they rent all the units in this week. Thus, the number of households
m is also the same as 8957.

Suppose that only those units appear in the market and no units are newly built.
For the purpose of determination of a competitive equilibrium, we separate the cost
functions for k = 1, ..., T − 1 and k = T. For k = 1, ..., T − 1, we formulate the cost
function Ck(yk) as:

Ck(yk) =

⎧⎨⎩
ckyk if yk ≤ wk

“large” if yk > wk,
(2.3)
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where ck > 0 for k = 1, ..., T − 1 and “large” is a number greater than I1. Thus, only
the supplied units are in the scope of cost functions. In the case of k = T, we assume
that more units are waiting for the market. Let w0T be an integer with w

0
T > wT . We

define CT (yT ) by:

CT (yT ) =

⎧⎨⎩
cT yT if yT ≤ w0T

“large” if yT > w0T ,
(2.4)

where cT > 0. Hence, the market price for an apartment in category T must be cT .
Landlord k has the reservation price ck for all units he provides, but the cost to build

a new unit is too large relative to this housing market. This satisfies Assumption B. For
the calculation of the maximal competitive rent vector, let c18 = 48.0 and c1, ..., c17 are
“small” in the sense that all the w0k = wk units are supplied at the competitive prices
for k = 1, ..., 17.

The remaining element of the housing market model E = (M,u, I;N,C) is the
incomes for the households. We assume that the (monthly) income distribution over
M = {1, ...,m} = {1, ..., 8957} is uniform from 100, 000 yen to 850, 000 yen. Hence,
I8957 = 100, 000 and I1 = 850, 000. In fact, this uniform distribution is just for the
purpose of calculation, and can be changed into other distributions.10

Under the above specification of the housing market model E = (M,u, I;N,C),
we can calculate the maximal competitive rent vector p = (p1, ..., pT ), which is given in
Table 2.2. The average rents p = (p1, ..., p18) as well as the standard deviation (s1, ..., sT )
from the data of the Yahoo Real Estate are given. Figure 2.2 depicts p = (p1, ..., pT ) as
well as p = (p1, ..., p18).

Table 2.2: k pk p̄k sk (1,000yen)

time
(min) \

size
(m2) < 25 25− 45 45− 65

18:Nakano 11 78.5 74.4 12.7 5 113.9 112.5 23.8 1 154.8 162.7 26.7

23:Ogikubo 12 74.3 75.8 13.6 6 108.6 107.0 23.1 2 149.0 146.2 20.9

31:Mitaka 14 68.7 68.9 9.8 8 110.6 102.1 21.2 3 140.0 143.1 21.6

52:Tachikawa 16 56.4 59.8 11.0 10 80.7 78.1 12.5 4 116.6 116.0 16.5

64:Hachio-ji 17 50.0 51.5 7.5 13 71.0 73.3 11.3 7 104.0 103.5 17.9

70:Takao 18 48.0 46.4 5.9 15 67.2 65.1 9.6 9 98.1 86.1 11.3

To consider how much the calculated price vector p = (p1, ..., pT ) fits with the data
from the housing magazine, we will define the discrepancy measure in Section 4.1. In
10At this stage, the result is not sensitive with the uniform distribution assumption, i.e., if we change

it to a truncated normal destitution, the calculated rents are not much changed. However, in the later
calculation in Section 5, a change of this assumption seems to affect the result (η = 1.025).
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Figure 2.2: The Computed Prices and Average Prices

the present data set from the Yahoo Real Estate, the measure is calculated as follows:P18
k=1

P
d∈Dk(Pkd(ω)− pk)

2P18
k=1

P
d∈Dk(Pkd(ω)− pk)2

=
2466003.250

2389029.280
+ 1.032. (2.5)

where D1, ...,D18 are the sets of apartment units for categories k = 1, ..., 18, e.g., D1 is
the set of largest apartment units in the Nakano area, and Pkd(ω) is the listed price of
unit d in category k in the data. Here, ω is the primitive event determining the (random)
error terms (see Section 4). That is, the sum of square errors from the predicted prices
is divided by the sum of square errors from the average prices. We will argue in Section
4 that this ratio (2.5) has some specific meaning. Here, we emphasize that this ratio is
already close to 1.

3. Rental Housing Markets with the Housing Magazine

In the competitive equilibrium in E = (M,u, I;N,C), all the apartment units in each
category are uniformly priced. In reality, however, the prices for apartments in a cat-
egory are not uniform. As mentioned in Section 1, this non-uniformness may be inter-
preted as the effects of non-systematic factors, which households are confronting. Here,
we modify a housing market model by taking non-systematic factors into account. Then
we show that the market model E can be regarded as an idealization and be used as an
analytic tool for the rental housing markets with non-uniform rents.
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3.1. Time Structure of the Rental Housing Market

First, we note that our approach is a snap-shot equilibrium theory. Thus, the time
index would be unnecessary. However, it would be easier first to describe the economy
with the time structure for the consideration of decision making and trades with the
use of the housing magazine. Only for this explanation, we will use the time index.

The market situation is recurrent and is described using the “week” due to Hick [6]
in Fig.3.1:

−→ | Et−1(²t−1) | Et(²t) | −→
week t− 2 week t− 1 week t week t+ 1

Fig.3.1

In week t,market Et(²t) = (M t, ut, It;N t, Ct; ²t) has a perturbation term ²t = (²t1, ..., ²
t
T )

as the summary of non-systematic components to the systematic part already specified
in Et = (M t, ut, It;N t, Ct).

In reality, interactions between information by the housing magazine and decision
making by households and landlords have a complex temporal structure. But for logical
clarity, we simplify the story in the following manner: HouseholdsM t and landlords N t

go to the market of week t, and there they trade apartment units and disappear from
the market. Before going to the market, households M t look at the weekly housing
magazine of week t − 1 and decide which category they go to. Landlords N t, also
looking at the housing magazine of week t − 1, decide to supply apartment units. We
assume this delay for logical simplicity.

In Et(²t) = (M t, ut, It;N t, Ct; ²t) of week t, the rental prices are realized with error
term ²t. The term ²t is a T -vector of independent random variables which perturb the
market rents ptk for apartments in category k = 1, ..., T to p

t
k + ²

t
k.

We will have various random variables and their realizations. To distinguish between
random variables and their realizations, we prepare the underlying probability space
(Ω,F , µ) which all the random variables in this paper follow.

In week t−1, apartment units of categories 1, ..., T are brought to the housing market.
Let Dt−11 , ...,Dt−1T are the (finite nonempty) sets of those apartment units. Each unit
d in Dt−1k and its rental price are listed in the housing magazine as pt−1k + ²t−1kd (ω

t−1).
The entire housing magazine of week t− 1 is described as

{pt−11 + ²t−11d (ω
t−1) : d ∈ Dt−11 }, ..., {pt−1T + ²t−1Td (ω

t−1) : d ∈ Dt−1T }. (3.1)

Here, we assume that {²t−1kd : d ∈ Dt−1k } consists of independent random variables
identical to ²t−1k . Thus, the rental price of each unit d is independently affected by ²t−1kd .

Term ²t−1kd (or ²t−1k ) represents the effects of non-systematic components such as the
local environment of apartment unit d. The market mechanism with real estate agents

13



determine the price for each unit taking its local environment. From the econometric
point of view, we focus only on the systematic components mainly explaining the market
functioning, but we cannot ignore the non-systematic components in the real data.

We do not assume that the households and landlords know the error terms ²t−1 =
(²t−11 , ..., ²t−1T ). Instead, we assume that each i ∈M t looks at the housing magazine (3.1)
listing the supplied units and prices (3.1) at week t− 1, and then forms an estimator of
the price distribution:

P i,tk = pt−1k + ²i,tk for each k = 1, ..., T. (3.2)

We allow ²i,tk to be a random or nonrandom (degenerated) variable. In general, P i,tk is
a random variable for each k. Household i makes a choice of a category by looking at
his price estimators in (3.2). That is, he maximizes the expected utility (subject to the
budget constraint) relative to this price expectation.

Each landlord k (k = 1, ..., T ) supplies only apartment units only in category k.
Landlord j is assumed to make his estimator pt−1k + ²k,tk of only apartments k.

3.2. Equilibrium with Subjective Estimations

We do not explicitly consider a dynamic structure of the housing market by assum-
ing that the market is stationary and P i,tk is independent of week t. Thus, we drop
the superscript t from Et(²t) and P i,tk . Hence, our snapshot model is described as
E(²) = (M,u, I;N,C; ²).

Each household i ∈ M has his own subjective estimation of a price distribution
P ik = pk + ²

i
k in each k = 1, ..., T. Note that he himself does not know pk itself, but he

has the distribution P ik. Each landlord k ∈ N has the price expectation P kk = pk + ²
k
k.

We assume that these price expectations do not take negative values:

P ik(ω) ≥ 0 and P kk (ω) ≥ 0 for all ω ∈ Ω. (3.3)

We give two examples for such subjective price expectation.

Example 3.1.(Average Prices): Looking at the housing magazine (3.1), household i
(landlord j) takes some samples of prices from category k. Let Li is the samples taken.
Then, he takes the average P ik of these samples:

P ik(ω) =
P
d∈Lk

(pk + ²kd(ω))/ |Lk| . (3.4)

The primitive event ω refers to the one occurring in week t − 1. Since households and
landlords are not statistical analyzers, the number of samples |Lk| is small such as
10 ∼ 25. In this case, the variance of P ik(·) becomes 1/10 ∼ 1/25. Accordingly, the
corresponding standard deviations in Table 2.2 should become 1/3 ∼ 1/5.
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We have still two possible interpretations here. One possibility is that he adopts
this particular (non-stochastic) value P ik(ω) as his expectation for the price in category
k. The other possible interpretation is that he knows from the previous history of the
market that his expectation is given as the random variable P ik(·). Of course, actual Dk
may differ from week by week. But here, we assume that the households take these as
constant and only P ik(·) as a random variable.

The second example is to assume that households (landlords) have the ability of the
outside objective observer.

Example 3.2.(True Price Distribution): Suppose that household i (landlord j)
carefully scrutinizes the housing magazine by drawing a histogram. Since the number
of units listed in the magazine is quite large, it might be a possible idealization that
household i’s price expectation is the true one P ik = pk + ²

i
k = pk + ²k. In the case of

landlord j, also, his price expectation is given as P ik = pk + ²
j
k = pk + ²k.

In this case, the condition E(²k) = 0 has a clear-cut implication for a landlord:
If landlord j has a risk-nuetral utility function, then his expected profit maximization
problem becomes simply a profit maximization problem, that is,

E(yjP
j
k (ω)− Cj(yj)) = E(yj(pk + ²

j
k(ω))− Cj(yj)) = yjpk − Cj(yj). (3.5)

However, the magazine is quite large and not well-organized. It is very costly to extract
the distribution pk + ²k(·). Instead, often, the information publicly announced is the
average price of samples; Example 3.1 is a better fitting to reality.

In the rental housing market E(²) = (M,u, I; N,C; ²), the concept of a competitive
equilibrium should be modified since each economic agent forms a price estimation of
prices and his decision making is based on his estimation. We, first, take this estima-
tion into account in utility maximization for each household, and then we formulate a
landlord’s profit maximization.

Household i chooses one category based on his price estimation P i = (P i1, ..., P
i
T ). A

choice for household i should satisfy the budget constraint. Taking his budget constraint
into account, we define the following utility: for xi ∈ {0, e1, ..., eT},

Ui(xi, Ii − P i(ω) · xi) =

⎧⎨⎩
ui(xi, Ii − P i(ω) · xi) if 0 ≤ Ii − P i(ω) · xi

ui(0, Ii) otherwise.
(3.6)

In the second case of (3.6), his budget is not met and no trade occurs. In general, this
utility function Ui(xi, Ii − P i(·) · xi) is a random variable.

Using the above notation, we define the expected utility before going to a category:

EUi(xi, Ii − P i · xi) =
Z
ω∈Ω

Ui(xi, Ii − P i(ω) · xi)dµ(ω). (3.7)
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His category choice is made by maximizing this expected utility function over {0, e1, ..., eT }.
We assume that each landlord k has a risk-neutral utility function. Then his expected

utility is calculated as the expected payoff:

E(ykP
k
k − Ck(yk)) = ykE(P kk )− Ck(yk). (3.8)

If E(²kk) = 0, i.e., E(P kk ) = pk, (3.8) becomes simply profits ykpk − Ck(yk). However,
we treat landlords in the same way as households in that he may construct his price
expectation P jk without assuming E(²

j
k) = 0.

Combining (3.7) and (3.8), we have now the definition of a competitive equilib-
rium in the housing market E(²\²M∪N ) = (M,u, I; N,C; ²\²M∪N), where ²M∪N =
({²i}i∈M , {²k}k∈N). A competitive equilibrium is simply defined by replacing the util-
ity functions and profit functions in UM and PM of Section 2 with the objective func-
tions (3.7) and (3.8). The balance of demand and supply is the same. Thus, it is
given as a triple (p, x, y) = ((p1, ..., pT ), (x1, ..., xm), (y1, ..., yn)), where p ∈ RT+, x ∈
{0, e1, ..., eT}m and y ∈ Zn+. Hence, we can make a direct comparison of a competitive
equilibrium in the present sense with that defined in Section 2.

Since we allow perturbed price expectations for households and landlords, the exact
forms of UM and PM in Section 2 may not be converted. However, they can approx-
imately. Here, we need to define the two notions: an ε-competitive equilibrium and a
convergent sequence of price expectations.

Let ε be a nonnegative real number. We call (p, x, y) is an ε-competitive equilibrium
E(²\²M∪N ) when the following two conditions and BDS hold:
(ε-Expected Utility Maximization): for all household i ∈M,

EUi(xi, Ii − P i · xi) + ε ≥ EUi(x0i, I − P i · x0i) for all x0i ∈ {0, e1, ..., eT}.

(ε-Expected Profit Maximization): for all landlord k = 1, ..., T,

E(P kk yk − Ck(yk)) + ε ≥ E(P kk y0k − Ck(y0k)) for all y0k ∈ Z∗+.

Both are obtained by modifying UM and PM with expected utility theory and ε-
maximization.

We will convert a competitive equilibrium (p, x, y) in E into E(²\²M∪N ). Our con-
cern is the preservation of the equilibrium property of (p, x, y) in E(²\²M∪N). Exactly
speaking, this preservation does not necessarily hold, but if we take the perturbations
²M∪N to be small enough, we would succeed in the conversion of a competitive equilib-
rium (p, x, y) into E(²\²M∪N ).

To express “small perturbations”, we introduce the convergence of the vectors of esti-
mators ²M∪N .We say that an error sequence {²M∪N,ν : ν = 1, ...}= {({²i,ν}i∈M , {²k,ν}k∈N ) :
ν = 1, ...} is convergent in probability iff for any δ > 0,

µ({ω : max
j∈M∪N

°°²j,ν(ω)°° < δ})→ 1 as ν → +∞, (3.9)
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where k·k is the max-norm k(y1, ..., yT )k = max
1≤t≤T

|yt| . This mean that when ν is large

enough, the estimation ²j,ν(ω) is distributed closely enough to 0.
We have the following theorem. The proof will be given in the Appendix.

Theorem 3.1 (Correspondence to E): Suppose that the sequence of estimation
errors {²M∪N,ν : ν = 1, ...} is converging to 0 in probability. Then,
(1): If (p, x, y) be a competitive equilibrium in E, then for any ε > 0, there is a νo such
that for any ν ≥ vo, (p, x, y) is an ε-competitive equilibrium in E(²\²M∪N,ν).
(2): Suppose that a triple (p, x, y) satisfies pxi < Ii for all i ∈ M. Then, the converse
of (1) holds.

The theorem is represented in terms of an error sequence {²M∪N,ν}, but the point
is to express that the subjective price expectation of each household (landlord) has a
small variance. That is, when each household i (landlord j) has his price expectation ²i

(or ²j) with a small variance, his utility maximization (or profit maximization) in the
idealized market E is preserved approximately in the market E(²\²M∪N,ν) for large ν,
and vice versa.

In Example 3.1, if a household takes 10 samples from category k, then the variance
of his estimator becomes the 1/10 of the variant of the objective ²k. Hence, perhaps, our
theorem is applied, and we can use the market model E as an for an ideal approximation
of E(²).

On the other hand, if a household draws a histogram from the data like in Example
3.2, then his price estimation is, more or less, independent of the numbers of units
listed. In this case, the above theorem is not applied. Recall our basic assumption that
households and landlords do not thoroughly investigate the housing magazine, but,
instead, they use some summary statistics such as the average. In this case, drawing
a histogram from the data is not a good description of the formation of a subjective
estimate for an economic agent.

Theorem 3.1 can be simplified under some conditions. When the price expectation
for landlord k ∈ N satisfies E(²k) = 0, then his expected profit is simply given as the
profit function, and so we do not need to consider the convergent sequence for k. Here,
the ε-modification is not required for him either.

Also, if a competitive equilibrium (p, x, y) is strict in the sense that a household
(landlord) maximizes his utility at a unique choice, then we do not need the ε-modification
for the household (landlord).

4. Statistical Analysis of Rental Housing Markets

Now, our aim is to estimate the structures of the rental housing market from the data
given in the housing magazine. In Section 4.1, we develop various concepts to connect
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the data with possible market models and to evaluate such a connection. In Section
4.2, we specify a class of market models for our estimation.

4.1. Estimation of the Market Structure

Let Eo(²o) = (Mo, uo, Io;No, Co; ²o) be the true market. We call Eo = (Mo, uo, Io;No, Co)
the latent true market structure. We assume that this Eo satisfies Assumptions A and B
of Section 2, i.e., Eo ∈ Γ0. The maximal competitive rent vector po = (po1, ..., poT ) of Eo is
called the latent market price vector. LetDok be a nonempty set of apartment units listed
in category k = 1, ..., T. Once the perturbation term ²o from the non-systematic factors
is given, we have the housing magazine {P o1d(ωo) : d ∈ Do1}, ..., {P oTd(ωo) : d ∈ DoT}. The
listed price for a unit d (d ∈ Dok and k = 1, ..., T ) is given as:

P okd(ω
o) = pok + ²

o
kd(ω

o),

where ωo is the primitive event of the specific date. We will estimate some components
of Eo from the housing magazine, specifically, the utility functions of households.

Again, let p = (p1, ..., pT ) be an arbitrary price vector in RT .We assume that P okd(ω)
is defined for an arbitrary ω ∈ Ω. Then, the total sum of square residuals TR(P oD(ω), p)
is given as

TR(P
o
D(ω), p) =

TP
k=1

P
d∈Do

k

(P okd(ω)− pk)2. (4.1)

We adopt this as a measure to express the difference between the data and the estimated
price vector.

Our estimation problem is to choose E = (M,u, I;N,C) in order to minimize
TR(P

o
D(ω),ψ(E)) in a subclass Γ of Γ0, where ψ(E) is the maximal competitive price

vector in E. The choice of Γ is essential for this problem. We write our estimation
problem explicitly:

Definition 4.1 (Γ-MSE Problem): Let Γ be a subset of Γ0. Then, we call the follow-
ing minimization problem the Γ-market strucutre estimation problem: Choose a model
E = (M,u, I;N,C) from the set Γ to minimize TR(P oD(ω), p) subject to the condition:

(∗): (p, x, y) is a maximal competitive equilibrium in E for some (x, y)
with yk = |Dok| for k = 1, ..., T.

The additional condition yk = |Dok| for k = 1, ..., T means that each maximal com-
petitive equilibrium (p, x, y) is compatible with the number of apartment units listed in
the housing magazine.

If the latent true structure Eo belongs to Γ, it would be a candidate for the solution
of the Γ-MSE problem. In the first place, however, we do not know whether or not Eo
belongs to Γ. A simple idea is to choose a large class for Γ to guarantee that Eo could
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be in Γ. In fact, this idea does not work well: In Section 6.1, we discuss the negative
result for this idea, and argue rather that we should look at a narrow class for Γ.

Before going to a concrete treatment of the Γ-MSE problem, we consider the bench-
mark case and also a certain comparison measure from the benchmark case with a result
of the Γ-MSE problem.

The benchmark case is the average rent estimator. Given a sample P oD = {P okd : d ∈
Dok and k = 1, ..., T}, we define P

o
= (P

o
1, ..., P

o
T ) by

P
o
k(ω) =

P
d∈Do

k
P okd(ω)¯̄

Dok
¯̄ for each ω ∈ Ω and k = 1, ..., T. (4.2)

This is defined as a function of ω ∈ Ω. We can regard this as the best estimator of
the latent market price vector po = (po1, ..., p

o
T ). Each realization P

o
(ω) is the unique

minimizer of TR(P oD(ω), p) with no constraints. When E(²
o
k) = 0, P

o
k is an unbiased

estimator of pok. Both are simply proved but will be used a lot.

Lemma 4.1.(1): for all ω ∈ Ω, TR(P oD(ω), P
o
(ω)) ≤ TR(P

o
D(ω), p) for any p =

(p1, ..., pT ) ∈ RT .
(2): When E(²ok) = 0, P

o
k is an unbiased estimator of p

o
k, i.e., E(P

o
k) = p

o
k.

Proof.(1): Let ω ∈ Ω be fixed. Since TR(P oD(ω), p) is a strictly convex function of
p = (p1, ..., pT ) ∈ RT , the necessary and sufficient condition for p to be a minimizer of
TR(P

o
D(ω), p) is given as ∂TE(PD(ω), p)/∂pk = 0 for all k = 1, ..., T. Only the average

P
o
(ω) = (P

o
1(ω), ..., P

o
T (ω)) satisfies this condition.

(2): Since ²okd is identical to ²
o
k for all d ∈ Dok and E(²ok) = 0, we have E(²okd) = 0 for

all d ∈ Dok. Hence E(P
o
k) =

P
d∈Do

k
E(P okd)/ |Dok| =

P
d∈Do

k
(pok +E(²

o
kd))/ |Dok| = pok.

As far as E(²ok) = 0 for k = 1, ..., T, P
o
is an unbiased estimator of the latent market

price vector po, though for each ω, P
o
(ω) may not yet coincide with po. This estimator

P
o
enjoys various desired properties such as consistency (i.e., convergence to the latent

market price vector po in probability as the number maxk |Dk| tends to infinity) and
efficiency in the sense of Cramer-Rao. For these, see van der Vaart [24]. Also, it will be
obtained also by the maximum likelihood method, which will be discussed in Section 7.

However, we are interested in estimating the structure of Eo rather than the price
vector po. For this purpose, we can use the average price vector P

o
as the benchmark

case, and Lemma 4.1.(1) plays a more important role.
We have the decomposition of the total sum of square residulas, which corresponds

to the well-known decomposition property of the total sum of square residuals in the
regression model (cf. Wooldridge [23]). However, this will be essential for our further
analysis, so we give a proof for completeness of the paper.
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Lemma 4.2 (Decomposition): For each ω ∈ Ω,

TR(P
o
D(ω), p) = TR(P

o
D(ω), P

o
(ω)) +

TP
k=1

|Dok| (P
o
k(ω)− pk)2. (4.3)

Proof. Consider the component of TR(P oD(ω), p) for each k :P
d∈Do

k

(P okd(ω)− pk)2 =
P
d∈Do

k

(P okd(ω)− P
o
k(ω) + P

o
k(ω)− pk)2 =

P
d∈Do

k

(P okd(ω)− P
o
k(ω))

2 +
P
d∈Do

k

2(P okd(ω)− P
o
k(ω)) · (P

o
k(ω)− pk) +

P
d∈Do

k

(P
o
k(ω)− pk)2.

The second term of the last expression vanishes by (4.2). The third is written as
|Dok| (P

o
k(ω)− pk)2. We have (4.3) by summing these over k = 1, ..., T .

The second term of (4.3) is the total sum of the differences between the average
P
o
(ω) and given p. Each square difference is counted by the number of occurrences of

trades. We call this the theoretical discrepancy.
We call the ratio

η(p)(ω) =
TR(P

o
D(ω), p)

TR(P oD(ω), P (ω))
= 1 +

PT
k=1 |Dok| (P

o
k((ω))− pk)2

TR(P oD(ω), P
o
(ω))

(4.4)

the discrepancy measure of p from of P
o
(ω). The portion exceeding 1 is the theoretical

discrepancy, relative to the smallest total sum of residuals. In the example in Section
2.2, this discrepancy is given in (2.5) as about 1.032. That is, the theoretical discrepancy
is only 3.2%. In Section 5, we will see more accurate estimations.

The coefficient of determination in our context may help us also. It indicates how
much the systematic components explain the observed rental prices. For this, consider
the following total variation TV (P oD, ξ) relative to a given reference point ξ ∈ R: for any
fixed ω ∈ Ω,

TV (P
o
D(ω), ξ) =

TP
k=1

P
d∈Do

k

(P okd(ω)− ξ)2. (4.5)

This is simply the total square variations of the data PD measured from the reference
point ξ. Then we have the following lemma, which can be proved in a similar manner
to Lemmas 4.1.(1) and 4.2.

Lemma 4.3.(1). TV (P oD(ω), P (ω)) ≤ TV (P oD(ω), ξ) for any ξ ∈ R, where P (ω) is the
entire average of P oD, i.e., P (ω) =

P
k

P
d∈Dk P

o
kd(ω)/

P
k |Dok| .

(2): It holds that

TV (P
o
D(ω), P (ω)) =

TP
k=1

P
d∈Do

k

(P okd(ω)− P k(ω))2 +
TP
k=1

P
d∈Do

k

(P k(ω)− P (ω))2.
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Hence, we can use the entire average P (ω) for the reference point to measure the
total variation. Then we have the decomposition of the total variation as in the standard
regression analysis. Thus, we define the coefficient of determination as:

δ(P oD(ω)) =

PT
k=1 |Dk| (P k(ω)− P (ω))2

TV (P oD(ω), P (ω))
. (4.6)

When this coefficient δ(P oD(ω)) is large, the systematic components of the market is
dominant. In the example of Section 2.2, δ(P oD(ω

o)) = 0.757.

4.2. Subclass Γsep of Γ0

Among the components in Eo = (Mo, uo, Io;No, Co), some are more observable and
some others are less. The most unobservable components are the individual utility
functions, since they are internal in the households’ minds. For the other components,
some information is available from the different sources. In this paper, we focus on the
estimation of individual utility functions. That is, we target to estimate uo = (uo1, ..., u

o
m)

among the components (Mo, uo, Io;No, Co). The other components are simply assumed,
based on the data from the housing magazine or some other sources. For example, the
set of households M is taken be a set of cardinality of the data set Do.

The set of market models Γsep consists of E = (M,u, I;N,C) satisfying the following
three conditions:

S1: The incomes of households are ordered as I1 ≥ ... ≥ Im > 0.
S2: Every household in M has the same utility function u1 = ... = um expressed as

ui(e
k,mi) = hk + g(mi) for all (ek,mi) ∈ X, (4.7)

where h0, h1, ..., hT are given real numbers with hk > h0 for k = 1, ..., T and g : R+ → R
is a monotonically increasing and continuous concave function with g(mi) → +∞ as
mi → +∞ and h0 + g(Ii) > hk + g(0) for k = 1, ..., T.

S3: Each landlord k = 1, ..., T has a cost function of the form (2.3) and (2.4).

First of all, Γsep is a subset of Γ0. In S1, the households are ordered by their incomes.
Condition S2 has two parts: First, every household has the same utility function; and
second, the utility function is expressed in the separable form. The first is restrictive
in the respect that the households have the same location of their offices. The second
part itself is less restrictive; and it should be remarked that this is not quasi-linearity.
With respect to consumption, the law of diminishing marginal utility could strictly hold.
Condition S3 is for simplification: Our theory emphasizes on the households’ side.

The reader who is familiar to mathematical economics or game theory may think
that the set Γsep is very narrow in that the households have the same utility functions
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of the separable form of (4.7) and the landlords’ cost functions are also very specific.
This opinion is totally incorrect from our research perspective with the results we will
present in the subsequent sections. That is, the above class is too large from the view
point of the Γ-MSE problem. It will be shown in Section 6.1 that any given price vector
can be rationalized as the optimum of the Γsep-MSE problem. In this case, however,
the estimated model has no prediction power, and it is an ex post rationalization.

Our estimation problem requires us to calculate a maximal competitive equilibrium
(p, x, y) in E = (M,u, I;N,C). The method of calculation was given in Kaneko [9] and
Kaneko et al [12]. This method is used to implement our econometrics and also is used
to prove two theorems in Section 6. Here, we describe this method without a proof.

Consider any price vector p = (p1, ..., pT ) with p1 ≥ ... ≥ pT > 0. The cases of
different orders are changed into this case by renaming 1, ..., T. Then, we will regard the
apartment units in category 1 as the best, and will suppose that the richest households
1, ..., |Do1| rent them. Similarly, the apartments in category 2 are the second best and
the second richest households |Do1|+ 1, ..., |Do1|+ |Do2| rent them. In general, we define

G(k) =
kP
t=1
|Dot | for all k = 1, ..., T. (4.8)

Then we suppose that the households G(k−1)+1, ..., G(k) rent apartments in category
k.

Then, we focus the boundary households G(1),G(2), ..., G(T −1) with their incomes
IG(1), IG(2), ..., IG(T−1), respectively.

We have the following lemma due to Kaneko [9] and Kaneko, et al [12]. Our econo-
metric calculation is based on this lemma.

Lemma 4.4. Consider a vector (p1, ..., pT ) with p1 ≥ ... ≥ pT > 0. Let E = (M,u, I;N,C) ∈
Γsep satisfying

(1): pk ≤ IG(k) for all k = 1, ..., T − 1;
(2): ck ≤ pk and wk = |Dok| for all k = 1, ..., T.
Recall that ck is the marginal cost given in (2.3) and (2.4). Suppose also that (p1, ..., pT )
satisfies

hG(T−1) + g(IG(T−1) − pT−1) = hG(T−1) + g(IG(T−1) − pT ) (4.9)

hG(T−2) + g(IG(T−2) − pT−2) = hG(T−2) + g(IG(T−2) − pT−1)
· · ·

hG(1) + g(IG(1) − p1) = hG(1) + g(IG(1) − p1).

Then, there is an allocation (x, y) such that (p, x, y) is a maximal competitive equilib-
rium in E with yk = |Dok| for all k = 1, ..., T .
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Thus, boundary household G(T − 1) compares his utility from staying in an apart-
ment in category T − 1 with that from category T. Also, boundary household G(T − 2)
makes a parallel comparison, and so on. The logic of this argument is essentially the
same as that for Ricardo’s [18] differential rents (in the second category). The rent in
the worst category T is regarded as the land rent-cost of farm lands, which corresponds
to Ricardo’s absolute rent (or in the first category).

5. Application of Our Theory to the Market in Tokyo

In this section, we apply the econometric method developed in Section 4 to the rental
housing market in Tokyo described in Section 2.2. First, we give a simple heuristic
discussion on our application, and then give a more systematic study of it. The predic-
tion of our Γ-MSE problem with an appropriate choice of Γ is satisfactory from various
points of view. Nevertheless, some reader may think from the viewpoint of mathematical
economics that the set Γ is very restrictive. This will be discussed in Section 6.

5.1. Heuristic Discussion

For an econometric study of a specific target, we need to consider a more concrete class
for Γ than the class Γsep given in Section 4.2. In Section 2.2, we used a specific form
of the basic utility function U0(t, s,mi) = −2.2t+4.0s+100

√
mi of (2.1) and obtained

the resulting value of the discrepancy measure, η = 1.032. Perhaps, we need to explain
how we have found it and how good it is relative to others.

First, let us compare several other basic utility functions with (2.1):

(1): U1(t, s,mi) = −t+ s+ 100
√
mi; η1 = 3.259;

(2): U2(t, s,mi) = −2t+ 255
√
s+ 1000 + 100

√
mi; η2 = 1.036;

(3): U3(t, s,mi) = −74t+ 165s+ 100mi; η3 = 1.124.

The first means that if we adopt the specific basic utility function of (1), then the
discrepancy measure η takes large value η1 = 3.259. Thus, the total sum of squred
residuals from the predicted prices is more than the three-times of that from the average
prices. In the case (2), it is already almost as small as η = 1.032 given by of (2.1). In
(3), it is larger than this value, but it should be noticed that the basic utility function
of (3) is entirely linear.

The utility function U1 of (1) is simply adopted so as to show that if coefficients
are arbitrarily chosen, the discrepancy would be large. On the other hand, the utility
function U0 of (2.1) is chosen by minimizing the discrepancy measure η by changing
the coefficients of t and s. More explicitly, let U(1, 1, 12) be the class of basic utility
functions:

{U(t, s,mi) = −α1t+ α2s+ 100
√
mi : α1,α2 ∈ R}, (5.1)
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where the coefficient 100 of the third term is simply chosen to make the values of α1,α2
more clearly visible. Then, U0(t, s,mi) is obtained by minimizing η (equivalently, the
total sum of square residuals from the predicted prices) in this class. This is not the
exact solution but is calculated using a method of grid-search with a computer.

Let us explain our procedure of computation more concretely. Now, suppose that
U ∈ U(1, 1, 12) is given. Then, for each (t, s) ∈ {18, 23, 31, 52, 64, 70} × {15, 35, 55}, we
have the value −α1t+α2s, which gives the ranking, 1, ..., 18 over {18, 23, 31, 52, 64, 70}×
{15, 35, 55}. Then, the k-th category has hk = α1t+α2s and λ(k) = (t, s). This method
is the same as in Section 2.2. Hence, U determines

u(ek,mi) = hk + 100
√
mi for k = 0, 1, ..., T. (5.2)

Thus, each U ∈ U(1, 1, 12) determines u.
Now, we consider the subclass Γ(1, 1, 12) of Γsep defined by:

{(M,u, I;N,C) ∈ Γsep : u is determined by some U ∈ U(1, 1,
1

2
)}. (5.3)

Then, we apply the Γ(1, 1, 12)-MSE problem to the data discussed in Section 2.2. So far,
we have no method of finding an exact solution for the Γ(1, 1, 12)-MSE problem. The
objective of the present research is not to implement to construct such a method, but
it would be more important to know what shape a solution has. That is, we should be
satisfied by finding an approximate solution (α1,α2) for the Γ(1, 1, 12)-MSE problem. If
the values of the discrepancy measure η are close enough, then we should not care about
which point the exact solution is.

An approximate solution will be obtained by the following process.

Step 1: We assume that each of α1 and α2 takes a (integer) value from some intervals,
say, [1, 100]. Then, we have 1002 = 104 combinations of (α1,α2).

Step 2: For each combination (α1,α2), we find a maximal competitive price vector p
compatible with the data set P oD(ω

o) and we have the value η(p) of discrepancy measure.
The algorithm to find a maximal competitive rent vector given by Lemma 4.4 is used
to find the price vector.

Step 3: Then, we find a combination (α1,α2) with the minimum value of η among 104

combinations of (α1,α2).

If a solution is on the boundary, we calibrate the intervals, and if it is not on the
boundary, we repeat these steps by choosing a smaller intervals with finer grids. Hence,
the computation to obtain the minimum value of η is not exact: It may be a local
optimum as well as an approximation.

By the above simulation method, we have found the utility function U0(t, s,mi) of
(2.1) in the class Γ(1, 1, 12) with η = 1.032.
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The basic utility function U2 of (2) is obtained by minimization in the class U(1, 12~
β2,

1
2) with the fixed β2 = 1000:

{U(t, s,mi) = −α1t+ α1
p
s+ β2 + 100

√
mi : α,β1 ∈ R}. (5.4)

In fact, when β2 is increased, the optimal value of η is decreasing (we calculated η up
to 400, 000) but it does not reach η0 = 1.032. Since β2 is getting large, the second term
is getting closer to the linear function. Therefore, we interpret this result as meaning
that the basic utility function U0(t, s,mi) = −2.2t + 4.0s + 100

√
mi of (2.1) would be

the limit function.
The utility function U3(t, s,mi) of (3) is obtained by minimizing the value η in the

class U(1, 1, 1) :

{U(t, s,mi) = −α1t+ α2s+ 100mi : α1,α2 ∈ R}. (5.5)

That is, the utility functions are entirely linear. The estimation in this class is only
interested in seeing the relationship between our Γ-MSE problem and the standard
linear regression. This will be discussed in Section 6.2.

5.2. Law of Diminishing Marginal Utility

By the estimations in the above classes of basic utility functions, U0(t, s,mi) of (2.1)
gave the best value to the discrepancy measure with our computations. The law of
diminishing marginal utility holds strictly only for the consumption term mi, but not
for the other variables, the commuting time-distance and size of an apartment. One
possible test of this observation is to broaden the class of basic utility functions. In this
subsection, we will give this test.

Instead of the classes of basic utility functions discussed above, we consider the
following class U(π1 ~ β1,π2 ~ β2,π3 ~ β3):

U(t, s,mi) = α1(β1 − t)π1 + α2(s+ β2)
π2 + 100(mi + β3)

π3 , (5.6)

where α1,α2,β1,β2,β3 and π1,π2,π3 are all real numbers. Since we would like to have
the above classes as subsets of U(π1 ~ β1,π2 ~ β2,π3 ~ β3), this class allows us to have
additional parameters β1,β2,β3 and π1,π2,π3. The introduction of β1 is natural, since
the commuting time-distance must have a limit. The parameters β2 and β3 will be
interpreted after stating the calculation result. The parameters π1,π2,π3 are related to
the law of diminishing marginal utility. When they are close to 1, the law is regarded
as not holding in the strict sense, and when they are small and far away from 1, the law
is regarded as valid.
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Keeping the remark in mind that the given minimum value of η may be a local
optimum as well as is an approximation, we give our computation result: First, the
resulting basic utility function is given as

UMU (t, s,mi) = 3.53(140− t)0.75 + 2.68(s+ 200)0.91 + 100(mi − 25)0.40, (5.7)

and the incomes are uniformly distributed from I8957 = 94 to I1 = 1120. Finally, the
discrepancy measure is calculated as

η = 1.025.

Obtaining this value, we adjusted parameters α1,α2,β1,β2,β3,π1,π2,π3, and the lowest
price p18. In each combination, we calculated the value of η through solving the equation
(4.9). Also, we have adjusted the lowest income I8957 and the highest income I1.11

Consider the implications of the above computation result. First, strictly speaking,
the law of diminishing marginal utility holds for each variable. However, the degree is
quite different: the utility is quite close to a linear function with respect to the size.
The degree of diminishing marginal utility is higher with the commuting time-distance,
and is the highest with consummation other than housing.

First, the observation that the degree of diminishing marginal utility is least with
respect to the size may be caused by our restriction on apartments up to 65m2. In Tokyo,
we find apartments up to 85m2 (and may find a quite small number of apartments larger
than 85m2).We omitted these “large” apartments, since the number of supply for them
is much small than the types we have treated and their prices behave quite differently.
This may be the reason for almost constant marginal utility.

Second, the degree of diminishing marginal utility for the commuting time-distance is
higher than that for the apartment size. This suggests, perhaps, that the time-distance
70 minutes to Takao station is already quite large. Our computation result is affected if
we change β1 = 140 slightly either up or down. Therefore, this constant has a specific
meaning.

Finally, the degree of diminishing marginal utility for consumption other than hous-
ing is quite large. This means that the choice by a household renting an apartment
crucially depends upon its income level. The dependence of willingness-to-pay for an
apartment upon income is quite strong: A poor people do not want to pay for a market
rent (of course, they cannot) for a good apartment, but if they get rich, they would
11One possible amendment of our estimation is to change the assumption on the income distribution.

We have assumed that the incomes are distributed from the lowest I8957 to the highest I1. When we
started this study, it seemed that this assumption was complemented by the other variables. However,
the above computation result seems to be quite sensitive by changing these lowest and highest income
levels. Hence, it could give a better result if we replace the assumption of a uniform distribution by the
data available from the other source. This will be a future problem.
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change their the amount of willingness-to-pay. Hence, this is rather opposite case to the
quasi-linear utility function case.

Since the basic utility function given by (2.1) has similar to that of (5.7), it can be
regarded as a simple version of (5.7). In the case of simple demonstration or computation
for an illustration purpose, this utility function will be useful.

Our result is in strong contrast with the estimation result of a utility fuction in
Kanemoto-Nakamura [14] in the hedonic price approach. Their result states that the
degreee of diminishing marginal utility is very low, for example, consumption term
is x0.978. Since their model and the data are quite different, we cannnot make direct
comparisons. Nevertheless, since the treatments are richer than ours in several respects
that the size variable takes finer values and it has more explanatory variables e.g., such
as time distance to the nearest statation. Perhaps, we should take more explanatory
variables in the criteria listed in the housing magazine so as to make comparions with
their estimation results, which will be a future work.

6. Some Classes of Market Models

The classes of market models discussed so far look very restrictive relative to the stan-
dard of mathematical economics. For example, the classes Γsep and Γ(1, 1, 12) could
be regarded as extremely restrictive, while Γ(1, 1, 12) has strong explanatory power as
shown in Section 5. Then, what status does the class Γsep have in the Γ-MSE problem?
First in this section, we show that Γsep is too large as a set of candidate models. Second,
we ask the relationship of our Γ-MSE problem to linear regression. We show that if we
choose the class of models with linear utility functions, our Γ-MSE problem turns out
to be equivalent to linear regression.

6.1. The Γsep-Market Structure Estimation: Ex Post Rationalization

The class Γsep of market models is too large to have a meaningful estimation. That is,
in the class Γsep, we can always find a model E to “fully explain” a given set of realized
rental prices, but it is an ex post explanation in the sense to be explained presently.
This theorem is given to think where we should go with our estimation problem. A
proof will be given in the end of this section.

Theorem 6.1 (Ex Post Rationalization): Let PD(ω) = {Pkd(ω) : d ∈ Dk and
k = 1, ..., T} be any data set. Suppose that each Dk is nonempty and the average
prices P (ω) = (P 1(ω), ..., PT (ω)) are positive. Then, there exists a market model E =
(M,u, I;N,C) in the class Γsep such that for some (x, y), (P (ω), x, y) is a maximal
competitive equilibrium in E with yk = |Dk| > 0 for k = 1, ..., T.

This existence assertion holds for any given g : R+ → R of S2.
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It claims that if we choose the class Γsep, then we can “fully explain” any data
set from the housing magazine. The discrepancy measure η can take the value 1 in
the class Γsep. Should we be pleased by finding a class to guarantee to always “fully
explain” a given data set? Or, even, should we interpret this theorem as meaning that
the true market E0 is included in the class Γsep? Contrary to these interpretations, we
should regard this theorem as a negative result. Another negative part is the remark
appended with the theorem that the “full explanation” can be done with any a priori
given function g satisfying condition S2: With the Γsep-MSE problem, we are incapable
to talk about the choice of g.

Theorem 6.1 can be compared with the fact that in linear regression, if we extend
the set of linear functions to that of piecewise linear functions, then we could draw a
piecewise linear curve to fit fully any data; but this explains nothing about the data.
Like a geocentric theory of the universe, if the structure of explanatory variables is too
rich, we can explain anything; but it is an ex post rationalization of the observed fact.
Theorem 6.1 is of this sort12.

In our case, the number of explained variables P (ω) = (P 1(ω), ..., PT (ω)) is T, and
the number of explaining variables (h1, ..., hT ) in utility function u(ek,mi) = hk+g(mi)
is also T. Thus, we have a perfect match: For different P (ω) = (P 1(ω), ..., PT (ω)), the
theorem gives different (h1, ..., hT ), which can be known after the observation and gives
no predictions of new prices. Therefore, the theorem asserts that the class Γsep is too
large to have a meaningful result from the Γsep-MSE problem. On the other hand, the
Γ(1, 1, 12)-MSE problem in Section 5 has a clear-cut contrast with Theorem 6.1: There 18
average rental prices are explained by the choice of parameters by changing essentially
3 parameter values.

Proof of Theorem 6.1: Let us denote (P 1(ω), ..., PT (ω)) by (p1, ..., pT ). Also, let
G(k) =

Pk
t=1 |Dt| . We assume without loss of generality that p1 ≥ ... ≥ pT . First,

we let g : R+ → R be any monotone, strictly concave and continuous function with
lim

mi→+∞
g(mi) = +∞.

Also, let h0 = 0. Then choose IG(T ) = In, IG(T−1), ..., IG(1) and define hT , hT−1, ..., h1
inductively as follows: The base case is as follows:

(T -0): Choose an income level IG(T ) = Im so that Im > pT > 0, and then define
hT := h0 + g(Im)− g(In − pT ).
This choices of In and hT are possible by the monotonicity of g. In this case, hT > h0 = 0.
12The reader may recall the Debrue-Mandel-Sonnenshein Theorem in general equilibrium theory (see

Mas-Colell, et al [16]) stating that any demand function with a certain required condition is derived
from some economic model. While Theorem 6.1 is a negative result as argued, the Debrue-Mandel-
Sonnenshein theorem is not in that it describes the equivalence between the set of demand curves and
the set of economic models. In this sense, the similarity is rather superficial.
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Let k be an arbitrary number with 1 ≤ k ≤ T. The inductive hypothesis is that
IG(k) and hk are already defined. First, we choose IG(k−1) so that

(k-1) : IG(k−1) > pk−1 and IG(k−1) ≥ IG(k).
This choice is simply possible. Then we define hk−1 by

(k-2) : hk−1 = hk + g(IG(k−1) − pk)− g(IG(k−1) − pk−1).
Since g(IG(k−1) − pk−1) ≤ g(IG(k−1) − pk), we have hk−1 ≥ hk.

By the above induction definition, we have In, IG(T−1), ..., IG(1) and hT , hT−1, ..., h1.
We also choose other Ii’s (i 6= n and i 6= G(k) for k = 1, ..., T − 1) so that In ≤ In−1 ≤
... ≤ I1.

Thus, we have the utility function u(ek,mi) = hk + g(mi) for (ek,mi) ∈ X. By the
above inductive definition, (p1, ..., pT ) satisfies the recursive equation (4.9).

We define the cost function Cj(·) for the landlord j with {j} = Nk. We assume
0 < ck ≤ pk for all k = 1, ..., T. Then, by Lemma 4.4, (p1, ..., pT ) is the maximal
competitive price vector of E with yk = |Dk| for k = 1, ..., T.

6.2. Linear Regression and Linear Utility Functions

Now, a reader may be curious about comparisons between our equilibrium-econometric
analysis and the standard econometrics approach. In this section, we compare our
approach only with linear regression.

We assume that there are L attributes for the basic utility function U for each
household, and the domain of U is expressed as Y = RL+×R+. In the example of Section
2.2, there are only two attributes, the commuting time and the size of an apartment. A
linear basic utility function over Y is expressed as

U(a1, ..., aL,mi) =
LP
l=1

αlal +mi for all (a1, ..., aL,mi) ∈ Y. (6.1)

Here, al represents the degree of the l-th attribute of an apartment and αl is its coeffi-
cient. We denote the set of all basic utility function of the form (6.1) by Ulin.

An attribute vector τk = (τk1, ..., τ
k
L) in R

L is given for each k = 0, 1, ..., T. That
is, the choice ek gives the attribute vector τk. It means that an apartment in category
k has the magnitudes τk1, ..., τ

k
L of attributes 1, ..., L. For k = 0, τ0 is interpreted

as the attributes of the outside option. In Example of Section 2.2, category k = 5
(Nakano, size:25 − 45) has the attribute vector τ5 = (18min, 35m2). Then, each U in
Ulin determines

u(ek,mi) = U(τ
k,mi) =

LP
l=1

αlτ
k
l +mi for all k = 0, 1, ..., T. (6.2)
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Now, we define the subclass Γlin of Γsep by

{E ∈ Γsep : u is determined by U ∈ Ulin with some τ0, ..., τT}. (6.3)

The boundary condition u(0, Ii) > u(ek, 0) for all k = 1, ..., T should hold for (M,u, I;N,C) ∈
Γlin, because it belongs to Γsep by (6.3). Once this set is defined, we have the Γlin-MSE
problem. Our present target is to show that this problem is equivalent to linear regres-
sion.

Consider the following the linear regression model :

pk =
LP
l=1

αlτ
k
l + β + ²k for k = 1, ..., T. (6.4)

That is, rental prices, p1, ..., pT , are assumed to be linear functions of attributes 1, ..., L,
which are explanatory variables. Coefficients α1, ...,αL and constant β will be estimated.
Given the housing magazine P oD(ω) as data, we estimate them by minimizing the sum
of square residuals, i.e., the method of least squares. It is formulated by the following
minimization problem:

min
α,β

P
k

P
d

(P okd(ω)− pk)2 = min
α,β

P
k

P
d

µ
P okd(ω)− (

LP
l=1

αlτ
k
l + β)

¶2
. (6.5)

This is a no-constraint minimization problem and has a solution (α̂, β̂).
Now, we compare (6.5) with the Γlin-MSE problem. First, we should observe a

certain difference between these two approaches. That is, the minimization problem
(6.5) makes sense for any given data set P oD(ω): Even if the data P

o
D(ω) consisted of

all negative elements, (6.5) would still provide some solution α̂ = (α̂1, ..., α̂L) and β̂.
On the other hand, the Γlin-market estimation problem does not make sense: It cannot
predict negative prices since if the estimated rental price for category k is negative
(nonpositive), landlord k provides no apartments, i.e., condition yk = |Dok| is violated.
Thus, we need certain conditions on the data P oD(ω) to guarantee that such a case does
not happen. The following lemma gives such conditions.

Lemma 6.2. If p = (p1, ..., pT ) is a maximal competitive price vector in any market
model E = (M,u, I;N,C) in Γlin, then there is some β such that

β < −
LP
l=1

αlτ
0
l ; (6.6)

and p1, ..., pT are described as

pk =
LP
l=1

αlτ
k
l + β > 0 for all k = 1, ..., T, (6.7)

30



where (α1, ...,αL) is the coefficients of the utility function u in E.

Proof. Let (p, x, y) be any competitive equilibrium in E = (M,u, I;N,C) in Γlin with
|Dok| = yk > 0 for all k = 1, ..., T. Without loss of generality, we assume that pk ≥ pT
for k = 1, ..., T − 1. First, we show

pk − pT =
P
l

αlτ
k
l −

P
l

αlτ
T
l for all k = 1, ..., T. (6.8)

Suppose that this is shown. Now, let β = pT −
P
l αlτ

T
l . We have, by (6.8), pk =P

l αlτ
k
l + β for k = 1, ..., T. Since |Dok| = yk > 0 and the cost ck for one apartment

unit in category k is positive for all k = 1, ..., T , the market price is equal to or greater
than ck. Hence pk > 0 for all k = 1, ..., T, which is (6.7). The constant β must satisfy
β < −

P
l αlτ

0
l , since any household i in D

o
T chooses the T -th apartment rather than

(0, Ii), i.e., U(eT , Ii−pT ) =
P
l αlτ

T
l +Ii− (

P
l αlτ

T
l +β) = Ii−β > u(0, Ii) = h0+Ii =P

l αlτ
0
l + Ii.

Now let us prove (6.8). Since |Dok| > 1 for k = 1, ..., T, we can take a household i with
xi = e

k, i.e., he chooses xi = ek as a utility maximization point under p = (p1, ..., pT ).
Hence, P

l

αlτ l(k) + Ii − pk ≥
P
l

αlτ l(T ) + Ii − pT .

By the same argument for a household i0 with xi0 = eT , we haveP
l

αlτ l(t) + Ii0 − pk ≤
P
l

αlτ l(T ) + Ii0 − pT .

Equation (6.8) follows from these two inequalities.

Lemma 6.3 (Sustainability): If p = (p1, ..., pT ) is expressed by some α = (α1, ...,αL)
and β < −

P
l αlτ

0
l as (6.7), then p is sustained by a market model E in Γlin.

Proof : Without loss of generality, we assume p1 ≥ ... ≥ pT .
First, we define the basic utility function by U(a1, ..., aL,mi) =

P
l αlal +mi. Let

I1, ..., In be incomes with I1 > ... > In > p1. We define cost functions C1, ..., CT−1 by
(2.3) with wk = |Dok| and ck < pk for k = 1, ..., T−1. Define CT by (2.4) with w0T > |DoT |
and cT = pT . In this case, for each k = 1, ..., T, yk = |Dok| maximizes landlord k’s profits.

The prices given by (6.7) satisfies the rent equation (4.9). Also, since β < −
P
l αlτ

0
l ,

each household i has the utility:

u(ek, Ii − pk) = Ii − β > Ii +
P
l

αlτ
0
l = u(0, Ii).

Hence, his choice of an apartment is better than choosing no apartments.

Conditions (6.6) and (6.7) are on the data in the housing magazine P oD. The second
condition states that the estimated prices are positive, and should be satisfied by any real
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data. The first means that a household having a linear utility function prefers renting an
apartment to not renting in this market. This condition is needed to take into account
the outside opportunity “0” from the domain of a utility function {0, e1, ..., eT} ×R+.

We have the following equivalent theorem between the Γlin-market estimation prob-
lem and linear regression.

Theorem 6.4 (Linear Regression): We assume that any optimal solution of (6.5)
satisfies (6.6) and (6.7). Now, let (α,β) be any (L + 1)-vector. Then, a vector (α,β)
is a solution of the minimization problem (6.5) if and only if there is a solution model
E = (M,u, I;N,C) of the Γlin-MSE problem such that u of E is determined by U of
(6.1) with (α,β) and its resulting price vector is given as

pl =
LP
l=1

αlτ
k
l + β for all k = 1, ..., T. (6.9)

Proof. Suppose that p = (p1, ..., pT ) is given by a solution of the Γlin-market estimation
problem. Then it is a feasible solution of the problem (6.5) with β < −

P
l αlτ

0
l by

Lemma 6.2. Any solution of (6.5) with β < −
P
l αlτ

0
l should be supported by some

model by Lemma 6.3. Hence, p = (p1, ..., pT ) is an optimal solution of the problem (6.5)
with β < −

P
l αlτ

0
l . The converse can be shown by tracing this argument backward. .

In the example of Section 2.2, (α,β) = ((α1,α2),β) is given as ((−0.74, 1.65), 41.3),
i.e.,

U(t, s,mi) = −0.74t+ 1.65s+mi (6.10)

pk(t,s) = −0.74t+ 1.65s+ 41.3

Since (6.7) and β < −
P
l αlτ

0
l hold, we have a linear market model E. Incidentally,

the discrepancy measure η(p)(ω0) = 1.123, which is larger than the corresponding value
η(p)(ω0) given in Section 2.2 or Section 5 except (1).

7. Likelihood Ratio Test (Imcomplete)

We have developed the econometric method through market equilibrium theory, and
have obtained the best prediction value η(p)(ωo) = 1.025 of the discrepancy measure
in Section 5. Nevertheless, this value solely does not state how good the prediction
is. After all, it would be the only way to compare our result with the result in terms
of some other criteria. In this section, we consider the likelihood ratio test for our
framework. First, we need the maximum likelihood estimators for the mean and variant
for the price of each category. Then, we will consider the likelihood ratio test for
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our estimation. Theoretically, it could be possible to do hypothesis testing based on
the discrepancy measure η(p)(ω) and if this is possible, this would give a convenient
way to think about the value such as η(p)(ωo) = 1.028. However, at present moment,
the computer implementation of probability needs too much steps, and we should be
satisfied by a more standard approach, the likelihood ratio test, which is not directly
related to the discrepancy measure. Still, we need to develop one further step, since our
problem is multi-dimensional.

7.1. Maximum Likelihood Estimators for the Means and Variants of the
Rental Prices

For In this section, we assume that each ²0k of ²
0
1, ..., ²

0
T follows normal distribution

N(0,σ2k) and they are independent. Then, P
o
k = pok + ²

0
k follows normal distribution

N(pok,σ
2
k). Here, both p

o
k and σ2k are unknown. First, the maximum likelihood estima-

tion of pok and σ2k is obtained by the following maximization problem from the same set
P oD(·): for each ω ∈ Ω,

max
pk,σk

log
TQ
k=1

(
1√
2πσk

)|Do
k| exp−

P
d∈Do

k

(P okd(ω)− pk)2
2(σk)2

(7.1)

By the standard argument (cf. Rohatgi [19], p.678), the maximum likelihood estimator
of pk is given as the average estimator P

o
k of (4.2), and the maximum likelihood estimator

for σk is given by

σk(ω)
2 =

P
d∈Do

k
(P okd(ω)− P k(ω))2¯̄

Dok
¯̄ for all ω ∈ Ω. (7.2)

We will use those estimators P
o
= (P

o
1, ..., P

o
T ) and σ

2 = ((σ1)
2, ..., (σT )

2) as the bench-
mark.

Now, suppose that a predicted rent vector is given as r = (r1, ..., rT ) such as the price
vector given in Section 5. Giving one constraint p = r on the maximization problem
(7.1), we have the maximum likelihood estimator of σ(r) = (σ1(r), ...,σT (r)) is given
as: for k = 1, ..., T,

σk(r)
2 =

P
d∈Do

k
(P okd(ω)− rk)2¯̄
Dok
¯̄ for ω ∈ Ω. (7.3)

Thus, each σk(r) depends upon rk. Now, we have two sets of estimators (P
o
,σ2) and

(r,σ(r)). Hence, when r = (r1, ..., rT ) is given by our equilibrium theory, the variant
σk(r)

2 for category k are obtained simply as the total sum, divided by |Dok| , of squared
errors around each rk.
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7.2. Likelihood Ratio Test

We assume that the true market prices given as po = (po1, ..., p
o
T ) and variants σ

2 =
(σ21, ...,σ

2
T ) are unknown and only the data set P

o
D is available. According to the

above consideration of maximum likelihood estimators, we represent them by P
o
=

(P
o
1, ..., P

o
T ) and σ2 = ((σ1)

2, ..., (σT )
2) based on the data set P oD. On the other hand,

our theory has a prediction r = (r1, ..., rT ), the best of which was given in Section 5.2.
The hypothesis testing takes the form that under the hypothesis that r = (r1, ..., rT )
is the true market prices, how probable the data set P oD happens. If this probability
is small, say 0.05, the hypothesis would be reject. Otherwise, r = (r1, ..., rT ) and its
underlying basic utility function given (5.7) would remain as candidates for the true
price vector and market structure.

Now, we formulate the above argument as the testing hypothesis:

H0(null hypothesis): po = r.

In particular, we follow the idea of the likelihood ratio test. However, it is a higher
dimensional likelihood ratio test. First, we need to reconsider the theory slightly.

First, we compare the maximal likelihood given by (P
o
,σ2) with the likelihood given

(r,σ(r)2) by taking the ratio:

ρ =
maxp,σ

Q
k(

1√
2πσk

)|Dk| exp−
P
Dk

(Pkd−pk)2
2(σk)2

maxσ
Q
k(

1√
2πσk

)|Dk| exp−
P
Dk

(Pkd−rk)2
2(σk)2

,

where this ratio ρ depends upon a primitive event ω, but ω is not written for notational
simplicity. The numerator is the likelihood given by (P

o
,σ2), and the denominator is

given by (r,σ(r)2). This ratio ρ is a random variable over Ω.
Plugging the formulae of (P

o
,σ2) and (r,σ(r)), the likelihood ratio becomes

ρ =

Q
k

( 1√
2πσ̄k

)|Dk| exp[− |Dk|2 ].Q
k

( 1√
2πσk(rk)

)|Dk| exp[− |Dk|2 ]
=
Q
k

ÃP
Dk
(Pkd − rk)2P

Dk
(Pkd − P k)2

!|Dk|/2
.

Since
P
Dk
(Pkd − rk)2 =

P
Dk
(Pkd − P k)2 + |Dk| (P k − rk)2 by the null hypothesis H0,

we have

ρ =
Q
k

Ã
1 +

|Dk| (P k − rk)2P
Dk
(Pkd − P k)2

!|Dk|/2
=
Q
k

Ã
1 +

(P k − rk)2P
Dk
(Pkd − P k)2/ |Dk|

!|Dk|/2
.

Now, letting

Tk =
P k − rkp
Vk/ |Dk|

and Vk =
P
Dk

(Pkd − P k)2/(|Dk|− 1) for k = 1, ..., T,
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we have

ρ =
TQ
k=1

(1 +
(Tk)

2

|Dk|− 1
)|Dk|/2. (7.4)

Since E(Pkd) = rk for all d ∈ Dk by H0,, each Tk follows the t-distribution of freedom
|Dk|− 1.

In the unidimensional case, i.e., T = 1, we can use the table of the 1-dimensional
t-distribution. However, our target is the multidimensional case, i.e., T = 18 in the
Tokyo rental housing market example. Hence, first, we make the histogram of log ρ(ω)
by computer simulation, which is simply based on the random number generator based
on a t-distribution. Figure 7.1 gives the histogram of log ρ(ω).

Finally, we plug the rent vector r = (r1, ..., rT ) given in Section 5.2 and the data set
P oD already used in Section 2.2. Then, we find that the value log ρ(ω0) is in the interval
before the critical point c0 for the probability 0.05. Hence, we do not reject the null
hypothesis H0.

8. Conclusions

We have developed the equilibrium-econometric analysis of rental housing markets. Our
analysis has the three salient features as stated in the beginning of Section 1. Let us
look at these features.

The first salient feature, i.e., the development of an econometric analysis directly
through a market equilibrium theory, is shown in the entire paper. It provides a bridge
between a market equilibrium theory and an econometric analysis. This bridge is built
by focussing on the housing magazine as serving information about rental houses to
economic agents (households, landlords) and as the source of data for the econometric
analysis. This explains the source of the error terms in our econometric analysis. This
is the former half of the second feature mentioned in Section 1.

This second feature forces us to modify our market equilibrium theory so that market
prices are perturbed by some error terms. Nevertheless, we have shown that we can
ignore the error terms, which is the correspondence theorem (Theorem 3.1). This is the
latter half of the second salient feature.

Then the third salient feature was discussed in Sections 4 and 5. We introduced the
discrepancy measure as the ratio of the total sum of square residuals from the predicted
rental prices over the that from the average prices. In the best estimation we obtained
in Section 5, the measure takes about the value 1.025. Also, this estimation result has
some implications on the law of diminishing marginal utility. It does not hold in a strict
form for the commuting time-distance to the office area from apartments, but it holds
strictly for the apartment-sizes and consumption other than housing. The degree for
consumption is quite large, which implies that income effects on the housing quality is
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quite large, i.e., there is a strong tendency to rent a better apartment if a household
has a larger income.

In spite of the above seemingly very accurate prediction with respect to our discrep-
ancy measure, it was shown that the best predicted rental prices are still rejected in our
likelihood ratio test. The likelihood ratio test compares the predicted rental prices with
the “true” rental prices. Since our data set of apartments listed is very large, it would
be rejected by the test unless the predicted prices are very close to the “true prices”.
Our best estimation result given in Section 5 is not yet close enough to the “true” one.

Scrutinizing closely on the calculations for the likelihood ratio test, we would find
some reason for the deviation of our prediction. For example, only some category show
some significant deviations. This fact may imply that these categories have some differ-
ent reasons not following our predictions, for examples, the average ages of apartment
units are older than the others. Or, maybe, we may find some other sociological reasons
such as high crime rates. These will be subjects of the future paper.

We have many untouched problems. They are divided into three classes: (1) theo-
retical problems; (2) applications to housing markets along different railway lines and
in different cities (in Japan and other countries); and (3) applications to panel data.
They include a lot of problems, but here, we discuss some problems in each class.

(1): Theoretical problems: One is the formation of individual subjective estimation of
the price distribution from the housing magazine. In this paper, we simply assumed
that each economic agent forms such an estimation, and showed the correspondence
theorem, which is interpreted as meaning that if such estimations have small variances,
then we could ignore the disturbances in the econometric study. The formation of an
estimation of a price distribution may be a theoretical problem of interests from the
viewpoint of inductive game theory (Kaneko-Matusi [11] and Kaneko-Kline [10]): The
question is whether an agent with a limited analytical ability can derive a meaningful
estimation or what he can derive. This should be studied not only theoretical but also
empirically using the data.

(2): Applications to housing markets along different railway lines and in different cities:
In this paper, we discussed only a submarket along the Chuo railway line of JR. The
authors have been applying our theory to various railway lines in the Tokyo area, but
those have been done as pilot studies. A more systematic study of those rental housing
markets in different places and in different time will be an important future problem.
Then, for example, the law of diminishing marginal utility can be tested with different
housing markets.

One important feature in the Tokyo area (as well as in Japan) is that we find
almost no clear-cut segregations. On the other hand, in many American cities we find
segregations with different income groups and/or ethnic groups in housing markets. Our
approach can be applied to those cities with no conceptual difficulty, but we have some
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technical difficulties: The assignment market has not been developed to be capable to
treat such segregation problems or widespread externalities. For example, calculation
of a competitive equilibrium has been done by using a certain result (Lemma 4.4 in this
paper). Taking income or ethnic differences and segregation, we may need to return to
a more general procedure to calculate a competitive equilibrium.

An application to such cases will make our theory more fruitful. Also, it may be
related to the problem of discrimination and prejudices, which was also discussed in
inductive game theory. In this sense, an extended study of our approach will make
some contributions to inductive game theory.

(3): Applications to panel data: This is related to (2). The housing magazine is issued
daily or weekly. Accumulating the housing magazines, we can regard them as panel data.
Then, we study the temporary changes of the housing market. One small problem is
to check the comparative statics results obtained in Kaneko et al [12] and Ito [7] with
those railway lines. In doing so, we may have better understanding of the structure of
the housing market.

The above three problems are simply listed and are interrelated to each other. Also,
each takes some time to be checked. Nevertheless, a steady study of them gives a
better understanding of our socio-economic behavior and the social-economic structure
of society.

9. Appendix

Proof of Theorem 3.1.(1): Since the condition BDS in E are preserved to E(²\²M∪N,ν),
we should show that the ε-modifications of UM and PM hold for E(²\²M∪N,ν) for all
ν ≥ some ν0. However, we show it only for a household i ∈M. It is similar to prove it
for j ∈ N. The additional assumption that the domain of the profit function is finite is
used for it.

Now, let ε be an arbitrary positive number, and let P i,ν = p + ²i,ν for ν = 1, ....
Consider an arbitrary household i. Let zi ∈ {0, e1, ..., eT} with Ii − pzi ≥ 0. Then, by
UM,

ui(x
i, Ii − pxi) ≥ ui(zi, Ii − pzi). (9.1)

We should consider two cases: xi = et (t 6= 0) and xi = 0. Consider the case of xi = et.
As δ → 0, the utility value ui(et, Ii − (pt + δ)et)) converges to ui(xi, Ii − pxi) =

ui(e
t, Ii− pt) by continuity of ui in the composite commodity. Since {²i,ν} converges to

0 in probability, for any δ > 0, there is a ν(δ) such that for any ν ≥ ν(δ),

µ({ω :
°°²i,ν(ω)°° < δ}) < 1− δ

2
. (9.2)
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Since ui is monotonic in the composite commodity, it holds that for all ν ≥ ν(δ),

EUi(e
t, Ii − P i,ν · et) ≥ (1−

δ

2
)ui(e

t, Ii − (pt + δ)et)) +
δ

2
ui(e

t, Ii). (9.3)

Since the right-hand side of (9.3) converges to ui(et, Ii − ptet) as δ → 0, there is some
δ1 such that for all δ ≥ δ1,

(1− δ

2
)ui(e

t, Ii − (pt + δ)et)) +
δ

2
ui(e

t, Ii) ≥ ui(et, Ii − ptet)−
ε

2
. (9.4)

Since δ in (9.3) is arbitrary, we can take the above δ1 for δ. Hence, from (9.3) for δ1 and
(9.4), for any ν ≥ ν(δ1), we have

EUi(e
t, Ii − P i,νet) ≥ ui(et, Ii − ptet)−

ε

2
. (9.5)

Now, let zi be an arbitrary element in {0, e1, ..., eT}. Again, since ui is monotonic
in the composite commodity, we have, using (9.2), for all ν ≥ ν(δ),

(1− δ

2
)ui(e

t, Ii − (pt0 − δ)et)) +
δ

2
ui(e

t, Ii) (9.6)

≥ EUi(e
t, Ii − P i,νet) ≥ EUi(zi, Ii − P i,νzit)

The first term converge to ui(et, Ii − ptet) as δ → 0. Hence, there is some δ2 such that
for any δ ≥ δ2,

ui(e
t, Ii − ptet) +

ε

2
≥ (1− δ

2
)ui(e

t, Ii − (pt + δ)et)) +
δ

2
ui(e

t, Ii). (9.7)

Hence, from (9.6) and (9.7), it holds that for any ν ≥ ν(δ2),

ui(e
t, Ii − ptet) +

ε

2
≥ EUi(zi, Ii − P i,νzi) (9.8)

Now, we take δ3 = min(δ1, δ2). Then, it follows from (9.5) and (9.8) that for all
ν ≥ δ3,

EUi(e
t, Ii − P i,νet) +

ε

2
≥ ui(et, Ii − ptet) ≥ EUi(zi, Ii − P i,νzi)−

ε

2
.

Connecting the first term with the last term, we have the final target: EUi(et, Ii −
P i,νet) + ε ≥ EUi(zi, Ii − P i,νzi).

In the case xi = 0, the first half of the above proof should be modified.

(2): Suppose the if clause of the assertion. Now, let {ελ} a decreasing positive and
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converging sequence to 0. Then, for each ελ, we can find a νλ such that for all ν ≥ νλ,
(p, x, y) is an ελ-competitive equilibrium in E(²\²M∪N,ν). It suffices to show that the
utility maximization and profit maximization hold under price vector p.

Consider utility maximization for xi. Then, we have, for all λ,

EUi(xi, Ii − P i,νλxi) + ελ ≥ EUi(zi, Ii − P i,νλzi) for all zi ∈ {0, e1, ..., eT}. (9.9)

Now, let zi ∈ {0, e1, ..., eT} be fixed. Suppose Ii − pzi > 0. Then, both EUi(xi, Ii −
P i,νλxi) and EUi(zi, Ii − P i,νλzi) converge to ui(xi, Ii − pxi) and ui(zi, Ii − pzi), which
together with (9.9) imply

ui(xi, Ii − pxi) ≥ ui(zi, Ii − pzi).

Now, suppose Ii− pzi = 0. Since ui(zi, 0) < ui(0, Ii) by Assumption A, there is a λ0
such that for all λ ≥ λ0,

EUi(z
i, Ii − P i,νλzi) > ui(zi, 0).

Hence, by (9.9), we have ui(xi, Ii − pxi) ≥ ui(zi, 0) = ui(zi, Ii − pzi).
The profit maximization for yj can be proved even in a simpler manner.

References

[1] Alonso, W., (1964), Location and Land Use, Harvard University Press, Cambridge.

[2] Arnott, R., (1991), Economic Theory and Housing, Handbook of Regional and Ur-
ban Economics, Vo.2, E.S. Mills, North-Holland, Amsterdam.

[3] Berry S. T., (1994), Estimating Discrete-choice Models of Product Differentiation,
Rand Journal of Economics 25, 242-262.

[4] DeGroot, M. H., (1975), Probability and Statistics, Addison-Wesley Publishing Co.
London.

[5] Gale, D. and L. Shapley, (1962), College Admissions and the Stability of Marriage,
American Mathematical Monthly 69, 9-15.

[6] Hicks, J., (1939), Value and Capital, Carendon Press, Oxford.

[7] Ito, T., (2007), Effects of Quality Changes in Rental Housing Markets with Indi-
visibilities, Regional Science and Urban Economics 37, 602-617.

[8] Kaneko, M., (1982), The Central Assignment Game and the Assignment Markets,
Journal of Mathematical Economics 11 (1982), 205—232.

39



[9] Kaneko, M., (1983), Housing market with indivisibilities, Journal of Urban Eco-
nomics 13 (1983), 22—50.

[10] Kaneko, M., and J. J. Kline, (2007a), Small and Partial Views derived from Limited
Experiences, University of Tsukuba, SSM.DP.1166, University of Tsukuba.

http://www.sk.tsukuba.ac.jp/SSM/libraries/pdf1151/1166.pdf.

[11] Kaneko, M., and A. Matsui, (1999), Inductive Game Theory: Discrimination and
Prejudices, Journal of Public Economic Theory 1, 101-137. Errata: the same jour-
nal 3 (2001), 347.

[12] Kaneko, M. T. Ito and Y.-I. Osawa, (2006), Duality in comparative statics in rental
housing markets with indivisibilities, Journal of Urban Economics 59, 142-170.

[13] Kaneko, M., and Y. Yamamoto, (1986), The existence and computation of com-
petitive equilibria in markets with an indivisible commodity, (with Y. Yamamoto),
Journal of Economic Theory 38 (1986), 118—136.

[14] Kanemoto, Y., and R. Nakamura, A New Approach to the Estimation of Structural
Equations in Hedonic Models, Journal of Urban Economics 19, 218-233.

[15] Laan, G. van der, D. Talman, and Z. Yang, (2002), Existence and Welfare Prop-
erties of Equilibrium in an Exchange Economies with Multiple Divisible and In-
divisible Commodities and Linear Production, Journal of Economic Theory 103,
411-428.

[16] Mas-Colell, A., M. D. Whinston, and J.R. Green, (1995), Microeconomic Theory,
Oxford University Press, New York.

[17] Miyake, M., (1994), Comparative Statics of Assignment Markets with General Util-
ities, Journal of Mathematical Economics 23, 519—531.

[18] Ricardo, D., (1965, 1817: original), The Principles of Political Economy and Tax-
ation, J. M. Dent and Sons, London.

[19] Rohatgi, V. K., (1984, 2003), Statistical Inference, Dover, New York.

[20] Roth, A., and M. Sotomayor, (1982), Two-Sided Matching, Handbook of Game
Theory Vol.1, 485—541. R.J.Aumann and S. Hard eds. Elsevier Science Publishers,
Amsterdam.

[21] Shapley, L and M. Shubik, (1972), Assignment Game I: the Core, International
Journal of Game Theory 1, 111—130.

40



[22] von Böhm-Bawerk, E., (1921), Positive Theory of Capital, translated by W. Smart,
(Original publication in 1891) , Books for Libraries, New York.

[23] Wooldridge, J. M., (2000), Introductory Econometrics: Modern Approach, South-
Western College Publishing, United States.

[24] van der Vaart, A. W., (1998), Asymptotic Statistics, Cambridge University Press,
Cambridge.

[25] von Neumann, J., and O. Morgenstern, (1944), Theory of Games and Economic
Behavior, Princeton University Press, Princeton.

41


