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Abstract

This paper considers the estimation problem of structural models of which empirical re-
strictions are characterized in terms of fixed point constraint, such as a structural dynamic
discrete choice model and a model of dynamic games. We analyze the conditions under
which the nested pseudo-likelihood (NPL) algorithm achieves convergence and derive its
convergence rate. We find that the NPL algorithm may not necessarily converge when the
fixed point mapping does not have a local contraction property. To address the issue of
non-convergence, we propose alternative sequential estimation procedures that can achieve
convergence even when the NPL algorithm does not and, upon convergence, some of our
proposed estimation algorithms produce more efficient estimators than the NPL estimator.
We also show that the similar convergence results hold for models with (time-varying) un-
observed heterogeneity, where the EM algorithm is incorporated into the NPL algorithm.
Furthermore, we extend the idea behind the NPL algorithm to the moment estimators, de-
veloping a recursive extension of popular two-step moment methods called the sequential
generalized method of moments (GMM) algorithm. The sequential GMM algorithm has the
convergence properties similar to those of the NPL algorithm.

Keywords: approximate maximum likelihood, contraction, dynamic games, nested general-
ized method of moments, nested pseudo likelihood, unobserved heterogeneity.

JEL Classification Numbers: C13, C14, C63.

1 Introduction

Empirical implications of economic theory are often characterized by fixed point problems. Upon
estimating such models, researchers typically consider a class of extremum estimators with fixed
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point constraint:
max
θ∈Θ

Qn(P ) s.t. P = Ψ(P, θ), (1)

where Qn(P ) = n−1
∑n

i=1 lnP (Zi) for maximum likelihood estimator (MLE, hereafter) while
Qn(P ) = −

[
n−1

∑n
i=1 g(Zi, P )

]′
Ŵ
[
n−1

∑n
i=1 g(Zi, P )

]
for the generalized method of moments

estimator (GMM, hereafter) with the moment condition E[g(Zi, P
0)] = 0 evaluated at the true

probability P 0. Here, {Zi}n
i=1 is the sample data drawn from P 0.

The fixed point constraint P = Ψ(P, θ) in (1) summarizes the set of structural restrictions
of the model that is parametrized with a finite vector θ ∈ Θ. When the model is correctly
specified, the probability distribution obtained as the fixed point of the operator Ψ evaluated at
the true parameter θ0 generates the sample data. The examples of operator Ψ(·, θ) include the
policy iteration operator for a single agent dynamic programming model (e.g., Rust (1987), Hotz
and Miller (1993)), and an operator defined by best response function for games (e.g., Bajari,
Benkard, and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-
Dengler (2007)).

In principle, we may estimate the parameter θ in (1) by repeatedly solving the fixed point
Pθ of P = Ψ(P, θ) at each parameter value to maximize the objective function with respect to θ.
The major practical obstacle of applying such an estimation procedure lies in the computational
burden because solving the fixed point problem for a given parameter can be very costly.

To reduce the computational burden, Hotz and Miller (1993) developed a simpler two-step
estimator that does not require solving the fixed point problem for each trial value of the
parameters. A number of recent papers in empirical industrial organization build on the idea
of Hotz and Miller (1993) to develop two-step estimators for models with multiple agents (cf.,
Bajari, Benkard, and Levin, 2007; Pakes, Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-
Dengler, 2007; Bajari, Chernozhukov, and Hong, 2006). These two-step estimators may suffer
from substantial finite sample bias, however, when the choice probabilities are poorly estimated
in the first step. This drawback is especially severe in estimating models with unobserved
heterogeneity because it is difficult to obtain consistent initial estimates of choice probabilities.

To address the limitations of two-step estimators, Aguirregabiria and Mira (2002)(2007,
AM07 hereafter) develop a recursive extension of the two-step method of Hotz and Miller (1993),
called the nested pseudo likelihood (NPL) algorithm as follows. Starting from an initial estimate
P̃0, their algorithm iterates

Step 1: Given P̃j−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 ln[Ψ(P̃j−1, θ)](Zi).

Step 2: Update P̃j−1 using the obtained estimate θ̃j : P̃j = Ψ(P̃j−1, θ̃j).

until j = k. AM07 show that their method can be applied to models with unobserved hetero-
geneity in the context of dynamic discrete games, and the NPL estimator—defined as the limit
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of the sequence generated by the NPL algorithm—is more efficient than the two-step estimators
if the convergence is achieved.

While AM07 have obtained convergence in their simulations and illustrate that the NPL
estimator performs very well relative to the two-step estimator, they do not provide the condi-
tions under which the NPL algorithm converges. On the other hand, the simulation results of
Pesendorfer and Schmidt-Dengler (2007) provide some evidence that the NPL algorithm may
not necessarily converge while Collard-Wexler (2006) finds that P̃j ’s “cycle around several val-
ues without converging” in the NPL algorithm. If the NPL algorithm produces a sequence of
estimators that diverge away from the fixed point of P = Ψ(P, θ) under the true parameter
value θ0, the algorithm may not be used to estimate the parameter in practice. To date, the
convergence property of the NPL algorithm is not known in the literature.

This paper analyzes the conditions under which the NPL algorithm achieves convergence.
The key to understanding the convergence properties of the NPL algorithm is a contraction
property of the operator Ψ defining the fixed point problem. Intuitively, the faster the operator
achieves contraction, the closer the the value obtained after one iteration is to the fixed point,
and, therefore, we expect that the NPL algorithm works well if the operator has good contraction
property. We show that the convergence of the NPL algorithm is achieved if the dominant
eigenvalue of the Jacobian matrix ∂Ψ(P, θ)/∂P evaluated at the fixed point Pθ is less than one
in absolute value.1 This is because the local contraction property of the operator Ψ is determined
by the eigenvalues of the derivative of Ψ with respect to P . The closer the dominant eigenvalue
of ∂Ψ(Pθ, θ)/∂P to zero, the faster the convergence rate of the NPL algorithm.

The violation of the condition that guarantees the convergence of the NPL algorithm is a
concern. Using the dynamic discrete game model of AM07, our simulation results show that,
when the degree of strategic substitutabilities is sufficiently high in dynamic game, the Jacobian
matrix of the policy iteration mapping could have the smallest eigenvalue that is less than -1,
leading to no convergence of the NPL algorithm. In such cases, various two step estimators can
be used but they may suffer from the finite sample bias and are difficult to apply to models with
unobserved heterogeneity.

We propose alternative sequential estimators that are implementable even when the original
NPL algorithm does not converge. First, we consider modifying the fixed point mapping Ψ
so that its transformed mapping shares the same fixed point as Ψ but has better contraction
property. Upon convergence, the NPL algorithm with the transformed mapping produces an
estimator that is characterized by the same first order conditions as the original NPL estimator.

Second, to further improve convergence property as well as efficiency, we propose a new
estimation algorithm in which a pseudo-likelihood objective function in the NPL algorithm is

1In the context of single agent dynamic programming model, Kasahara and Shimotsu (2006, KS06 hereafter)
derive the rate at which the sequence of the estimators generated from the NPL algorithm approaches the MLE.
We extend the results of KS06 to a general class of structural models that are formulated as fixed point problem,
including a model of dynamic games.
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defined in terms of multiple iterations of the mapping as opposed to one iteration. In general,
such a modification leads to a significant increase in the computational burden because repeated
evaluations of the mapping is required for solving the optimization problem in Step 1. For this
reason, we introduce an approximation method that requires evaluating the mapping and its
Jacobian with respect to the parameter only once outside of the optimization routine. This algo-
rithm converges faster than the original NPL algorithm and, when the convergence is achieved,
the proposed estimator is more efficient than the NPL estimator.

Third, we also propose a sequential algorithm that may be used to obtain the maximum
likelihood estimator upon convergence. The algorithm is based on directly approximating the
fixed point of the mapping and is computationally attractive when an analytical expression
for ∂Ψ(P, θ)/∂P is available. Given an initially consistent estimator, taking one step of this
sequential algorithm leads to an estimator that is asymptotically equivalent to the MLE. Taking
additional steps produces a sequence of estimators that approaches the MLE in higher orders.

We also analyze the convergence properties of the NPL algorithm when it is applied to
models with serially correlated unobserved state variables. Recently, Arcidiacono and Miller
(2008) adapt the Expectation-Maximization (EM) algorithm into conditional choice probability
estimator in the context of unobserved heterogeneity. When the conditional choice probabilities
are updated between iterations of E-step and M-step, this algorithm may not be monotone
increasing and the conditions for the algorithm to converge are not known. We show that the
similar convergence results hold for models with time-varying unobserved heterogeneity, where
the EM algorithm is incorporated into the NPL algorithm.

Finally, we develop a recursive extension of two-step moment estimators that are often used
in estimating dynamic games, called the sequential generalized method of moments (GMM)
algorithm. The sequential GMM algorithm replaces the pseudo-likelihood function in the NPL
algorithm with the pseudo GMM objective function. We show that the convergence of the
sequential GMM algorithm also requires that all the eigenvalues of ∂Ψ(Pθ, θ)/∂P are less than
one in absolute value. The limit of the sequential GMM estimators may be more efficient than
two-step estimators.

The reminder of the paper is organized as follows. Section 2 introduces a class of models with
fixed point constraints. Section 3 establishes the convergence property of the NPL algorithm.
In Section 4, we develop alternative sequential algorithms that can be used even when the NPL
algorithm has convergence problems and, yet, achieve better asymptotic properties. Section 5
extends our analysis to the sequential GMM estimator. Section 6 applies our proposed methods
to models with unobserved heterogeneity. Section 7 reports some simulation results.

4



2 The models with fixed point constraint and maximum likeli-

hood estimator

We consider a class of parametric models of which restrictions are characterized in terms of fixed
point problems in probability space. Upon estimating such models, researchers may consider
the (conditional) maximum likelihood estimator (MLE) with fixed point constraint:

θ̂MLE = arg max
θ∈Θ

{
max

P∈Mθ

n−1
n∑

i=1

lnP (ai|xi)

}
, (2)

where
Mθ = {P ∈ BP : P = Ψ(P, θ)} (3)

is a set of fixed points of Ψ(·, θ) given the value of θ ∈ Θ ⊂ RK . Here, BP represents the space
of conditional probabilities while Θ is the set of possible parameter values. The model space—
the set of probabilities that are consistent with the parametric fixed point restrictions—is then
defined as a union of Mθ over Θ: M = ∪θ∈ΘMθ = {P ∈ BP : P = Ψ(P, θ), θ ∈ Θ}. We
assume that the model is correctly specified so that the conditional probability in population,
denoted by P 0, belongs to the model space M, i.e., P 0 ∈M.

The fixed point constraint P = Ψ(P, θ) in (3) summarizes the set of structural restrictions
of the model that is parametrized with a finite K dimensional vector θ. For each θ, an operator
Ψ(·, θ) maps the space of conditional choice probabilities into itself. When the model is correctly
specified, the true probability distribution P 0 is the fixed point of the operator Ψ evaluated at the
true parameter θ0, from which the sample data is generated. The examples of operator Ψ(·, θ)
include the policy iteration operator for single agent dynamic programming models (e.g., Rust
(1987), Hotz and Miller (1993), Aguirregabiria and Mira (2002)) and an operator defined by best
response functions for dynamic games (e.g., Aguirregabiria and Mira (2007), Bajari, Benkard
and Levin (2007), Pakes, Ostrovsky and Berry (2007), Pesendorfer and Schmidt-Dengler (2007)).

Example 1 (A dynamic discrete choice model and the policy iteration mapping) An
agent maximizes the expected discounted sum of utilities, E[

∑∞
j=0 β

j{u(xt+j , at+j ; θ)+εt+j(at+j)}|at, xt; θ],
where xt is an observable state variable and εt(at) is a state variable that are known to the agent
but not to the researcher. The Bellman equation for this dynamic optimization problem is

V (x) =
∫

max
a∈A

{
u(x, a; θ) + ε(a) + β

∑
x′∈X

V (x′)f(x′|x, a; θ)

}
g(dε|x), (4)

where β ∈ (0, 1) is the discount factor, g(ε|x) is the joint distribution of ε = {ε(j) : j ∈ A} and
f(x′|x, a; θ) is transition function. For each value of θ, we may compute the fixed point of the
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Bellman equation and the conditional choice probability is given by

Pθ(a|x) =
∫

1

{
a = arg max

j∈A

[
u(x, j; θ) + ε(j) + β

∑
x′∈X

Vθ(x′)f(x′|x, j; θ)

]}
g(dε|x), (5)

where Vθ is the fixed point of (4). Using the Hotz and Miller (1993)’s invertibility proposition,
we may derive the policy iteration mapping in the space of conditional choice probability, Ψ(·, θ),
of which fixed point is the same as the conditional choice probabilities in (5), i.e., Pθ = Ψ(Pθ, θ)
(cf., Aguirregabiria and Mira (2002) and Kasahara and Shimotsu (2006)).

Example 2 (A dynamic discrete choice model with finite dependence) In a dynamic
discrete choice model, the policy iteration mapping is not necessarily the only mapping to char-
acterize fixed point constraint. Arcidiacono and Miller (2008) shows that, when the dynamic
discrete choice problem exhibits finite time dependence, it is possible to derive an alternative
mapping that is much simpler to compute than the policy iteration mapping. We illustrate their
method by considering a simple machine replacement model of Rust (1987).

Suppose a ∈ {0, 1} is the replacement decision for a bus engine, where a = 1 corresponds to
replacing a bus engine. Let x denote the engine’s mileage with X = {1, 2, . . .}. The transition
function of x is given by f(xt+1|xt, at) which takes a value of one for xt+1 = (1−at)(xt +1)+at,
and zero otherwise. In this case, the choice at = 1 is a renewal action and the model exhibits
finite dependence. In particular, denoting

v(x, a) = u(x, a; θ) + β
∑
x′∈X

V (x′)f(x′|x, a) (6)

in (4), we have v(x, 1) = u(x, 1; θ) + βV (1). Then, assuming that ε(a) is independently drawn
from the Type-I extreme-value distribution, (4) is written as V (x) = v(x, 1) − lnP (a = 1|x) +
γ + βV (1), where γ is Euler’s constant.2 Substituting this expression into the right hand side of
(6) and taking a difference between v(x, 1) and v(x, 0) give

v(x, 1)−v(x, 0) = [u(x, 1; θ)−u(x, 0; θ)]+β
∑
x′∈X

[u(x′, 1; θ)−lnP (a = 1|x′)][f(x′|x, 1)−f(x′|x, 0)].

For each value of θ, the right hand side of this equation can be viewed as a mapping from the
probability space to the space of value differences. Denote this mapping ϕ(P, θ). Then, we may
derive an alternative mapping to the policy iteration mapping as

P (a = 1|x) =
exp(v(x, 1))

exp(v(x, 1)) + exp(v(x, 0))
=

1
1 + exp (−[ϕ(P, θ)](x))

≡ [Ψ(P, θ)](a = 1|x). (7)

2This follows from V (x) = γ + ln[
P1

j=0 exp(v(x, j))] = γ + u(x, 1; θ) − ln P (a = 1|x) = u(x, 1) − ln P (a =
1|x) + γ + βV (1), where the second equality uses P (a = 1|x) = exp(v(x, 1))/[

P
j=0,1 exp(v(x, j))].
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Evaluating the mapping defined by the last term of (7) is much less computationally intensive
than evaluating the policy iteration mapping, especially when the state space is large.

Example 3 (A dynamic discrete game) Consider the model of dynamic discrete games stud-
ied by Aguirregabiria and Mira (2007). There are N global firms who are the potential entrants
in M separate markets. At the beginning of each period, a firm makes an entry/exit choice in
each market, i.e., ait ∈ A = {0, 1}. The profit of firm i operating in period t depends on the
vector of current firms’ current decision at = (a1t, ..., aNt)′, the market demand condition St, its
previous entry decision ai,t−1, and the vector of firms’s state that is private information to each
firm εt = (ε1t, ..., εNt)′. Let Π̃i(at, St, at−1, εt; θ) be firm i’s profit in period t. Then, firm i max-
imizes the expected discounted sum of profits E

[∑∞
t=0 β

tΠi(at, Smt, ai,t−1, εit; θ)|Smt, am,t−1; θ
]
.

We assume that St follows an exogenous first-order Markov process fS(St+1|St, at−1; θ), which
is common knowledge while εit is iid across markets and firms conditional on St and at−1.

Let σ∗(θ) = {σ∗i (St, at−1, εit; θ) : i = 1, . . . , N} denote a set of strategy functions in a sta-
tionary Markov perfect equilibrium (MPE) given θ. Then, the equilibrium conditional choice
probabilities are given by

P
σ∗(θ)
i (ai|St, at−1) =

∫
1{ai = σ∗i (St, at−1, ε; θ)}g(dε|St, at−1), (8)

where g(ε|St, at−1) is the conditional distribution function for ε = {ε(a) : a ∈ A}. Aguirregabiria
and Mira (2007) provides a best response mapping in probability space of which fixed point is
identical to the equilibrium conditional choice probabilities in (8) so that Pθ = Ψ(Pθ, θ) where
Pθ = {P σ∗(θ)

i : i = 1, ..., N}.

The computation of the maximum likelihood estimator (MLE) in (2) requires repeatedly
solving all the fixed points of P = Ψ(P, θ) at each parameter value to maximize the objective
function with respect to θ. When there are multiple fixed points, finding all the fixed points of
P = Ψ(P, θ) may be computationally infeasible. Even if there is a unique fixed point for each
θ, the MLE could be extremely computationally intensive when evaluating the mapping Ψ is
costly. For example, the MLE is often impractical in estimating models of dynamic game in
example 3 with the modest number of players since the state space increases at exponential rate
as the number of players increases. One of the major econometric issues in estimating models
with fixed point constraint is to develop an estimator that is computational simple and has good
finite sample properties as an alternative to the MLE.

7



3 The nested pseudo likelihood algorithm

3.1 Asymptotic properties of the NPL estimator

This section reviews the properties of the two-step pseudo maximum likelihood estimator (PML)
and the estimator generated by the nested pseudo likelihood (NPL) algorithm as discussed in
Aguirregabiria and Mira (2002, 2007). They are feasible alternatives to the MLE.

The pseudo maximum likelihood (PML) estimator is

θ̂PML = arg max
θ∈Θ

n−1
n∑

i=1

lnΨ(P̂0, θ)(ai|xi),

where P̂0 is an initial consistent estimator for P 0.
We assume that the support of (ai, xi) is finite, A×X = {a1, a2, ..., a|A|}×{x1, x2, . . . , x|X|}.

Accordingly, P is represented with a L × 1 vector while, given θ, the Jacobian (∂/∂P ′)Ψ(P, θ)
is a L× L matrix, where L = |A||X|.

Assumption 1 (a) Θ is compact and, for any θ ∈ Θ, Mθ is compact. (b) Ψ(P, θ) is three
times continuously differentiable. (c) Ψ(P, θ)(a|x) > 0 for any (a, x) and any {P, θ} ∈ BP ×Θ.
(d) (ai, xi) for i = 1, 2, . . . , N, are independently and identically distributed, and dF (x) > 0 for
any x in the support of xi, where F (x) is the distribution function of xi. (e) There is a unique
θ0 ∈int(Θ) and a unique Pθ0 ∈Mθ0 such that, for any (a, x) ∈ A×X, Pθ0(a|x) = P 0(a|x). For
any θ 6= θ0, PrP 0({(a, x) : Ψ(P 0, θ)(a|x) 6= P 0(a|x)}) > 0. (g) Eθ0 sup(P,θ) ||DsΨ(P, θ)(a|x)||2 <
∞ for s = 1, . . . , 4.

As shown in Proposition 1 of AM07, under Assumption 1, the two-step PML estimator is
consistent and, when a root-n consistent estimator of P 0 is available, it is asymptotically normal.

Proposition 1 Assume Assumption 1 holds and P̂0 →p P
0. Then θ̂PML →p θ

0.

Proposition 2 Assume Assumption 1 holds and
√
n(P̂0−P 0) →d N(0,Σ). Then,

√
n(θ̂PML−

θ0) → N(0, VPML), where VPML = (Ωθθ)−1 + (Ωθθ)−1ΩθP Σ(ΩθP )
′
(Ωθθ)−1 with

Ωθθ ≡ E[(∂/∂θ) ln Ψ(P 0, θ0)(a|x)(∂/∂θ′) ln Ψ(P 0, θ0)(a|x)] = −E[(∂2/∂θ∂θ′) ln Ψ(P 0, θ0)(a|x)],

ΩθP ≡ E[(∂/∂θ) ln Ψ(P 0, θ0)(a|x)(∂/∂P ′) ln Ψ(P 0, θ0)(a|x)] = −E[(∂2/∂θ∂P ′) ln Ψ(P 0, θ0)(a|x)].

The second term of the variance expression, (Ωθθ)−1ΩθP Σ(ΩθP )
′
(Ωθθ)−1, captures the effect

of the first step estimator P̂0 on θ̂PML. When the estimator P̂0 is imprecise as is often the case
in practice, the two-step PML estimator may perform poorly. The eigenvalues of the Jacobian
matrix ΨP ≡ (∂/∂P ′)Ψ(P 0, θ0) is another important determinant of the variance VPML. If all
the eigenvalues of ΨP are equal to zero, then ΩθP = 0 and there is no effect of P̂0 on θ̂PL in the
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first order asymptotic. In this case, the limiting distribution of the two-step estimator is the
same as that of the MLE (cf., Aguirregabiria and Mira (2002)), which is true even under the
weaker assumption that P̂0 − P 0 = Op(n−b) with b > 1/4 (see Kasahara and Shimotsu (2006)).

Aguirregabiria and Mira (2002, 2007) consider a recursive extension of the two-step PML
estimator based on the nested pseudo likelihood (NPL) algorithm as follows. Assume that an
initial consistent estimator P̃0 is available.

Step 1: Given P̃j−1, update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 lnΨ(P̃j−1, θ)(ai|xi).

Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(P̃j−1, θ̃j).

Iterate Steps 1-2 until j = k.

This procedure generates a sequence of estimators {P̃j , θ̃j}k
j=1. If this sequence converges,

its limit (P̂NPL, θ̂NPL) is called the NPL estimator, satisfying the following two conditions:

θ̂NPL = arg max
θ∈Θ

n−1
n∑

i=1

lnΨ(P̂NPL, θ)(ai|xi) and θ̂NPL = Ψ(P̂NPL, θ̂NPL). (9)

The following proposition is from AM07 and states that θ̂NPL is root-n consistent asymp-
totically and more efficient than a two-step estimator if all the eigenvalues of ΨP are between 0
and 1.

Proposition 3 Assume Assumption 1 holds. Then,
√
n(θ̂NPL − θ0) → N(0, VNPL), where

VNPL = [Ωθθ+ΩθP (I−ΨP )−1Ψθ]−1Ωθθ{[Ωθθ+ΩθP (I−ΨP )−1Ψθ]−1}′ with Ψθ ≡ (∂/∂θ′)Ψ(P 0, θ0).
Furthermore, if all the eigenvalues of ΨP are less than one in absolute value, then VPML−VNPL

is positive definite.

The estimator θ̂NPL can be obtained as a limit of iterating steps 1 and 2 if the iterations converge.
Although AM07 have obtained convergence in their simulations and illustrate that the estimator
θ̂NPL performs very well relative to the PML estimator, they neither provide the conditions under
which the NPL algorithm converges nor analyze how fast the convergence occurs. On the other
hand, some other studies find potential problems on the convergence of the NPL algorithm. The
simulation results of Pesendorfer and Schmidt-Dengler (2007) provide some evidence that the
NPL algorithm may not necessarily converge. Collard-Wexler (2006) uses the NPL method to
estimate a structural model of entry and exit for the ready-mix concrete industry and finds that
the NPL algorithm generates a sequence of P̂j ’s that is oscillating without converging. To date,
little is known about the convergence properties of the NPL algorithm.

3.2 Convergence properties of the NPL algorithm

We now analyze the conditions under which the NPL algorithm achieves convergence and derives
its convergence rates. We show that its convergence property crucially depends on the eigenval-
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ues of ΨP . In particular, if all the eigenvalues of ΨP are smaller than 1 in absolute value, then
the NPL algorithm converges.

First, we state the regularity conditions. Denote ψθ(P, θ) = n−1
∑n

i=1(∂/∂θ) ln Ψ(P, θ)(ai|xi),
ψθθ(P, θ) = n−1

∑n
i=1(∂

2/∂θ∂θ′) ln Ψ(P, θ)(ai|xi), and ψθP (P, θ) = n−1
∑n

i=1(∂
2/∂θ∂P ′) ln Ψ(P, θ)(ai|xi).

Assumption 2 Assumption 1 holds, and in addition

ψθ(P
0, θ0) = Op(n−1/2), ψθP (P 0, θ0) = −ΩθP +Op(n−1/2),

ψθθ(P
0, θ0) = −Ωθθ +Op(n−1/2), ψθθ(P, θ) is invertible for all (P, θ).

E sup
θ,P

||DθP lnΨ(P, θ)|| <∞, E sup
θ,P

||D3 lnΨ(P, θ)|| <∞,

sup
θ,P

||D2Ψ(P, θ)|| = O(1),

All the assumptions but the last two are fairly weak. ψθθ(P, θ) should be invertible in many
cases because ψθθ(P, θ) is an average of n matrices. If we assume P̃0 is consistent, then the last
assumption can be replaced by the invertibility of Ωθθ.

Define fx(xl) = Pr(x = xl) and let fx be a L × 1 vector of Pr(x = xl) whose elements are
arranged conformably with Pθ0(aj |xl). Let ∆P = diag(P 0)−1diag(fx). With these notations, we
may write Ωθθ = Ψ

′
θ∆P Ψθ and ΩθP = Ψ

′
θ∆P ΨP .

The following lemma is one of the main results of this paper. It states the local convergence
rate of the NPL algorithm.

Lemma 1 Suppose Assumption 2 holds. Then, for j = 1, . . . , k,

θ̃j − θ̂NPL = Op(||P̃j−1 − P̂NPL||),

P̃j − P̂NPL = MΨθ
ΨP (P̃j−1 − P̂NPL) +Op(n−1/2||P̃j−1 − P̂NPL||) +Op(||P̃j−1 − P̂NPL||2),

where
MΨθ

≡ I −Ψθ(Ψ′
θ∆P Ψθ)−1Ψ′

θ∆P .

It follows from induction that

P̃k−P̂NPL = (MΨθ
ΨP )k(P̃0−P̂NPL)+O((MΨθ

ΨP )k−1)[Op(n−1/2||P̃0−P̂NPL||)+Op(||P̃0−P̂NPL||2)].

If all the eigenvalues of MΨθ
ΨP are less than 1 in absolute value, an iteration moves P̃j

toward P̂NPL. Since the eigenvalues of MΨθ
are either zero or one, the convergence property of

P̃j is primarily determined by the dominant eigenvalues of ΨP .
3 That is, if all the eigenvalues

3In particular, we may show that, for any y = P1 − P2 where P1, P2 ∈ BP ,

||MΨθΨP y|| ≤ |λ(MΨθ

′MΨθ )λ(ΨP
′ΨP )|1/2||y||,

where λ(Z) is the dominant eigenvalue of matrix Z.
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of ΨP is sufficiently smaller than 1 in absolute value, then P̃k, θ̃k converges to P̂NPL, θ̂NPL as
k → ∞. In contrast, if some eigenvalues of MΨθ

ΨP are larger than 1, then an iteration moves
some elements of P̃j further away from P̂NPL. In this case, it is not clear whether the iterations
eventually converge even when the initial estimate P̃0 is in the neighborhood of P̂NPL.

Remark 1 Ψθ(Ψ′
θ∆P Ψθ)−1Ψ′

θ∆P is a generalized least squares projection matrix from a regres-
sion of an element of BP onto the space spanned by Ψθ, where the “error variance matrix” is
∆−1

P . On the other hand, MΨθ
is the orthogonal projection matrix that generates the “residuals”.

Remark 2 Even if the initial estimate, P̃0, is not root-n consistent, iterations reduce the effect
of the initial estimate on θ̃j , provided all the eigenvalues of MΨθ

ΨP are smaller than 1 in absolute
value.

Remark 3 If all the eigenvalues of MΨθ
ΨP are smaller than 1 in absolute value and we choose

k →∞ so that log n = o(k), then P̃k− P̂NPL = op(n−1/2) and the effect of P̃0 on P̂NPL vanishes
in the limit. This is useful when some elements of x are continuously distributed and root-n
consistent P̃0 is not available.

Remark 4 When ΨP = 0, the convergence rate is faster than linear:

P̃j − P̂NPL = Op(n−1/2||P̃j−1 − P̂NPL||) +Op(||P̃j−1 − P̂NPL||2).

Remark 5 If at least one element of xi is continuously distributed, one can prove the higher-
order improvement by bootstrap as in Kasahara and Shimotsu (2006).

4 Alternative sequential likelihood-based estimators

When a mapping Ψ(P, θ) is not a contraction in the neighborhood of (P 0, θ0), the NPL algorithm
has a convergence problem and therefore may not be used in practice. While the PML or
other two-step estimators can be used in such cases, the finite sample bias is often a serious
concern in these estimators. This section discusses alternative sequential algorithms that are
implementable even when the NPL algorithm encounters a convergence problem. Some of our
proposed estimators have better asymptotic properties than the NPL estimator.

4.1 Locally contractive mapping

In the previous section, we show that the dominant eigenvalue of ΨP is the main determinant of
the convergence properties of the NPL algorithm. Expanding Ψ(P, θ0) around the fixed point,
P 0 = Pθ0 , gives

Ψ(P, θ0)− P 0 = ΨP (P − P 0) +O(||P − P 0||2)

11



so that the dominant eigenvalue of ΨP determines the rate of contraction for the mapping
Ψ(·, θ) in the neighborhood of (P 0, θ0). If the dominant eigenvalue is less than 1 in absolute
value, Ψ(·, θ0) is locally a contraction while, if it is more than 1, iterating Ψ(·, θ0) generates a
sequence that does not converge to P 0. Thus, the convergence property of the NPL algorithm
is determined by the local contraction property of Ψ(·, θ) in the neighborhood of (P 0, θ0).

In this section, we propose implementing the NPL algorithm by modifying the mapping
Ψ(P, θ) so that its transformed mapping has better contraction property. We consider a class of
mappings that are obtained as a log-linear combination of Ψ(P, θ) and P :

[Λ(P, θ)](a|x) ≡ {[Ψ(P, θ)](a|x)}αP (a|x)1−α (10)

for all (a, x) ∈ A × X, where α ∈ [0, 1]. Given θ, Λ(P, θ) is a mapping from BP into itself.
Since P is a fixed point of Ψ(P, θ) if and only if it is a fixed point of Λ(P, θ), we may obtain the
fixed point of Ψ(P, θ) by solving the fixed point of Λ(P, θ). Furthermore, with an appropriate
choice of α, the mapping Λ(P, θ) may become locally contractive with its dominant eigenvalue
less than 1 even when the mapping Ψ(P, θ) is not locally contractive.

The following proposition states that, under certain conditions, we may choose the value of
α so that the absolute value of the dominant eigenvalue of ΛP ≡ ∇P ′Λ(P 0, θ0) is less than that
of ΨP .

Proposition 4 Denote the largest and the smallest eigenvalues of ΨP by λmax and λmin. If
λmax > 1 > λmin, then there is no value of α such that all the eigenvalues of ΛP are between
-1 and 1. If 1 > λmax > λmin, then the absolute value of the dominant eigenvalue of ΛP is
minimized at α∗ = 2

2−λmax−λmin
and the largest and smallest eigenvalues of ΛP are λmax−λmin

2−λmax−λmin

and − λmax−λmin
2−λmax−λmin

, respectively, both of which are between -1 and 1. Furthermore, λmax−λmin
2−λmax−λmin

is smaller than the absolute value of the dominant eigenvalue of ΨP .

We may consider the NPL algorithm using Λ(P, θ) in place of Ψ(P, θ) which iterates

Step 1: Update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 lnΛ(P̃j−1, θ)(ai|xi) and

Step 2: Update P by P̃j = Λ(P̃j−1, θ̃j)

until j = k. When the condition that 1 > λmax > λmin is satisfied, the sequence of estimators
generated by the NPL algorithm with Λ(P, θ) may converge even if the NPL algorithm with
Ψ(P, θ) does not converge. Furthermore, the limit of a sequence of estimators generated by
the NPL algorithm with Λ(P, θ) satisfies the same first order conditions as that of (9) and it is
identical to the original NPL estimator with Ψ(P, θ) upon convergence (see the Appendix B).

The advantage of this method is its simplicity. Once an appropriate value of α is deter-
mined, it achieves better convergence property than the original NPL algorithm without adding
computational burden. The condition 1 > λmax > λmin may be restrictive in some cases but, in
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our Monte Carlo experiments using the model of Example 3, we find that λmax is less than 1
while λmin may become less than -1 when the degree of strategic substitutabilities is high.4

4.2 The q-NPL algorithm

Even when the absolute value of dominant eigenvalue of ΛP or ΨP is strictly smaller than 1, the
convergence of the NPL algorithm could be very slow and a sequence generated by the algorithm
could behave erratically if the dominant eigenvalue is close to 1 in absolute value.5

In this section, we consider a possible extension of the NPL algorithm by defining a q-stage
operator of Λ by

Λq(P, θ) = Λ(Λ(...(Λ︸ ︷︷ ︸
q times

(P, θ), θ), ..., θ), θ),

and Ψq(P, θ) is defined similarly. We define the q-NPL algorithm as the NPL algorithm using
a q-stage operator Λq or Ψq in place of Λ or Ψ. In the following, we focus on the algorithm
based on Λq but the same argument applies to Ψq. We recommend using Λq over Ψq in practice
whenever the optimal value of α can be estimated because it improves convergence properties.

Given an initial consistent estimator P̃0, the q-NPL algorithm iterates

Step 1: Update θ by θ̃j = arg maxθ∈Θ n
−1
∑n

i=1 lnΛq(P̃j−1, θ)(ai|xi) and

Step 2: Update P using the obtained estimate θ̃j by P̃j = Λq(P̃j−1, θ̃j)

until j = k.
The limit of this sequence of estimators, denoted by (P̂qNPL, θ̂qNPL), satisfies

θ̂qNPL = arg max
θ∈Θ

n−1
n∑

i=1

lnΛq(P̂qNPL, θ)(ai|xi) and θ̂qNPL = Λq(P̂qNPL, θ̂qNPL), (11)

if iterations converge. We call this estimator upon convergence the q-NPL estimator. Since the
result of Lemma 1 also applies here by replacing Ψ with Λq, the dominant eigenvalue of Λq

P ≡
(∂/∂P ′)Λq(P 0, θ0) is the main determinant of the convergence rate of the q-NPL algorithm.
When the dominant eigenvalue of ΛP , denoted by λ∗, is less than 1 in absolute value, the q-NPL
algorithm converges faster than the NPL algorithm because the absolute value of dominant

4We may estimate the optimal choice, α∗ = 2
2−λmax−λmin

, by first applying the PML estimator and then

evaluating the eigenvalues of (∂/∂P ′)Ψ(P̂0, θ̂PML), which is a consistent estimator for ΨP . If it is difficult
to evaluate the eigenvalues of (∂/∂P ′)Ψ(P̂0, θ̂PML), we may simulate a sequence {P j}J

j=0 by iterating P j =

Ψ(P j−1, θ̂PML) and compute the mean of ||P j+1−P J ||/||P j−P J || across j = 1, ..., J−1, which gives an estimate
of the dominant eigenvalue. Repeating this procedure for different values of α, say for α ∈ {0.1, 0.2, ..., 0.9}, we may
estimate α∗ by picking up the value of α that leads to the smallest value of the mean of ||P j+1−P J ||/||P j−P J ||’s.
We find that this procedure works well in our Monte Carlo experiments.

5As AM07 (pp.20-21) discuss, if some eigenvalues of ΛP or ΨP are equal to one, then there could exist a
continuum of NPL fixed points at (θ0, P 0).
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eigenvalue of Λq
P is equal to |λ∗|q. Furthermore, the variance of the q-NPL estimator approaches

to that of the MLE at the exponential rate of |λ∗|2q as q →∞. See the Appendix B.
A simple application of the q-NPL algorithm may not be so useful in practice, however,

because computing Step 1 of the q-NPL algorithm requires repeatedly evaluating the mapping
Λ at many different values of the vector of probabilities P . In contrast, an iteration of the NPL
algorithm often requires evaluating the mapping Λ only once as discussed in Aguirregabiria and
Mira (2002, 2007). For this reason, we consider the following approximate q-NPL algorithm.

Suppose that a consistent estimate (P̃j−1, θ̃j−1) is available. Expanding Λq(P̃j−1, θ) in Step
1 of the q-NPL algorithm gives

Λq(P̃j−1, θ) = Λq(P̃j−1, θ̃j−1) +∇θ′Λq(P̃j−1, θ̃j−1)(θ − θ̃j−1) +O(||θ − θ̃j−1||2). (12)

Thus, Λq(P̃j−1, θ) can be approximated by Λq(P̃j−1, θ̃j−1) + ∇θ′Λq(P̃j−1, θ̃j−1)(θ − θ̃j−1), and
this approximation becomes exact as θ → θ̃j−1.

We propose to estimate θ using this approximation of Λq(P, θ). Let (P̃0, θ̃0) be an initial
consistent estimator of (P 0, θ0). For instance, θ̃0 can be the PML estimator. For j ≥ 1, consider
the following approximate q-NPL algorithm.

Step 1: Given (θ̃j−1, P̃j−1), update θ by

θ̃j = arg max
θ∈Θq

j

n−1
n∑

i=1

ln Λ̃q(θ, P̃j−1, θ̃j−1)(ai|xi),

where Λ̃q(θ, P̃j−1, θ̃j−1) ≡ Λq(P̃j−1, θ̃j−1) +∇θ′Λq(P̃j−1, θ̃j−1)(θ− θ̃j−1) and Θq
j = {θ ∈ Θ :

Λ̃q(θ, P̃j−1, θ̃j−1)(a|x) ∈ [ε, 1− ε] for all (a, x) ∈ A×X} for an arbitrary small ε > 0. We
impose this restriction in order to avoid computing ln(0).6

Step 2: Given (θ̃j , P̃j−1), update P using the obtained estimate θ̃j by P̃j = Λq(P̃j−1, θ̃j).

Iterate Steps 1-2 until j = k.

Implementing Step 1 requires evaluating Λq(θ̃j−1, P̃j−1) and ∇θ′Λq(θ̃j−1, P̃j−1) only once
outside of the optimization routine for θ and, thus, it involves much fewer number of evaluations
of Λ(P, θ) across different values of θ and P than the original q-NPL algorithm.7 It still requires
more iterations than the NPL algorithm but, when the NPL algorithm encounters convergence
problems, this approximate q-NPL algorithm is feasible alternative.

6In practice, we may consider a penalized pseudo likelihood objective function by adding a penalty term that
is increasing in the distance between [Λq(P̃0, θ̃0) +∇θ′Λq(P̃0, θ̃0)(θ − θ̃0)](ai|xi) and the set [ε, 1− ε].

7Λq(P̃0, θ̃0) can be computed by just iterating Λ(P̃0, θ̃0) q times while ∇θ′Λq(P̃0, θ̃0) can be computed by taking
a numerical derivative of Λq(P̃0, θ̃0) with respect to the parameter vector θ. Using one-sided numerical derivatives,
Step 1 requires (K + 1)q policy iterations.
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To establish the consistency of the sequence of estimators generated by the approximate
q-NPL algorithm, we need the following assumption in addition to Assumption 1.

Assumption 3 For any η ∈ RK such that η 6= 0, ∇θ′Λq(P 0, θ0)(a|x)η 6= 0 with positive proba-
bility.

Assumption 3 is an identification condition for the probability limit of our objective function and
is required because we use an approximation of Λq(P, θ)(a|x) in the objective function. If this
assumption is violated, then there exists a direction of θ such that ∇θ′Λq(P 0, θ0)(a|x)(θ−θ0) = 0
even when θ 6= θ0. Then, it is not possible to identify θ0. Assumption 3 is satisfied if the following
|X| ×K matrix has full column rank:

∇θ′Λq(P 0, θ0)(a|x = X1)
...

∇θ′Λq(P 0, θ0)(a|x = X|X|)

 .
Since |X| � K in general, this condition is likely to be satisfied in most cases.

Under these assumptions, we may establish consistency:

Proposition 5 Suppose that Assumptions 1 and 3 hold and (P̃0, θ̃0) is consistent. Suppose we
obtain θ̃k by the approximate q-NPL algorithm. Then θ̃k − θ0 = op(1) for k = 1, 2, . . .

The following proposition establishes that the convergence property of the approximate q-
NPL algorithm is the same as that of the original q-NPL algorithm.

Proposition 6 Suppose Assumptions 1-3 hold and (P̃0, θ̃0) is consistent. Suppose we obtain
{P̃j , θ̃j}k

j=1 by the approximated q-NPL algorithm. Then, for j = 1, . . . , k,

θ̃j − θ̂qNPL = Op(||P̃j−1 − P̂qNPL||),

P̃j − P̂qNPL = MΛq
θ
Λq

P (P̃j−1 − P̂qNPL) +Op(n−1/2||P̃j−1 − P̂qNPL||) +Op(||P̃j−1 − P̂qNPL||2),

where MΛq
θ
≡ I − Λq

θ((Λ
q
θ)
′∆P Λq

θ)
−1(Λq

θ)
′∆P with Λq

θ = ∇θ′Λq(P 0, θ0).

Thus, the approximate q-NPL algorithm achieves the same convergence rate as the original
q-NPL algorithm, improving the convergence property of the NPL algorithm if the dominant
eigenvalue of ΛP is less than 1 in absolute value. Upon convergence, this algorithm generates the
q-NPL estimator defined by (11), which is more efficient than the NPL estimator θ̂NPL. Thus,
even if the NPL algorithm does not encounter any convergence problem, taking additional steps
of the approximated q-NPL algorithm starting from θ̂NPL improves efficiency.

Kasahara and Shimotsu (2006) develop another approximation method based on the Newton-
Raphson (NR) algorithm. Given an initial consistent estimator (P̃0, θ̃0), this NR-based approx-
imate algorithm iterates
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Step 1: Update θ by one NR-step as θ̃j = θ̃j−1−(Qq
n,j−1)

−1∇θ′L
q
n(P̃j−1, θ̃j−1), where Lq

n(P̃j−1, θ̃j−1)
= n−1

∑n
i=1 lnΛq(P̃j−1, θ̃j−1)(ai|xi) andQq

n,j−1 is a consistent estimator for∇θθ′E[Lq
n(P̃j−1, θ̃j−1)].

Step 2: Update P using the obtained estimate θ̃j by P̃j = Λq(P̃j−1, θ̃j)

until j = k. In Step 1, the parameter θ is updated using one NR step without fully solving the
optimization problem. Since taking one NR step brings the estimator sufficiently close to the
solution of the original optimization problem, the NR-based approximation algorithm achieves
the same rate of convergence as the original q-NPL algorithm. In terms of computation cost,
using an outer-product-of-the-gradients estimator for Qn,j−1, this algorithm requires the same
number of evaluations of Λq(P, θ) as the approximate q-NPL algorithm.

The approximate q-NPL algorithm has the following advantages over the NR-based approx-
imate algorithm. First, when the likelihood surface is complex, a simple application of the
NR step may not work well in practice. Solving the “linearly approximated likelihood” maxi-
mization problem, the approximate q-NPL algorithm essentially applies a version of line-search
method without too much of computational cost and is probably more robust than the NR-based
approximate algorithm.8 Second, as we discuss later, we may apply the approximate q-NPL al-
gorithm in the context of the EM algorithm, which is a popular method to estimate models with
unobserved heterogeneity (cf., Arcidiacono and Miller (2008)).

4.3 Approximate fixed point algorithm

The approximation method similar to the approximate q-NPL algorithm can be directly applied
to the fixed point, Pθ = Ψ(Pθ, θ), resulting in the approximation of the MLE. From Taylor
expansion and using ∇θ′Pθ = (I −∇P ′Ψ(Pθ, θ))−1∇θ′Ψ(Pθ, θ), we can approximate Pθ as

Pθ = Pθ0 + (I −∇P ′Ψ(Pθ0 , θ0))−1∇θ′Ψ(Pθ0 , θ0)(θ − θ0) +O(||θ − θ0||2), (13)

where ∇θ′Pθ0 denotes the derivative of Pθ evaluated at θ = θ0. Therefore, if we have a consistent
estimate of θ0 and P 0, we may approximate Pθ with the mappings ∇P ′Ψ(P, θ) and ∇θ′Ψ(P, θ).
This approximation method is particularly useful when it is possible to derive an analytical
expression for ∇P ′Ψ(P, θ) and ∇θ′Ψ(P, θ).

Consider the following objective function based on (13):

Qn(θ, P ∗, θ∗) = n−1
n∑

i=1

lnΦ(θ, P ∗, θ∗)(ai|xi),

where
Φ(θ, P ∗, θ∗) = P ∗ + (I −∇P ′Ψ(P ∗, θ∗))−1∇θ′Ψ(P ∗, θ∗)(θ − θ∗). (14)

8Introducing the line-search method into the NR-based algorithm requires evaluating Λq(P, θ) at various step
lengths and will substantially increase its computational cost.
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We call the estimation algorithm using Qn(θ, P ∗, θ∗) the Approximate Fixed Point Algorithm
(AFXP) because it is based on the approximation of the fixed point Pθ.

Let θ̃0 be an initial estimator of θ0, such as the PML estimator. For j ≥ 1, consider the
following sequential procedure.

Step 1: Given θ̃j−1, update P by solving the fixed point Pθ̃j−1
= Ψ(Pθ̃j−1

, θ̃j−1). If there are
multiple fixed points, choose the one that maximizes the likelihood:

P̃j = arg max
P∈Mθ̃j−1

lnP (ai|xi),

where Mθ is defined in (3).

Step 2: Given (P̃j , θ̃j−1), update θ by θ̃j = arg maxθ∈Θj
Qn(θ, P̃j , θ̃j−1), where

Θj = {θ ∈ Θ : Φ(θ, θ̃j−1, P̃j)(a|x) ∈ [ε, 1− ε] for all (a, x) ∈ A×X} (15)

for an arbitrary small ε > 0.

Iterate Steps 1-2 until j = k.

To establish the consistency of sequential estimators generated by the AFXP algorithm,
consider the following assumptions. The first set of the assumptions is regularity conditions
for the consistency of the MLE. The second set of the assumptions is concerned with the NPL
algorithm. Let N denote a neighborhood of (P 0, θ0).

Assumption 4 (a) Θ is compact and, for any θ ∈ Θ, Mθ is compact. (b) (ai, xi) for i =
1, . . . ,M , are independently and identically distributed, and Pr(xi = x) > 0 for any x ∈ X.
(c) There is a unique θ0 ∈int(Θ) and a unique Pθ0 ∈ Mθ0 such that, for any (a, x) ∈ A ×
X, Pθ0(a|x) = P 0(a|x). (d) For any Pθ ∈ Mθ given any θ 6= θ0, PrP 0({(a, x) : Pθ(a|x) 6=
P 0(a|x)}) > 0. (e) E supθ∈Θ |Pθ(a|x)| <∞.

Assumption 5 (a) Ψ(P, θ)(a|x) > 0 for any (a, x) ∈ A × X and any {P, θ} ∈ BP × Θ. (b)
Ψ(P, θ) is continuously differentiable in (P, θ) ∈ N , and sup(P,θ)∈N ||∇P ′Ψ(P, θ)|| < ∞ and
sup(P,θ)∈N ||∇θ′Ψ(P, θ)|| <∞.

The consistency of AFXP estimator requires the following additional assumptions:

Assumption 6 (a) For any η ∈ RK such that η 6= 0, ∇θ′Pθ0(a|x)η 6= 0 with positive probability.
(b) E supθ∈Θ,(P ∗,θ∗)∈N ||∇θ∗′Φ(θ, P ∗, θ∗)(a|x)|| <∞, and E supθ∈Θ,(P ∗,θ∗)∈N ||∇P ∗′Φ(θ, P ∗, θ∗)(a|x)|| <
∞. (c) E||∇θ′Pθ0(a|x)|| <∞.
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Assumption 6(a) is similar to Assumption 3 and is an identification condition for the probabil-
ity limit of our objective function. Assumption 6(b)-(c) are regularity conditions required for
the uniform convergence of the objective function. Assumption 6(b) is stated in terms of the
conditions on the derivatives of Φ to simplify the presentation, but it is possible to state it in
terms of the conditions on the derivatives of Ψ(P, θ).

Under these assumptions, the sequential estimators generated by the AFXP algorithm is
consistent:

Proposition 7 Suppose that Assumptions 4-6 hold and θ̃0 is consistent. Suppose we obtain θ̃k

by the AFXP algorithm. Then θ̃k − θ0 = op(1) for k = 1, 2, . . .

If a sequence of estimators generated by the AFXP algorithm converges, it converges to the
MLE. We now analyze the convergence property of the AFXP algorithm. We introduce the
following additional regularity conditions. Let N1 denote a neighborhood of (P 0, θ0), and let N2

denote a neighborhood of (θ0). Let ∇(3)Φ(θ, P ∗, θ∗) denote the third derivatives of Φ(θ, P ∗, θ∗)
with respect to (θ, P ∗, θ∗). Assumption 7(a) is required for the asymptotic normality of the
NFXP estimator.

Assumption 7 (a) E supθ∈N2
||∇θ′Pθ(a|x)||2 < ∞, and E supθ∈N2

||∇θθ′Pθ(a|x)|| < ∞. (b)
Ψ(P, θ) is twice continuously differentiable in (P, θ) ∈ N1 with a bounded second derivative. (c)
E supθ∈N2,(P ∗,θ∗)∈N1

||∇(3)Φ(θ, P ∗, θ∗)(a|x)|| <∞.

The following proposition establishes the convergence rate of the AFXP algorithm. Let θMLE

be the MLE of θ and define P̂MLE = Pθ̂MLE
, the MLE of P .

Proposition 8 Suppose that Assumptions 4-7 hold and θ̃0 is consistent. Suppose we obtain
{P̃j , θ̃j}k

j=1 by the AFXP algorithm. Then, for j = 1, 2, . . . , k,

θ̃j − θ̂MLE = Op(||P̃j − P̂MLE ||),

P̃j − P̂MLE = Op(n−1/2||P̃j−1 − P̂MLE ||) +Op(||P̃j−1 − P̂MLE ||2).

Thus, the estimator generated by the AFXP algorithm is first-order equivalent to the MLE
for all k ≥ 1. This convergence rate is also the same as that of the NPL algorithm for a single-
agent model with ∇P Ψ(P 0, θ0) = 0 (Kasahara and Shimotsu, 2006). This algorithm can be
used to obtain the MLE because, upon convergence, its limit is identical to the MLE.

Implementing Step 1 of the AFXP algorithm may be impractical when finding all the fixed
points is computationally infeasible. In such cases, we may replace the solution to the fixed
point in Step 1 with its consistent estimator as follows. Let (P̃0, θ̃0) be an initial estimator of
(P 0, θ0). For j ≥ 1, consider the q-AFXP algorithm which iterates

Step 1: Given (P̃j−1, θ̃j−1), update P by P̃j = Λq(P̃j−1, θ̃j−1), and
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Step 2: Given (P̃j , θ̃j−1), update θ by θ̃j = arg maxθ∈Θj
Qn(θ, P̃j , θ̃j−1), where Θj is given by

(15),

until j = k. The sequential estimators generated by the q-AFXP algorithm is consistent.

Proposition 9 Suppose that Assumptions 4-6 hold and (P̃0, θ̃0) is consistent. Suppose we obtain
θ̃k by the q-AFXP algorithm. Then θ̃k − θ0 = op(1) for k = 1, 2, . . .

We now derive the convergence property of the q-AFXP algorithm. First, we introduce some
notations. Define the information matrix for the MLE as I0 = E[∇θ lnPθ0(ai|xi)∇θ′ lnPθ0(ai|xi)].
Under the standard regularity conditions, the MLE satisfies

√
n(θ̂MLE − θ0) →d N(0, (I0)−1).

Define a K × L matrix J as (we state it in terms of J ′ for notational convenience)

J ′ = E

[
∇P

{
[(I −∇P ′Ψ(P 0, θ0))−1∇θ′Ψ(P 0, θ0)](a|x)

P 0(a|x)

}]
.

The following proposition establishes the convergence rate of the q-AFXP algorithm.

Proposition 10 Suppose that Assumptions 4-7 hold and (P̃0, θ̃0) is consistent. Suppose we
obtain θ̃k by the q-AFXP algorithm. Then, for k = 1, 2, . . .,

P̃j − P̂MLE = Λq
P (P̃j−1 − P̂MLE) + Λq

θ(θ̃j−1 − θ̂MLE) +Rn,j ,

(I0 + op(1))(θ̃j − θ̂MLE) = −J∇θ′Pθ0(θ̃j−1 − θ̂MLE) + J(P̃j − P̂MLE) +Rn,j ,

where Rn,j denotes a generic reminder term satisfying

Rn,j = Op(||P̃j−1 − P̂MLE ||2) +Op(||θ̃j−1 − θ̂MLE ||2)

+ Op(n−1/2||P̃j−1 − P̂MLE ||) +Op(n−1/2||θ̃j−1 − θ̂MLE ||).

Ignoring Rn,j and op(1) term and arranging the two updating relations into a system of
equations, we obtain(

IL 0
−J I0

)(
P̃j − P̂MLE

θ̃j − θ̂MLE

)
=

(
Λq

P Λq
θ

0 −J∇θ′Pθ0

)(
P̃j−1 − P̂MLE

θ̃j−1 − θ̂MLE

)
.

It follows that(
P̃j − P̂MLE

θ̃j − θ̂MLE

)
= Q

(
P̃j−1 − P̂MLE

θ̃j−1 − θ̂MLE

)
, whereQ =

(
Λq

P Λq
θ

(I0)−1JΛq
P (I0)−1J(Λq

θ −∇θ′Pθ0)

)
.

Therefore, the convergence property of the q-AFXP algorithm, or the eigenvalues of Q, de-
pends on three factors: (i) the magnitude of Λq

P and Λq
θ, (ii) the magnitude of I0 and J , and
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(iii) difference between Λq
θ and ∇θ′Pθ0 . From the properties of Λ, we obtain Λq

P = (ΛP )q and
Λq

θ−∇θ′Pθ0 = −∇θ′Pθ0(ΛP )q−1. Since the trace of a matrix is the sum of its eigenvalues, the sum
of the eigenvalues of Q is the sum of the trace of (ΛP )q and the trace of −(I0)−1J∇θ′Pθ0(ΛP )q−1.
Therefore, when all the eigenvalues of ΛP are smaller than 1 in absolute value, then, for suffi-
ciently large q, all the eigenvalues of Q are smaller than 1, and iterating the q-AFXP algorithm
converges to the MLE.

5 Sequential GMM estimators

Recently, many researchers extend the Hotz-Miller CCP estimator and develop various two-step
moment estimators for dynamic games (see Bajari, Benkard and Levin (2007), Pakes, Ostrovsky
and Berry (2007), Pesendorfer and Schmidt-Dengler (2007)). The main advantages of these two
step moment estimators are, first, their computational simplicity and, second, their consistency
property given the consistent estimator for P 0 even when the mapping Ψ(·, θ0) has multiple
fixed points (i.e., multiple equilibria). These estimators often suffer from the finite sample bias,
however, especially when the initial estimator for P 0 is imprecise.

This section develops a recursive extension of two-step moment estimators called the se-
quential GMM estimator using the similar idea to the NPL algorithm. The sequential GMM
estimator is asymptotically more efficient and may have a smaller finite sample bias than two-
step moment estimators.

5.1 GMM estimator

Given the conditional probabilities P 0 in population, for any function h : A → R, the follow-
ing conditional moment condition always holds: E

[
h(a)−

∑
a′∈A h(a

′)P 0(a′|x) | x
]

= 0. For
example, we may choose h(a) = a or h(a) = a2. The conditional moment condition imply
unconditional moment conditions of the form

E
[
gl(x, a;P 0)

]
= 0,

where

gl(x, a;P 0) = ρl(x)

(
hl(a)−

∑
a′∈A

hl(a′)P 0(a′|x)

)
(16)

for any function ρl : X → R and hl : A→ R.
We consider the generalized method of moments estimator based on these moment condi-

tions when the population conditional probabilities belong to a parametric class of conditional
probabilities with fixed point constraint: M = ∪θ∈ΘMθ = {P ∈ BP : P = Ψ(P, θ), θ ∈ Θ}.
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The generalized method of moments (GMM) estimator with fixed point constraint is defined
as:

θ̂GMM = arg min
θ∈Θ

{
min

P∈Mθ

ḡ(P )′Ŵ ḡ(P )
}
, (17)

where Mθ is given in (3), Ŵ →p W positive semi-definite, and

ḡ(P ) = n−1
n∑

i=1

g(ai, xi;P ),

where g(·;P ) = (g1(·;P ), g2(·;P ), ..., gL(·;P ))′ is a moment vector function representing L mo-
ment conditions with gl(·) function given by (16) for l = 1, .., L.

To compute the GMM estimator, we need to repeatedly solve the fixed point of P = Ψ(P, θ)
for each candidate parameter value θ until one finds the parameter that minimizes the GMM
objective function. When solving the fixed point is costly as in models of dynamic game, this
estimator is impractical.

5.2 Two-step GMM estimator

The two-step GMM estimator is defined as

θ̂2GMM = arg min
θ∈Θ

ḡ(Ψ(P̂0, θ))′Ŵ ḡ(Ψ(P̂0, θ)),

where P̂0 is an initial consistent estimator for P 0.
In the following, we use the following notations.

Ḡθ(Ψ(P, θ)) = (∂/∂θ′)ḡ(Ψ(P, θ)), ḠP (Ψ(P, θ)) = (∂/∂P ′)ḡ(Ψ(P, θ)),

Gθ = E[(∂/∂θ′)g(ai, xi; Ψ(P 0, θ0))], GP = E[(∂/∂P ′)g(ai, xi; Ψ(P 0, θ0))].

Define fx as before so that its elements are arranged comformably with P 0(j|xl) while let f̂x

be a frequency estimator of fx. Denote ∆x = diag(fx) and ∆̂x = diag(f̂x). Let γl(a, x) =
ρl(x)hl(a) and γl represent a vector of |A||X| length. Finally, let Γ = (γ′1, γ

′
2, ..., γ

′
L)′ be a L

by |A||X| matrix. With those notations, we may write Ḡθ(Ψ(P, θ)) = −Γ∆̂x(∂/∂θ′)Ψ(P, θ),
ḠP (Ψ(P, θ)) = −Γ∆̂x(∂/∂P ′)Ψ(P, θ), Gθ = −Γ∆xΨθ and GP = −Γ∆xΨP . Let r(ai, xi) be a
vector of length |A||X| whose elements are arranged comformably with P 0(a|x) and be equal to
zero except for the element of (a, x) = (ai, xi) which takes a value of one. With this notation,
we can write P̂0 = n−1

∑n
i=1 r(ai, xi).

Assumption 8 (a) For any θ 6= θ0, WE[g(a, x; Ψ(P 0, θ))] 6= 0; (b) G′θWGθ is nonsingluar; (c)
E[||g(a, x;P 0)||2] <∞; (d) E[supθ∈Θ ||g(a, x; Ψ(P 0, θ))||] <∞; (e) E[supθ∈Θ ||∇θ′g(a, x; Ψ(P 0, θ))||] <
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∞.

Under Assumptions 1 and 8, θ̂2GMM is consistent and asymptotic normal. The asymptotic
distribution of θ̂2GMM is given by

√
n(θ̂2GMM − θ0) →d N(0, V2GMM ),

where V2GMM = (G′θWGθ)−1G′θWSWGθ(G′θWGθ)−1 with S = E[(g(ai, xi;P 0)+GP (r(ai, xi)−
P 0))(g(ai, xi;P 0) + GP (r(ai, xi) − P 0))′]. Using an optimal weighting matrix W = S−1, the
limiting variance is given by V2GMM = (G′θS

−1Gθ)−1.

5.3 The nested GMM estimator

We consider a recursive extension of the two-step GMM estimator called the nested GMM
algorithm as follows. Given an initial estimator P̃0,

Step 1: Given P̃j−1, update θ by θ̃j = arg minθ ḡ(Ψ(P̃j−1, θ))′Ŵ ḡ(Ψ(P̃j−1, θ)).

Step 2: Update P using the obtained estimate θ̃j : P̃j = Ψ(P̃j−1, θ̃j).

Iterate Steps 1-2 until j = k.

Under regularity conditions similar to the ones in Assumption 1, the sequence of estimators
generated by this algorithm are consistent. If the sequence converges, the limit is called the
nested GMM (NGMM) estimator. The NGMM estimator (P̂NGMM , θ̂NGMM ) satisfies

θ̂NGMM = arg min
θ∈Θ

ḡ(Ψ(P̂NGMM , θ))′Ŵ ḡ(Ψ(P̂NGMM , θ)),

P̂NGMM = Ψ(P̂NGMM , θ̂NGMM ).

Under the following additional assumptions, we derive the limiting distribution of the NGMM
estimator.

Assumption 9

ḡ(P 0) = Op(n−1/2), sup
θ,P

||D2Ψ(P, θ)|| <∞, ||Γ|| <∞,

rank((∂/∂θ′)Ψ(P, θ)) = k, for all P

Note that supθ,P ||D2Ψ(P, θ)|| <∞ and ||Γ|| <∞ imply that supθ,P ||DḠθ(Ψ(P, θ))|| <∞. The
rank condition on (∂/∂θ′)Ψ(P, θ) guarantees that (Ḡθ(P ))′Ŵ Ḡθ(P ) is invertible.

Proposition 11 Suppose Assumptions 1, 8 and 9 hold. Then

√
n(θ̂NGMM − θ0) →d N(0, (G′θWG∞θ )−1G′θWΩW ′Gθ((G∞θ )′W ′Gθ)−1),
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where Ω = E[g(ai, xi;P 0)g(ai, xi;P 0)′] and G∞θ = −Γ∆x(I −ΨP )−1Ψθ. If we choose W = Ω−1,
the asymptotic variance is given by (G′θΩ

−1G∞θ )−1G′θΩ
−1Gθ((G∞θ )′Ω−1Gθ)−1.

Remark 6 When ΨP = 0, the two-step GMM estimator with an optimal weighting matrix is
asymptotically equivalent to the NGMM estimator with W = Ω−1.

The NGMM estimator can be obtained as the limit of the sequence of estimators generated
by the NGMM algorithm upon convergence. The convergence property of the NGMM estimator
is given by the following lemma.

Proposition 12 Suppose Assumptions 1 and 9 hold. Then, for j = 1, . . . , k,

θ̃j − θ̃ = Op(||P̃j−1 − P̃ ||),

P̃j − P̃ = [I + Ψθ(G′θŴGθ)−1G′θŴΓ∆x]ΨP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2).

Remark 7 Observe that −Ψθ(G′θŴGθ)−1G′θŴΓ∆x = Ψθ(Ψ′
θ∆

′
xΓ′ŴΓ∆xΨθ)−1Ψ′

θ∆
′
xΓ′ŴΓ∆x

is a projection matrix, and the sequence of estimators here also has the convergence property sim-
ilar to the estimators generated by the NPL algorithm. Again, the convergence rate is primarily
determined by the eigenvalues of ΨP .

Remark 8 Analogous remarks to Remarks 1-5 apply here.

5.4 Alternative sequential GMM estimators

When the NGMM algorithm encounters a convergence problem or when researchers are in-
terested in obtaining more efficient GMM estimator, we may use alternative sequential GMM
algorithms that can be developed in the same spirit as those of Section 4.

First, as in the case of the NPL algorithm, using Λ in place of Ψ in the NGMM algorithm
improves the convergence property while both share the same limit.

Second, replacing Ψ with Λq in the NGMM algorithm improves not only convergence property
but also may increase the asymptotic efficiency if the dominant eigenvalue of Λ is less than
1. The NGMM estimator with Λq converges to the GMM estimator (17) as q → ∞. To
reduce computational burden, given an initial consistent estimator (P̃0, θ̃0), we may approximate
the mapping Λq(P, θ) ≈ Λq(Pj−1, θj−1) +∇θ′Λq(Pj−1, θj−1)(θ − θ̃j−1) in Step 1 of the NGMM
algorithm to obtain the approximate q-NGMM algorithm with Λq which iterates

Step 1: Given P̃j−1, update θ by θ̃j = arg minθ ḡ(Λ̃q(θ, P̃j−1, θ̃j−1))′Ŵ ḡ(Λ̃q(θ, P̃j−1, θ̃j−1)), where
Λ̃q(θ, P̃j−1, θ̃j−1) ≡ Λq(P̃j−1, θ̃j−1) +∇θ′Λq(P̃j−1, θ̃j−1)(θ − θ̃j−1), and

Step 2: Update P using the obtained estimate θ̃j : P̃j = Λq(P̃j−1, θ̃j).
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If the iterations converge, the limit of the sequence generated by the approximate q-NGMM
algorithm is the same as the NGMM estimator with Λq.

Finally, the approximate GMM (AGMM) algorithm can be defined analogously to the AFXP
algorithm as follows. Given an initial consistent estimator (P̃0, θ̃0), iterate

Step 1: Given θ̃j−1, update P by solving the fixed point Pθ̃j−1
= Ψ(Pθ̃j−1

, θ̃j−1). If there are
multiple fixed points, update P by P̃j = arg maxP∈Mθ̃j−1

ḡ(P )′Ŵ ḡ(P ).

Step 2: Given (P̃j , θ̃j−1), update θ by θ̃j = arg minθ∈Θ

{
minP∈Mθ

ḡ(Φ(θ, θ̃j−1, P̃j))′Ŵ ḡ(Φ(θ, θ̃j−1, P̃j))
}

,
where Φ(θ, P ∗, θ∗) and Θj are defined by (14) and (15), respectively.

When solving the fixed point is computationally difficult in Step 1, one may update P by
P̃j = Λq(P̃j−1, θ̃j−1) in Step 1 to define the q-AGMM algorithm in the same spirit as the q-
AFXP algorithm and, upon convergence, the GMM estimator (17) can be obtained.

6 Unobserved Heterogeneity

This section extends our analysis to models with unobserved heterogeneity. The NPL algo-
rithm has important advantage over two step methods in estimating models with unobserved
heterogeneity because obtaining a reliable initial estimate of P is difficult in this context.

6.1 Permanent unobserved heterogeneity

Suppose that there are M types of agents, where type m is characterized by a type-specific
parameter θm and the population probability of being type m is πm with

∑M
m=1 π

m = 1. These
types capture time-invariant state variables that are unobserved by researchers. With a slight
abuse of notation, denote θ = (θ1, ..., θM )′ ∈ ΘM and π = (π1, ..., πM )′ ∈ Θπ. Then, ζ = (θ′, π′)′

is the parameter to be estimated, and let Θζ = ΘM ×Θπ denote the set of possible values of ζ.
The true parameter is denoted by ζ0.

Consider a panel data set {{ait, xit, xi,t+1}T
t=1}n

i=1 such that wi = {ait, xit, xi,t+1}T
t=1 is ran-

domly drawn across i’s from the population. The conditional probability distribution of ait

given xit for type m agent is given by a fixed point of Pθm = Ψ(Pθm , θm). On the other hand, to
simplify our analysis, we assume that the transition probability function of xit is independent
of types and given by fx(xi,t+1|ait, xit) and is known to researchers.9

In this framework, the initial state xi1 is correlated with unobserved type (i.e., the initial
conditions problem of Heckman (1981)). We assume that xi1 for type m is randomly drawn

9When the transition probability function is independent of types, it can be directly estimated from transition
data without solving the fixed point problem. Kasahara and Shimotsu (2006) analyze the case in which the
transition probability function is also type-dependent in the context of a single agent dynamic programming
model with unobserved heterogeneity.
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from the type m stationary distribution characterized by a fixed point of the following equation:
p∗(x) =

∑
x′∈X p∗(x′)

(∑
a′∈A Pθm(a′|x′)fx(x|a′, x′)

)
≡ [T (p∗, Pθm)](x). Since solving the fixed

point of T (·, P ) for given P is often less computationally intensive than computing the fixed
point of Ψ(·, θ), we assume the full solution of the fixed point of T (·, P ) is available given P .

Stack Pm’s as P = (P 1′ , . . . , PM ′
)′, and let P0 denote its true value. Define Ψ(P, θ) =

(Ψ(P 1, θ1)′, . . . ,Ψ(PM , θM )′)′. Then, the set of possible probabilities consistent with the fixed
point constraints given the value of θ is given by M∗

θ = {P ∈ BM
P : P = Ψ(P, θ)}.

The maximum likelihood estimator for a model with unobserved heterogeneity is:

ζ̂MLE = arg max
ζ∈Θζ

{
max
P∈M∗

θ

ln ([L(P, π)](wi))
}
, (18)

where

[L(P, π)](wi) =
M∑

m=1

πmp∗P m(xi1)
T∏

t=1

Pm(ait|xit)fx(xi,t+1|ait, xit),

and p∗P m = T (p∗P m , Pm) is the type m stationary distribution of x when the conditional prob-
ability is Pm. If P0 is the true conditional probability distribution and π0 is the true mixing
distribution, then L0 = L(P0, π0) represents the true probability distribution of w.

Assumption 10 (a) Θζ is compact and, for any θ ∈ ΘM , M∗
θ is compact. (b) [L(P, π)](w) > 0

for any w and for any (P, π) ∈ ∪θ∈ΘMM∗
θ×Θπ. (c) wi = {(ait, xit, xi,t+1) : t = 1, . . . , T} for i =

1, . . . , n, are independently and identically distributed. (d) For any P ∈ BP , there exists a unique
fixed point for T (·, P ). (e) There is a unique ζ0 ∈int(Θζ) and a unique P0 ∈M∗

θ0 such that, for
any w = {(at, xt, xt+1) : t = 1, . . . , T}, [L(P0, π0)](w) = L0(w), where L0 is the true probability
for w. Given any (θ, π) 6= (θ0, π0), for any P ∈M∗

θ, PrL0({w : [L(P, π)](w) 6= L0(w)}) > 0. (f)
P̃0 −P0 = op(1), and the MLE denoted by ζ̂MLE satisfies

√
n(ζ̂MLE − ζ0) →d N(0,Ωζ).

Assumption 10(f) requires an initial consistent estimators for the type-specific conditional prob-
abilities. Kasahara and Shimotsu (2006) derive sufficient conditions for nonparametric identi-
fication of a finite mixture model and suggest a sieve estimator which can be used to obtain
an initial consistent estimate for P. On the other hand, as AM07 argue, if the NPL algorithm
converges, then the limit may provide a consistent estimate for the parameter ζ even when P̃0

is not consistent.
We consider a version of the NPL algorithm for a model with unobserved heterogeneity

originally developed by AM07 as follows. Assume that an initial consistent estimator P̃0 =
(P̃ 1

0 , . . . , P̃
M
0 ) is available. For j = 1, 2, ..., iterate

Step 1: Given P̃j−1, update ζ = (θ′, π′)′ by

ζ̃j = arg max
ζ∈Θζ

n−1
n∑

i=1

ln
(
[L(Ψ(P̃j−1, θ), π)](wi)

)
,
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Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(P̃j−1, θ̃j),

until j = k. If the iterations converge, its limit (P̂NPL, ζ̂NPL) is the NPL estimator for models
with unobserved heterogeneity and satisfies the conditions analogous to (9).

We now establish the convergence property of the NPL algorithm for models with unobserved
heterogeneity.

Let [l(P, ζ)](w) ≡ ln
(
[L(Ψ(P̃j−1, θ), π)](w)

)
. Then, Ωζζ = E

[
(∂/∂ζ)[l(P0, ζ0)](w)(∂/∂ζ ′)[l(P0, ζ0)](w)

]
and ΩζP = E

[
(∂/∂ζ)[l(P0, ζ0)](w)(∂/∂P′)[l(P0, ζ0)](w)

]
can be written as

Ωζζ =

[
Ωθθ Ωθπ

Ωπθ Ωππ

]
=

[
Ψ′

θL
′
P ∆LLPΨθ Ψ′

θL
′
P ∆LLπ

L′π∆LLPΨθ L′π∆LLπ

]
, ΩζP =

[
ΩθP

ΩπP

]
=

[
Ψ′

θL
′
P ∆LLPΨP

L′π∆LLPΨP

]
,

where ΨP ≡ (∂/∂P′)Ψ(P0, θ0), Ψθ ≡ (∂/∂θ′)Ψ(P0, θ0), ∆L = diag((L0)−1) = diag((L(P0, π0))−1),
LP = ∇P ′L(P0, π0), and Lπ = ∇π′L(P0, π0).

Assumption 11

lζ(P0, ζ0) = Op(n−1/2), lζζ(P0, ζ0) = −Ωζζ +Op(n−1/2)

lζP (P0, ζ0) = −ΩζP +Op(n−1/2), lζζ(P, θ) is invertible for all (P, θ).

E sup
ζ,P

||DζP[l(P, ζ)](w)|| <∞, E sup
ζ,P

||D3[l(P, ζ)](w)|| <∞,

sup
θ,P

||D2Ψ(P, θ)|| = O(1),

where lζ(P, ζ) = n−1
∑n

i=1(∂/∂ζ)[l(P, ζ)](wi), lζζ(P, ζ) = n−1
∑n

i=1(∂
2/∂ζ∂ζ ′)[l(P, ζ)](wi), and

lζP(P, ζ) = n−1
∑n

i=1(∂
2/∂ζ∂P′)[l(P, ζ)](wi).

The following result states the convergence properties of the NPL algorithm for models with
unobserved heterogeneity.

Lemma 2 Suppose Assumptions 10-11 hold. Then, for j = 1, . . . , k,

ζ̃j − ζ̂NPL = Op(||P̃j−1 − P̂NPL||),

P̃j − P̂NPL = [I −ΨθDΨ′
θL

′
P ∆1/2

L MLπ∆1/2
L LP ]ΨP (P̃j−1 − P̂NPL)

+ Op(n−1/2||P̃j−1 − P̂NPL||) +Op(||P̃j−1 − P̂NPL||2).

where D = (Ψ′
θL

′
P ∆1/2

L MLπ∆1/2
L LPΨθ)−1 and MLπ = I −∆1/2

L Lπ(L′π∆LLπ)−1Lπ∆1/2
L .

Since I−ΨθDΨ′
θL

′
P ∆1/2

L MLπ∆1/2
L LP is an idempotent matrix, its eigenvalues are either zero

or one. Consequently, the dominant eigenvalue of ΨP determines the convergence rate of the
NPL algorithm for models with unobserved heterogeneity. When the NPL algorithm encounters
a convergence problem, replacing Ψ(P, θ) with Λ(P, θ) improves convergence property.
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Remark 9 It is possible to relax the stationarity assumption on the initial states by estimating
the type-specific initial distributions of x, denoted by {p∗m}M

m=1, without imposing stationarity
restriction in Step 1 of the NPL algorithm. In this case, the NPL algorithm has the convergence
rates similar to those of Lemma 2.

Define ζ∗ = (θ′, π′, p∗
′
) where p∗ = (p∗1

′
, ..., p∗M

′
)′. Define [L(P, π, p∗)](wi) =

∑M
m=1 π

mp∗m(xi1)∏T
t=1 P

m(ait|xit)fx(xi,t+1|ait, xit). In this case, the NPL algorithm updates ζ̃∗ in Step 1 as
ζ̃∗j = arg maxζ∗∈Θζ∗

n−1
∑n

i=1 ln
(
[L(Ψ(P̃j−1, θ), π, p∗)](wi)

)
, where Θζ∗ = Θζ × Bp∗. Denote

L(π,p∗) = ∇(π′,p∗′ )L(P0, π0, p∗0). Then, the convergence properties of the NPL algorithm corre-
sponding to those of Lemma 2 is given by: for j = 1, . . . , k,

ζ̃∗j − ζ̂∗NPL = Op(||P̃j−1 − P̂NPL||),

P̃j − P̂NPL = [I −ΨθD(π,p∗)Ψ
′
θL

′
P ∆1/2

L ML(π,p∗)
∆1/2

L LP ]ΨP (P̃j−1 − P̂NPL)

+ Op(n−1/2||P̃j−1 − P̂NPL||) +Op(||P̃j−1 − P̂NPL||2).

where D(π,p∗) = (Ψ′
θL

′
P ∆1/2

L ML(π,p∗)
∆1/2

L LPΨθ)−1; ML(π,p∗)
= I−∆1/2

L L(π,p∗)(L′(π,p∗)∆LL(π,p∗))−1L(π,p∗)∆
1/2
L .

The proof is similar to that of Lemma 2 and omitted.

6.2 Time-dependent unobserved heterogeneity and the EM algorithm

We now extend our analysis to models with time-varying unobserved states using the approach
developed by Arcidiacono and Miller (2008). The setup is similar to that of the previous section
except that unobserved states transition over time.

Suppose that there are observed state variables, xit ∈ X = {1, ..., |X|}, and unobserved
state variables, sit ∈ S = {1, ...,M}. We assume that unobserved state variable sit follows an
exogenous first-order Markov process where π(j, k) is the transition probability from state j to
k. Let Π denote the M ×M matrix representing the transition probabilities for the unobserved
states. To simplify our analysis, we assume that the transition probabilities of x, denoted by
fx(xi,t+1|ait, xit), is independent of unobserved states and known to econometricians. Let ζ =
(θ′, vec(Π)′)′ ∈ Θζ be the parameter vector to be estimated and ζ0 denote the true parameter.

We observe a panel data set {wi}n
i=1 where wi = {ait, xit, xi,t+1}T

t=1 is randomly drawn
across i’s. The conditional probability distribution of ait given xit and sit is given by a
fixed point of Pθ = Ψ(Pθ, θ). The initial joint distribution of (xi1, si1) is assumed to be ran-
domly drawn from the stationary distribution satisfying the following equation: p∗(x, s) =∑|X|

x′=1

∑S
s′=1 p

∗(x′, s′)
(∑A

a′=1 Pθ(a′|x′, s′)fx(x|a′, x′)πs′,s

)
. As in the previous section, we as-

sume that the fixed point of this functional equation is available; denote the stationary distri-
bution of (x, s) under Pθ and Π by p∗Pθ,Π. As stated in Remark 9, the stationarity assumption
can be relaxed.

Given the conditional choice probabilities P and the transition matrix for the unobserved
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states Π, the likelihood contribution from the i-th observation is given by:

[L(P,Π)](wi) ≡
S∑

s1=1

S∑
s2=1

...
S∑

sT =1

p∗P,Π(xi1, s1)
T∏

t=2

π(st−1, st)P (ait|xit, st)fx(xi,t+1|ait, xit).

The NPL algorithm for models with time-dependent unobserved heterogeneity is described as
follows. Let P̃0 be an initial guess for the conditional choice probabilities. For j = 1, 2, ..., iterate

Step 1: Given P̃j−1, update ζ = (θ′, vec(Π)′)′ by ζ̃j = arg maxζ∈Θζ
n−1

∑n
i=1 ln

(
[L(Ψ(P̃j−1, θ),Π)](wi)

)
,

Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(P̃j−1, θ̃j),

until j = k. This algorithm achieves the same convergence rate as that of Lemma 2. In
particular, the dominant eigenvalue of ΨP determines the convergence rate. The proof of this
claim is essentially the same as that of Lemma 2 and omitted.

It is often very difficult to directly solving the optimization problem in Step 1. Following Ar-
cidiacono and Miller (2008), we may incorporate the EM algorithm into the NPL algorithm as fol-
lows. Let sT = (s1, s2, ..., sT )′ ∈ ST be a possible sequence of unobserved state variables. Given
P and Π, define [L∗(P )](wi, s

T ) =
∏T

t=2 P (ait|xit, st)fx(xi,t+1|ait, xit) and [πT (P,Π)](sT |xi1) =
p∗P,Π(xi1, s1)

∏T
t=2 π(st−1, st) so that [L(P,Π)](wi) =

∑
s′∈ST [πT (P,Π)](s′|xi1)[L∗(P )](wi, s

′).
Given an initial guess (P̃0, ζ̃0), for j = 1, 2, ..., iterate

Step 1: Let θ̄0 = θ̃j−1 and Π̄0 = Π̃j−1. Given P̃j−1, iterate the following E-step and M-step for
r = 1, 2, ...

(E-step) Given θ̄r−1 and Π̄r−1, compute

τr,i(sT ) =
[πT (Ψ(P̃j−1, θ̄r−1), Π̄r−1)](sT |xi1)[L∗(Ψ(P̃j−1, θ̄r−1))](wi, s

T )
[L(Ψ(P̃j−1, θ̄r−1), Π̄r−1)](wi)

for i = 1, ..., n.

(M-step) Maximize the expected pseudo-log-likelihood:

θ̄r = arg max
θ∈Θ

n−1
n∑

i=1

∑
sT∈ST

τr,i(sT ) ln
(
[L∗(Ψ(P̃j−1, θ))](wi, s

T )
)
.

and, given θ̄r, update Π by

Π̄r = arg max
Π∈ΘΠ

n−1
n∑

i=1

∑
sT∈ST

τr,i(sT ) ln
(
[πT (Ψ(P̃j−1, θ̄r),Π)](sT |xi1)

)

until r = R. Update θ by θ̃j = θ̄R.
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Step 2: Update P using the obtained estimate θ̃j by P̃j = Ψ(P̃j−1, θ̃j),

until j = k. By choosing R sufficiently large or, alternatively, iterating E-step and M-step in Step
1 until convergence, this NPL algorithm with the EM algorithm produces the same sequence of
estimators as the original NPL algorithm.

When the evaluation of the mapping Ψ is costly, it is computationally demanding to imple-
ment this EM algorithm. Arcidiacono and Miller (2008) show that, when the model exhibits,
what they call, finite time dependence, it is possible to define the fixed point mapping Ψ so that
its evaluation is not so costly. They illustrate that finite dependence covers a broad class of
models, including models with renewal as in Example 2. Applying the EM algorithm developed
above to models with finite dependence is often feasible.

Remark 10 Arcidiacono and Miller (2008) suggest updating the probabilities (i.e., Step 2) only
after one iteration of E-step and M-step by choosing R = 1 above. Such an iterative sequence
may not necessarily increase the likelihood at each iteration.

Remark 11 Replacing L∗(Ψ(P̃j−1, θ)) in both E-step and M-step by L∗(Λ̃q(θ, P̃j−1, θ̃j−1)) and
L∗(Φ(θ, P̃j−1, θ̃j−1)), respectively, we may apply the q-NPL algorithm and the approximate AFXP
algorithm in the context of the EM algorithm.

7 Monte Carlo experiments

We consider the model of Example 3. The profit function of firm i operating in market m in
period t is specified as Π̃i(amt, Smt, am,t−1, εimt; θ) = Πi(aimt, a−i,mt, Smt, am,t−1; θ) + εimt with

Πi(aimt = 1, a−i,mt, Smt, am,t−1; θ) + εimt(1) =

θRS lnSmt − θRN ln(1 +
∑
j 6=i

ajmt)− θFC,i − θEC(1− aim,t−1) + εimt(1)

while, if the firm is not operating in market m, its profit is Πi(aimt = 0, a−i,mt, Smt, am,t−1; θ) +
εimt(0) = εimt(0). We assume that {εimt} are i.i.d. extreme value type I with zero mean and unit
variance and Smt follows an exogenous first-order Markov process fS(Sm,t+1|Smt). The explicit
expression for the fixed mapping Ψ in this model is provided in the Appendix B.

We set the number of firms N = 3. The state space for the market size Smt is {2, 6, 10} and
its transition probability matrix is given by 0.8 0.2 0.0

0.2 0.6 0.2
0.0 0.2 0.8

 .
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The discount factor is set to β = 0.96. Fixed operating costs are θFC,1 = 1.0, θFC,2 = 0.9, and
θFC,3 = 0.8 while we set both θRS and θEC equal to 1.

The value of parameter θRN determines the degree of strategic substitutabilities among firms
and is the main determinant of the dominant eigenvalues of ΨP . We therefore vary the values
of θRN across experiments and examine the performance of different estimators across different
parameter values of θRN . In particular, we consider θRN = 1, 2, 4, and 6. All the eigenvalues of
ΨP are less than 1 in absolute value for θRN = 1 and 2 while the smallest eigenvalues are less
than -1 for θRN = 4 and 6. The second and the third column of Table 1 respectively show the
largest and the smallest eigenvalues of ∇P ′Ψ evaluated at the fixed point. We estimate θRS and
θRN while the other parameters are not estimated but fixed at the true values.

Given the equilibrium choice probabilities obtained as the fixed point of Ψ and the tran-
sition probabilities for market size S, we obtain the steady state distribution. To generate
an observation in market m, we first randomly draw xm = {Sm1, a1m0, a2m0, a3m0} from the
steady-state distribution and then, conditioning on the realized value of xm, the choice aim1

for i = 1, 2, 3 is randomly drawn from the equilibrium choice probabilities. Repeating the pro-
cedure for m = 1, 2, ...,M , we obtain a data set with a sample size M : {Sm1, aim0, aim1 : i =
1, 2, 3;m = 1, 2, ...,M}. In our experiment, we produce 500 simulated samples, each of which
contains M = 400 observations.

To generate the data for each experiment, we need to compute a fixed point of Ψ(P, θ). For
θRN = 1 and 2, the fixed point is obtained by iterating the mapping Ψ(P, θ) starting from an
initial vector of choice probabilities, P0, with all probabilities equal to 0.5. For θRN = 4 and
6, the smallest eigenvalues of ΨP evaluated at the fixed point are smaller than negative one at
-1.18 and -1.48, respectively, and hence the sequence {Pk} obtained by iterating the mapping
Ψ(P, θ) does not converge. To obtain a fixed point of Ψ(P, θ) for θRN = 4 and 6, we consider
an alternative mapping [Λ(P, θ)](a = 1|x) ≡ {[Ψ(P, θ)](a = 1|x)}α∗{P (a = 1|x)}1−α∗ with the
optimal value of α∗, which has better convergence property than Ψ.

We may estimate the absolute value of the dominant eigenvalue of Ψ or Λ by simulating
a sequence P j = Ψ(P j−1, θ) or P j = Λ(P j−1, θ) for j = 1, ..., J and computing the mean of
||P j+1 − P J ||/||P j − P J ||’s, where J is the number of iterations at convergence. The first and
the second panel of Table 2 shows that the convergence rate of P computed in this way is very
close to the dominant eigenvalue of Ψ or Λ across different value of θRN .

This procedure can be also used to estimate the optimal value α∗ when the eigenvalue of
ΨP is difficult to compute; we may pick up the value of α ∈ {0.01, 0.02, ..., 0.99, 1.00} that leads
to the smallest value of the mean of ||P j+1 − P J ||/||P j − P J ||’s. The seventh column of Table
1 reports such an estimate. Comparing the seventh column with the sixth column of Table 1,
an estimate of α∗ using this procedure approximates the true value of α∗ well. The last two
columns of Table 1 report the absolute value of the dominant eigenvalue of MΨθ

ΨP and MΛθ
ΛP .

They are similar to the corresponding eigenvalues of ΨP and ΛP reported in the second to fifth
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columns. Thus, in view of Lemma 1, the convergence rate of the NPL algorithm is primarily
determined by the dominant eigenvalue of ΨP or ΛP .

We now examine the convergence property of the NPL algorithm. For each sample, we
compute the convergence rate of P as the mean of ||P̃j+1 − P̃k||/||P̃j − P̃k||’s, where {P̃j}k

j=1

is a sequence of estimators generated by the NPL algorithm. The first row of the last panel
of Table 2 reports the median value of the convergence rates of P across 500 samples using
the NPL algorithm with Ψ. For θRN = 1 and 2, the median convergence rate of P in NPL
algorithm is close to the absolute value of the dominant eigenvalue of ΨP as Lemma 1 predicts.
On the other hand, for θRN = 4 or 6, when we compute the convergence rates using the first 50
iterations, they are more than one, suggesting that a sequence of estimators generated by the
NPL algorithm with Ψ is not converging.

The second row of the last panel of Table 2 reports the convergence rate when the mapping
Ψ is replaced with a transformed mapping Λ = Ψα∗P 1−α∗ . Using Λ in place of Ψ improves the
convergence property of the NPL algorithm; in particular, the convergence rates are now less
than one for θRN = 4 and 6, implying that the NPL algorithm with Λ is converging. The last
three rows of Table 2 show that using the q-NPL algorithm with Λ and q = 3, the NR-based
q-NPL algorithm with Λ and q = 3, or the q-AFXP algorithm with q = 3 instead of the q-NPL
algorithm with Λ further improves the convergence rates. These results are consistent with our
theoretical analysis.

Table 3 compares the bias and the mean squared errors (MSE) across different estimators.
The estimators generated by the NPL algorithm with Ψ converges to the same estimate as that
with Λ for θRN = 1 or 2. For θRN = 4 and 6, however, reflecting its non-convergence property,
the estimator generated by 50 iterations of the NPL algorithm with Ψ performs worse than
those with Λ; in particular, for θRN = 4 and 6, the square root of the integrated MSE for the
estimates of P̂ generated by the NPL algorithm with Ψ is more than twenty times larger than
those with Λ.

The third row of each panel of Table 3 shows the performance of the estimator generated by
the q-NPL algorithm with Λ and q = 3 while the fourth row of each panel of Table 3 reports
the q-AFXP algorithm. The NR-based q-NPL algorithm converged to the same limit as the
q-NPL algorithm in all simulations. The estimators generated by the q-NPL algorithm as well
as the q-AFXP algorithm perform better than the estimators generated by the NPL algorithm
especially for θRN = 2, 4, and 6, suggesting their efficiency gains over the NPL estimator.

The fifth to the ninth rows of each panel of Table 3 reports the bias and the MSE for
the following five different estimators: the 2-step PML estimators with Ψ and Λ, the 3-step
q-NPL estimator obtained by taking one iteration of the q-NPL algorithm with Λ starting from
the 2-step PML estimator with Ψ, the 3-step NR-q-NPL estimator that is similar to the 2-
step q-NPL estimator but updated with NR-step, and the 3-step q-AFXP estimator generated
by taking one additional iteration of the q-AFXP algorithm from the PML. Both the 2-step
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estimators with Ψ and those with Λ perform substantially worse than other 3-step estimators
especially for θRN = 2, 4, and 6. The results suggest that the popular two-step estimators can be
very imprecise when the initial choice probabilities estimate is imprecise and taking additional
iterations using either the q-NPL algorithm or the AFXP algorithm may dramatically improve
the efficiency property of the estimators.

8 Appendix A: Proofs

In the following, C denotes a generic positive and finite constant, and it may take different
values in different places.

8.1 Proof of Proposition 1

Assumption 1 (a), (b), and (d) with P̂0 →p P 0 imply that ψ(P̂0, θ) converges uniformly in
probability in θ to E(lnΨ(P 0, θ)) (c.f., Lemma 24.1 of Gourieroux and Monfort, 1989). Then,
the rest of the proof follows the proof of Theorem 2.1 of Newey and McFadden (1994). �

8.2 Proof of Propositions 2 and 3

See pp.49-52 of Aguirregabiria and Mira (2007). �

8.3 Proof of Lemma 1

Define ψθ(P, θ) ≡ n−1
∑n

i=1(∂/∂θ) ln Ψ(P, θ)(ai|xi), ψθP (P, θ) ≡ n−1
∑n

i=1(∂
2/∂θ∂P ′) ln Ψ(P, θ)(ai|xi),

and ψθθ(P, θ) ≡ n−1
∑n

i=1(∂
2/∂θ∂θ′) ln Ψ(P, θ)(ai|xi).

Recall that θ̃j satisfies the first order condition

ψθ(P̃j−1, θ̃j) = 0. (19)

Expanding this around (P̂NPL, θ̂NPL) and using ψθ(P̂NPL, θ̂NPL) = 0 gives

0 = ψθP (P̄ , θ̄)(P̃j−1 − P̂NPL) + ψθθ(P̄ , θ̄)(θ̃j − θ̂NPL),

where (P̄ , θ̄) lie between (P̃j−1, θ̃j) and (P̂NPL, θ̂NPL). Inverting ψθθ(P̄ , θ̄), we obtain

θ̃j − θ̃ = −ψθθ(P̄ , θ̄)
−1ψθP (P̄ , θ̄)(P̃j−1 − P̂NPL) = Op(||P̃j−1 − P̂NPL||), (20)

where the last equality follows from the last two assumptions of Assumption 2.10

For the second result, expand the second-step updating equation P̃j = Ψ(P̃j−1, θ̃j) twice
around (P̂NPL, θ̂NPL) and use Ψ(P̂NPL, θ̂NPL) = P̂NPL, root-n consistency of (P̂NPL, θ̂NPL),

10If we assume P̃j−1 is consistent, the second equality follows from consistency of P̂NPL and P̃j−1.
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and (20), then it follows that

P̃j−P̂NPL = ΨP (P̃j−1−P̂NPL)+Ψθ(θ̃j−θ̂NPL)+Op(n−1/2||P̃j−1−P̂NPL||)+Op(||P̃j−1−P̂NPL||2).
(21)

Rewriting (20) by using ψθP (P̂NPL, θ̂NPL) = −ΩθP + Op(||P̃j−1 − P̂NPL||) + Op(n−1/2) and
ψθθ(P̃NPL, θ̂NPL) = −Ωθθ +Op(||P̃j−1 − P̂NPL||) +Op(n−1/2), we obtain

θ̃j − θ̃ = −Ω−1
θθ ΩθP (P̃j−1 − P̂NPL) +Op(n−1/2||P̃j−1 − P̂NPL||) +Op(||P̃j−1 − P̂NPL||2).

Substituting this into (21) in conjunction with Ω−1
θθ ΩθP = (Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P ΨP gives

P̃j−P̂NPL =
[
I −Ψθ(Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P

]
ΨP (P̃j−1−P̂NPL)+Op(n−1/2||P̃j−1−P̂NPL||)+Op(||P̃j−1−P̂NPL||2),

giving the stated result. �

8.4 Proof of Proposition 4

For any eigenvalue λ of ΨP , the corresponding eigenvalues of ΛP is αλ+(1−α) = α(λ−1)+1. We
first show that, if λmax > 1 > λmin, then there is no value of α such that −1 < α(λmax−1)+1 < 1
and −1 < α(λmin − 1) + 1 < 1 simultaneously. Suppose λmax > 1. Then, to satisfy −1 <

α(λmax − 1) + 1 < 1, the value of α has to be −2
λmax−1 < α < 0 because α(λmax − 1) + 1 > −1

implies α > −2
λmax−1 and α(λmax−1)+1 < 1 implies α < 0. Similarly, if λmin < 1, then the value

of α has to be 0 < α < 2
1−λmin

to satisfy −1 < α(λmin − 1) + 1 < 1. Since there is no value of α
satisfying −2

λmax−1 < α < 0 and 0 < α < 2
1−λmin

simultaneously, the stated result follows.
Now, assume that 1 > λmax > λmin. We derive the value of α that minimizes the absolute

value of the dominant eigenvalue of ΛP .
Suppose that α(λmin − 1) + 1 < 0. Then, the absolute value of the dominant eigenvalue of

Λ is either α(λmax − 1) + 1 or −α(λmin − 1)− 1. If α(λmax − 1) + 1 > −α(λmin − 1)− 1, then it
is possible to reduce the value of the largest eigenvalue by increasing the value of α, and such a
choice of α is not optimal. Similarly, if α(λmax−1)+1 < −α(λmin−1)−1, then such a choice of α
is not optimal. Therefore, the optimal value of α satisfies α(λmax−1)+1 = −α(λmin−1)−1 and
α∗ = 2

2−λmax−λmin
. The largest and smallest eigenvalues of ΛP with α∗ is given by λmax−λmin

2−λmax−λmin

and − λmax−λmin
2−λmax−λmin

, both of which are between -1 and 1. If λmax + λmin > 0, then λmax is the
dominant eigenvalue of ΨP and λmax >

λmax−λmin
2−λmax−λmin

holds. If λmax + λmin < 0, then λmin < 0
is the dominant eigenvalue of ΨP and − λmax−λmin

2−λmax−λmin
> λmin holds. It follows that the absolute

value of the dominant eigenvalue of ΛP with α∗ is less than that of ΨP .
Suppose that α(λmin − 1) + 1 ≥ 0. Then, the value of α(λ − 1) + 1 ≥ 0 for any eigenvalue

λ of Ψ and α = 0 must be the optimal choice, but this is not optimal because the value of the
dominant eigenvalue of ΛP with α = 0 is equal to 1. �
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8.5 Proof of Proposition 5

We show, for j ≥ 1, (P̃j , θ̃j) →p (P 0, θ0) if (P̃j−1, θ̃j−1) →p (P 0, θ0). The stated result then
follows from induction and (P̃0, θ̃0) →p (P 0, θ0).

Assume (P̃j−1, θ̃j−1) →p (P 0, θ0). First, P̃j →p P
0 follows from Λq(P̃j−1, θ̃j−1) →p Λq(P 0, θ0) =

P 0.
We proceed to show θ̃j →p θ

0. Define Qq
n(θ, P ∗, θ∗) = n−1

∑n
i=1 ln Λ̃q(θ, P ∗, θ∗)(ai|xi) and

Qq(θ) = E ln Λ̃q(θ, P 0, θ0)(ai|xi). From Theorem 2.1 of Newey and McFadden (1994) and the
compactness of Θq

j , the consistency of θ̃j follows if we show

Qq
n(θ, P̃j , θ̃j−1)−Qq

n(θ, P 0, θ0) = op(1) uniformly in θ ∈ Θq
j , (22)

Qq
n(θ, P 0, θ0)−Qq(θ) = op(1) uniformly in θ ∈ Θq

j , (23)

Qq(θ) is continuous in θ and uniquely maximized at θ0. (24)

We show (22) first. It follows from the mean value theorem thatQq
n(θ, P̃j , θ̃j−1)−Qq

n(θ, P 0, θ0) =
Dq

P,n(θ, P̄ , θ̄)(P̃j − P 0) +Dq
θ,n(θ, P̄ , θ̄)(θ̃j−1 − θ0), where P̄ ∈ [P̃j , P

0], θ̄ ∈ [θ̃j−1, θ
0], and

Dq
P,n(θ, P̄ , θ̄) = n−1

n∑
i=1

∇P ∗′Λ̃q(θ, P̄ , θ̄)(ai|xi)
Λ̃q(θ, P̄ , θ̄)(ai|xi)

, Dq
θ,n(θ, P̄ , θ̄) = n−1

n∑
i=1

∇θ∗′Λ̃q(θ, P̄ , θ̄)(ai|xi)
Λ̃q(θ, P̄ , θ̄)(ai|xi)

.

Because (P̃j , θ̃j−1) →p (P 0, θ0) and Λ̃q(θ, P ∗, θ∗) is continuous in (P ∗, θ∗), the definition of Θq
j

implies that, for all (a, x) ∈ A×X,

Λ̃q(θ, P̃ , θ̃)(a|x) ∈ [ε/2, 1− ε/2] uniformly in P̃ ∈ [P̃j , θ
0], θ̃ ∈ [θ̃j−1, θ

0] and θ ∈ Θq
j . (25)

Consequently, ||Dq
P,n(θ, P̄ , θ̄)|| < C||n−1

∑n
i=1∇P ∗′Λ̃q(θ, P̄ , θ̄)(ai|xi)||. Then, (22) follows from

(P̃j , θ̃j−1) →p (P 0, θ0).
We proceed to show (23). Note that, since Λq(P 0, θ0) = P 0,

Qq
n(θ, P 0, θ0) = n−1

n∑
i=1

ln Λ̃q(θ, P 0, θ0)(ai|xi) = n−1
n∑

i=1

ln(∇θ′Λq(P 0, θ0)(θ − θ0) + P 0)(ai|xi).

Since Θq
j is compact and ln(∇θ′Λq(P 0, θ0)(θ − θ0) + P 0) is continuous in θ ∈ Θq

j , (23) follows
from Lemma 2.4 of Newey and McFadden (1994) if we show E supθ∈Θj

| ln(∇θ′Λq(P 0, θ0)(θ −
θ0) + P 0)(ai|xi)| <∞. Recall x/(1 + x) ≤ ln(x) ≤ x for all x > −1. Therefore, for all a, b such
that a+ b > −1,

| ln(a+ b)| = | ln(a/b+ 1)|| ln(b)| ≤ max{|a/b|, |a/(a+ b)|}| ln(b)|. (26)

Apply this inequality with a = ln(∇θ′Λq(P 0, θ0)(θ−θ0))(ai|xi) and b = P 0(ai|xi) in conjunction
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with min{a,x} P
0(a|x) > 0 and (25), then it follows that

| ln(∇θ′Λq(P 0, θ0)(θ − θ0) + P 0)(ai|xi)| ≤ C|∇θ′Λq(P 0, θ0)(θ − θ0)(ai|xi)|.

Consequently, E supθ∈Θj
| ln(∇θ′Λq(P 0, θ0)(θ−θ0)+P 0)(ai|xi)| ≤ CE supθ∈Θj

|∇θ′Λq(P 0, θ0)(θ−
θ0)(ai|xi)| ≤ CE||∇θ′Λq(P 0, θ0)(ai|xi)|| supθ∈Θq

j
||θ − θ0|| < ∞, and we complete the proof of

(23).
It remains to show (24). Qq(θ) is continuous in θ from Lemma 2.4 of Newey and McFadden

(1994) and the proof of (23). Note that

Qq(θ)−Qq(θ0) = E ln(∇θ′Λq(P 0, θ0)(θ − θ0) + P 0)(ai|xi)− E lnP 0(ai|xi)

= E ln
(
∇θ′Λq(P 0, θ0)(ai|xi)(θ − θ0)

P 0(ai|xi)
+ 1
)
.

We show

E ln
(
∇θ′Λq(P 0, θ0)(ai|xi)(θ − θ0)

P 0(ai|xi)
+ 1
)
< E

[
∇θ′Λq(P 0, θ0)(ai|xi)(θ − θ0)

P 0(ai|xi)

]
for all θ 6= θ0,

(27)
then Qq(θ)−Qq(θ0) < 0 for all θ 6= θ0 because E[∇θ′Λq(P 0, θ0)(ai|xi)/P 0(ai|xi)] = 0.

Recall ln(1 + x) ≤ x for all x > −1 where the inequality is strict if x 6= 0. Thus, (27) holds
if, for all θ 6= θ0, we have ∇θ′Λq(P 0, θ0)(ai|xi)(θ − θ0)/P 0(ai|xi) 6= 0 with positive probability.
Since P 0(ai|xi) is bounded away from both 0 and ∞, this is equivalent to: for all θ 6= θ0,
∇θ′Λq(P 0, θ0)(ai|xi)(θ − θ0) 6= 0 with positive probability. This is implied by Assumption 3.
Hence, (27) holds, and (24) is shown. Therefore, θ̃j →p θ

0. �

8.6 Proof of Proposition 6

To analyze θ̃j , let us introduce a simplified notation for the objective function in the jth iteration:

Qq(j)
n (θ) ≡ Qq

n(θ, P̃j , θ̃j−1) = n−1
n∑

i=1

ln Λ̃q(θ, P̃j , θ̃j−1)(ai|xi),

where Λ̃q(θ, P ∗, θ∗) = ∇θ′Λq(P ∗, θ∗)(θ − θ∗) + Λq(P ∗, θ∗).
The estimate θ̃j satisfies the first order condition: ∇θ′Q

q(j)
n (θ̃j) = 0. Applying a second-order

Taylor expansion to each element of ∇θ′Q
q(j)
n (θ̃j) around θ̃j−1, we obtain

0 = ∇θ′Q
q(j)
n (θ̃j) = ∇θ′Q

q(j)
n (θ̃j−1) + (θ̃j − θ̃j−1)′∇θθ′Q

q(j)
n (θ̃j−1)

+[(θ̃j − θ̃j−1)′B1(θ̃j − θ̃j−1), · · · , (θ̃j − θ̃j−1)′BK(θ̃j − θ̃j−1)], (28)

where Bk, k = 1, . . . ,K, is the second derivative of the kth element of ∇θ′Q
q(j)
n (θ) evaluated at
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θ̄ ∈ [θ̃j , θ̃j−1]. We find an alternate expression for the last term on the right. Note that

(θ̃j − θ̃j−1)′Bk(θ̃j − θ̃j−1)

= (θ̃j − θ̂qNPL + θ̂qNPL − θ̃j−1)′Bk(θ̃j − θ̂qNPL + θ̂qNPL − θ̃j−1)

= (θ̃j − θ̂qNPL)′Bk[(θ̃j − θ̂qNPL) + 2(θ̂qNPL − θ̃j−1)] + (θ̂qNPL − θ̃j−1)′Bk(θ̂qNPL − θ̃j−1)

= (θ̃j − θ̂qNPL)′Ck + (θ̂qNPL − θ̃j−1)′Bk(θ̂qNPL − θ̃j−1), (29)

where Ck is a K × K matrix. Ck is op(1) for all k. Substituting this to the last term on the
right of (28), we can rewrite the first order condition (28) as

0 = ∇θ′Q
q(j)
n (θ̃j−1)+(θ̃j−θ̃j−1)′∇θθ′Q

q(j)
n (θ̃j−1)+(θ̃j−θ̂qNPL)′op(1)+Op(||θ̃j−1−θ̂qNPL||2). (30)

For the first term on the right of (30), define a 1×K vector

Lq
n(P, θ) = n−1

n∑
i=1

∇θ′Λq(P, θ)(ai|xi)
Λq(P, θ)(ai|xi)

,

then we can write∇θ′Q
q(j)
n (θ̃j−1) = Lq

n(P̃j , θ̃j−1). Furthermore, the q-NPL estimator (P̂qNPL, θ̂qNPL)
satisfies

Lq
n(P̂qNPL, θ̂qNPL) = n−1

n∑
i=1

∇θ′Λq(P̂qNPL, θ̂qNPL)(ai|xi)

Λq(P̂qNPL, θ̂qNPL)(ai|xi)
= n−1

n∑
i=1

∇θ′ lnΛq(P̂qNPL, θ̂qNPL)(ai|xi) = 0.

Therefore, the first term on the right of (30) is approximated as

∇θ′Q
q(j)
n (θ̃j−1)− 0

= Lq
n(P̃j , θ̃j−1)− Lq

n(P̂qNPL, θ̂qNPL)

= (P̃j − P̂qNPL)′∇PL
q
n(θ̂qNPL, P̂qNPL) + (θ̃j−1 − θ̂qNPL)′∇θL

q
n(θ̂qNPL, P̂qNPL)

+Op(||θ̃j−1 − θ̂qNPL||2) +Op(||P̃j − P̂qNPL||2)

= (P̃j − P̂qNPL)′E∇Pθ′ lnΛq(P 0, θ0) + (θ̃j−1 − θ̂qNPL)′E∇θθ′ lnΛq(P 0, θ0) + rn,j , (31)

where rn,j denotes a generic reminder term of the form

rn,j = Op(||θ̃j−1−θ̂qNPL||2)+Op(n−1/2||θ̃j−1−θ̂qNPL||)+Op(||P̃j−P̂qNPL||2)+Op(n−1/2||P̃j−P̂qNPL||),

and the last equality follows from expanding ∇PLn(P̂qNPL, θ̂qNPL) and ∇θLn(P̂qNPL, θ̂qNPL)
around (P 0, θ0) and using the root-n consistency of (P̂qNPL, θ̂qNPL).

For the second term on the right of (30), define a 1×K vector gq
i = ∇θ′Λq(P̃j , θ̃j−1)(ai|xi),
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then

∇θθ′Q
q(j)
n (θ̃j−1) = −n−1

n∑
i=1

gq′
i g

q
i

(Λq(P̃j , θ̃j−1)(ai|xi))2
.

Therefore, in view of the root-n consistency of θ̂qNPL, we obtain

∇θθ′Q
q(j)
n (θ̃j−1) = −E[∇θ lnΛq(P 0, θ0)(ai|xi)∇θ′ lnΛq(P 0, θ0)(ai|xi)]

+Op(n−1/2) +Op(||θ̃j−1 − θ̂qNPL||) +Op(||P̃j − P̂qNPL||). (32)

Substituting (31) and (32) into (30) and using E[∇θ lnΛq(P 0, θ0)(ai|xi)∇θ′ lnΛq(P 0, θ0)(ai|xi)]
+ E[∇θθ′ lnΛq(P 0, θ0)(ai|xi)] = 0 gives

{E[∇θ lnΛq(P 0, θ0)(ai|xi)∇θ′ lnΛq(P 0, θ0)(ai|xi)] +Op(n−1/2)}(θ̃j − θ̂qNPL)

= E[∇θP ′Λq(P 0, θ0)(ai|xi)](P̃j − P̂qNPL) + rn,j . (33)

It follows that θ̃j − θ̂qNPL = Op(||P̃j − P̂qNPL||).
To obtain the updating formula of P̃j , expand Λq(P̃j−1, θ̃j−1) around (P̂qNPL, θ̂qNPL) and

use the root-n consistency of (P̂qNPL, θ̂qNPL) to get

P̃j = Λq(P̃j−1, θ̃j−1) = P̂qNPL + Λq
P (P̃j−1 − P̂qNPL) + Λq

θ(θ̃j−1 − θ̂qNPL) + rn,j , (34)

where Λq
P ≡ ∇P ′Λq(P 0, θ0) and Λq

θ ≡ ∇θ′Λq(P 0, θ0).
Using matrix notations of E[∇θ lnΛq(P 0, θ0)(ai|xi)∇θ′ lnΛq(P 0, θ0)(ai|xi)] = (Λq

θ)
′∆P Λq

θ

and E[∇θP ′Λq(P 0, θ0)(ai|xi)] = −(Λq
θ)
′∆P Λq

P , (33) is written as θ̃j − θ̂qNPL = −{(Λq
θ)
′∆P Λq

θ +
Op(n−1/2)}−1(Λq

θ)
′∆P Λq

P (P̃j − P̂qNPL) + rn,j . Substituting this expression for θ̃j−1− θ̂qNPL into
(34) gives the stated convergence rate of P̃j . �

8.7 Proof of Proposition 7

The proof is similar to the proof of Proposition 5 and omitted. �

8.8 Proof of Proposition 8

The proof is similar to the proof of Proposition 6 except that Λq(P, θ), ∇θ′Λq(P, θ), and
∇P ′Λq(P, θ) are replaced with Pθ, ∇θ′Pθ and ∇P ′Pθ = 0, respectively, and omitted. Note
that ∇P ′Pθ0 = 0 in this proposition corresponds to Λq

P = 0 in Proposition 6.

8.9 Proof of Proposition 9

The proof is similar to that of Proposition 5 and omitted. �
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8.10 Proof of Proposition 10

The updating formula of P̃j follows simply from expanding Λq(P̃j−1, θ̃j−1) around (P̂MLE , θ̂MLE):

P̃j = Λq(P̃j−1, θ̃j−1)

= P̂MLE +∇P ′Λq(P 0, θ0)(P̃j−1 − P̂MLE) +∇θ′Λq(P 0, θ0)(θ̃j−1 − θ̂MLE) +Op(||P̃j−1 − P̂MLE ||2)

+Op(||θ̃j−1 − θ̂MLE ||2) +Op(n−1/2||P̃j−1 − P̂MLE ||) +Op(n−1/2||θ̃j−1 − θ̂MLE ||),

where the order of Op(·) terms in the second equality follows from Assumption 7(b) and the
root-n consistency of (P̂MLE , θ̂MLE).

Define the objective function in the jth iteration by

Q(j)
n (θ) ≡ Qn(θ, P̃j , θ̃j−1) = n−1

n∑
i=1

lnΦ(θ, P̃j , θ̃j−1)(ai|xi),

where Φ(θ, P ∗, θ∗) = (I − ∇P ′Ψ(P ∗, θ∗))−1∇θ′Ψ(P ∗, θ∗)(θ − θ∗) + P ∗ as defined in (14). The
estimator θ̃j satisfies the first order condition: ∇θ′Q

(j)
n (θ̃j) = 0. Apply a second-order Taylor

expansion to each element of ∇θ′Q
(j)
n (θ̃j) around θ̃j−1, then we obtain

0 = ∇θ′Q
(j)
n (θ̃j) = ∇θ′Q

(j)
n (θ̃j−1) + (θ̃j − θ̃j−1)′∇θθ′Q

(j)
n (θ̃j−1)

+[(θ̃j − θ̃j−1)′B1(θ̃j − θ̃j−1), · · · , (θ̃j − θ̃j−1)′BK(θ̃j − θ̃j−1)], (35)

where Bk, k = 1, . . . ,K, is the second derivative of the kth element of ∇θ′Q
(j)
n (θ) evaluated at

θ̄ ∈ [θ̃j , θ̃j−1]. We find an alternate expression for the last term on the right. Note that

(θ̃j − θ̃j−1)′Bk(θ̃j − θ̃j−1)

= (θ̃j − θ̂MLE + θ̂MLE − θ̃j−1)′Bk(θ̃j − θ̂MLE + θ̂MLE − θ̃j−1)

= (θ̃j − θ̂MLE)′Bk[(θ̃j − θ̂MLE) + 2(θ̂MLE − θ̃j−1)] + (θ̂MLE − θ̃j−1)′Bk(θ̂MLE − θ̃j−1)

= (θ̃j − θ̂MLE)′Ck + (θ̂MLE − θ̃j−1)′Bk(θ̂MLE − θ̃j−1), (36)

where Ck is a K ×K matrix. Ck is op(1) for all k because θ̃j , θ̃j−1, and θ̂, are consistent and
Assumption 7(c) implies Bk = Op(1) for all k. Substituting this to the last term on the right of
(35), we can rewrite the first order condition (35) as

0 = ∇θ′Q
(j)
n (θ̃j−1)+(θ̃j− θ̃j−1)′∇θθ′Q

(j)
n (θ̃j−1)+(θ̃j− θ̂MLE)′op(1)+Op(||θ̃j−1− θ̂MLE ||2). (37)

For the first term on the right of (37), define a 1×K vector

Ln(P, θ) = n−1
n∑

i=1

[(I −∇P ′Ψ(P, θ))−1∇θ′Ψ(P, θ)](ai|xi)
P (ai|xi)

,
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then we can write ∇θ′Q
(j)
n (θ̃j−1) = Ln(P̃j , θ̃j−1). Furthermore, the MLE (P̂MLE , θ̂MLE) satisfies

Ln(P̂MLE , θ̂MLE) = n−1
n∑

i=1

[(I −∇P ′Ψ(P̂MLE , θ̂MLE))−1∇θ′Ψ(P̂MLE , θ̂MLE)](ai|xi)
P̂MLE(ai|xi)

= n−1
n∑

i=1

∇θ′ lnPθ̂(ai|xi) = 0.

Therefore, the first term on the right of (37) is approximated as

∇θ′Q
(j)
n (θ̃j−1)− 0 = Ln(P̃j , θ̃j−1)− Ln(P̂MLE , θ̂MLE)

= (P̃j − P̂MLE)′∇PLn(θ̂MLE , P̂MLE) + (θ̃j−1 − θ̂MLE)′∇θLn(θ̂MLE , P̂MLE)

+Op(||θ̃j−1 − θ̂MLE ||2) +Op(||P̃j − P̂MLE ||2). (38)

where the order of the Op(·) term follows from Assumption 7(c).
We proceed to obtain approximations of ∇PLn(P̂MLE , θ̂MLE) and ∇θLn(P̂MLE , θ̂MLE) in

(38). First, ∇PLn(P̂MLE , θ̂MLE) = J ′+Op(n−1/2) from expanding it around (P 0, θ0) and using
the root-M consistency of (P̂MLE , θ̂MLE). For ∇θ′Ln(P̂MLE , θ̂MLE), note that

∇θ[∇θ′ lnPθ(a|x)] = ∇θ

{
[(I −∇P ′Ψ(P, θ))−1∇θ′Ψ(P, θ)](a|x)

P (a|x)

}
+∇θ(Pθ)′∇P

{
[(I −∇P ′Ψ(P, θ))−1∇θ′Ψ(P, θ)](a|x)

P (a|x)

}
.

Consequently, in light of P̂MLE = Pθ̂MLE
, we have∇θLn(P̂MLE , θ̂MLE) = n−1

∑n
i=1∇θθ′ lnPθ̂MLE

(ai|xi)−
∇θ(Pθ̂MLE

)′∇PLn(Pθ̂MLE
, θ̂MLE) = E∇θθ′ lnPθ0(ai|xi) − ∇θ(Pθ0)′J ′ + Op(n−1/2). Substituting

these into the right hand side of (38) gives

∇θ′Q
(j)
n (θ̃j−1) = (P̃j − P̂MLE)′J ′ + (θ̃j−1− θ̂MLE)′(E∇θθ′ lnPθ0(ai|xi)−∇θ(Pθ0)′J ′) + rn, (39)

where rn = Op(||θ̃j−1−θ̂MLE ||2)+Op(||P̃j−P̂MLE ||2)+Op(n−1/2||θ̃j−1−θ̂MLE ||)+Op(n−1/2||P̃j−
P̂MLE ||).

For the second term on the right of (37), define a 1×K vector gi = [(I −∇P ′Ψ(P̃j , θ̃j−1))−1

∇θ′Ψ(P̃j , θ̃j−1)](ai|xi), then ∇θθ′Q
(j)
n (θ̃j−1) = −n−1

∑n
i=1

g′igi

(P̃j(ai|xi))2
. Therefore, in view of As-

sumption 7(c), P̂MLE = Pθ̂MLE
, and the root-n consistency of θ̂MLE , we obtain

∇θθ′Q
(j)
n (θ̃j−1) = −E[∇θ lnPθ0(ai|xi)∇θ′ lnPθ0(ai|xi)]

+Op(n−1/2) +Op(||θ̃j−1 − θ̂MLE ||) +Op(||P̃j − P̂MLE ||). (40)

Substituting (39) and (40) into (37) and using E[∇θ lnPθ0(ai|xi)∇θ′ lnPθ0(ai|xi)]
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+ E[∇θθ′ lnPθ0(ai|xi)] = 0 gives

{E[∇θ lnPθ0(ai|xi)∇θ′ lnPθ0(ai|xi)] + op(1)}(θ̃j − θ̂MLE)

= −J∇θ′Pθ0(θ̃j−1 − θ̂MLE) + J(P̃j − P̂MLE) +Op(||θ̃j−1 − θ̂MLE ||2) +Op(||P̃j − P̂MLE ||2)

+Op(n−1/2||θ̃j−1 − θ̂MLE ||) +Op(n−1/2||P̃j − P̂MLE ||),

giving the stated result. �

8.11 Proof of Proposition 11

The marginal conditions are given by

Ḡθ(Ψ(P̃ , θ̃))′Ŵ ḡ(Ψ(P̃ , θ̃)) = 0,

P̃ −Ψ(P̃ , θ̃) = 0.

Expanding ḡ(Ψ(P̃ , θ̃)) around (P 0, θ0) and using ||f̂x − fx|| = Op(n−1/2) give

G′θWḡ(Ψ(P 0, θ0)) +G′θWGθ(θ̃ − θ0) +G′θWGP (P̃ − P 0) = op(n−1/2),

(I −ΨP )(P̃ − P 0)−Ψθ(θ̃ − θ0) = op(n−1/2).

Eliminating (P̃ − P 0) from these equations and using G′θWGθ + G′θWGP (I − ΨP )−1Ψθ =
G′θWG∞θ , where G∞θ = (∂/∂θ′)ḡ(Pθ0) = −Γ∆x(I −ΨP )−1Ψθ, we have

√
n(θ̃ − θ0) →d N(0, (G′θWG∞θ )−1G′θWΩW ′Gθ((G∞θ )′W ′Gθ)−1),

where Ω = E[g(ai, xi;P 0)g(ai, xi;P 0)′]. �

8.12 Proof of Proposition 12

Recall that θ̃j satisfies the first order condition

Ḡθ(Ψ(P̃j−1, θ̃j))Ŵ ḡ(Ψ(P̃j−1, θ̃j)) = 0. (41)

Expanding ḡ(Ψ(P̃j−1, θ̃j)) around (P̃ , θ̃) in (41) and using Ḡ′θ(Ψ(P̃ , θ̃))Ŵ ḡ(Ψ(P̃ , θ̃)) = 0 gives

θ̃j − θ̃ = [Ḡ′θ(Ψ(P̃j−1, θ̃j))Ŵ Ḡθ(Ψ(P̄ , θ̄)) + op(1)]−1[Ḡ′θ(Ψ(P̃j−1, θ̃j))Ŵ ḠP (Ψ(P̄ , θ̄)) + op(1)](P̃j−1 − P̃ )

= Op(||P̃j−1 − P̃ ||), (42)

with (P̄ , θ̄) between (P̃j−1, θ̃j) and (P̃ , θ̃).
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For the second result, first, using (42), we obtain the same approximation as (21):

P̃j − P̃ = ΨP (P̃j−1 − P̃ ) + Ψθ(θ̃j − θ̃) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2) (43)

Expanding ḡ(Ψ(P̃j−1, θ̃j)) in (41) twice around (P̃ , θ̃) and using Ḡ′θ(Ψ(P̃j−1, θ̃j))Ŵ ḡ(Ψ(P̃ , θ̃)) =
Op(n−1/2||θ̃j − θ̃||) +Op(n−1/2||P̃j−1 − P̃ ||),

ḠP (Ψ(P̃ , θ̃)) = GP +Op(n−1/2), Ḡθ(Ψ(P̃ , θ̃)) = Gθ +Op(n−1/2) (44)

and (42) gives

0 = Ḡ′θ(Ψ(P̃j−1, θ̃j))ŴGP (P̃j−1 − P̃ ) + Ḡ′θ(Ψ(P̃j−1, θ̃j))ŴGθ(θ̃j − θ̃)

+Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2). (45)

Expanding Ψ(P̃j−1, θ̃j) around (P̃ , θ̃) and using (42) and (44) in (45), we have

θ̃j − θ̃ = −(G′θŴGθ)−1G′θŴGP (P̃j−1 − P̃ ) +Op(n−1/2||P̃j−1 − P̃ ||) +Op(||P̃j−1 − P̃ ||2),

Substituting this into (43) and noting that Gθ = −Γ∆xΨθ and GP = −Γ∆xΨP , we obtain

P̃j−P̃ = [I+Ψθ(G′θŴGθ)−1G′θŴΓ∆x]ΨP (P̃j−1−P̃ )+Op(n−1/2||P̃j−1−P̃ ||)+Op(||P̃j−1−P̃ ||2),

and the second result follows. �

8.13 Proof of Lemma 2

The proof follows the proof of Lemma 1. Expanding the first order condition l̄ζ(P̃j−1, ζ̃j) =
l̄ζ(P̂NPL, ζ̂NPL) = 0 gives

ζ̃j − ζ̂NPL = −lζζ(P̄, ζ̄)−1lζP (P̄, ζ̄)(P̃j−1 − P̂NPL) = Op(||P̃j−1 − P̂NPL||). (46)

where (P̄, ζ̄) is between (P̃j−1, ζ̃j) and (P̂NPL, ζ̂NPL). This gives the bound for ζ̃j − ζ̂NPL.
Rewriting this further using the first three assumptions of Assumption 11 gives

ζ̃j−ζ̂NPL = −Ω−1
ζζ ΩζP (P̃j−1−P̂NPL)+Op(n−1/2||P̃j−1−P̂NPL||)+Op(||P̃j−1−P̂NPL||2). (47)

On the other hand, expanding the second step equation P̃j = Ψ(P̃j−1, ζ̃j) twice around (P̂NPL, ζ̂NPL),
using root-n consistency of (P̂NPL, ζ̂NPL) and (46) give

P̃j−P̂NPL = ΨP (P̃j−1−P̂NPL)+Ψζ(ζ̃j−ζ̂NPL)+Op(n−1/2||P̃j−1−P̂NPL||)+Op(||P̃j−1−P̂NPL||2),
(48)
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where Ψζ ≡ (∂/∂ζ ′)Ψ(P0, θ0) = [Ψθ,0]. Substituting (47) into (48) gives

P̃j − P̂NPL = [ΨP −ΨζΩ−1
ζζ ΩζP ](P̃j−1 − P̂NPL) +Op(n−1/2||P̃j−1 − P̂NPL||) +Op(||P̃j−1 − P̂NPL||2).

Note that

Ω−1
ζζ =

[
D −DΩθπΩ−1

ππ

−Ω−1
ππΩπθD Ω−1

ππ + Ω−1
ππΩπθDΩθπΩ−1

ππ

]
,

where D = (Ψ′
θL

′
P ∆1/2

L MLπ∆1/2
L LPΨθ)−1 with MLπ = I −∆1/2

L Lπ(L′π∆LLπ)−1Lπ∆1/2
L . Then,

using Ψζ = [Ψθ,0] gives ΨζΩ−1
ζζ ΩζP = ΨθDΨ′

θL
′
P ∆1/2

L MLπ∆1/2
L LPΨP , and the stated result

follows. �

9 Appendix B: Additional Results

9.1 Relative efficiency of NPL, q-NPL, and MLE

The variance of the NPL estimator is given by

VNPL = [Ωθθ + ΩθP (I −ΨP )−1Ψθ]−1Ωθθ[Ωθθ + Ψθ(I −Ψ′
P )−1Ω′θP ]−1

= Ψ′
θ(I −ΨP )−1∆P Ψθ(Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P (I −Ψ′

P )−1Ψθ

while the variance of the MLE is

VMLE =
(
E

[
Ψ′

θ(I −ΨP )−1(a|x)
Pθ(a|x)

(I −Ψ′
P )−1Ψθ(a|x)
Pθ(a|x)

])−1

=
(
Ψ′

θ(I −ΨP )−1∆P (I −Ψ′
P )−1Ψθ

)−1
.

Define A = ∆1/2
P Ψθ and D = ∆1/2

P (I − ΨP )−1Ψθ. Then V −1
NPL = D′A(A′A)−1A′D, V −1

MLE =
D′D = D′D(D′D)−1D′D, and V −1

MLE − V −1
NPL = D′[I − A(A′A)−1A′]D = UU ′, where U =

D′[I −A(A′A)−1A′]. Therefore, V −1
MLE − V −1

NPL is positive semi-definite.
Next, consider the variance of q-NPL estimator, denoted by VqNPL. First, evaluating the

derivatives at P = Pθ, we have Ψq
θ ≡ ∇θ′Ψq(Pθ, θ) = (I − ΨP )−1(I − Ψq

P )Ψθ and Ψq
P ≡

∇P ′Ψq(Pθ, θ) = (ΨP )q. Taking a derivative of Pθ = Ψq(Pθ, θ) = Ψ(Pθ, θ) with respect to θ gives
(Ψq

θ)
′(I −Ψq

P )−1 = Ψ′
θ(I −ΨP )−1. Using this and defining Aq ≡ ∆1/2

P Ψq
θ = ∆1/2

P (I −ΨP )−1(I −
Ψq

P )Ψθ, we have V −1
qNPL = D′Aq(A′qAq)−1A′qD. It follows that V −1

MLE − V −1
qNPL = UqU

′
q with

Uq = D′[I −Aq(A′qAq)−1A′q].
Note that D−Aq = ∆1/2

P (I −ΨP )−1Ψq
P Ψθ = O(|λ∗|q), where λ∗ is the dominant eigenvalue

of ΨP . If all the eigenvalues of ΨP are less than one in absolute value, then Aq → D as q →∞
so that VqNPL → VMLE as q → ∞. Expanding D′Aq(A′qAq)−1A′qD around Aq = D gives
V −1

qNPL − V −1
MLE = O(||Aq −D||2) = O(|λ∗|2q).
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9.2 The first order condition of (9) with Ψ and Λ

Without loss of generality, letA = {1, 2, ..., J}. Then, using that [Ψ(P, θ)](J |x) = 1−
∑J−1

j=1 [Ψ(P, θ)](j|x),
the first order condition of the maximization problem in (9) is given by

n−1
n∑

i=1

J−1∑
j=1

1(ai = j)[∇θ′Ψ(P, θ)](j|xi)
[Ψ(P, θ)](j|xi)

−
1(ai = J)

∑J−1
s=1 [∇θ′Ψ(P, θ)](s|xi)

1−
∑J−1

s=1 [Ψ(P, θ)](s|x)

 = 0.

When the mapping Ψ is replaced with Λ(P, θ) = {Ψ(P, θ)}αP 1−α, the corresponding first or-
der condition becomes n−1

∑n
i=1

(∑J−1
j=1

1(ai=j)[∇θ′Λ(P,θ)](j|xi)
[Λ(P,θ)](j|xi)

− 1(ai=J)
PJ−1

s=1 [∇θ′Λ(P,θ)](s|xi)

1−
PJ−1

s=1 [Λ(P,θ)](s|x)

)
= 0,

where ∇θ′Λ(P, θ) = α{Ψ(P, θ)}α−1P 1−α∇θ′Ψ(P, θ). Evaluated at the fixed point P̂NPL =
Ψ(P̂NPL, θ̂NPL) = Λ(P̂NPL, θ̂NPL), we have ∇θ′Λ(P̂NPL, θ̂NPL) = α∇θ′Ψ(P̂NPL, θ̂NPL) and
these two first order conditions becomes identical.

9.3 Fixed point mapping Ψ for Monte Carlo Experiments

Denote equilibrium best response probabilities by P ∗ = {P ∗i (ai|x), i = 1, ..., N} and firm’s value
functions associated with this equilibrium by V P ∗

1 , ..., V P ∗
N . Then,

V P ∗
i (xt) =

∑
ait∈A

P ∗i (ait|xt)[πP ∗
i (ait, xt; θ) + eP

∗
i (ait, xt)] + β

∑
xt+1∈X

V P ∗
i (xt+1)fP ∗

(xt+1|xt)

where eP
∗

i (ait, xt) = Euler’s constant−ln(P ∗i (ait, xt)), πP ∗
i (ait, xt; θ) =

∑
a−i∈AN−1

(∏
j 6=i P

∗
j (aj |xt)

)
Π(ait, a−i, xt; θ), and fP ∗

(xt+1|xt) =
(∏N

j=1 P
∗
j (ajt|xt)

)
fS(St+1|St).

We now derive the fixed point mapping Ψ for this model. In terms of matrix notation,
denote FS = {fS(S′|S)}, Pi = {Pi(a|x)}, P−i = {

∏
j 6=i Pj(aj |x)}, P = {

∏N
i=1 Pi(ai|x)}, and

ιk = (1, ..., 1)′ be a k × 1 vector. Both ePi = γ − ln(Pi) and πP
i (θ) are |AN ||S| × |A| matrices,

where the (i, j)-th element represents the value of eP
∗

i (ai, x) and πP ∗
i (ai, x; θ) corresponding to

a pair of the i-th state variable x and the j-th choice a.
Using these notations, we may write

∑
ait∈A P

∗
i (ait|xt)[πP ∗

i (ait, xt; θ)+eP
∗

i (ait, xt)] as [πP
i (θ)+

ePi ]P ′i while FP = (ι|AN |ι
′
|AN |⊗FS)∗(P⊗ι′|S|) represents the transition matrix for xt = (at−1, St),

where ∗ represents an element-by-element multiplication. The vector of values V P
i can be com-

puted as V P
i = (I − βFP )−1[πP

i (θ) + ePi ]P ′i ≡ Γi(P, θ).
Then, for i = 1, 2, ..., N , a fixed point mapping is given by

[Ψi(P, θ)](ai = j|x) =
exp(πP ∗

i (j, x; θ) + β
∑

x′∈X [Γi(P, θ)](x′)fP ∗
i (x′|x, j))∑

a∈A exp(πP ∗
i (a, x; θ) + β

∑
x′∈X [Γi(P, θ)](x′)fP ∗

i (x′|x, a))
,

where fP ∗
i (xt+1|xt, ait) =

(∏
j 6=i P

∗
j (ajt|xt)

)
fS(St+1|St).
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Table 1: The Largest and Smallest Eigenvalues of ΨP and ΛP

Eig(ΨP ) Eig(ΛP )
θRN λmax λmin λmax λmin α∗ α̂∗ Eig(MΨθ

ΨP ) Eig(MΛθ
ΛP )

1 0.2104 -0.3365 0.2572 -0.2572 0.9407 0.92 0.2922 0.2555
2 0.4275 -0.6925 0.4945 -0.4945 0.8830 0.83 0.5996 0.4937
4 0.7596 -1.1839 0.8017 -0.8017 0.8250 0.80 1.1788 0.8056
6 0.8914 -1.4788 0.9161 -0.9161 0.7730 0.71 1.4775 0.9150

A pair (λmax, λmin) represents the largest and the smallest eigenvalues of ΨP or ΛP , while ΛP is defined under the

optimal value of α reported in the six column. The last two columns report the largest eigenvalue in absolute value of

MΨθ
= I −Ψθ(Ψ′

θ∆P Ψθ)−1Ψ′
θ∆P and MΛθ

= I − Λθ(Λ′
θ∆P Λθ)−1Λ′

θ∆P .

Table 2: Convergence Rates

θRN = 1 θRN = 2 θRN = 4 θRN = 6
# of iterations with Ψ at convergence 11 31 diverge diverge
The largest eigenvalue of ΨP in absolute value 0.3365 0.6925 1.1839 1.4789
The median convergence rate of P with Ψ 0.3244 0.7039 — —
# of iterations with Λ at convergence 9 17 49 103
The largest eigenvalue of ΛP in absolute value 0.2572 0.4945 0.8017 0.9161
The median convergence rate of P with Λ 0.2124 0.4922 0.7882 0.9112

The median convergence rate of P in NPL with Ψ 0.3014 0.6309 6.6153 15.639
The median convergence rate of P in NPL with Λ 0.2660 0.4564 0.7691 0.8538
The median convergence rate of P in q-NPL with Λ 0.2595 0.4649 0.6162 0.7176
The median convergence rate of P in q-NPL-NR with Λ 0.2463 0.4604 0.6325 0.7156
The median convergence rate of P in q-AFXP 0.2569 0.4858 0.6247 0.6994

The result is based on 500 simulated samples. We set q = 3 for the approximate q-NPL and q-AFXP algorithms. For each

sample, the convergence rate of P is NPL is computed as the average of ||P̂ j+1
MLE − P J ||/||P̂ j

MLE − P J || across j = 1, ..., J

where J is the number of iterations at convergence. For θRN = 4 and 6, the sequence {P̂ j
MLE} does not converge and the

median “convergence rate” of P in NPL with Ψ is computed with J = 50.
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Table 3: Bias and MSE

θRN = 1 θRN = 2 θRN = 4 θRN = 6

Parameter Estimator Bias
√

MSE Bias
√

MSE Bias
√

MSE Bias
√

MSE
NPL with Ψ 0.0010 0.2251 -0.0096 0.1445 -0.0170 0.0780 0.0036 0.0726
NPL with Λ 0.0010 0.2251 -0.0096 0.1445 0.0003 0.0664 0.0005 0.0757
q-NPL with Λ -0.0005 0.2229 -0.0100 0.1351 0.0001 0.0635 0.0017 0.0710

θ̂RS q-AFXP 0.0006 0.2240 -0.0202 0.1271 0.0013 0.0612 0.0030 0.0704
2S-PML with Ψ -0.1450 0.2509 -0.2555 0.3035 -0.1413 0.1687 -0.0703 0.1105
2S-PML with Λ -0.1447 0.2485 -0.2707 0.3166 -0.1164 0.1503 -0.0233 0.0918
3S-q-NPL with Λ -0.0400 0.2619 -0.0251 0.1967 -0.0601 0.1077 -0.0282 0.0927
3S-NR-q-NPL with Λ -0.0190 0.2294 0.0102 0.1788 0.0726 0.1265 -0.0125 0.0772
3S-q-AFXP -0.0197 0.2266 -0.0010 0.1676 -0.0172 0.0731 -0.0326 0.0847

NPL with Ψ 0.0125 0.5987 -0.0217 0.5066 -0.1756 0.3047 -0.2006 0.3812
NPL with Λ 0.0125 0.5987 -0.0217 0.5066 0.0069 0.1570 0.0384 0.3517
q-NPL with Λ 0.0082 0.5931 -0.0223 0.4744 0.0072 0.1479 0.0276 0.3236

θ̂RN q-AFXP 0.0142 0.6058 -0.0093 0.4981 0.0075 0.1454 0.0204 0.3077
2S-PML with Ψ -0.3636 0.6468 -0.9117 1.0829 -0.8540 0.9931 -0.6921 0.9527
2S-PML with Λ -0.3807 0.6511 -1.0070 1.1660 -0.9201 1.0630 -0.9207 1.1543
3S-q-NPL with Λ -0.0829 0.6926 -0.1027 0.7128 -0.4611 0.6706 -0.5712 0.8806
3S-NR-q-NPL with Λ -0.0459 0.6078 0.0173 0.6334 0.3344 0.4758 0.1613 0.4328
3S-q-AFXP -0.0472 0.6014 -0.0181 0.5982 -0.1575 0.2482 -0.2507 0.5071

NPL with Ψ 0.0000 0.0024 0.0000 0.0018 -0.0076 0.0370 -0.0115 0.0654
NPL with Λ 0.0000 0.0024 0.0000 0.0018 -0.0002 0.0013 0.0002 0.0025
q-NPL with Λ 0.0000 0.0024 -0.0005 0.0019 -0.0002 0.0011 0.0005 0.0030

P̂ q-AFXP -0.0007 0.0027 -0.0071 0.0088 0.0000 0.0010 0.0007 0.0028
2S-PML with Ψ -0.0007 0.0233 -0.0005 0.0278 -0.0022 0.0638 -0.0044 0.1087
2S-PML with Λ 0.0011 0.0092 0.0029 0.0174 -0.0144 0.0424 -0.0088 0.0826
3S-q-NPL with Λ -0.0022 0.0056 -0.0006 0.0027 -0.0010 0.0350 -0.0001 0.0485
3S-NR-q-NPL with Λ 0.0003 0.0029 -0.0003 0.0010 -0.0012 0.0151 -0.0048 0.0314
3S-q-AFXP 0.0003 0.0030 -0.0003 0.0009 0.0014 0.0357 0.0002 0.0340

The result is based on 500 simulated samples. The number of observations for each sample is 400.
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