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Abstract

This paper examines possibility of partial ex post implementation under general utility
functions which is not necessarily differentiable or quasi-linear with respect to money. We
deal with an interdependent-value model in which there are two agents, two alternatives
and each agent receives more than two dimensional private signal. The main result of this
paper is that under generic utility functions, a public decision rule must be almost constant
if it can be ex post incentive compatible with some transfer rule.

Keywords: robust mechanism design, ex post equilibrium, interdependent values, multi-
dimensional signals.

1 Introduction

Harsanyi doctrine, which was introduced by Harsanyi (1967-68), is now a standardized
assumption in modeling situations with asymmetric information. It asserts that the prior
distribution over the state of nature is shared by all players and common knowledge. Although
Harsanyi doctrine and its central concepts, Bayesian game and Bayesian equilibrium, have been
contributing to deepen our understanding of asymmetric information situations, they have few
convincing foundations1. There are plenty of situations to which Mertens and Zamir (1985)’s
universal type space models are well suited rather than näıve Bayesian games with Bayesian
equilibria.

In considering mechanism design, using Bayesian equilibrium as a solution concept, is
inappropriate for situations in the realm of a universal type space model. If Harsanyi doctrine
is satisfied among agents and the mechanism designer know this fact and the prior distribution,
then mechanisms based on Bayesian incentive compatibility can generate desired outcomes.

∗The author thanks Akihiko Matsui, Michihiro Kandori, Fuhito Kojima, Susumu Cato, Yuichiro Kamada,
Takuya Ura, Taisuke Imai, Takeshi Murooka and seminar participants at the University of Tokyo for helpful
discussions and comments. Especially the author thanks Hitoshi Matsushima for his various helpful, insight-
ful remarks. The author acknowledges financial support from the Japan Society for the Promotion of Sci-
ence. Address: Graduate School of Economics, University of Tokyo, 7-3-1, Bunkyo-ku, Tokyo 113-0033 Japan.
ee66003@mail.ecc.u-tokyo.ac.jp

1See, for example, Morris (1995) and Gul (1998).
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However, it is possible that a slight deviation from Harsanyi doctrine may cause a hazardous
outcome.

On the other hand, ex post equilibrium2 does not suffer from the above problem. it is
a belief-free concept in which each agent have no incentive to deviate from the equilibrium
strategy whichever beliefs agents may form. As formally argued in Bergemann and Morris
(2005), ex post incentive compatibility is a natural concept of mechanism design in situations
where Harsanyi doctrine is not guaranteed.

Unfortunately, a negative result about ex post equilibrium was found. Jehiel, Meyer-
ter-Vehn, Moldovanu and Zame (2006, hereafter JMMZ) considered a model with multi-
dimensional signals and interdependent values, and proved that under generic utility functions,
an ex post incentive compatible mechanism must generate almost constant social outcomes.
Their argument depends on the assumption that utility functions are quasilinear and differen-
tiable.

This paper studies partial ex post implementation in the case that utility functions are
not necessarily quasilinear nor differentiable. We considers a model with two agents and
two alternatives. Each agent receives a multi-dimensional signal, and has a utility function
depending on the other player’s information. The mechanism designer can use monetary
transfer, and as already mentioned agents may exhibit nonlinear preference with respect to
money.

The main result of this paper is that even in the space of such general utility functions, an
ex post incentive compatible mechanism returns almost constant social outcomes for generic
utility functions. In a model with multi-dimensional signals, the functional form of each agent
i’s utility function puts a severe restriction on functional forms of incentive compatible mech-
anisms, and these two restrictions generically contradict each other. In fact, deriving such
a contradiction for a general utility function is technically challenging. Instead, we focus on
densely existing treatable functions and prove that this kind of contradiction occurs under
them (Section 4). Also, we can prove that each of them has some neighborhood in which
partial ex post implementation is impossible for almost all functions (Section 5).

Although quasilinear utility functions are predominant due to their tractability, they pro-
vide quite rough approximation of agents’ behavior. As JMMZ and Milgrom (2004) mentioned,
quasi-linear utility functions nicely fit when amount of monetary transfer is sufficiently small
or agents have abundant liquidity. There are however several interesting situations in which
large amounts of money are transfered and agents face liquidity problems. For example, Salant
(1997) reported as a participant of spectrum actions that bidders had budget problems, and
they were strategically important and unknown to the other bidders. It justifies us in consid-
ering that in general bidding-cost functions are non-linear, and depend on signals. There have
been papers studying budget constrained agents3 (Pitchik and Schotter (1988), Laffont and
Robert (1996), Maskin (2000), Che and Gale (1998, 2000), Fang and Parreiras (2001), and

2It is introduced by Holmstrom and Myerson (1983) as uniform incentive compatibility, and termed by Cremer
and Mclean (1985).

3In this paper only continuous utility functions are considered while budget constrained utility functions
(hereafter BCUs) are discontinuous, so we cannot directly say BCUs are directly treated in this paper. However
it is difficult to justify for payoff functions to take such a extreme form. BCUs are approximation of plausible
continuous functions, and in fact BCUs can be seen as “limits” of continuous utility functions. For example,
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Benôıt and Krishna (2001)). Also, non-linear bidding-cost functions are extensively studied
mainly in the context of all-pay auction. Examples of such studies are Moldovanu and Sela
(2001, 2007) and Gavious, Moldovanu and Sela (2002).

Several papers found positive results about ex post incentive compatibility. See, for ex-
ample, Dasgupta and Maskin (2000), Perry and Reny (2002), Chung and Ely (2006) and
Bikhchandani (2005).

We make two remarks on the relation between JMMZ and this paper. First their result
does not imply that of this paper. It is because their set of preferences is quite small, or
nowhere dense mathematically speaking, in the space of general utility functions. Second,
their techniques are not applicable to our environments, even if we restricted utility functions
to be differentiable. The key part of their proof is that the first order derivative of agent i’s
utility function depends only on the state of nature. Obviously, this is true for quasilinear
utility functions but in general false for non-quasilinear utility functions.

It is worth mentioning the difference between the result of this paper and Gibbard-Satterthwaite
theorems, originated by Gibbard (1973) and Satterthwaite (1975). The most similar work is
Barbera (1983), in which each agent has a continuous preference. The main difference is that,
in this paper, agents state only finite-dimensional signals, while in Barbera (1983) they state
their whole preferences, which contains infinite-dimensional information. In other words, this
paper puts a strong restriction on the domain of social choice functions: the domain, or the
set of possible preferences, can be embedded to a finite-dimensional space.

This paper is organized as follows.In section 2, we present the model and show the statement
of the main theorem. In section 3, we derive a geometric necessary condition for ex post
incentive comaptibility. In section 4, we define L[i] and see it is dense set and an impossibility
result holds in it. In section 5, we finish the proof of the main theorem. In section 6, we discuss
about extensions of the main theorem and related issues. Section 7 is the conclusion.

2 The Model

First we introduce mathematical notations. Let X be a topological space and S a subset
of X. We denote by S◦ the interior of S, by S the closure of S, and by ∂S the boundary of S.
We usually use topologies of Euclidean spaces rather than relative topologies. Otherwise, the
underlying topology is mentioned.

We consider an environment with two agents N = {1, 2}, and two alternatives A = {a1, a2}.
We denote agents by i and j, and i 6= j unless otherwise mentioned. Each agent i ∈ N
receives private signal θi ∈ Θi, where the signal space Θi is a compact convex subset of Rdi

(di ∈ {2, 3, . . .}) whose interior is nonempty. Let Θ = Θ1 × Θ2. We allow the mechanism

U(x, t) =

(

V (x) + t if t ≥ T,

−∞ otherwise,

is the pointwise limit of

Un(x, t) =

(

V (x) + t if t ≥ T,

V (x) + t − n(T − t) otherwise.
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designer to use monetary transfer, but the amount of money m is restricted to a nonempty
compact interval M of R.

Each agent i ∈ N has a utility function ui(a,m; θ), where a ∈ A is an alternative, m ∈ M
is an amount of money and θ ∈ Θ is a state of nature. For each such ui, we define µi[ui] :
Θ × M2 → R by

µi[ui](θ; m1,m2) = ui(a1,m1; θ) − ui(a2,m2; θ). (1)

We omit the argument ui when it is apparent. µi[ui] stands for the relative attractiveness of
a1 compared to a2, when each ak is accompanied by mk amount of money.

Take a fixed non-zero ηi ∈ Rdi \{0} for each i ∈ N . We let U i be the set of ui : A×M×Θ →
R satisfying the following properties:

1. ui is continuous;

2. ui(a,m; θ) is strictly increasing in m;

3. µi[ui](θi + αηi, θj ; mi
1,m

i
2) is strictly increasing in α.

We refer to the third property as monotonicity of µi. We endow U i with the uniform metric4.
Let U = U1 × U2.

A public decision rule5 is defined to be a mapping f : Θ → A.

Definition 1. A public decision rule f is almost constant6 if f is constant within Θ◦.

We restrict mechanisms to direct mechanisms and equilibria to the truth-telling equilib-
rium. It is justified because the revelation principle is also applicable to ex post incentive
compatibility. A transfer rule is defined as a pair of mappings t = (t1, t2) : Θ → M2. A direct
mechanism is a pair (f, t) of public decision rule f and transfer rule t.

Definition 2. A direct mechanism (f, t) is ex post incentive compatible under u ∈ U if for all
i ∈ N , θ ∈ Θ and θ̂i ∈ Θi,

ui(f(θ), ti(θ); θ) ≥ ui(f(θ̂i, θj), ti(θ̂i, θj); θ). (2)

A public decision rule f is ex post incentive compatible under u ∈ U if there exists a transfer
rule t such that (f, t) is ex post incentive compatible under u.

Using sections 3-5, we prove the following theorem. In section 6, this theorem will be
extended in various directions.

Theorem 1. There exists a residual set R of U such that, for all u ∈ R and public decision
rule f , if f is ex post incentive compatible under u then f is almost constant.

4In this case, the uniform metric d∞ is defined by

d∞(ui, vi) = max
(a,m;θ)∈A×M×Θ

|ui(a, m; θ) − vi(a, m; θ)|.

5JMMZ calls it a social choice function.
6In the terminology of JMMZ, an almost constant public decision rule is a trivial social choice function.
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A residual set is topologically large set. It contains as a subset the countable intersection
of open dense sets, or equivalently, its complement is at most the countable union of nowhere
dense sets. Thus, we can say that a residual set contains as elements almost all or generic
elements of the universal set.

The above theorem tells us that in generic situations, the mechanism designer is unable to
construct any meaningful mechanism satisfying ex post incentive compatibility.

3 Geographical Properties

First, we generalize the ex post taxation principle,7 which was proved by Chung and Ely
(2006), to our non-quasilinear model. For convenience, we allow monetary transfer m to be
−∞ and define ui(a,−∞; θ) = −∞. We denote M ∪ {−∞} by M , and define T i by

T i = {ti : A× Θj → M | ∀θj ∈ Θj , ∃a ∈ A, ti(a, θj) 6= −∞}. (3)

Let T = T 1 × T 2.

Proposition 1 (Chung and Ely 2006). Assume that a direct mechanism (f, t∗) is ex post
incentive compatible under u ∈ U . Then there exists t ∈ T such that, for all i ∈ N and θ ∈ Θ,

f(θ) ∈ argmax
a∈A

ui(a, ti(a, θj); θ). (4)

Proof. Since ui(a,m; θ) is strictly increasing with respect to m, ex post incentive compatibility
implies that ti∗(θ) = ti∗(θ

′) if f(θ) = f(θ′) and θj = θ′j . Thus

ti(a, θj) =

{
ti∗(θ̂

i, θj) if there exists (θ̂i, θj) ∈ f−1(a)
−∞ otherwise,

(5)

is well-defined, and satisfies the above property.

For notational simplicity, we denote ti(ak, θ
j) by tik(θ

j) (k = 1, 2), and (ti1(θ
j), ti2(θ

j)) by
ti(θj).

The taxation principle reduces agent i’s decision problem to the following situation. Agent
i chooses a from A after observing both θi and θj . If agent i’s choice is ak, then agent i
receives tik(θ

j) amount of money. When ti`(θ
j) = −∞, the alternative a` is “not for sale,” so

agent cannot buy a` and thus must choose am 6= a`.
The ex post taxation principle tells us useful properties of ex post incentive compatible

public choice rule f . Choose t ∈ T satisfying (4). Then, for fixed θ̄j ∈ Θj , µi(θi, θ̄j ; ti(θ̄j))
is a continuous function of θi. Since µi increases as θi goes in ηi-direction, the sign of µi is
as depicted in Figure 1. Due to (4), we know that f(θi, θ̄j) = a1 for θi at which µi > 0, and
that f(θi, θ̄j) = a2 for θi at which µi < 0. As in Figure 1, two areas {θi | f(θi, θ̄j) = a1} and
{θi | f(θi, θ̄j) = a2} are separated by{

θi ∈ Θi
∣∣ µi(θi, θ̄j ; ti(θ̄j)) = 0

}
. (6)

7This name is due to JMMZ.
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Θi

ηi

−ηi indifference curve

f(θi, θ̄j) = a1

f(θi, θ̄j) = a2 µi < 0

µi > 0

µi = 0

Figure 1: The relationship between the indifference curve and f .

We call the set (6) agent i’s indifference curve8 at θ̄j , on which two alternatives are indifferent
for agent i. Thus we can conclude that agent i’s indifference curve at θ̂j determines the value
of f(θi, θ̄j) for almost all θi.

In the rest of the paper, we fully exploit good properties of closed sets. Although f−1(a1)
and f−1(a2) are not necessarily closed sets, we can interpret f as a pair of closed set by taking
the closures of f−1(a1) and f−1(a2). Define

Ak(f) = f−1(ak) ∪ ∂Θ, (7)
B(f) = A1(f) ∩ A2(f) (8)

for each public decision rule f and k = 1, 2. B(f) is the border between A1(f) and A2(f). The
reason these sets include ∂Θ is to avoid various singularities on it.

Given a metric space X, we denote C(X) to the set of all non-empty closed subsets of X,
and endow C(X) with the Hausdorff metric. Let S be the set of (A1, A2) ∈ C(Θ)2 such that
∂Θ ⊆ Ak for each k. Obviously (A1(f), A2(f)) ∈ S for all public decision rule f .

Using (A1(f), A2(f)), we obtain another necessary condition of ex post incentive compati-
bility.

Definition 3. (u, t) ∈ U × T implements (A1, A2) ∈ S if{
θ ∈ Θ

∣∣ µi[ui](θ; ti(θj)) ≥ 0
}
⊆ A1 and (9){

θ ∈ Θ
∣∣ µi[ui](θ; ti(θj)) ≤ 0

}
⊆ A2 (10)

for each i ∈ N . Also, u ∈ U implements (A1, A2) ∈ S if there exists t ∈ T such that (u, t)
implements (A1, A2).

Lemma 1. Assume that a public decision rule f is ex post incentive compatible under u ∈ U .
Then u implements (A1(f), A2(f)).

Proof. Take t ∈ T satisfying equation (4). What we need to show is that if µ̃i(θ) = 0 then
θ ∈ B. It is apparent when θ ∈ ∂Θ, so we assume θ ∈ Θ◦. In this case, by the monotonicity
of µi, f(θi + εηi, θj) = a1 and f(θi − εηi, θj) = a2 for sufficiently small ε > 0. This implies
θ ∈ B.

8Of course, this definition is different from the usual definition of indifference curves.
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However, this condition is too weak. For example, any u ∈ U can implement (A1, A2) =
(Θ, Θ). This motivates us to put some restriction on (A1, A2).

Definition 4. (A1, A2) ∈ S is monotonic if, for all θ, θ′ ∈ Θ◦ satisfying θ′ = θ + (α1η1, α2η2)
with some α1, α2 > 0,

1. if θ ∈ A1 then θ′ ∈ A1 \ A2, and

2. if θ′ ∈ A2 then θ ∈ A2 \ A1.

Let S∗ be the set of monotonic (A1, A2) ∈ S.

Lemma 2. Assume that a public decision rule f is ex post incentive compatible under u ∈ U .
Then (A1(f), A2(f)) ∈ S∗.

Proof. See Appendix.

The monotonicity of (A1(f), A2(f)) is a natural consequence of the monotonicity of µ1 and
µ2. For simplicity, assume θ̄ ∈ Θ◦ satisfies f(θ̄) = a1. Take small positive real numbers α1 and
α2. Because of the monotonicity of µ1, f(θ1, θ̄2) = a1 in a neighborhood of θ̄1 + α1η1. Also
by the monotonicity of µ2, we can find a neighborhood of θ̄2 + α2η2 in which f(θ1, θ2) = a1.
There is no a2 around (θ̄1 + α1η1, θ̄2 + α2η2), so it is not in A2(f).

The next proposition summarizes this section’s argument. Let S∗
nc be the set of monotonic

(A1, A2) ∈ S which is neither (Θ, ∂Θ) or (∂Θ, Θ). Given S ′ ⊆ S, we define U(S ′) as the set of
u ∈ U implementing some (A1, A2) ∈ S ′.

Proposition 2. Assume that a public decision rule f which is not almost constant is ex post
incentive compatible under u ∈ U . Then u ∈ U(S∗

nc).

Thus, in order to prove Theorem 1, it suffices to show that U \ U(S∗
nc) is residual, or

equivalently that U(S∗
nc) is meager. For a technical reason, for each i ∈ N we introduce a set

S∗[i], which is the set of (A1, A2) ∈ S∗ such that Aj
k(θ

i) 6= Aj
k(θ

i′) for some θi, θi′ ∈ Θi◦ and
k ∈ {1, 2}, where Aj

k(θ
i) is defined by Aj

k(θ
i) = {θj | (θi, θj) ∈ Ak}. Since S∗

nc = S∗[1] ∪ S∗[2],
what we should show is that each S∗[i] is meager.

4 Density of Impossible Sets

In this section, we introduce a dense set L[i] of U , which is proved to be disjoint with
U(S∗[i]). This implies that the complement of U(S∗[i]) is a dense subset of U (Proposition 3).

4.1 Piecewise Linear Functions

Here we define L[i] for each i and prove that it is dense in U (Lemma 4). Before doing
these things, we define piecewise linear functions.
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x

K

K/n f(x)
fn(x)

0

Figure 2: Piecewise linear approximation.

Definition 5. A function f : D → R (D ⊆ Rd) is piecewise linear if there exist non-empty
open convex sets U1, . . . , Un ⊆ D such that D ⊆

⋃n
k=1 Un and f |Uk

is affine for each k.9 Also,
ui

L ∈ U i is a piecewise linear utility function of agent i if µi[ui
L] is piecewise linear.

We let Li
0 denote the set of piecewise linear utility function of agent i.

Lemma 3. Li
0 is dense in U i.

Proof. See Appendix.

It is a mathematical fact that any continuous function whose domain is a compact subset
of Rd is approximated by some sequence of piecewise linear functions. Figure 2 show an
approximation procedure for the one-dimensional case. The original function f is uniformly
continuous. Therefore, by taking n → ∞, the sequence of approximating piecewise linear
functions {fn} converges to the original function. By following a similar procedure, we obtain
that L0 is a dense set of U .

For each i ∈ N , define L[i] as the set of u ∈ U such that there exists non-zero ζi ∈ Rdi

orthogonal to ηi satisfying these properties:

1. There exists ui
L ∈ Li

0 such that, for all θ ∈ Θ and m ∈ M2,

µi[ui](θ; m) = µi[ui
L](θ,m) + (ζi · θi)(ηj · θj). (11)

2. uj ∈ Lj
0.

3. For all open set U ⊆ Θ × M2, if µj [uj ]|U is affine then the coefficient of θj in µj [uj ]|U is
not equal to αηj for any α ∈ R.

We call µi[ui
L] the linear part of µi[ui] and (ζi · θi)(ηj · θj) its cross-term part.

Lemma 4. For all i ∈ N , L[i] is dense in U .

Proof. By adding a small perturbation, any element of L0 can be an element of L[i]. Since L0

is dense (Lemma 3), L[i] is also dense.
9f |Uk is the restriction of f to Uk. An affine function is a function f : D → R (D ⊆ Rd) satisfying

f(x) = α0 +
Pd

n=1 αnxn with some α0, . . . , αd ∈ R.
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V j
H1(θi)

H2(θi)

H3(θi)

Bj(θ̂i)

Bj(θi)
V j

V j
∗

Bj
∗(θi)

Figure 3: Bj(θi), Hn(θi) and V j .

4.2 Impossibility

In this subsection, we prove that L[i] is disjoint with U(S∗[i]) (Lemma 6).
Given (A1, A2) ∈ S, we denote A1 ∩ A2 by B. We define Bj(θ̄i) = {θj ∈ Θ | (θ̄i, θj) ∈ B}

for θ̄i ∈ Θi◦.

Lemma 5. Assume that u ∈ L[i] implements (A1, A2) ∈ S∗. Then the interior of Bj(θi) is
empty for all θi ∈ Θi◦.

Proof. The second statement is an corollary of the first. The proof of the first part is in
Appendix.

Assume that there are θ̂i ∈ Θi◦ and open set U j ⊆ Θj◦ such that (θ̂i, θj) ∈ B for all θj ∈ U j .
Then, for “almost all” θj ∈ U j , agent i’s indifference curve {θi | µi(θi, θj ; ti(θj)) = 0} goes
through θ̂i. Let θj go ηj-direction. Then, µi’s cross-term (ζi · θi)(ηj · θj) rotates i’s indifference
curve around θ̂i. At the same time, the monotonicity of (A1, A2) pulls back i’s indifference
curve in (−ηi)-direction. These two effects contradict each other, and therefore Bi(θj) cannot
have a nonempty interior for any θi ∈ Θi◦.

As a corollary of this lemma, the following would be intuitively obvious: Bj(·) : Θi◦ →
C(Θj) is continuous. Its formal proof is in Appendix.

The next lemma is the main result of this subsection:

Lemma 6. If u ∈ L[i] implements (A1, A2) ∈ S∗, then (A1, A2) 6∈ S∗[i].

Sketch of Proof. Here we see a rough sketch of the proof. Details are in Appendix.
Assume that u ∈ L[i] implements (A1, A2) ∈ S∗[i]. Since (A1, A2) ∈ S∗[i], Bj(θi) cannot

be constant. Take θ̂i at which Bj(θi) is not local constant.
Remember that µj is a piecewise linear function, so each Bj(θi) consists of segments of

hyperplains (and ∂Θj)10. We can take θ̂i as an element of Θi◦ whose Bj(θi) consists of the
largest number of segments of hyperplains among {B(θi) | θi ∈ Θi◦}. Denote Bj(θ̂i)’s (closed)
segments of hyperplains by Ĥ1, . . . , ĤN . Then, because of the continuity of Bj(·), we obtain:

Fact: There exist a neighborhood U i of θ̂i and continuous mappings H1, . . . ,HN : U i → C(Θi)
such that

10To avoid unnecessarily complicated arguments, here we skip the definitions of “a segment of a hyperplain.”
It is formally defined in Appendix.
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1. Hn(θ̂i) = Ĥn,

2. Hn(θi) is a segments of hyperplain parallel to Ĥn, and

3. Bj(θi) =
⋃N

n=1 Hn(θi) ∪ ∂Θj,

for all n and θi ∈ U i.

There must be n such that Hn(θi) is not locally constant at θ̂i. Take sufficiently small open
sets θ̂i ∈ V i ⊆ U i and V j ⊆ Θj such that

1. Bj(θi) ∩ V j = Hn(θi) ∩ V j 6= ∅, and

2. Bj(θi) ∩ V j = H ∩ V j for some hyperplain (not a segment) H,

for all θi ∈ V i. Define a mapping Bj
∗ : V i → C(V j) by

Bj
∗(θ

i) = Bj(θi) ∩ V j . (12)

Let H be the image of Bj
∗, i.e., {Bj

∗(θi) | θi ∈ V i}, and V j
∗ be the union of H. Also, define

Bi
∗ : V j

∗ → C(V i) by

Bi
∗(θ

j) = Bi(θj) ∩ V i. (13)

The elements of H satisfy an all-or-nothing property: for all H,H ′ ∈ H, H and H ′ are
equal or disjoint. This implies the following fact:

Fact: Bi
∗(·) is nonempty and constant within H ∈ H.

It is very difficult for Bi
∗(θ

j) to be constant because µi’s cross-term twists i’s indifference
curve {θi | µi(θ; ti(θj)) = 0}, and obviously it is possible only when Bi

∗(θ
j) has a non-empty

interior. Now what we should do is to find θj ∈ V j
∗ whose Bi

∗(θ
j) has the empty interior. The

following fact is useful to find such θj .

Fact: For an open set U j ∈ Θj, there is θj ∈ U j at which Bi(θj) has a non-empty interior.

V j◦
∗ is a non-empty open set since Bj

∗(θi) is continuous and non-constant. Thus there must
be θj ∈ V j

∗ such that the interior of Bj
∗(θj) is empty; this completes the proof.

The proposition below is the summary of this section.

Proposition 3. U \ U(S∗[i]) is dense in U for all i ∈ N .

Proof. This is because L[i] ⊆ U \ U(S∗[i]) and Lemmata 4 and 6.

5 The Proof of The Main Theorem

In order to prove U(S[i]) is meager, it suffices to find {Kn}∞n=1 (Kn ⊆ U(S[i])) such that
(i) the complement of each Kn is dense, (ii) each Kn is closed, and (iii) U(S∗

nc) =
⋃∞

n=1 Kn.
In the previous section we proved the complement of U(S∗[i]) is dense, so (i) is automatically
satisfied. Thus, what we should do is to find {Kn}∞n=1 satisfying (ii) and (iii). The next lemma
is a useful tool to check (ii).
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Lemma 7. Let T be a closed subset of S. Then U(S∗ ∩ T ) is closed in U .

Proof. See Appendix.

To get an intuition, consider the following simple situation. Assume that (un, tn) imple-
ments (A1,n, A2,n) ∈ S∗ ∩ T and that limits of these sequences exist. First, we informally see
that (u, t) implements (A1, A2). By the definition of implementation, we know that, for each
i and n, {

θ
∣∣ µi[ui

n](θ; tin(θj)) ≥ 0
}
⊆ A1,n and (14){

θ
∣∣ µi[ui

n](θ; tin(θj)) ≤ 0
}
⊆ A2,n. (15)

These inclusion relationships are preserved even in the limit:{
θ

∣∣ µi[ui](θ; ti(θj)) ≥ 0
}
⊆ A1 and (16){

θ
∣∣ µi[ui](θ; ti(θj)) ≤ 0

}
⊆ A2 (17)

It is because {θi | µi[ui](θi, θ̄j ; m1,m2) ≥ 0} ∪ ∂Θ and {θi | µi[ui](θi, θ̄j ; m1,m2) ≤ 0} ∪ ∂Θ
are continuous with respect to ui,m1 and m2 (Lemma 18 in Appendix). Also, we obtain
(A1, A2) ∈ T because T is closed, although proving (A1, A2) ∈ S∗ requires a subtle argument.

We see an example of closed subsets of S. We denote the Hausdorff metric by ρ.

Example 1. Let Θi(ε) be the set of θi ∈ Θi satisfying ‖θi − θ̂i‖ ≥ ε for all θ̂i ∈ ∂Θi. Define

δ[i, ε](A1, A2) = sup
k∈{1,2}

θj ,θj′∈Θj(ε)

ρ(Ai
k(θ

j), Ai
k(θ

j′)). (18)

δ[i, ε](A1, A2) represents (Ai
1(θ

j), Ai
2(θ

j))’s degree of dependence on θj within Θj(ε). Define
T [i](ε) by

T [i](ε) =
{
(A1, A2) ∈ S

∣∣ δ[i, ε](A1, A2) ≥ ε
}
. (19)

Then T [i](ε) is a closed subset of S (the proof is routine and left to the reader). Notice that
δ[i, ε](A1, A2) = 0 for all ε > 0 if and only if (A1, A2) ignores agent i.

Proposition 4. For each i ∈ N , there are K1,K2, . . . ⊆ U(S∗[i]) such that each Kn is closed
in U and U(S∗[i]) =

⋃∞
n=1 Kn.

Proof. Let Kn = U(T [i](1/n) ∩ S∗). Due to Lemma 7 and Example 1, we know that each Kn

is closed. U(S∗[i]) =
⋃∞

n=1 Kn is also true since S[i] =
⋃∞

n=1 T [i](1/n) as explained in Example
1.

Finally we complete the proof of Theorem 1.

Proof of Theorem 1. Each U(S∗[i]) is meager by Propositions 3 and 4. Since any finite union
of meager sets is also meager, U(S∗

nc) = U(S∗[1])∪U(S∗[2]) is also meager. Let R = U \U(S∗
nc).

Then R is residual. Also, by Proposition 2 and the definition of U(S∗
nc), we obtain that for all

u ∈ R, if f is ex post incentive compatible under u then f must be almost constant.
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6 Extensions and Discussion

In this section, we discuss about several extensions of Theorem 1 and related issues.
To make our model general, we introduce new notations. Let M ⊆ R and Θi ⊆ Rdi

for
each i. Otherwise mentioned, we assume M is a compact interval and each Θi is a compact
convex set whose interior is nonempty. We define the set U i

0 to consist ui : A× M0 × Θ0 → R
such that

1. ui is continuous, and

2. ui(a,m; θ) is strictly increasing in m.

We endow U i
0 with the topology of uniform convergence on compacta11. Note that in the case

that M and each Θi are compact, the topology of uniform convergence on compacta and the
topology induced by the uniform metric coincide.

Let ηi be a non-zero element of Rdi
and denote (ηi)i∈N by η. Define U i

0(η) be the set of
ui ∈ U i

0 such that
µi[ui](θi + αηi, θj ; m1,m2)

is strictly increasing in α.
Let U0 = U1

0 × U2
0 and U0(η) = U1

0 (η) × U2
0 (η). Notice what we have considered is U0(η).

6.1 n-Agent Models

Theorem 1, and other results we will argue in this section, can be easily extended to n-agent
cases. We can reduce a n-agent model to a two-agent model by fixing (θ3, . . . , θn), which is
justified since we are studying ex post equilibrium.

6.2 The Case M = R

We have restricted M to be a compact interval. Here we consider the case M = R. Given
A > 0, we say that a transfer rule t : Θ → M2 is A-bounded if supi,θ |ti(θ)| < A, and that t is
bounded if t is A-bounded for some A > 0.

Theorem 2. Assume M = R. Then, there exists a residual set R of U0(η) such that the
following holds for all u ∈ R: For all public decision rule f and bounded transfer rule t, if
(f, t) is ex post incentive compatible under u then f is constant.

Proof. Applying the technique used in the proof of Theorem 1,12 we can take a residual set Rn

for each n ∈ {1, 2, . . .} whose element u satisfy the following: For all public decision rule f and
n-bounded transfer rule t, if (f, t) is ex post incentive compatible under u then f is constant.
Let R =

⋂∞
n=1 Rn. Then R is also residual and satisfies the desired property.

11{ui
n}∞n=0 uniformly converges on compacta to ui if and only if, for all compact set K ⊆ M0 × Θ0,

maxa∈A, x∈K |ui
n(a, x) − ui(a, x)| converges to 0 as n goes to infinity. The topology of uniform convergence

on compacta is the topology induced by this convergence concept.
12A few modifications are needed in approximating utility functions by piecewise linear functions.
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6.3 Quasilinear Utility Functions

For quasilinear utility functions, we can achieve the generic impossibility result by using
the completely same procedure as non-quasilinear utility functions.

6.4 Differentiable Utility Functions

We can also prove the generic impossibility theorem for differentiable utility functions,
although L[i] is not dense in the space of differentiable utility functions. We use the following
mathematical fact: In a topological space X, if S ⊆ X is dense and R ⊆ X is residual, then
S ∩ R is residual in S. It is an easy exercise of general topology.

Define Cn(η) (n = 1, 2, . . . ,∞) to be the set of u ∈ U0(η) such that each ui(a, m; θ) is
n-times continuously differentiable with respect to m and θ.

Theorem 3. There exists a residual set R of Cn(η) such that if the pair of a public decision
rule f and a bounded transfer rule t is ex post incentive compatible under u ∈ R, then f is
almost constant.

Proof. This is because Cn(η) is dense in U0(η).

6.5 Without the Monotonicity of µi

We can drop the assumption of the monotonicity of µi. First we see the cases of differen-
tiable quasilinear utility functions, which are analyzed in JMMZ (2006). Let Cn

QL be the set
of u ∈ U0 satisfying the following for each i:

1. ui(a,m; θ) is quasilinear with respect to m,

2. ui(a,m; θ) is n-times continuously differentiable with respect to θ, and

3. ∇θiµi[ui](θ; m1,m2) 6= 0 for all m1,m2 ∈ M and θ ∈ Θ◦.

Theorem 4. There exists a residual set R of Cn
QL such that the following holds for all u ∈ R:

For all public decision rule f , if f is ex post incentive compatible under u then f is constant.

Proof. Let Q++ = Q ∩ (0,∞), Θ∗ = Qd1+d2 ∩ Θ◦ and Bi(r; θi) = {θ̂i ∈ Θi◦ | ‖θ̂i − θi‖ < r}.
Take qi : Θ∗ → Q++ and ηi : Θ∗ → Qdi \ {0} for each i. We denote (q1, q2) by q and

(η1, η2) by η. Let V(q, η) be the set of u ∈ Cn
QL satisfying the following for all θ∗ ∈ Θ∗: For all

m1,m2 ∈ M and θ ∈ B1(q1(θ∗), θ1
∗) × B2(q2(θ1

∗), θ
2
∗),

ηi(θ∗) · ∇θiµi[ui](θ; m1,m2) > 0. (20)

Note that any u ∈ Cn
QL is in V(q, η) for some (q, η).

Applying the technique used in Theorem 3 to V(q, η), for each θ∗ ∈ Θ∗, there exists a
residual set R(q, η; θ∗) in which ex post incentive compatible public decision rules must be
constant within B1(q1(θ∗), θ1

∗)×B2(q2(θ∗), θ2
∗). Let R(q, η) =

⋂
θ∗∈Θ∗

R(q, η; θ∗). Then R(q, η)

13



is residual in V(q, η), and under u ∈ R(q, η) ex post incentive compatible public decision rules
must be almost constant. Define M(q, η) = Cn

QL \ R(q, η). Then M(q, η) is meager in Cn
QL.

Let M =
⋃

q,η M(q, η). Since candidates of q and η are countable, M is also meager. Let
R be the complement of M, in which ex post incentive compatible public decision rules must
be almost constant.

This theorem can be extended to the case M = R. Note that under quasilinear utility
functions, transfer rules always can be bounded. That is, if (f, t) is ex post incentive compatible
then there is bounded t̂ such that (f, t̂) is ex post incentive compatible.

The difference between this result and the main theorem of JMMZ (2006) is the used
toplogies. In this paper, we are using the uniform metric, while JMMZ (2006) considered the
topology of the Cn-uniform convergence13.

In order to derive the impossibility result, differentiable but not necessarily quasilinear
utility functions are required that their µi are locally monotonic in some direction, which is
automatically satisfied for quasilinear utility functions. For n = 1, 2, . . . ,∞, let Cn be the set
of u ∈ U0 satisfying the following for each i:

1. ui(a,m; θ) is n-times continuously differentiable with respect to m and θ, and

2. for all θ ∈ Θ◦, there exists non-zero ηi ∈ Rdi
such that

ηi · ∇θiµi[ui](θ; m1,m2) > 0 (21)

for all m1,m2 ∈ M .

For continuous utility functions, we need a little complicated condition. Take continuous
functions ηi

∗ : Θ◦ → Rdi
and ri, si : Θ◦ → (0,∞) for each i. Consider a utility function ui ∈ U i

0

satisfying the following: For all θ ∈ Θ◦ and ηi ∈ {η ∈ Rdi | ‖ηi − ηi
∗(θ)‖ < ri(θ)},

µi[ui]
∣∣∣
S
(θi + αηi, θj ; m1,m2)

is strictly increasing in α, where S = B1(s1(θ), θ) × B2(s2(θ), θ) × M2. Let C0 be the set of
such utility functions with some (ηi, ri, si)i=1,2.

Theorem 5. Let n ∈ {0, 1, 2, . . . ,∞}. Then, there exists a residual set R of Cn such that the
following holds for all u ∈ R: For all public decision rule f , if f is ex post incentive compatible
under u then f is constant.

6.6 A Cardinality-Free Topology

Debreu (1968) defined a metric on the space of the closed preferences, which is one of the
most famous topologies on preference spaces. Let X be a metric space and P be the set of

13uk(a, m; θ) = vk(a; θ) + m Cn-uniformly converges to u(a, m; θ) = v(a; θ) + m if and only if vk uniformly
converges to v and all up to n-th order derivatives of vk also uniformly converge to those of v.
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continuous, transitive and complete preference relations. Each element %∈ P is a closed subset
of X2.14 Debreu (1968) endowed the preference space P with the Hausdorff metric.

In our model, preferences are dependent on θ ∈ Θ so we need to extend this topology.
We take two approaches to the extension. The first approach is to consider a state-dependent
preference % (θ) as a bundle of preferences (% (θ))θ∈Θ. For state-dependent preferences % (·)
and %′ (·), we define a “uniform metric”:15

d1(%(·), %′ (·)) = sup
θ∈Θ

ρ(%(θ), %′ (θ))m, (22)

where ρ is the Hausdorff metric.
The other approach is regarding a state-dependent preference % (·) as preferences %̇ on

(x, θ). One possible definition of %̇ would be {(x, θ; y, θ) | x % (θ) y}, but θ is redundant.
Instead we can define it by {(x, y, θ) | x % (θ) y}, and we denote it by S(% (·)). We define the
second metric by

d2(%(·),%′ (·)) = ρ(S(%(·)), S(%′ (·))). (23)

In fact, these two topologies are the same because of the continuity of utility functions. A
proof is in Appendix.

By additionally assuming the following assumption, we can show that our arguments are
valid even under the metrics defined above. A little more detailed explanations are in Appendix.

Assumption 1. For all u ∈ U and θ ∈ Θ,

µi[ui](θ;maxM, minM) > 0 > µi[ui](θ;min M, max M) (24)

for each i ∈ N .

6.7 Weakening Ex Post Incentive Compatibility

We have found that in various utility function spaces meaningful public decision rules
cannot be ex post incentive compatible under generic utility functions. A possible question is
whether we can make incentive compatibility possible by weakening the concept of incentive
compatibility.

One natural way to weaken ex post incentive compatibility is localizing this concept. Ex
post incentive compatibility is a global concept in the sense that the inequality

ui(f(θ), ti(θ); θ) ≥ ui(f(θ̂i, θj), ti(θ̂i, θj); θ). (2)

is satisfied globally. We can weaken this concept by restricting the range of θ and θ̂i.
14Here, as usual, a binary relation P on X is defined as a subset of X2, and xPy denotes (x, y) ∈ P .
15Since (% (θ))θ∈Θ is an element of a product space

Q

θ∈Θ P, conventionally it is natural to use the product
topology instead of the topology induced by this metric. The product topology is however so fine that if
(%n (·))∞n=0 converges to % (·) then %n (θ) and % (θ) must be coincide for almost all θ. In fact, %n (θ) = % (θ)
for all θ ∈ Θ because our utility functions are continuous with respect to θ. Under such a strong topology, our
arguments are useless.
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Definition 6. Let U1 ⊆ Θ1◦ and U2 ⊆ Θ2◦ be open sets. A public decision rule f is locally
ex post incentive compatible within U1 × U2 under u ∈ U0 if there exists a transfer rule t such
that the inequality (2) holds for all i ∈ N , θ ∈ U1 × U2 and θ̂i ∈ U i.

For example, this condition is satisfied in the situation that ex post agent i of type θi ∈ U i

has no incentive to deviate from the truth-telling, that is, in the situation that (2) is satisfied
for all i ∈ N , θi ∈ U i, θj ∈ Θj and θ̂i ∈ Θi.

Can we avoid the generic impossibility under such an incentive compatibility concept? The
next result gives us a negative answer.

Theorem 6. There exists a residual set R of U0(η) such that for all u ∈ R the following holds:
For all public decision rule f and connected open sets U1 ⊆ Θ1◦ and U2 ⊆ Θ2◦, if f is locally
ex post incentive compatible within U1 × U2 under u, then f is constant within U1 × U2.

Proof. Define Bi(r; θi) = {θ̂i ∈ Θi◦ | ‖θ̂i − θi‖ < r}. Let Q++ = Q ∩ (0,∞), Θi
∗ = Qdi ∩ Θi◦

and Θ∗ = Θ1
∗ × Θ2

∗.
Given q = (q1, q2) ∈ Q2

++ and θ∗ ∈ Θ∗, applying the technique used in the proof of Theorem
1, we can take a residual set R(q, θ∗) whose element u satisfies the following: For all public
decision rule f , if f is ex post incentive compatible within B1(q1, θ

1
∗)×B2(q2, θ

2
∗) under u, then

f is constant within B1(q1, θ
1
∗) × B2(q2, θ

2
∗).

Let R =
⋂

q,θ∗
R(q, θ∗). Since Q++ and Θ∗ are countable sets, R is also residual. Take

arbitrary u ∈ R and connected open set U i ⊆ Θi◦ for each i, and assume that f is ex post
incentive compatible under u. We see that f is constant within U = U1 × U2.

Let S be the set of (q, θ∗) ∈ Q2
++ × Θ∗ satisfying B1(q1, θ

1
∗) × B2(q2, θ

2
∗) ⊆ U . Then⋃

(q,θ∗)∈S

[
B1(q1, θ

1
∗) × B2(q2, θ

2
∗)

]
= U (25)

since each U i is open. For each (q, θ∗) ∈ S, f is constant within B1(q, θ1
∗) × B2(q, θ2

∗) because
u ∈ R(q, θ∗). Since each U i is connected, this implies that f is constant within U1 × U2.

It would be worth mentioning about another weakened incentive compatibility. Consider
a concept of incentive compatibility in which (2) holds for all θ ∈ Θ and θ̂i ∈ Θ satisfying
‖θi − θ̂i‖ < ε (ε > 0). This concept is also impossible for sufficiently small ε, since we can
derive the ex post taxation principle for this concept.

7 Conclusion

We proved impossibility theorems about ex post incentive compatibility. These results tell
us that constructing meaningful ex post incentive compatible mechanisms is usually impossible.

One possible next step is to find other concepts which is robust against subjective belief
ex post incentive compatibility. This paper partly answers it with a negative result: Locally
ex post incentive compatible mechanisms are locally constant in generic situations. Thus, we
need to search for concepts other than localized ex post incentive compatibility.
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APPENDIX

A Piecewise Linear Approximation

Consider a d-dimensional cube [0, 1]d.We construct a simplicial complex C d whose union is equal to
[0, 1]d and which consists of d-dimensional simplices smaller than [0, 1/n]d, where n is a positive integer.
Set α = 1/n.

For notational simplicity, we identify a convex set with its vertices. For example, we identify [0, α]2

with {(0, 0), (0, α), (α, 0), (α, α)}. Let V d = {0, α, . . . , 1}d be the set of vertices of C d. Define a strict
total order Âd on V d as a lexicographic order:

(a1, . . . , ad) Âd (b1, . . . , bd) ⇔ ∃k, ∀i < k, ai = bi and ak > bk. (26)

Denote by <d the induced weak order.
When d = 1, we define C 1 = {{0, α}, {α, 2α}, . . . , {(n − 1)α, 1}}, which is obviously a simplicial

complex. Now assume that we constructed a simplicial complex C d−1. For each Sd−1 ∈ C d−1, z ∈
{α, . . . , 1} and y ∈ Sd−1, define Sd(y, z, Sd−1) as the union of {(y′, z − α) | y′ ∈ Sd−1, y′ <d−1 y}
and {(y′, z) | y′ ∈ Sd−1, y <d−1 y′}. Now we can define C d as the set of Sd(y, z, Sd−1) such that
Sd−1 ∈ C d−1, y ∈ Sd−1 and z ∈ {α, . . . , 1}.

Lemma 8.

1. C d is a simplicial complex whose union is [0, 1]d.

2. For Sd ∈ C d,

a. there exists x ∈ V d such that Sd ⊆
∏d

n=1[xn, xn + α], and

b. for each k = d− 1, d, there exist x, x′ ∈ Sd such that x− x′ = αek, where ek’s k-th element
is 1 and the other elements are 0.

The second statement is obvious. To prove the first statement, we use the following notion and
lemma. We say (C d,Âd) satisfies symmetric property if, for all S1, S2 ∈ C d,

∀a, b ∈ S1 ∩ S2,

[∃x1 ∈ S1 \ S2, a Â x1 Â b] ⇔ [∃x2 ∈ S2 \ S1, a Â x2 Â b]. (27)

Lemma 9. Let d ∈ {2, 3, . . .} and assume that C d−1 is a simplicial complex and that (C d−1,Âd−1) sat-
isfies symmetric property. Then C d is also a simplicial complex, and (C d,Âd) also satisfies symmetric
property.

Proof. Take different S1, S2 ∈ C d such that co S1 ∩ co S2 6= ∅, where co X is the convex hull of X.
For each Sk, there are unique Tk ∈ C d−1, yk ∈ Tk and zk ∈ {α, . . . , 1} such that Sk = Sd(yk, zk, Sk).
Let T = T1 ∩ T2 (6= ∅), and denote elements of T by y1, . . . , yn so as to satisfy y1 Âd−1 . . . Âd−1 yn.
Without loss of generality, we assume y1 <d−1 y2.

Here, we see a representation of co S1 ∩ co S2 for each case. These representations obviously imply
that co S1 ∩ co S2 is a common face of S1 and S2 and the property (27) is satisfied.

Case 1: T1 = T2 and z1 = z2 (= z).

In this case, co S1 ∩ co S2 is written as co{(y1, z − α), . . . , (y1, z − α), (y2, z), . . . , (yn, z)}.

Case 2: T1 6= T2 and z1 = z2 (= z).

Due to the assumption, co S1∩ co S2 has a representation as the convex hull of {(y1, z−α), . . . , (y1, z−
α), (y2, z), . . . , (yd, z)} \ X, where X = {(y1, z − α), (y2, z)} \ (T × {z − α, z}).
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Case 3: z1 + α = z2.

In this case, co S1 ∩ co S2 is the convex hull of {(y, z1) | y ∈ T, y1 <d−1 y <d−1 y2}.

Case 4: z1 = z2 + α.

In this case we can use Case 3.

Lemma 8 is an easy corollary of Lemma 9. Using Lemma 8, we can do approximation using piecewise
linear functions as explained in section .

Appendix B Proof of Lemma 2

At first, we define functions χi which is useful in the proof of Lemma 2. They are also used to prove
Lemma 7.

Given ε > 0 and x ∈ Rd, we define U(ε;x) = {y ∈ Rd | ||x − y|| < ε}. For each i, we let Xi be the
set of (θ, τ i, λi) ∈ Θ × M2 × R satisfying θi + λiηi ∈ Θi. We denote by Xi

+ the set of (θ, τ i, λi) ∈ Xi

satisfying λi > 0, and by Xi
− the set of (θ, τ i, λi) ∈ Xi satisfying λi < 0. We define two mappings

χ̃i
+, χ̃i

− : Xi × U i → (0,∞) by16

χ̃i
+(θ, τ i, λi;ui) = max {γ > 0 | µi[ui](θ̂i, θj ; τ i) > µi[ui](θ, τ i)

for all θ̂i ∈ Rdi

s.t. ||(θi + λiηi) − θi|| < γ},
(28)

χ̃i
−(θ, τ i, λi;ui) = max {γ > 0 | µi[ui](θ̂i, θj ; τ i) < µi[ui](θ, τ i)

for all θ̂i ∈ Rdi

s.t. ||(θi + λiηi) − θi|| < γ}.
(29)

Lemma 10. χ̃i
+ and χ̃i

− are continuous for each i ∈ N .

Proof. We prove the case of χ̃i
+ only. Assume there is (θ̂, τ̂ i, λ̂i; ûi) ∈ Xi × U i at which χi

+ is discon-
tinuous. Then, since ξi

+ is bounded, there is a sequence (θn, τ i
n, λi

n;ui
n)∞n=0 converging to (θ̂, τ̂ i, λ̂i; ûi)

satisfying limn→∞ γn 6= γ̂, where γn = χ̃i
+(θn, τ i

n, λi
n;ui

n) and γ̂ = χ̃i
+(θ̂, τ̂ i, λ̂i;ui). Let Vn = {θi ∈ Θi |

||(θi
n + λi

nηi) − θi|| < γn} and V̂ = {θi ∈ Θi | ||(θi + λiηi) − θi|| < γ̂}.

Case 1: limn→∞ γn > γ̂.

Let V ∗ = {θi ∈ Θi | ||(θi + λiηi) − θi|| ≤ γ̂ + ε}, where ε = (limn→∞ γn − γ)/2. Then there is N
such that, for all n > N , V ∗ ⊆ V [n]. Thus, for all θi ∈ V ∗,

µi[ui
n](θi, θ̂j ; τ̂ i) ≥ µi[ui

n](θ̂; τ̂ i) (30)

by the continuity of µi[ui
n], and

µi[ui](θi, θ̂j ; τ̂ i) ≥ µi[ui](θ̂; τ̂ i) (31)

by the uniform convergence of µi[ui
n]. By the third property of U i, µi[ui] must be positive in within

V ∗. This contradicts the definition of γ̂, since the radius of V ∗ is strictly larger than γ̂.

Case 2: limn→∞ γn < γ̂.

16If µi(θ̂i, θj ; τ i) is not defined, the proposition µi(θ̂i, θj ; τ i) > µi(θ, τ i) is false. The maximum is well-defined
because it coincides with distance between θi +λiηi and the boundary of the closure of {θ̂i ∈ Θi | µi(θ̂i, θj ; τ i) >
µi(θ, τ i)}.
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Then for each n, there must be θ̄i
n ∈ Rdi

satisfying ||(θ̂i
n + λi

nηi) − θ̄i
n|| = γn and either θ̄i

n ∈ ∂Θi

or µi[ui
n](θ̄i

n, θj
n; τ̂ i

n) ≤ µi[ui
n](θn; τ i

n). Without loss of generality, (θ̄i
n)∞n=0 can be a converging sequence

since Θi is compact. In the limit, θ̄i = limn→∞ θ̄i
n must satisfy either θ̄i ∈ ∂Θi or µi[ui](θ̄i, θ̂j ; τ̂ i) ≤

µi[ui](θ̂; τ̂ i). This is a contradiction since ||(θ̂i + λ̂iηi) − θ̄i|| < γ̂.

Now we can define a continuous mapping χi : (0,∞) × U i → (0,∞) by

χi(λ̆i;ui) = min
(θ,τ i,λi)∈Xi

λi≥λ̆i

k∈{+,−}

χ̃i
k(θ, τ i, λi;ui). (32)

We state this fact in the form of lemma.

Lemma 11. χi is continuous.

Now we prove Lemma 2.

Proof of Lemma 2. What we should prove is that (A1(f), A2(f)) ∈ S∗. We prove the first part of the
definition of S∗ only. The second part is similarly proved. Simply denote Φi±(ui, ti) by Φi±. Define
Φi++ = Φi+ \ Φi−.

Take arbitrary θ, θ′ ∈ Θ◦ satisfying θ′ − θ = (α1η1, α2η2) with some α1, α2 > 0. Since θ, θ′ ∈ Θ◦,
there is γ > 0 such that U(γ; θi), U(γ; θi′) ⊆ Θi◦ for each i ∈ N . Denote

⋃
a∈[0,αi] U(γ, θi + aηi) by Si.

By the convexity of Θi, Si ⊆ Θi◦. Notice each of θε, T1, T2 defined below is an element or a subset of
S1 × S2.

Let r = {mini χi(αi, ui)}/2. Take sufficiently small ε > 0 satisfying ε < min{γ, r}. We prove that
U(r, θ1′) × U(r, θ2′) ⊆ Φ2++ (⊆ A1 \ A2). Notice that Φi++ ⊆ f−1(a1) ⊆ Φi+.

Step 1: There is θε ∈ Φ1+ such that ||θ − θε|| < ε.

By the definition of A1(f), there is θε ∈ f−1(a1) ⊆ Φ1+.

Step 2: T1 = U(r; θ1′) × {θ2
ε} ⊆ Φ2+.

For each θ̂1 ∈ U(r; θ1′),

||(θ1
ε + α1η1) − θ̂1|| ≤ ||θ1

ε − θ1|| + ||θ1 + α1η1 − θ̂1|| (33)

< ε + r < χ1(α1, u1). (34)

By the definition of χ1, (θ̂1, θ2
ε) ∈ Φ1++ ⊆ f−1(a1) ⊆ Φ2+.

Step 3: T2 = U(r; θ1′) × U(r; θ2′) ⊆ Φ2++.

It is the same as Step 2.

C Proof of Lemma 5

We use a proof by contradiction. Assume that Bj(θ̂i)◦ 6= ∅ for θ̂i ∈ Θi◦. Take θ̂j ∈ Bj(θ̂i)◦ and let
`j be the set of α ∈ R satisfying θ̂j + αηj ∈ Bj(θ̂i)◦.

We decompose µi into the linear part µi
L and the cross-term part ψi. Put ζ1 so as to satisfy

ψ1(θ) = (ζ1 · θ1)(η2 · θ2). Note that

d1∑
n=1

ζ1
n

(
∂ψ1

∂θ1
n

)
= ||ζ1||(η2 · θ2), (35)
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and that when we substitute θ2 = θ̂2 +αη2 into this equation, the value becomes p̂+γα where γ = ||ζ1||
and p̂ = ||ζ1||(η2 · θ̂2). Let D be the set of all (

∑d1

n=1 ζ1
n(∂µ1

L/∂θ1
n),

∑d1

n=1 η1
n(∂µ1

L/∂θ1
n)), which is finite

by the definition of V1.
We reduce the problem to a two-dimensional case, by considering a space spanned by η1 and ζ1 at θ̂1.

Let S1 = {θ̂1+x1η
1+x2ζ

1 | x1 ∈ R, x2 ≤ 0}. For each α ∈ `2, we define B̃1(α) = S1∩B1(θ̂2+αη2). We
identify each element θ̂1+x1η

1+x2ζ
1 of S1 with (x1, x2),17 and then S1 can be seen as S̃1 = R×(−∞, 0].

For ε > 0 and y ∈ R2 \ {0}, define H(ε; y) = {z ∈ S̃1 | ||z|| ≤ ε, y · z = 0}.
For each α ∈ `2, we define a correspondence φ(α) by

φ(α) =
{

d ∈ D
∣∣∣ ∃ε > 0, H (ε; d1, d2 + p̂ + γα) ⊆ B̃1(α)

}
. (36)

By the definition of implementation, φ(α) is not empty. The following fact leads a contradiction since
an uncountable set

⋃
α∈`2 φ(α) is a subset of a finite set D.

Fact: φ(α1) and φ(α2) are disjoint for α1 > α2.

Suppose that there is d ∈ φ(α1) ∩ φ(α2). For each i ∈ {1, 2}, because d ∈ φ(αi), there is εi > 0
such that H(εi; d) ⊆ B̃1(αi). Since d1 > 0, there is δ > 0 such that {(x1,−δ) | x1 ∈ R} ∩ H(εi; d)
is a singleton for both i; denote the unique element by (xi

1,−δ). By the fact (xi
1,−δ) ∈ H(ε; d), we

obtain xi
1 = δ(d2 + p̂ + γαi)/d1, which is strictly increasing with respect to αi. Thus we can say that

(x1
1,−δ) ∈ B̃1(α1), (x2

1,−δ) ∈ B̃1(α2), and x1
1 > x2

1, which contradicts (A1, A2) ∈ S∗.

Appendix D Proof of Lemma 6

Lemma 12. Assume (u, t) ∈ U × T implements (A1, A2) ∈ S∗, and denote A1 ∩ A2 by B. For i ∈ N
and θ̄j ∈ Θj◦ (j 6= i), if Bi(θ̄j)◦ = ∅ then

1. Ai
1(θ̄

j) = Φi
i+(θ̄j |ui, ti) and Ai

2(θ̄
j) = Φi

i−(θ̄j |ui, ti), and

2. Ai
k(·) : Θj → C(Θi) is continuous at θ̄j for each k ∈ {1, 2}.

Proof. We start with a proof of the first statement. We prove Ai
1(θ̄

j) = Φi
i+(θ̄j |ui, ti) only. The other

equation can be proved similarly. Let θj
n = θ̄j + n−1ηj . For notational simplicity, we denote Ai

k(θ̄j) by
Xk, Ai

k(θj
n) by Xk,n, Φi

i`(θ̄
j |ui, ti) by Y`, and Φi

i`(θ
j
n|ui, ti) by Y`,n.

By the definition of implementation, we already know X1 ⊆ Y+. We use a proof by contradiction.
Assume there is x ∈ X1 \ Y+. Since x is in an open set Θ \ Y+, which is a subset of X2, there is α > 0
and ε1 > 0 such that U(ε1;x + αηi) ⊆ Θ \ X2.

Step 1: There is N > 0 such that if n > N then xn = x + n−1ηi ∈ Y+,n.

Notice that X1,n \ X2,n ⊆ Y+,n. By the monotonicity of (A1, A2), x + n−1 is in X1,n \ X2,n and
thus in Y+,n if it is in Θi◦.

Step 2: There is a sequence (x̂n)∞n=0 ∈
∏∞

n=0 Y−,n.

Otherwise, there is ε2 > 0 and a subsequence (Y+,n(m))∞m=0 of (Y+,n)∞n=0 such that U(ε2; x̂) ⊆
Y+,n(m) (⊆ X1,n(m)). By the closedness of A1, U(ε2; x̂) ⊆ X1, and thus U(mini εi; x̂) ⊆ X1 ∩ X2. This
contradicts the assumption that the interior of X1 ∩ X2 = Bi(θ̄j) is empty.

Step 3: Contradiction.

By Step 1, µi[ui](xn, θj
n; ti(θj

n)) ≥ 0, and, by Step 2, µi[ui](x̂n, θj
n; ti(θj

n)) ≤ 0. Therefore we obtain

µi[ui](xn, θj
n; ti(θj

n)) − µi[ui](x̂n, θj
n; ti(θj

n)) ≥ 0. (37)

17The function (x1, x2) 7→ θ̂1 + x1η
1 + x2ζ

1 is a bijection since η1 and ζ1 are linearly independent.
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Notice that ti(θj
n) must be in M2. Taking a converging subsequence of (ti(θj

n))∞n=0, we obtain

µi[ui](x, θ̄j ; τ̃ i) − µi[ui](x + αηi, θ̄j ; τ̃ i) ≥ 0 (38)

by the continuity of µi[ui], where τ̃ i is the limit of the subsequence. This contradicts the definition of
U i.

Now we prove the second part. Take arbitrarily ε > 0 and a sequence (θj
n)∞n=0 of Θj◦ converging to

θ̄j . Again, for notational simplicity, we denote Ai
h(θ̄j) by Sh and Ai

k(θj
n) by Sh,n. Put ` 6= k.

Step 1: There is no sequence (xn)∞n=0 ∈
∏∞

n=0 Sk,n such that minx∈Sk
||xn − x|| ≥ ε for each n.

We use a proof by contradiction. Assume such a sequence exists. Since (xn)∞n=0 is a sequence of a
compact space Θi, there is its converging subsequence (xn(m))∞m=0. Denote its limit by x̂. Then x̂ must
not be in Sk by the construction of (xn)∞n=0, but we can obtain x̂ ∈ Sk by the closedness of Ak. This
is a contradiction.

Step 2: For all x ∈ S◦, it is impossible that, for all N > 0, there is n > N such that U(ε;x) ⊆ Θ \ Sn.

Again we use a proof by contradiction. Assume we can take a subsequence (Sn′(m))∞m=0 of (Sn)∞n=0

satisfying U(ε;x) ⊆ Θ \ Sk,n′(m) for each m. This implies that each S`,n′(m) contains U(ε;x) as its
subset. Since A` is closed, U(ε;x) is also forced to be a subset of S`. Therefore a nonempty open set
U(ε;x) ∩ S◦

k is a subset of Sk ∩ S` = Bi(θ̄j). This contradicts the assumption Bi(θ̄j)◦ = ∅.

Step 3: Convergence.

By Step 1, limn→∞ maxx′∈Sk,n
minx∈Sk

||x − x′|| ≤ ε.
We explain maxx∈Sk

minx′∈Sk,n
||x − x′|| ≤ ε for sufficiently large n. Sk is a union of three sets:

Sk \ S`, (Sk ∩ S`) \ ∂Θi, and ∂Θi. Since Sk \ S` is an open set, we can apply Step 2 to each x ∈ S \ T .
As a corollary of the first statement of this lemma, each point of (Sk ∩ S`) \ ∂Θi can be approximated
by some sequence of Sk \ S`. Thus, for each x ∈ Sk \ ∂Θi, minx′∈Sk,n

||x − x′|| ≤ ε. For x ∈ ∂Θi,
minx′∈Sk,n

||x− x′|| = 0 since x is also in Sn. Therefore we obtain maxx∈Sk
minx′∈Sk,n

||x− x′|| ≤ ε for
sufficiently large n.

Because ε is taken arbitrary, both maxx′∈Sk,n
minx∈Sk

||x − x′|| and
maxx∈Sk

minx′∈Sk,n
||x − x′|| must converge to 0, as n goes to infinity. This is the definition of conver-

gence of Sk,n to Sk.

D.1 Hyperplain Segments and Hyperplain Complexes

We define a (d-dimensional) hyperplain segment as a closed convex subset H of some d-dimensional
hyperplain H ′ such that, under the relative topology of H ′, the interior of H is nonempty. We let Hn

seg

denote the set of d-dimensional hyperplain segments. For each d ∈ N \ {0} and H ∈ Hd
seg, we define

o(H) as the set of x ∈ Rd+1 orthogonal to H, that is, x satisfying x · y = x · y′ for all y, y′ ∈ H.
We call a finite set {H1, . . . ,HK} of Hd

seg a (d-dimensional) hyperplain complex if there is no other
{H ′

1, . . . ,H
′
L} such that

⋃K
k=1 Hk =

⋃L
`=1 H ′

` and L < K. We denote by Hd
cx the set of hyperplain

complexes. For each unit vector η ∈ Rd+1 and subset X ⊆ Rd+1 with d ∈ {1, 2, . . .}, we define Hd
cx(η,X)

as the set of C ∈ Hd
cx such that (

⋃
C)∩{αη+x | α ∈ R} is the empty set or a singleton for all x ∈ Rd+1.

Let Hd
un(η,X) = {

⋃
C | C ∈ Hd

cx(η,X)}. For S ∈ Hd
un(η,X), define c(S) = {C ∈ Hd

cx(η,X) |
⋃

C = S}
and N(S) = |C|, where C ∈ S.

Hereafter we consider a compact convex subset X of Rd+1 with nonempty interior.

Lemma 13. Assume that a sequence (St)∞t=0 of Hun(η,X) converges to S ∈ Hun(η,X), that N(St) ≤
N(S) for all t, and that O = {o(H) | ∃S′ ∈ {S, S0, S1, . . .}, H ∈ C ∈ c(S′)} is a finite set. Let C ∈ c(S).
Then the following statements are satisfied:
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Figure 4:

1. for each H ∈ C, there is a sequence (Ct,Ht)∞t=0 such that

a. Ht ∈ Ct ∈ c(St) for each t,

b. (Ht)∞t=0 converges to H, and

c. there is t′ > 0 such that, for all t > t′, o(H) = o(Ht);

2. there is t′ > 0 such that, for all t > t′, N(S) = N(St).

The next lemma is used to prove Lemma 13. For ε > 0, we say that S ⊆ Rd is ε-thick if S contains
some ε-open ball as a subset. For any S ⊆ Rd, we say that S is 0-thick. We define r(S) = sup{r ≥ 0 |
S is r-thick } for each S ⊆ Rd.

Lemma 14. Let S ⊆ Rd be r-thick for r > 0. Assume that there is some disjoint open convex sets
A1, . . . , AK ⊆ S such that the union of their closure is S. Then Ak is (2−(K+1)r)-thick for some
k ∈ {1, . . . ,K}.

Proof. We use mathematical induction with respect to K. The proof is obvious when K = 1.
Now we give the proof for the case K = N̄ > 1 given that this lemma is true for K = K̄ − 1. By

the separating hyperplain theorem, we can take a hyperplain {x ∈ Rd | α>x = β} such that A1 ⊆ T1

and A2 ⊆ T2, where T1 = {x ∈ Rd | α>x > β} and T2 = {x ∈ Rd | α>x < β}. We can immediately see
that S ∩T1 or S ∩T2 is (r/2)-thick. If S ∩Ti is (r/2)-thick, we can say that at least one of the elements
of {Ai ∩ Ti, A3 ∩ Ti, . . . , AK ∩ Ti} is (2−(K+1)r)-thick by the assumption of mathematical induction.
When A` ∩ Ti is (2−(K+1)r)-thick, A` is also (2−(K+1)r)-thick.

Let ρ be the Hausdorff metric.

Proof of Lemma 13. The second statement is an easy corollary of the first. Thus we prove the first
only.

We name elements of C by C = {H1,H2, . . . ,HK}. Let Y = η⊥. We identify R×Y and Rd+1 using
a function ϕ : R × Y → Rd+1 defined as ϕ(α, y) = αη + y. For each k ∈ {1, . . . ,K}, we denote by Yk

the set of y ∈ Y satisfying (α, y) ∈ Hk with some α ∈ R, and (R× Yk)∩X by Xk. Then X◦
k ∩X◦

` = ∅
for k 6= ` by the definition of Hcx(η,X). Denote by Yk(a) the set of y ∈ Yk such that U(a; y) ⊆ Yk, and
Xk(a) be (R × Yk(a)) ∩ X. Let Y (o) =

⋃
k:o(Hk)=o Yk and Y (o; a) =

⋃
k:o(Hk)=o Yk(a).

Define a positive number d = mino1,o2∈O, o1 6=o2 ρ(o⊥1 ∩ K, o⊥2 ∩ K), where K = U(1; 0). For each
t and o ∈ O, define Ht(o) =

⋃
{H | o(H) = o, H ∈ Ct ∈ c(St)}. For each subset X ′ ⊆ X, we let

Ht(o|X ′) = Ht(o) ∩ X ′. We let Y t(o|X ′) = projY Ht(o|X ′) and rt(o|X ′) = r(Y t(o|X ′)).
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Consider t satisfying ρ(St, S) < ε.

Step 1: rt(o|Xk(2ε)) < ε/d for all k and o 6= o(Hk).

rt(o|Xk(2ε)) must be strictly smaller than ε/d, since

ε > max
x∈Ht(o|Xk(2ε))

min
x′∈Hk

||x − x′|| ≥ drt(o|Xk(2ε)). (39)

Step 2: Yk(2ε)\Y t(o(Hk)|Yk(2ε)) is at most Aε-thick if ε is sufficiently close to 0, where A > 0 is some
constant.

Let Z = Yk(2ε) \ Y t(o(Hk)|Yk(2ε)). Applying the separating hyperplain theorem, we can divide Z
into (Zo)o 6=o(Hk) such that each Zo is a finite union of closed convex sets and Y t(o|Yk(2ε)) ⊆ Zo for each
o 6= o(Hk). By Lemma 14, there is o∗ 6= o(Hk) such that r(Zo∗) ≥ 2−|O|r(Z). By Step 1, Y t(o∗|Yk(2ε))
is at most (ε/d)-thick, so Zo∗ \ Y t(o∗|Yk(2ε)) is at least (max{(r(Zo∗)/2) − (ε/d), 0})-thick. Thus

ε > max
x∈(R×Z)∩X

min
x′∈St

||x − x′|| ≥ max
{

r(Z)
2|O|+2

− ε

2d
, 0

}
. (40)

Thus we obtain r(Z) < {2|O|+2(1 + (1/2d))}ε, when ε is sufficiently small.

By Step 1 and 2, Y t(o) must converge to Y (o) as ε goes to 0. Ht(o) is also forced to converge to
H(o), since otherwise ρ(St, S) does not converge to 0. Construction of (Ct,Ht)∞t=0 is now easy and left
to readers.

D.2 Dense Existence of Thin Bi(θj)

For each (A1, A2) ∈ § and ε > 0, we define Θi
ε(B) as the set of θi ∈ Θi◦ such that Bj(θi) is at least

ε-thick. We omit the argument B when it is obvious.

Lemma 15. Θi
ε(B) is closed under the relative topology of Θi◦ for all (A1, A2) ∈ §.

Proof. Consider a sequence {θi
n}∞n=0 of Θi

ε converging to θi
∞. For each n, let Kj

n be an ε-closed ball of
Bj(θi

n). Since Θj is compact, there is a subsequence of {Kj
n}∞n=0 converging to some ε-closed ball Kj

∞.
Because of the closedness of B, we obtain Kj

∞ ⊆ Bj(θi
∞) and this implies θi

∞ ∈ Θi
ε.

Lemma 16. Let θ̄i ∈ Θi◦ and `i = {θ̄i + αηi | α ∈ R} for each i ∈ {1, 2}. Then for all (A1, A2) ∈ S∗,

1. for all ε > 0, #(Θi
ε(B(f)) ∩ `i) < ∞, and

2. Θi
thin(B(f)) ∩ `i is dense in `i.

Proof. By monotonicity of (A1, A2), X j = {Bj(θi)◦ | θi ∈ `i} consists of disjoint sets. Since the
Lebesgue measure of

⋃
Xj∈X j Xj ⊆ Θj is finite, #(Θi

ε ∩ `i) must be also finite. The second statement
is because Θi

thin = Θi◦ \
⋃∞

n=1 Θi
1/n.

D.3 Local Non-Constancy

For each set S2 ⊆ Θ2 satisfying Ŝ2 = S2 \ ∂Θ2 ∈ Hun(η2,Θ2), we define N ′(S2) = N(Ŝ2). We say
a mapping f from topological space X to some set Y is locally constant at x ∈ X if f(U) is a singleton
for some open neighborhood U of x.
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Lemma 17. Assume (u, t) ∈ L[i] implements (A1, A2) ∈ S∗. Let N̄ = maxθ1∈Θ1◦ N ′(B2(θ1)). If
(A1, A2) ∈ S∗[i] then there is θ̂1 ∈ Θ1◦ such that N ′(B2(θ1)) = N̄ and B2 is not locally constant at θ̂1.

Proof. We use the relative topology of Θ1◦. Let S be the set of θ1 ∈ Θ1◦ such that N ′(B2(θ1)) = N̄ ,
and T be the set of θ1 ∈ Θ1◦ at which B2 is locally constant. Applying Lemma 12, we also obtain the
fact that S is closed.

Assume that S ⊆ T . Then S must be open, by the definition of local constancy. Since agent 2 is
not a dictator and Θi◦ is a connected space, S must be the empty set. This is a contradiction.

D.4 Proof of Lemma 6

Define B̂2(θ1) = B2(θ1) \ ∂Θ2. Then B̂2(θ1) ∈ Hun(η2,Θ2) ∪ {∅} for each θ1 ∈ Θ1◦.

Step 1: Construction of a mapping F .

Take θ̂1 of Lemma 6. Using Lemmata 12 and 13, there are U1 which is an open neighborhood of
θ̂1, and mapping Hk : U1 → Hseg for each k ∈ {1, . . . ,K} such that

1. Hk is continuous,

2. o(Hk(θ1)) = o(Hk(θ1′)) for all θ1, θ1′ ∈ U1, and

3. B̂2(θ1) = {H1(θ1), . . . ,HK(θ1)} for each θ1 ∈ U1.

Since at θ̂1 B̂2 is not locally constant, for some k, Hk is not locally constant at θ̂1 either. Taking
sufficiently small open ball θ̂1 ∈ V 1 ⊆ Θ1 and closed ball K2 ⊆ Θ2, we can construct a non-constant
mapping F : V 1 → C(K2) such that

1. F (θ1) = Hk(θ1) ∩ K2 = B2(θ1) ∩ K2, and

2. F (θ1) is represented as an intersection of K2 and some hyperplain (not hyperplain segment),

for all θ1 ∈ V 1.

Step 2: B1(θ2) ∩ V 1 = B1(θ2′) ∩ V 1 for all θ1 ∈ V 1 and θ2, θ2′ ∈ F (θ1).

Denote F (θ1) by S2, and take an arbitrary θ1 ∈ B1(θ2) ∩ V 1. Then B2(θ1) must contain θ2, and
thus B2(θ1) must be S2. Since θ2′ ∈ S2, θ2′ ∈ B2(θ1). This implies (θ1, θ2′) ∈ B and θ1 ∈ B1(θ2′).
Therefore we obtain B1(θ2) ∩ V 1 ⊆ B1(θ2′) ∩ V 1, and the opposite inclusion is also proved.

Step 3: Contradiction.

By Lemma 16, there is θ̄2 ∈
⋃

θ1∈V 1 F (θ1) such that B1(θ̄2)◦ = ∅. Let T 2 be the unique element of
{F (θ1) | θ1 ∈ V 1} which contains θ̄2. Due to Step 2, B1(·) is constant within T 2. Lemma 12 requires
that Φ1

1±(·|u1, t1) also must be constant, but the cross-term µ1
C makes it impossible.

Appendix E Proof of Lemma 7

Let M∗ = M
2 \ {(−∞,−∞)}. Define Φi

+,Φi
− : U i × M∗ × Θj → C(Θi) by

Φi
+(ui,m; θ) =

{
θi ∈ Θi

∣∣ µi[ui](θ;m) ≥ 0
}
∪ ∂Θi (41)

Φi
−(ui,m; θ) =

{
θi ∈ Θi

∣∣ µi[ui](θ;m) ≤ 0
}
∪ ∂Θi (42)

Lemma 18. Given θj ∈ Θj, Φi
+(·; θj) and Φi

−(·; θj) are continuous.

24



Proof. Take arbitrary (ui, m) ∈ U i × M∗. Here we prove the continuity of Φi
+(·; θj) at (ui,m). The

continuity of Φi
−(·; θj) is similarly proved. If mk = −∞ for some k ∈ {1, 2} then the continuity is

trivial. Assume m ∈ M2.
Take arbitrary ε > 0 and let S = Φi

+(ui,m; θi). Since S is compact, there are a finite number of
(ε/2)-balls U1, . . . , UL ⊆ Θi which cover S and each of which intersects with S. Since there is no local
maxima or minima in every neighborhood of every internal points of Θi, there are α`, β` ∈ U` such that

µi(α`, θ
j ;m) > 0 > µi(β`, θ

j ;m). (43)

Let T = Θi \
⋃L

`=1 U` and T ′ = T ∪ {α1, β1, . . . , αL, βL}. Since T ′ is compact, there is

ξ = min
θ̃i∈T ′

∣∣µi(θ̃i, θj ;m)
∣∣. (44)

Note ξ > 0 because |µi(·, θi;m)| > 0 within T ′.
µi is absolutely continuous since its domain Θ × M2 is compact. Therefore, there is δ > 0 such

that, for all x, y ∈ Θ × M2, if ‖x − y‖ < δ then |µi(x) − µi(y)| < ξ/2. Define an open set V by
V = {(ũi, m̃) ∈ U i × M2 | d∞(ui, ũi) < ξ/4, ‖m − m̃‖ < δ}.

We prove that S and Ŝ = Φi
+(ûi, m̂; θj) are ε-close for all (ûi, m̂) ∈ V . First, we see that each θi ∈ S

has ε-close θ̂i ∈ Ŝ. Choose ` so as to satisfy θi ∈ U`, and let µ̂i denote µi[ûi]. Then µ̂i(α`, θ
j ; m̂) > 0

because

|µi(α`, θ
j ;m) − µ̂i(α`, θ

j ; m̂)|
≤ |µi(α`, θ

j ;m) − µ̂i(α`, θ
j ;m)| + |µ̂i(α`, θ

j ;m) − µ̂i(α`, θ
j ; m̂)| < ξ. (45)

Similarly we obtain µ̂i(β`, θ
j ; m̂) < 0. Thus by the intermediate value theorem, there is some γ` ∈ U`

such that µ̂i(γ`, θ
j ; m̂) = 0. Therefore γ` ∈ Ŝ, and γ` is ε-close to all elements of S ∩ U`.

Next, we see that each θ̂i ∈ Ŝ has ε-close θi ∈ S. Using the same technique as the previous
paragraph, we obtain µ̂i(θi

T , θ̂j ; m̂) < 0 for all θi
T ∈ T . Thus Ŝ and T are disjoint, and hence θ̂i must

be in some U`. Take θi from U` ∩ S. Then θ̂i and an element θi of S are ε-close.

Lemma 19. Let X be a metric space, and (Sn)∞n=0 and (Tn)∞n=0 be converging sequences of C(X). If
Sn ⊆ Tn for all n then limn→∞ Sn ⊆ limn→∞ Tn.

Proof. The proof is routine, and left to the reader.

Proof of Lemma 7. Take an arbitrary sequence {un}∞n=0 of U(S∗ ∩ T ). By definition of U(S∗ ∩ T ),
we can take tn ∈ T and (A1,n, A2,n) ∈ S∗ ∩ T such that (un, tn) implements (A1n, A2n) for each n.
Without loss of generality, we can assume that {(A1n, A2n)}∞n=0 is a converging sequence, since C(Θ)
is a compact metric space. We define t ∈ T by ti(a, θj) = lim infn→∞ tin(a, θj). We let u = limn→∞ un

and Ak = limn→∞ Ak,n for each k = 1, 2. Since T is closed, (A1, A2) ∈ T .

Step 1: (u, t) implements (A1, A2).

Take arbitrary i ∈ N and θj ∈ Θj and fix them. We denote tin(θj) by τ i
n and ti(θj) by τ i. We

can choose a subsequence (τ i
n(m))

∞
m=0 of (τ i

n)∞n=0 satisfying limm→∞ τ i
n(m) = τ i.18 Also, a sequence

(Ai
k,n(m)(θ

j))∞m=0 of C(Θi) has a converging subsequence (Ai
k,n(m(`))(θ

j))∞`=0 for each k = 1, 2 because
C(Θi) is a compact space19. By definition of implementation, Φi

i+(θj |ui
n, τ i

n) ⊆ Ai
1,n(θj) for each n.

18Of course, n(·) and m(·) are strictly increasing mappings from N to N.
19Ai

k,n(θ) is non-empty since ∂Θ ⊆ Ak,n.
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Using Lemmata 18 and 19, we obtain

Ai
1(θ

j) ⊇ lim
`→∞

Ai
1,n(m(`))(θ

j) (46)

⊇ lim
`→∞

Φi
i+(θj |ui

n(m(`)), τ
i
n(m(`))) (47)

= Φi
i+(θj |ui, τ i). (48)

Similarly we can show Φi
i−(θj |ui, τ i) ⊆ Ai

2(θj). Since i and θj is taken arbitrary, we obtain Φi+(ui, ti) ⊆
A1 and Φi−(ui, ti) ⊆ A2 for each i ∈ N .

Step 2: (A1, A2) ∈ Smono.

We use a proof by contradiction. Assume there are θ, θ′ ∈ Θ◦ and α1, α2 > 0 such that θ′ =
θ + (2α1η1, 2α2η2) and θ, θ′ ∈ B.

Since B is the limit of Bn, there are sequences (θn)∞n=0 and (θ′n)∞n=0 such that limn→∞ θn = θ,
limn→∞ θ′n = θ′ and θn, θ′n ∈ Bn. By θ, θ′ ∈ Θ◦, there is γ > 0 such that, for all i ∈ N , {xi ∈
Rdi | ||θi − xi|| < γ} and {xi ∈ Rdi | ||θi − xi|| < γ} are subsets of Θi◦. Let U i = {xi ∈ Rdi |
∃βi ∈ [0, 2αi], ||(θi + βiηi) − xi|| < γ}, and then Si is a subset of Θi◦ by the convexity of Θi. Let
ri = φi(αi;ui)/2 for each i. By Lemma 11, there is N ∈ N such that, for all n > N , φi(αi;ui

n) > ri.
Take a sufficiently small ε > 0 so as to be ε < γ/3 and ε < min{r1, r2}/5. Then there is n > N such
that ||θ − θn|| < ε and ||θ′ − θ′n|| < ε. Fix such n.

We prove that θ′n−(α1η1, α2η2) ∈ A1,n, which leads a contradiction to θ′n ∈ A2,n and (A1,n, A2,n) ∈
Smono. This is proved in the following steps. Notice that θ(1), . . . , θ(4) defined below are all in U1 ×U2

and thus in Θ◦.

Step 2.1: θ(1) = θn + (εη1, εη2) is in Φ1+(u1
n, t1n).

Notice that A1,n \ Bn ⊆ Φ1+(u1
n, t1n). Since (A1,n, A2,n) ∈ Smono and θn ∈ A1,n, we obtain θ(1) ∈

A1,n \ Bn ⊆ Φ1+(u1
n, t1n).

Step 2.2: θ(2) = (θ1′
n − (α1 + ε)η1, θ2

n + εη2) is in A1,n.

We obtain θ(2) ∈ Φ1+(u1
n, t1n) ⊆ A1,n since∥∥{

θ1′
n − (α1 + ε)η1

}
−

{
θ1

n + (α1 + ε)η1
}∥∥

≤
∥∥θ1′

n −
{
θ1

n + 2α1η1
}∥∥ + 2ε

∥∥η1
∥∥ (49)

< 4ε < φ1(α1, u1
n). (50)

Step 2.3: θ(3) = (θ1′
n − α1η1, θ2

n + 2εη2) is in Φ2+(u2
n, t2n).

This is proved by the same logic as Step 2.1.

Step 2.4: θ(4) = θ′n − (α1η1, α2η2) is in A1,n.

This is proved by the same logic as Step 2.2.

Appendix F On the Extended Debreu (1968)’s Topology

Let Pi be the set of i’s preferences represented by some ui ∈ U i
0. We denote P = P1 ×P2. For each

P ∈ Pi, we denote {(s, t; θ) ∈ M2 | (ak, s) P (θ) (a`, t)} by Pk`, and {(s, t) ∈ M2 | (ak, s) P (θ) (a`, t)}
by Pk`(θ), for each k, ` ∈ {1, 2}. Since Pkk and Pkk(θ) are common in Pi, we ignore them.

Proposition 5. In Pi, metrics d1 and d2 generate the same topology.
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Proof. Since d2 ≤ d1, d1 generates a finer topology than d2. We see that the converse is also true. Take
arbitrary P ∈ Pi and ε > 0, and let U = {P ′ ∈ Pi | d1(P, P ′) < ε}. Assume that for all δ > 0 there
is P(δ) ∈ Pi such that d2(P, P(δ)) < δ and d2(P, P(δ)) ≥ ε. Then we can take a sequence (Pn)∞n=0 such
that limn→∞ d2(P, Pn) = 0 but d1(P, Pn) ≥ ε for all n.

Case 1: There are infinitely many n such that min(sn,tn)∈P12(θn) ||(sn, tn) − (s, t)|| ≥ ε for some
(sn, tn; θn) ∈ P12,n.

In this case, by the compactness of M and Θ, we can take a converging subsequence (sn(m), tn(m); θn(m))∞m=0

satisfying the above property. Denote the limit by (s∞, t∞; θ∞). Since limn→∞ d2(P, Pn) = 0, (s∞, t∞; θ∞)
must be in P12,n. This implies µi[ui](θ∞; s∞, t∞) ≥ 0, where ui is a utility function representations
of P respectively. By Assumption 1, there are (s′, t′) and r > 0 such that ||(s′, t′) − (s∞, t∞)|| < ε/2
and {(s′, t′; θ) | ||θ − θ∞|| < r} ⊆ {(s, t; θ) | µi[ui](θ; s, t) > 0} ⊆ P12. Thus for sufficiently large n,
(s′, t′) ∈ P12(θn) and (sn, tn) ∈ P (θn) and ||(s′, t′) − (sn, tn)|| < ε. This is a contradiction.

Case 2: There are infinitely many n such that min(s,t)∈P12,n(θn) ||(sn, tn)−(s, t)|| ≥ ε for some (sn, tn; θn) ∈
P12.

As in Case 1, using Assumption 1 we obtain an contradiction. Details are left to readers.

Due to the next lemma, we know that approximation in utility functions is also approximation in
preferences. Let P (ui) be the preference induced by ui.

Lemma 20. Let (ui
n)∞n=0 be a sequence of U i

0. If limn→∞ ui
n = ui then limn→∞ P (ui

n) = P (ui).

Proof. We can prove this lemma by techniques used in the proof of Lemma 18. Details are left to
readers.

Finally, all we need is the following lemma. The rest of the argument does not require any modifi-
cations. To prove this lemma, we can use quite similar techniques used in the original lemmata.

Lemma 21. χ̃i
± and Φi± are continuous.

References

[1] Barbera, S. (1983): ”Strategy-Proofness and Pivotal Voters: A Direct Proof of the Gibbard-
Satterthwaite Theorem,” International Economic Review, vol. 24(2), pages 413-17.

[2] Bergemann, D. and S. Morris (2005):“Robust Mechanism Design,” Econometrica, 73(6), 1771-1813.
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