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Abstract

This paper presents a search-theoretic general equilibrium model where the size and

number of intermediaries in the market are determined endogenously. I show how mid-

dlemen can emerge endogenously to intermediate between ex ante homogeneous buyers

and sellers in the presence of coordination frictions. Middlemen compete against each

other and the buyer-seller private market by setting price, and provide a high matching

service by holding an inventory. Entry of middlemen, however, increases the amount of

coordination frictions and reduces the amount of inventory each individual middleman

holds. The resulting high bargaining power of middlemen lowers buyers’ welfare. The

frictionless Warlasian outcome emerges in the limit where a single middleman holds an

excess inventory to wipe off buyer-seller direct trades. Remarkably, the asymptotic ef-

ficiency is attained, if and only if, the entry cost is set prohibitively high to induce a

single middleman.
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1 Introduction

How do markets clear? Who creates the market and how is such a task accomplished? While the

former question has been at the center of microeconomic thought, only recently has attention been

given to the latter. Rubinstein andWolinsky (1987) emphasize it is middlemen who fill a gap between

production and consumption, and Spulber (1996) proposes they can clear markets. In addition to

setting price, intermediaries often employ other market-clearing instruments. In particular, when

there is a trade imbalance, they provide a buffer stock that offers their customers liquidity by holding

inventories and allocate scarce resources by rationing.1

The aim of this paper is to present a unified framework that integrates these key functions

of intermediaries. When buyers and sellers face trading risks arising from coordination frictions,

middlemen emerge to (1) create markets to link producers and consumers, (2) set prices that allocate

customers in such a way that markets clear, and (3) hold inventories to smooth trade imbalances

and thereby improve the availability of goods for those who desire more immediate service.

Consider the following directed search framework where each period consists of two subperiods,

day and night, and where a market is open for each sub-period.2 Buyers wish to consume a unit of a

homogeneous good, e.g. a potato, every day. Sellers produce one unit of potato every night. Buyers

visit sellers in each period during the day but they cannot coordinate among each other over which

seller to visit. Since more buyers may happen to arrive at a given location than the producer can

accommodate, buyers face a risk of not purchasing. At the same time, because fewer buyers may

show up at a location than the seller there can accommodate, sellers face the risk of not clearing

out. To overcome these frictions, middlemen can invest in a technology to store multiple units of

potatoes as an inventory in a warehouse. At midnight, when buyers are sleeping, they purchase

potatoes from the farmers who have failed to make a sale during the day. In the next day market,

they stand ready for buyers who prefer more sure service to a low price.

In the day-market equilibrium, it is shown that buyers are indifferent between visiting any seller

who posts a low price and provides a low service rate, or any middleman who offers a high price

1Spulber (1999) suggests the importance of inventory holdings and customer-rationings in market-making (p.49).
Recent microscopic empirical studies resonant this observation. Aguirregabiria (2003) finds intermediaries’ inventory
accumulation is crucial to explain their pricing patterns, when customers tradeoff the price against the service rate.

2Directed matching models are developed in Peters (1991), Montogomery (1991), Accemoglu and Shimer (1999a,b),
and Burdett, Shi and Wright (2001). Likewise, the day-night trading-period structure is proposed in a mometary
model of Lagos and Wright (2003) and Rocheteau and Wright (2003).
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and a high service rate. Middlemen’s inventory holdings generate two opposing effects. On the one

hand, their capacity advantage creates a demand-stimulating effect to attract a large number of

buyers, which gives them a monopoly power for all units of thier goods. On the other hand, the

risk of holding unsold inventory weakends their bargaining position, when they divide the trading

surplus of each unit of the goods with buyers.

After the day-market closes, middlemen restock their inventory at night. I assume that the

steady-state level of inventory that each middleman holds is determined to clear the night-market,

which is frictionless, each period.3 As a result, middlemen’s inventory holdings smooth out trade

imbalances due to stochastic rationings in the day-market - all goods produced each period are

distributed to buyers either at today’s day-market or at tomorrow’s day-market through middlemen.

As entry occurs and more middlemen attempt to operate in the market, each middleman restocks

a smaller amount of inventory at night. The resulting larger number of smaller-sized intermediaries

imply that each middleman attracts only few buyers from whom it extracts a large amount of trading

surplus per unit of inventory. Likewise, as the number of middlemen decreases, the middlemen’

monopoly power gets weakened due to a reduction in their bargaining power.

In the limit, a single middleman provides a frictionless market to equate demand and supply,

which could be termed as a vertical centralization phenomenon. The market-clearing process can

manifest itself through intermediated trades. I will also show that a single middleman can achieve

the Walrasian outcome where the buyer-seller direct trades are completely unraveled. The presence

of the central trade coordinator, who can resolve matching frictions by itself, triggers the Bertrand

competition to maximize buyers’ welfare. The single middleman burdens itself with holding an

excess-inventory, acting as a benevolent market-organizer, to part with all of its bargaining power.

The vertical centralization result also implies that entry of intermediaries does not benefit buyers

although it stimulates competition in the day-market. An endogenous reduction in capacity, due

to its congestion effect on the night-market, offsets the competitive fringe generated by entry. This

contrasts sharply to Rust and Hall (2003), who argue that entry of intermediaries encourages com-

petition and increases the matching efficiency and welfare, with assuming that inventory holdings

3This generalizes the similar assumption imposed in Rust and Hall (2003), in which the demand by buyers and
the supply by sellers balance each period. In my model, the demand-supply balancing condition is stated in terms
of middlemen’s inventory restocking process at each night-market. The underlying assumption in my model is that
sellers do not have access to storage technology and hence the goods are valueless for them if they remain unsold.
The results presented here, however, do not depend on this assumption.
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are not allowed and hence without considering the scale effect of inventories.4

The social planner’s solution in my model is to utilize fully the single middleman’s matching

effectiveness. It implies that the entry of middlemen creates inefficiency by increasing the amount

of coordination frictions and costly access to storage technology. Remarkably, I found that the

efficient allocations can be decentralized at the single middleman equilibrium. The instruments that

complement the market clearing role of the price can be mapped into tangible economic activities

motivated by profit maximization - market makings, inventory holdings, and rationing.

Perhaps it would be interesting to relate my results to the ‘market-makers story’ prevailing in the

directed-matching literature proposed by Moen (1997) and Mortensen and Wright (2002).5 That

is, matching efficiency can be achieved in the presence of fictitious market-makers that come to

replace the Walrasian auctioneer. Given that the market-makers create submarkets and announce

the price for each submarket, the market tighness adjusts itself to internalize externalities. The

open question in the literature is: ‘who can be the market-makers in this story?’ (see Mortensen

and Wright, p.19). My result suggests once middlemen replace this exogenous third party as profit

maximizing market makers, the efficiency result breaks down endogenously. However, the asymptotic

efficiency result implies the ‘single’ middleman can accomplish this market-making task efficiently.

I propose intermediation is the optimal response to search externalities and matching frictions.

The paper is organized as follows. Section 2 studies the day-market equilibrium taking the size

and the number of middlemen as given. It turns out that the Hosios’ (1990) condition holds over

the sellers and middlemen’s day market prices, and hence the resultant allocation is efficient. This

implies that the setup of intermediation fits quite naturally into the competitive search equilibrium.

The size and number of middlemen are endogenized in section 3, where externalities arising from

the inventory restocking process and entry are characterized. Section 4 solves the planner’s problem

and shows the asymptotic efficiency result. I will discuss my contributions to the related literature

in Section 5, before concluding in Section 6. All the proofs are collected in the Appendix.

4One should note that although their model does not consider the inventory holdings, they point out its importance
in intermediation (p.400-401). I will discuss the difference between their model and mine in detail in Section 5.

5The efficiency result is obtained in the literature based on other formulations, for example, in Accemoglu and
Shimer (1999ab), Shi (2002ab), Shimer (2004) in labor economics, and Rochetau and Wright (2003) in monetary
economics. Some inefficiency results are obtained in Faig and Jerez (2003) with incomplete information, and in
Albrecht, Gautier, and Vroman (2003) with multiple applications.
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2 Day-market equilibrium

2.1 Environment

Consider an economy where there are three types of agents: buyers, sellers and middlemen that are

all continuum measured by one, S, and M respectively. s or m referrers to an agent whose name

is seller or middleman. Time is discrete and continues forever. Each period is divided into two

sub-periods - a day and a night. At the beginning of any day each seller has one unit of the good for

sale and each middleman has I units of goods. All buyers wish to purchase a unit of the good that

day. Before the day starts, each seller and middleman post a price they are willing to sell at. When

the day starts buyers observe all prices and decide which trader to visit. A buyer can visit only one

seller, or one middleman. Given the number of buyers who show up, the seller or middleman sell

the good, or goods, at the price stated. If there are more buyers than goods available, any buyer

purchases the good with equal probability. Buyers who purchase at price p, obtain period utility

1− p, whereas those who do not purchase obtain period utility 0. Anyone who sells a k units of the

good at price p obtains profit kp per period. The period is then repeated infinitely and all discount

the future at rate r. How the sellers and middlemen obtain the goods, they supply in each day

market will be discussed in the following section.

I will construct a symmetric steady-state equilibrium in the day market that has the following

characteristics: (a) All buyers use identical mixed strategies. They visit some seller with probability

Sxs and visit some middleman with probability Mxm, assigning an equal probability to each seller

and to each middleman. They satisfy the adding-up restriction, Mxm+Sxs = 1; (b) All middlemen

offer the identical price, pm, expecting to attract the identical number of buyers xm, and all sellers

offer the identical price, ps, expecting the identical number of buyers xs; (c) Sellers’ and middlemen’s

price postings are optimal given others’ price offers and buyers’ visiting strategies, and buyers’

visiting strategies are optimal given the prices posted by sellers and middlemen and all other buyers’

visiting strategies; (d) Agents’ expectations are rational.

2.2 Buyers’ directed search

The underlying matching environment is described as follows. Suppose a consumer visits a particular

seller and ns other consumers also visit it that period. In this case the buyer purchases the good
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with probability 1/(ns+1). Suppose now the consumer visits a middleman and nm others also visit

it. If nm ≥ I , then the consumer purchases from this middleman with probability I/(nm + 1).

Otherwise, the buyer obtains the good with probability one.

Denote x(i) to represent an expected number of buyers who show up at a seller (if i = s) or at a

middleman (if i = m), who posts a price p(i) (arbitrary). The following lemma shows the probability

that a buyer is served when choosing p(i), denoted as ηi = ηi(x(i)), can be expressed in terms of x(i)

and the number of capacity.

Lemma 1 Given x(s), x(m), the probabilities of obtaining a good from the respective seller and mid-
dleman are:

ηm =
Γ
(
I, x(m)

)
Γ (I)

+
I

x(m)

(
1− Γ

(
I + 1, x(m)

)
Γ (I + 1)

)

ηs =
1− e−x(s)

x(s)
,

where Γ (I) = (I − 1)! =
∫∞
0

tI−1e−tdt and Γ (I, x) =
∫∞

x
tI−1e−tdt. ηi is continuously twice

differentiable and strictly decreasing in xi with ηi(0) = 1 and ηi(∞) = 0. ηs = ηm when I = 1.

The matching function ηm captures the stochastic rationing environment with multiple capacity.

The key is that the service probability depends on the possibility of whether a stockout occuring

or not.6 If a smaller number of buyers than capacity visit the given middleman, any buyer gets

a good with probability one from that middleman. This happens with probability Γ(I,x(m))
Γ(I) , as

appearing in the first term.7 The probability that more than or equal to I number of buyers appear

is 1− Γ(I+1,x(m))
Γ(I+1) , which will be referred to the stockout probability. In this case, I number of buyers

are chosen randomly from among those at hand, and therefore any buyer would be served with

probability I
x(m) , as given in the second term. Clearly, the more an expected number of buyers

appearing at a middleman, the smaller the probability that a buyer gets served by visiting the

6To the best of my knowledge, it is the first time that the urn-ball matching function is generalized to allow for any
number of ‘urns’ (capacity). Burdett, Shi, and Wright (2001) and Shi (2002) study a case with I = 2. An economic
application of urn-ball models dates back to Butters (1977). Albrecht, Gautier, Tan and Vroman (2003) extends the
standard urn-ball formula in the opposite direction to my generalization, by allowing for multiple ‘balls’ (applications)
in a labor market context.

7In the standard urn-ball matching model with single urn, the probability of this event is binomial under finite
agents and is approximated by a Poisson point process under continuum agents. In my situation with multiple
capacities under contiuum agents, it follows from a Poisson counting process. For reference to the Poisson counting
process, see Taylor and Karlin (1998) p.185-189, for example. Γ(I, x)/Γ(I) is a continuously differentiable function
with respect to x ∈ [0,∞] ⊆ R+ and I ∈ R+ (See Erdelyl, Magnus, Oberhettinger, and Tricomi (1953)).
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middleman. Hence, ηm is strictly decreasing in x(m). ηs can be derived by applying I = 1 to ηm, a

standard urn-ball matching function.

In a day-market equilibrium, buyers adjust their visiting strategies so that they are indifferent

between visiting any sellers and any middlemen, given the service probability stated above. Denote

V b to represent an discounted lifetime utility that buyers expect to obtain by choosing the best offer

every period. A supplier i believes its price offer p(i) would attract on average x(i) number of buyers.

As supplier i is infinitesimal, however, its price offer cannot affect this value. The equilibrium pines

down V b where all agents’ expectations become self-fulfilling, as will be described later.

Given their belief and the service probability, x(i) is determined to reflect buyers’ mixing strate-

gies each period. If a supplier i attracts a positive number of buyers at some period, then it implies

buyers must be indifferent between choosing its price p(i) and taking rV b at that period. That is,

0 < x(i) < ∞ implies:

rV b = ηi(x(i))(1− p(i)).

If a buyer chooses p(i), it must reflect the buyer’s expectation that the supplier i would attract x(i)

number of buyers on average, and the good would be obtained with probability 0 < ηi(x(i)) < 1.

At the same time, all other buyers have the same expectation when visiting i. Alternatively, if a

supplier i attracts no consumers, then it implies its price is set so high that all buyers are better off

by visiting the best alternative supplier, that is, rV b > ηi(0)(1− pi) = 1 − pi. In sum, the buyers’

mixing strategies imply x(i) must satisfy the following each period for given values of V b.8

x(i) =

{
0 if p(i) > 1− rV b

x(i)(p(i)) ∈ (0,∞) if p(i) = 1− rV b

ηi(·) .
(1)

I will refer to x(i) determined in equation (1) as an expected demand, since all anticipate that

x(i) number of consumers are willing to purchase at a price p(i). It is downward sloping and reflects

buyers’ tradeoffs between the price and the probability of service. Note that ex-ante optimality

describing an expect demand must be consistent with the ex-post gains to be realized in equilibrium.

8Given other buyers are taking the same strategy, xi = ∞ cannot satisfy any buyer’s optimality when 1 ≤ I < ∞,
since it leads to the zero service probability and hence to the zero expect utility.
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Such a consistency will be made clear when defining an equilibrium under the rational expectation.

At this stage, however, we only need to keep in mind that x(i) is conditioned on given values of V b.

2.3 Optimal pricing

Given the buyers’ directed search embodied in an expected demand x(i), supplier i chooses optimally

its price p(i).9 At the start of each period, any middleman owns I units of goods, and any seller

owns one unit of the good.

Denote Qi = Qi(x(i)) to be an expected number of goods that a supplier i sells per period, when

it posts a price p(i) and has an expect demand x(i). Supplier i’s expected profit is the product of

the expect number of sales times the price it posts:

Qip(i) = x(i)ηip(i) =
{
x(i)Γ(k, x

(i))
Γ(k)

+ k

(
1− Γ(k + 1, x(i))

Γ(k + 1)

)}
p(i),

where k = 1 describes a seller’s expect profit (i = s) and k = I describes a middleman’s (i = m).

If fewer buyers show up at supplier i than its capacity, which occurs with probability Γ(k,x(i))
Γ(k) , then

it would sell x(m) units. Otherwise, a stockout occurs and hence all the goods or the good it has

can be sold out without fail. Qm/I represents the probability that any middleman sells out all the

I units, while any seller expects to sell one unit of the good with probability QS = 1− e−x(s)
.

Taking V b as given, each supplier chooses simultaneously a price to maximize its expect profit

subject to the expected demand determined by (1). The downward sloping expect-demand imposes

price competition among suppliers through buyers’ directed search. Given its belief about others’

price offers and buyers’ search, a high price to induce zero demand is not optimal for any supplier.

By using the demand constraint (1) to eliminate the price, the expect profit is expressed as follows:

Qip(i) = x(i)ηi(x(i))
(
1− rV b

ηi(x(i))

)
.

The problem is converted to a choice of x(i). A straightforward algebra shows this is strictly concave

in x(i), hence the first order condition characterized the optimal price.

p(i) = ϕi ≡ −dηi/dx(i)

ηi/x(i)
=
1− Γ(k+1,x(i))

Γ(k+1)

Qi/k
(2)

9The price is assumed to be posted irrelevant of how many buyers show up. This assumption is, however, not
restrictive since as shown by Coles and Eeckhout (2003), even if the pricing strategy were extended to be contingent
on the ex post number of buyers, the equilibrium where the price does not depend on it still survives.
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Each period, the price is set equal to the elasticity of the matching function, denoted as ϕi = ϕi(x(i)).

The elasticity of the matching function plays a crucial role for the rest of the analysis. It is

the ratio of the stockout probability to the probability of sold-out. When the stockout probability

is high, this ratio is high and the price can be set high. Buyers accept a small fraction of trading

surplus when there is a high risk of rationing. Naturally, more buyers are expected to yield a larger

trading surplus to supplier i, as shown below.

Lemma 2 dϕi/dxi > 0; ϕi (0) = 0; ϕi (∞) = 1

Supplier i can extract all the trading surplus from buyers if a stockout or rationing occurs with

probability one, while it is willing to give up all the surplus if fewer buyers appear than capacity

with probability one.

2.4 Existence, uniqueness and characterization of the equilibrium

The optimality conditions for buyers, sellers and middlemen, described in the previous sections

taking values of V b as given, are now collected to construct a day-market equilibrium.

Definition 3 A day-market equilibrium in this economy is a set of expected lifetime payoffs {V j}
for j = b, s,m, and market outcomes {xi, pi}, for i = s,m, such that

1. The buyers’ directed search satisfies equation (1);

2. The sellers’ and middlemen’s price-postings are optimal, satisfying the first order conditions
(2) for i = s,m;

3. All agents employ the same strategy each period and the same type of agents take the same
strategy and earn the same expected lifetime utility or profit, V j for j = b, s,m.

4. Agents’ expectations are rational, that is, the expected demands are consistent with their equi-
librium realizations each period.

We are now ready to close the price-search loop by finding a fixed point of V b. The rational expec-

tation requires that buyers’ search should be directed towards the best offer, which yield the highest

expected utility rV b attainable over the equilibrium prices each period. Any buyers’ expectation
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that a price p(i) would attract a demand x(i) is self-fulfilling at xi = x(i)(pi) in equilibrium, where

no supplier i has an incentive to deviate from p(i) = pi. This implies:

rV b = ηs(xs)(1− ps) = ηm(xm)(1− pm).

Each period, any buyers must be indifferent between visiting any seller and any middleman in

equilibrium. The following theorem summarizes the main result of this section.

Theorem 4 An equilibrium exists and is unique, where {xi, pi, V j} for i = s,m and j = b, s,m are
the solution to the following equilibrium conditions:

1. Buyer Optimality: V b, xs, xm satisfy

rV b = ηs(xs) (1− ps) (3)

= ηm(xm) (1− pm) (4)

Mxm + Sxs = 1. (5)

2. Seller Optimality: V s, ps satisfy

rV s = Qs(xs)ps (6)

ps = ϕs(xs). (7)

3. Middleman Optimality: V m, pm satisfy

rV m = Qm(xm)pm (8)

pm = ϕm(xm). (9)

Further, the equilibrium implies V b, V s, V m > 0.

Buyers are indifferent between visiting any seller who offers a low price and low service and any

middleman who offers a high price and high service. Since the price are posted equal to the elasticity

of matching function, the equilibrium implies:

∂Qm(xm)
∂xm

=
∂Qs(xs)

∂xs
, (10)

that is, the marginal contributions of an additional expect demand, or search intensity, on the

matching rate is equated across all sellers and middlemen. As a result, the buyers’ indifference
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condition can be simplified and stated in terms of the service possibility that sellers and middlemen

offer. By using (7), (9), the prices in (3), (4) can be substituted out to yield:

Γ(I, xm)
Γ(I)

= e−xs

. (11)

It is clear from (11) that when I = 1 any seller and any middleman attracts the same number of

buyers xs = xm, by offering the same price ps = pm, providing the same service ηs = ηm, and

earning the same lifetime profit V s = V m.

Further, the equilibrium prices can be reinterpreted as a solution to the generalized Nash bar-

gaining problem. That is, pi satisfies:

pi = argmax(pi)φ
i (
1− pi

)1−φi

where supplier i’s bargaining power φi is equal to the elasticity of the matching function, φi =

ϕi(xi).10 The risk arising from stockout gives suppliers a barganing power over the terms of trade.

This implies with owning multiple units of inventory any middleman has a large barganing power

when dividing a trading surplus with buyers, while a seller is in a weak position when bargaining.

The day-market equilibrium is fully characterized by the market tightness. As the number of

middlemen increases, more goods are supplied into the day market. The intensified competition

among sellers and middlemen lowers prices, and hence buyers enjoy a high welfare with a large

number of succesful matches. See Figure 1.11 An increase in inventory each middleman owns has a

similar effect to increase buyers’ welfare and trading volume.

However, the size of middlemen effects not uniformly on competition and search. On one hand,

an increase in I creates a demand stimulating effect to give middlemen a monolpoy power, since

buyers are benefited from visiting middlemen more intensively and visiting sellers less intensively.

On the other hand, however, since a large amount of inventory has an effect of reducing the stockout

probability, middlemen can extract only a small fraction of trading surplus from buyers per unit of

inventory. An over-accumulation of inventory creates a risk of its remaining unsold which suppresses

the barganing power of middlemen. In the limit as I → ∞, the latter effect becomes dominant,
10This condition is called the Hosios condition in the matching literature. As will be described later, since the Hosios

condition holds endogenously in my model, the matching externalities are internalized in the day-market allocation.
11These effects are evident from the equilibrium requirement, Mxm(V b) + Sxs(V b) = 1: As shown in Step 2 and

3 in the proof of Theorem 6, xs(·) and xm(·) are strictly decreasing in V b. Therefore, an increase in M must lead to
a decrease in V b, and hence an increase in xs and xm.
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hence the day market approaches to be perfectly competitive: both sellers and middlemen provide

a full service ηs, ηm → 1, with marginal cost pricing ps, pm → 0. In this frictionless competitive

equilibrium, buyers-sellers direct trades are completely unravelled, where buyers obtain maximam

welfare V b → 1/r, while sellers and middlemen earn zero profits V s, V m → 0.

3 Size and number of middlemen

3.1 Inventory restocking process at night market

This section endogenizes the steady state level of middlemen’s inventory holding during the day. A

market is open at night, where middlemen can restock an inventory from the sellers who do not

make a sale during the day. Suppose now that any middlemen have a storage technology of the

goods. Then, in order to hold I units at the beginning of each day, middlemen need to restock

Qm(xm) units at each night. Hence, there is a measure MQm(xm) of aggregate demand at every

night market. Suppose further that any sellers can produce one unit of the good costlessly, but they

do not have the technology to store it. Then, since the remaining goods are valueless for the sellers,

there is a measure S(1−Qs(xs)) of aggregate supply available to middlemen at every night market.

How middlemen can obtain such a technology is discussed in the following section.

As already mentioned, matching frictions and competition are absent at night. I assume that

the inventory level each middleman owns is determined to balance aggregate demand and aggregate

supply at night market each period. To reflect the dependence of equilibria on I, let us change a

notation slightly to Qm = Qm(xm, I). The steady state inventory level satisfies:

MQm(xm, I) + SQs(xs) = S, (12)

where xS , xM are determined in Theorem 4. One could imagine this equation as the night-market

‘clearing’ condition, which determines the day-market inventory holding level. I will construct an

equilibrium, which is referred to as a middlemen equilibrium, onto the day-market equilibrium.12

Theorem 5 Assuming M < S < 1, a middlemen equilibrium exists and is unique, with the market
equilibrium described in Theorem 4 and 1 ≤ I < ∞ satisfying (12).

12The total number of ex post matches (i.e., the LHS of (12)) cannot exceed the measure of buyers. Hence, it is

necessary to assume S < 1. M defines the upper bound of the measure of middlemen, satisfying I = 1 at M = M in
equilibrium (see Step 2 in the proof of Theorem 5).
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The middlemen equilibrium has the following properties. The goods produced each period are all

distributed to buyers: a proportion, SQs(xs), at today’s day market and the remaining proportion,

S(1−Qs(xs)), at tomorrow’s day market through middlemen. This implies the total welfare is fixed

at the production level:

MV m + SV s + V b = S/r.

This restocking process is repeated every period in the steady state. The essence of the middlemen

equilibrium is that the middlemen’s inventory restocking at night interacts with the day-market

tightness through the night-market ‘clearing’ condition (12).

The day-market outcome reflects two different effects, namely, the day-market effect and the

night-market effect. The former works within days while the latter works to feedback from nights to

days. As described in the previous section, when the number of middlemen decreases, the day-market

effect is to decrease buyers’ welfare and total trading volumes. Since it implies the night-market gets

less congested, each middleman can restock a large amount of inventory. As a result, each middleman

provides a high matching service to buyers during the day, hence the night-market effect works to

direct buyers’ search more intensively towards middlemen and less intensively towards sellers. At

the same time, however, a reduced risk of stockout gives buyers a bargaining power, which mitigates

middlemen’s monopoly power arising from the demand stimulating effect of the small number of the

large-sized intermediation.

3.2 ‘Single’ middleman equilibrium

As the measure of middlemen approaches to the minimum, namely, to a ‘single’ middleman, the

single middleman collects all the goods remained during the day at night (I → ∞). The resulting

high matching service induces buyers to visit the middleman quite intensively (xm → ∞). However,

since the quantity that the single middleman restocks cannot exceed the amount available at night,

she cannot cover all buyers. This implies buyers are still benefited from visiting sellers with a positive

probability, and hence sellers attract some buyers (xs → xs′
> 0).13

13xs′ is a unique solution to 1/S = xs′ + e−xs′
. See the proof of Proposition 6.
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Proposition 6 At the limiting middleman equilibrium as M → 0, the ‘single’ middleman provides
a full service, owns balanced-inventory, and sells out all of her/his goods with probability one.

The night-market effect is dominant when intermediated market is organized by a single middleman

who provides frictionless trades (ηm → 1) to equate demand and supply, namely, a vertical central-

ization phenomenon. Note that although the matching probability approaches to one, there exists a

possibility of stockout. This allows the single middleman to extract a non-zero trading surplus from

buyers per unit of inventory. As a result, she obtains the maximum expect profit V m → ∞ and sells

out all inventory with probability one (Qm → I), by holding a balanced-inventory Mxm = MI and

posting a price, 0 < ps < pm < 1.

Since the short-side principle works in terms of the aggregate number of successful matches, a

particular interest lies in the limiting case where the economy is endowed with the same amount of

goods as population of buyers. The following proposition shows the Walrasian outcome emerges at

the single middleman equilibrium in the limit.

Proposition 7 In the limit as S → 1, the single middleman equilibrium approaches to a competitive
equilibrium. The complete unraveling of buyers-sellers trades occurs where the single middleman
holds an excess-inventory and buyers maximize welfare.

Although sellers are operating in the day-market with one unit of good for a sale, all buyers visit the

single middleman with probability one (Mxm → 1), anticipating that the single middleman would

serve them without fail (ηm → 1). Their expectations are self-fulfilling in equilibrium only when

the single middleman accumulates an excess-inventory (Mxm < MI) at night to accommodate all

buyers during the day (S → 1). As a result, the competitive threat driven by the presence of the

over-loaded supplier forces the market prices down to the competitive level (pS , pM → 0), with

zero expect profits. In the competitive equilibrium, all buyers buy a re-soled good from the single

middleman, who burdens herself with holding an extra amount of remaining goods every period

(I − Qm > 0). This gives buyers all bargaining power to maximize welfare. In other words, for

the single middleman to act as such a benevolent central trade-coordinator, she must come with an

extra initial ‘seed’ to intermediate between sellers and buyers.
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3.3 Entry

Intermediation requires an inventory-holding technology to store goods for future sales every period.

Suppose now that the storage technology can be obtained by paying a fixed cost c > 0. Imagine a

situation where middlemen buy a warehouse or a refrigerator before starting intermediation business.

The presence of rent induces entry of middlemen. Entry-exit occurs at night. After entering

into the market, middlemen must pay c each night when they use the storage technology. Following

the literature, I assume the number of middlemen active in the market is determined by free-entry

condition,14

V m = c/r, (13)

Middlemen entering into the market earn zero profits. Assuming the bounds on the entry cost implies

the existence of the equilibrium measure of middlemen.15 The following proposition is immediate

from the previous analysis, so the proof is omitted.

Theorem 8 Assuing c ≤ c < ∞, a middlemen equilibrium under free-entry exists, with 0 < M ≤ M

satisfying Theorem 5 and (13). Further, the single middleman equilibrium described in Proposition
6 emerges in the limit as c → ∞, with 0 < Mc < MI.

The night-market effect implies that entry reduces the middlemen’s inventory holdings. The exter-

nality generated from the large number of small-sized intermediation is eliminated only when the

entry cost is prohibitively high to induce the ‘single’ middleman.

4 Constrained Efficiency

An allocation is constrained efficient if it maximizes the aggregate number of trades subject to the

resources available in the economy and search restrictions - a standard definition in the competitive-

search literature (see Moen (1997) and Shimer (1996)). This section first shows that middlemen are

14The free-entry condition is the commonly used assumption in the literature as in Accemoglu and Shimer (1999ab)
and Moen (1997), in particular in Mortensen and Wright (2002) and Rocheteau and Wright (2003) in the context of
the ‘market makers’ story. Another formulation can be examined but yields exactly the same result. See Watanabe
(2004a).

15The lower bound, 0 < c, is defined to satisfy c = V m at M = M , yielding I = 1.
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efficiency enhancing but not optimal in terms of their size and number. Next, I proceed to show

that the ‘single’ middleman equilibrium characterized in Proposition 6, 8 is efficient, and that the

efficient allocation can induce the underlying equilibrium conditions.

For the purpose of identifying exactly the source of inefficiency, consider the situation as in the

day-market equilibrium where the size and the number of middlemen are exogenously given. The

planner chooses an allocation xs, xm > 0 to maximize the total number of matches, subject to (5).

The following proposition extends the constrained efficiency result obtained in the literature, which

provides a useful benchmark to evaluate the matching efficiency of intermediation.

Proposition 9 Given the size and the number of middlemen are exogenously fixed, the market-
equilibrium allocation described in Theorem 4 is constrained efficient.

The result is immediate from remembering that the Hosios’ condition holds over the day-market

prices.16 Focusing our attention on the day-market allocation, our setup of intermediation naturally

fits into the competitive search equilibrium. Search externalities arising from coordination frictions

are internalized at the market allocation, given the size and the number of middlemen fixed.17

However, the optimal solution drastically changes when the capacity and the number of mid-

dlemen are endogenized to include the night-market constraint. The planner’s problem is now

formalized as follows:

max
{xs,xm,I,M}

MQM (xm, I) + SQS(xs)−Mc

subject to (5), the non-negativity constraints for all the choice variables, and the night-market

constraint, (12). The last term in the planner’s objective function, Mc, is the cost incurred when

using middlemen or when accessing to the storage technology each period. Observe that the first

two terms, the aggregate number of matches, are fixed at the measure of sellers by the night-market

constraint. Although there are numerous possible combinations of {I,M} that satisfy (12), the
planner’s objective is to minimize Mc. The following proposition shows the optimum is in the limit,

where the planner collects the goods at the ‘single’ location intensively, to which buyers are assigned

intensively.

16The proof is available in Watanabe (2004b).
17See also Albrecht, Gautier, and Vroman (2003), Faig and Jerez (2003), Mortensen and Wright (2002), Shi (2002b),

Rocheteau and Wright (2003) which obtain the efficiency result under other circumstances.
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Proposition 10 The constrained efficient allocation under endogenous determination of the size
and the number of middlemen satisfies: I∗ → ∞, M∗ → 0, xm

∗ → ∞, and 0 ≤ xs
∗ ≤ xs′

. The
middlemen in equilibrium described in Theorem 5 and 8 are not efficient in terms of the size and
the number, and the resulting allocations are not efficient.

The ‘single’ middleman, who has the capacity advantage in serving goods, can minimize the

coordination frictions by holding infinitely many goods. Indeed, the ‘single’ middleman result applies

even when the night-market constraint is absent in the planner’s problem.18 The result here reflects

the fact that the planner’s objective of minimizing the storage cost is in line with the minimization

of coordination frictions. The equilibrium allocations are obviously not efficient.

Note that since more buyers exist than the total amount of goods available under (12) and S < 1,

the rationing problem is inevitable. However, the middleman’s capacity can be allowed for an excess-

demand (Mxm
∗ > MI∗), an excess-supply (Mxm

∗ < MI∗), or a balanced-stock (Mxm
∗ = MI∗),

because the buyers’ search optimality does not matter to the planner’s problem.

Proposition 11 The ‘single’ middleman equilibrium given in Proposition 6 and Theorem 8 is effi-
cient. Further, the underlying equilibrium conditions can be implemented at the efficient allocations.

The set of the optimum allocations includes the limiting equilibrium allocations. Hence, the latter is

mapped into the former. Further, the buyers’ equilibrium search condition, (11), can be implemented

at the social optimum, by assigning some buyers to sellers xs∗ = xs′
to induce the balanced-stock.

This leads to the other mapping from the optimum to the single middleman equilibrium allocations.

To conclude, the equilibrium cannot fully utilize their matching effectiveness due to the presence

of too many middlemen. They hold an inefficiently small amount of inventory and attract only few

buyers. The motive of entry is the presence of the rent, or the markups, that middlemen extract

from buyers during the day and from sellers at night. However, the asymptotic matching efficiency

is attained when the entry cost is set prohibitively high to induce the single middleman.

18Watanabe (2004b) proves even without the binding night-market constraint, the full utilization of intermediation
maximizes the total number of matches by centralizing the resource allocation at a single location.
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5 Discussion

Related literature - functions of middlemen The first of my contributions to the literature

is to integrate the key functions of intermediation into a unified framework, each of which has

been separately studied elsewhere - market makings, market clearing, inventory holdings. Second,

middlemen in my paper emerge without resorting to any environment of randomness in matching

technologies and ex ante heterogeneity, on which all the previous authors motivate the existence of

middlemen.

The closely related areas to my paper can be classified into two.19 The first strand studies the

middleman’s role of market making with frictions. Using a bilateral random matching and bargaining

model, Rubinstein and Wolinsky (1987) show that middlemen are active in equilibrium by assuming

that middlemen have a higher meeting rate than sellers and buyers.20 The middlemen’s advantage

in the matching technology centers the subsequent extension, but to be derived endogenously as a

result of their own investment decisions. Li (1998) considers an environment where the qualities of

goods are private information, and claims that middlemen are persons who invest in identifying the

quality of goods. Shevichenko (2004) provides an intriguing insight into the role of middlemen, by

developing a model where middlemen collect various types of goods to meet various types of agents’

tastes. His model and mine share the same mechanism where middlemen’s inventory holdings are

endogenously linked to their matching effectiveness. The demand stimulating effect, however, arises

from the risk of trades, without resource to ex-ante heterogeneity in my model. Another feature

in this strand is that since the terms of trades are determined by bilateral bargaining, competition

among middlemen is absent.

The middlemen’s role of clearing markets is explicitly considered with their price competition in

Spulber (1996), but still within a random meeting framework. Because middlemen are assumed to be

the only medium of exchange in his model, the subsequent extensions were made to incorporate an

additional avenue of exchange to study the conditions under which middlemen survive in equilibrium

- a monopolist market maker in Rust and Hall (2003) and buyer-seller direct trades in Hendershott

19There are many other important issues that I do not address in this paper. A non-exhaustive list includes Biglaiser
(1993), Caillaud and Jullien (2003), Galeotti and Moraga-Gonzalez (2004), Gehrig (1993), Johri and Leach (2002),
Masters (2004), Rochet and Tirole (2004), and Smith (2002).

20They also assume that only the middlemen are patient and live forever so that they can wait his own consumption.
This non-compatibility problem of agents’ time spans is also resolved in latter studies including my model.
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and Zhang (2003). However, the two important issues are not considered in this strand. First, since

the matching technology in this approach is exogenous, middlemen’s advantage in the high meeting

rate cannot be the issue. Second, since the demand-supply balance is imposed as a constraint each

period, there is no room for inventories to play any economic roles - see Rust and Hall, p.400-01.

Finally, the middlemen’s role of facilitating trades is similar to that of money. Both mitigate

matching frictions. Corbae, Temzelides and Wright (2003) show that the essential role of money is

robust to the agents’ directed-matching environment assuming the double coincidence of wants and

anonymity. My analysis provides a similar insight into a medium of exchange: middlemen survive

even when agents are ex ante homogeneous and have ability to choose with whom to match.21

Welfare/efficiency property of market-makers under frictions The foregoing analysis shows

the vertical centralization of resource allocation at a single location minimizes the risk of market

trades arising from coordination frictions. It provides buyers the right incentive to visit middlemen

intensively and generates a competitive fringe to limit their monopoly power. When the inventory

restocking process at the night-market is explicitly considered, entry of middlemen mitigates the de-

mand stimulating effect of inventory, as well as encourages price competition. The scale effect works

through an endogenous reduction in the amount of inventory each individual middleman holds. In

the competitive equilibrium, the scale effect dominates the competitive effect of entry.

Rust and Hall (2003) focus on the competition-stimulating effect of entry and show that entry of

‘middlemen’ or another intermediary called ‘market maker’ increases the amount of competition and

total volume of trades. However, Rust and Hall’s model differs from mine in the notion of search

frictions and centralization of trades. In their formulation, buyers and sellers can choose between

trading with market makers who run a centralized exchange with publicly observable prices, and

searching for a price through a trade with middlemen whose prices are private information. As

in the original model of Spulber (1996), trades with middlemen are subject to costly search. As

21Of course, money and middlemen are compliments as a medium of exchange. I presume the model could be
extended to study the origin of money as a universal medium of exchange á la Kiyotaki and Wright (1993). Middlemen,
who could be private banks or business enterprises, emerge to intermediate between sellers of money who want to
consume goods and buyers who want money in exchange for their products. Because of the presence of the risk
arising from coordination frictions, agents have an incentive to trade with middlemen who own an inventory of money
and the goods. Agents’ expectation that middlemen optimally collect money and goods to provide liquidity can be
self-fulfilling in equilibria if they exist. Such a view might be related to the role of banks deposit for a safe keeping
purpose proposed by He, Huang and Wright (2003), or the notion of fiat money emerging through organized exchange
proposed by Howitt (2004).
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search frictions vanish, free entry of market makers leads to an efficient outcome. An addition of

the market maker induces the efficient types of traders to trade in the centralized market, which

could be termed as a horizontal centralization phenomenon. Neeman and Vulkan (2003) construct

a mechanism to induce complete unraveling of direct negotiation with middlemen. The issue of the

market segmentation is studied sophisticatedly in Spulber (2002).

Shevichenko (2004) shows that large-scaled intermediaries increase buyers’ welfare and that their

size is too small in equilibrium. His result is, however, qualitatively different from mine in terms of

the role played by inventory. First, since their inventory holdings do not reflect the effect of compe-

tition among middlemen, it is natural for his framework to obtain the matching inefficiency result.

Second, his model is silent on where the inventory comes from. In contrast, my model considers

the interaction between middlemen’s inventory restocking process at night and matching frictions

during the day. Indeed, it is exactly the mechanism through which the competitive equilibrium and

the asymptotic efficiency result is obtained in my model.

6 Conclusion

This paper has proposed a unified framework to integrate three key functions of intermediation,

each of which is separately studied in the literature: (1) market-makings by linking producers and

consumers; (2) market-clearing by setting the price and by rationing customers; (3) providing liq-

uidity or immediacy by holding an inventory. Middlemen arise endogenously to accomplish these

triple tasks, and as a result, mitigate market frictions to enhance allocation efficiency. The model

provides also a mechamism to determine the size and number of intermediaries. Middlemen’s in-

ventory holding creates a demand stimulating effect to attract many customers away from sellers,

while at the same time it generates a risk of its remaining unsold. Buyer-seller direct trades are

completely unravelled in the competitive equilibrium where a single middleman takes all the trading

risk by holding an excess inventory. I found that the efficient allocations can be decentralized in

equilibrium in which entry of middleman is prevented by a prohivitively high entry cost. The setup

of intermediation fits naturally into the competitive search-equilibrium, and hence the result sends

a strong message to the directed search literature - market makers matter.

Beyond the welfare and efficiency properties described above, the idea that middlemen can
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emerge to coordinate transactions by holding an inventory is quite simple and appealing. I presume

that the model is applicable to various market exchanges and a number of extensions of the present

model are feasible. First, an interesting extension would be to incorporate ex-ante heterogeneity in

buyers’ preferences or traveling costs with imperfect information. This would allow the model to

describe the situations where a large number of small-sized middlemen fit well, and to study the

related issues in the industrial organization literature. The ‘single’ middleman would be no longer

optimal in this case. It is also interesting to endogenize the bid price middlemen offer to producers,

and/or the middlemen’s optimal inventory choice.22 Then the equilibria would reflect a holdup

problem in which middlemen incorporate uncertainty of consumer demands when investing in an

inventory. The steady-state inventory condition assumed in this paper can also be relaxed. Finally,

the model can be easily inserted into a standard neoclassical growth framework to endogenize the

production process, which would provide a theoretical foundation to address a number of related

issues in macroeconomics and labor economics.23

22The result presented in this paper goes through even if middlemen does not extract all the rent from sellers at
night. See Watanabe (2004a) for such an extension, where an interesting multiplicity is obtained in the competitive
search equilibria.

23Faig and Jerez (2004) construct this type of directed-search model with imperfect information, but without
intermediation and inventory holdings.
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7 Appendix

Throughout the proofs in this appendix, we simplify the notation to set x = x(m) and η(x) = ηm(x),
when there is no confusion.

7.1 Proof of Lemma 1

Suppose continuum of buyers are measured by an interval (0, 1] and let X ≡ X((0, 1]) be a random
variable counting the number of event that a buyer appears to a particular middleman or not. For
∀i = 1, 2, ... and for any distinct points b0 = 0 < b1 < b2 < ... < bi, we define X((a, b]) to be the
number of buyers bi who visit a particular middleman, from the buyers located at an interval (a, b],
where a < bi ≤ b. Since each X((bi−1, bi]) is an independent random variable, the event that a
single buyer shows up or not constitutes Bernoulli trials for any middleman.

Given the above postulations, the event that the buyer gets served by visiting the middleman
follows a Poisson counting process and its mean is x (the expected number of buyers per middleman).
When a buyer visits a particular middleman who has I units of inventory, she/he would get one of
the goods with the following probability:

η (x) = Pr (X ≤ I − 1) Pr (served | X ≤ I − 1) + Pr (X ≥ I) Pr (served | X ≥ I)

=
I−1∑
j=0

xje−x

j!
+

∞∑
j=I

xje−x

j!
I

j + 1
.

If X counts less than the middleman’s capacity, the buyer would get served with probability one by
visiting the middleman. Otherwise, there might be a possibility of rationing and she/he gets served
with probability I

j+1 , where j ∈ {I, I + 1, ...,∞} counts these events. By rearranging the terms, we
get

η (x) =
I−1∑
j=0

xje−x

j!
+ I

∞∑
j=0

xje−x

(j + 1)!
− I

I−1∑
j=0

xje−x

(j + 1)!

=
Γ (I, x)
Γ (I)

+
I

x

(
1− e−x

)− I

x

Γ (I + 1, x)
Γ (I + 1)

+
I

x
e−x

=
Γ (I, x)
Γ (I)

+
I

x

(
1− Γ (I + 1, x)

Γ (I + 1)

)
.

In the second equality we used
∑I−1

j=0
xj

j! =
Γ(I,x)
Γ(I) ex (by taking integration by part I − 1 times).

Γ (I, x) =
∫∞

x tI−1e−tdt is the incomplete gamma function. It is immediately shown that η is
strictly decreasing in x. The service probability from the sellers can be obtained by the standard
urn-ball formula. QED

7.2 Proof of Lemma 2

The first order differentiation yields:

dϕ(x)
dx

= −dη(x)/dx
η(x)2

{
η(x)

(
1 + x

d2η(x)/dx2

dη(x)/dx

)
− x

dη(x)
dx

}
.

It is sufficient to show that the first term in the bracket is positive. By noting that Γ(k+1) = k Γ(k)
and Γ(k, x) = − 1

k

{
xIe−x − Γ(k + 1, x)

}
, the term d2η(x)

dx2 can be written as follows:

d2η(x)
dx2

=
k

x3

{
γ (k + 1, x)
Γ (k + 1)

− x

(
Γ (k + 1, x)
Γ (k + 1)

− Γ (k, x)
Γ (k)

)}
,
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where γ(k + 1, x) = Γ(k + 1)− Γ(k + 1, x). Hence, we obtain:

1 + x
d2η(x)/dx2

dη(x)/dx
=

x
{

Γ(k+1,x)
Γ(k+1) − Γ(k,x)

Γ(k)

}
1− Γ(k+1,x)

Γ(k+1)

> 0.

This proves the first property. The second and third properties are immediate by applying the
l’Hospital’s rule once. QED

7.3 Proof of Theorem 4

The previous analysis has established that equations (3)-(9) describe necessary and sufficient con-
ditions for an equilibrium. All that remains here is to establish a solution to those conditions,
{xi, pi, V j}, for i = s,m and j = b, s,m, exists and is unique. The proof takes 4 steps. Step 1
establishes that equilibrium requires V b, V s ∈ [0, 1

r ]. For any V b ∈ [0, 1
r ], Step 2 establishes that

equations (1),(4),(5) imply a unique solution for xs ≥ 0. With a slight abuse of notation, let xs(V b)
denote that solution. Similarly for any V b ∈ [0, 1

r ], Step 3 establishes that equations (2),(7) imply a
unique solution for xm ≥ 0. We let xm(V b) denote that solution. An equilibrium is then identified
by noting equation (5) requires V b satisfies the fixed point condition:

Mxm(V b) + Sxs(V b) = 1, (14)

where M,S are positive constants. Using Steps 2 and 3, Step 4 establishes that a V b ∈ (0, 1
r )

satisfying this condition exists and is unique. Hence Step 4 establishes an equilibrium exists and
is unique: given V b satisfying equation (14), xs and xm are uniquely determined in Step 2 and 3
respectively, V s > 0 is uniquely determined in Step 1, and V m > 0 is uniquely determined by (8).
Finally, xs and xm in turn determine a unique solution ps ≥ 0 and pm ≥ 0 respectively by (7) and
(9). By construction, this solution then satisfies equations (3)-(9) and so describes equilibrium.

Step 1 Equilibrium implies V b ∈ [0, 1
r ] and V s ∈ [0, 1

r ].

Proof of Step 1. Equations (3),(6),(7) imply V b,V s satisfies:

rV b = e−xs

and rV s = 1− e−xs − xse−xs

.

Note that the RHS of the first equation is decreasing in xs and the RHS of the second equation is
increasing in xs. As equilibrium implies xs ∈ [0,∞], it follows that V b ∈ [0, 1

r ] and V s ∈ [0, 1
r ]. This

completes the proof of Step 1.

Step 2 For any V b ∈ [0, 1
r ], a solution for xs ≥ 0 defined by equations (3),(6),(7) exists, is unique

and implies: xs(V b) is continuous and strictly decreasing with limxs(V b) = ∞ as V b → 0 and
xs(1r ) = 0.

Proof of Step 2 The result is immediate by the inverse function theorem and by noting that
for any xs ∈ [0,∞], V b is continuous, strictly decreasing in xs, and hence invertible (by Step 1).
This completes the proof of Step 2.

Step 3. For any V b ∈ [0, 1
r ], a solution for xm ≥ 0 defined by equations (4),(9) exists, is unique

and implies: xm(V b) is continuous and strictly decreasing in V b with limxM (V b) = ∞ as V b → 0
and xm(1r ) = 0.
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Proof of Step 3. By substituting pm in (9) into (4) and by using the result in Step 2, we
obtain:

Γ(I, xm)
Γ(I)

= e−xs(V b) .

By Step 2, the RHS of this equation is continuous, strictly increasing in V b with taking 0 when
V b = 0 and taking 1 when V b = 1

r . Therefore since the LHS is strictly decreasing in xm, we have a
unique solution xm(V b) which is continuous and strictly decreasing in V b, with limxm(V b) =∞ as
V b → 0 and xm(1r ) = 0. This completes the proof of Step 3.

Step 4 There exists a unique V b ∈ (0, 1
r ) which satisfies (14).

Proof of Step 4 By Step 2 and Step 3, the LHS of (14) is continuous, strictly decreasing in
V b with approaching to ∞ as V b → 0 and taking zero when V b = 1

r . Because the RHS of (14) is a
positive constant, we must have a unique V b ∈ (0, 1

r ). This completes the proof of Step 4. QED

7.4 Proof of Theorem 5

The proof is similar to that of Theorem 4 but with modified according to the following steps. Step
1 solves for a unique xs and xm for any I ∈ [1,∞) using equations (3), (4), (5), (7), (9). With a
slight abuse of notation, let xs(I) and xm(I) denote this solution. An equilibrium is then identified
by noting equation (12) requires I satisfies the fixed point condition:

MQm(xm(I), I) + SQs(xs(I)) = S, (15)

where M,S are positive constants. Using Step 1, Step 2 establishes that a I ∈ [1,∞) satisfying
this condition exists and is unique under M ∈ (0,M ], where M will be defined below. Hence, this
implies an equilibrium exists and is unique: given I satisfying (15), Step 1 uniquely pins down xs

and xm; given this solution, other equilibrium values are pinned down by the same procedure as in
Theorem 4, using equations (3),(6),(7),(8). By construction, this solution then satisfies equations
(3)-(9), (12) and so describes equilibrium.

Step 1 For any I ∈ [1,∞), a solution for xs and xm defined by equations (3), (4), (5), (7), (9)
exists, is unique and implies: xm(I) is continuous and strictly increasing in I; xs(I) is continuous
and strictly decreasing in I; xs(1) = xm(1) = 1

S+M ; limxm(I) = 1
M and limxs(I) = 0 as I → ∞.

Proof of Step 1. As mentioned in the main text, equations (3), (4), (7), (9) can be reduced
to equation (11). Substituting out xs in (11) by using (5) yields:

Γ(I, xm)
Γ(I)

= e−
1−Mxm

S .

The LHS of this equation is strictly decreasing in xm and takes 1 when xm = 0 and Γ(I,1/M)
Γ(I) < 1

when xm = 1
M . Similarly, the RHS is strictly increasing in xm and takes e−

1
S < 1 when xm = 0 and

1 when xm = 1
M . Hence, there exists a unique solution xm ∈ (0, 1

M ] for any I ∈ [1,∞).
Further, the LHS of the above equation is continuous, strictly increasing in I with taking e−xm

when I = 1 and approaching to 1 when I → ∞. This implies: xm = xm(I) is continuous and strictly
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increasing in I; xm(1) = 1
S+M ; limxm(I) = 1

M as I → ∞. Inserting this solution into (5) solves for
xs in terms of I, yielding the rest of the result. This completes the proof of Step 1.

Step 2 There exists a unique I ∈ [1,∞) which satisfies (15).

Proof of Step 2. By Step 1, the LHS of (15) is continuous and strictly increasing in I, with
taking (M + S)(1 − e−1/(S+M)) at I = 1 and taking 1 as I → ∞. The RHS is a positive constant
S ∈ [M, 1), where M defines a unique solution to 1 − e−1/(M+S) = S

M+S
. Hence, this guarantees

the existence of a unique solution, I ∈ [1,∞), to (15). This completes the proof of Step 2. QED

7.5 Proof of Proposition 6, 7

As shown in the proof of Theorem 5, xs, xm, I are fully characterized by equations (5), (11), (12).
The limiting equilibrium as M → 0 is constructed to satisfy these equilibrium requirements. First,
note that the limit must satisfy: xm → ∞ and I → ∞ as M → 0. If either one of them is finite,
Qm < ∞ and hence MQm → 0 as M → 0. This contradicts to (12) given xs < ∞.

Second, xs → 0 cannot be consistent with the equilibrium. If it is the case, Mxm → 1 by (5)
and Γ(I,xm)

Γ(I) → 1 by (11). The latter implies:

Qm = xmΓ(I, x
m)

Γ(I)
+ I

(
1− Γ(I + 1, xm)

Γ(I + 1)

)
→ xm,

hence the LHS of (12) exceeds the RHS, Mxm → 1 < S, a contradiction.
Third, xm and I are required to evolve at the rate satisfying:

(a) 0 < Mxm < ∞; (b) 0 < MI < ∞; (c) Mxm = MI.

(a) and (b) follow from the fact that the aggregate number of matches must be bounded, as evident
in (12), and from: 0 < MQm ≤ min{Mxm,MI} given xs < ∞. (c) is implied by (11) satisfying:

0 <
Γ(I, xm)
Γ(I)

= e−xs

< 1 as xm → ∞ and I → ∞

given 0 < xs. To prove it formally requires technique of a uniform expansion of the incomplete
gamma function developed by Temme (1975) and given in the Additional Appendix.

Further, the item (c) implies:

Γ(I + 1, xm)
Γ(I + 1)

− Γ(I, xm)
Γ(I)

=
(xm)x

m

e−xm

xm!
→ 0

in the limit as xm → ∞. This results from the Stirling’s approximation fomula, that is, when x is
large, xxe−x

x! � 1√
2πx

≡ ε. Hence, the limiting equilibrium implies:

ηm =
Γ(I, xm)
Γ(I)

+
I

xm

(
1− Γ(I + 1, xm)

Γ(I + 1)

)
� Γ(I, xm)

Γ(I)

(
1− I

xm

)
+

I

xm
(1− ε) → 1.

The same argument implies in the limit that: Qm/I → 1 and V m → ∞.
Finally, (c) implies 0 < xs < 1/S is a unique solution to 1 − Sxs = Se−xS

by (5) and (11).
Hence, Proposition 7 is immediately shown by applying S → 1 to this solution. QED
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7.6 Proof of Proposition 10, 11

Let us simplify the notation to omit the subscript ∗ when there is no confusion. This proof will
first characterize conditions for the optimal allocations. It will become clear that the limiting
equilibrium obtained in Proposition 9 satisfies these optimality conditions. Then, I proceed to show
the constrained efficient allocation can induce the equilibrium condition (11).

Notice first that if M → 0 is the solution, then it must follow that: xm → ∞; I → ∞;
0 < Mxm < ∞; 0 < MI < ∞. There are three cases: (A) xm > I; (B) xm = I; (C) xm < I.
Additional Appendix shows the follows must be true in each case:

(A’)
Γ(I, xm)
Γ(I)

= 0; (B’) 0 <
Γ(I, xm)
Γ(I)

< 1; (C’)
Γ(I, xm)
Γ(I)

= 1.

Given this fact, the optimal allocations for each case are characterized as follows.

Case (A) xm > I: If {xm, I} satisfies (A) and hence (A’), then (12) implies:

MQm = MxmΓ(I, x
m)

Γ(I)
+MI

(
1− Γ(I + 1, xm)

Γ(I + 1)

)
= MI = Se−xs

as I → ∞. Given xs, this equation and (A’) solve for Mxm and MI. Given this solution, (5)
determines some xs ∈ [0, xs′

), satisfying Mxm − MI = 1− Sxs − Se−xs

> 0, where xs′
is a unique

solution to 1
S = xs′

+ e−xs′
.

Case (B) xm = I: (12) and (B’) imply:

MQm = Mxm = Se−xs

as xm → ∞, which solves for xs = xs′
by (5). This, in turn, determines MI =Mxm.

Case (C) xm < I: Similarly, (12) and (C’) imply:

MQm = Mxm = Se−xs

as xm → ∞. Given xs, this equation and (C’) solve for Mxm and MI. Given this solution, xs = xs′

is determined by (5).

Now, it is clear that the limiting middlemen equilibrium characterized in Proposition 6, 7 as
c → ∞ corresponds to case (B) with 0 < Mc < ∞, and obviously is asymptotically efficient.
Because (5) and (12) are exactly the same as the corresponding equilibrium conditions, it remains
to prove the existence of an optimal allocation that satisfies the other equilibrium condition, (11),
which I briefly sketch below.

The main task is to show the existence of the limit, q ≡ Γ(I,xm)
Γ(I) ∈ (0, 1) as I → ∞. The problem

can be solved by taking the asymptotic inversion of the incomplete gamma function, the procedure
developed in Temme (1992): xm = I implies q can be approximated, inverted and arranged as
follows (see Additional Appendix for details).

Mxm −MI√
M

√
2MI

= inverfc(2q)

u(v) = inverfc(v) is the inversion of v = erfc(u) (an error function), a well defined with u(0) = +∞,
u(1) = 0 and u(2) = −∞. Given 0 < MI < ∞, the LHS of this equality is bounded when
xm

I = 1 + O(M δ) and δ ≥ 1/2 as M → 0. Hence, given xs = xs′
, an appropriate choice of δ

guarantees the existence of a q ∈ (0, 1) that satisfies (11), and therefore: Mxm
∗ = MI∗ = Mxm =MI

as M → 0. QED
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8 Additional Appendix (to referees)

8.1 Complementary Proof of Lemma 1

In this complementary proof, we show that the matching probability derived in Lemma 1 corresponds
the limiting probability of its finite-agents setup counterpart. Suppose now B,S,M represent the
number of buyers, sellers, and middlemen respectively that are positive integers. Any buyer assigns
a probability α to individual middleman. Define x ≡ limBα to be the expect number of buyers
at a middleman in the limit as B,S,M go to infinity with keeping the ratios B/M , S/M constant.
When a buyer visits a middleman who has I units of inventory, he/she would get one of the goods
with the following probability:

ηm =
I−1∑
h=0

Ch
B−1α

h (1− α)B−1−h +
B−1∑
h=I

I

h+ 1
Ch

B−1α
h (1− α)B−1−h ,

where Ch
B−1 = (B−1)!

h!(B−1−h)! . If the number of other buyers visiting the middleman is less than
I, the buyer gets served with probability one (the first term), otherwise with probability I

h+1 ,
h ∈ {I, I +1, ..., B− 1} (the second term). By rearranging the term to apply the binomial theorem,
we get

ηm =
I

Bα

{
1− (1− α)B

}
+

I−1∑
h=0

(
1− I

h+ 1

)
Ch

B−1 (α)
h (1− α)B−1−h

≡ ηm
1 + ηm

2 .

It is obvious that lim ηm
1 = I

x (1− e−x).
In order to calculate the limit of the second term, we view it as the summation of I number of

terms as follows.

ηm
2 = (1− I) (1− α)B−1 +

(
1− I

2

)
(B − 1)α (1− α)B−2 + ...

...+
(
1− I

h+ 1

)
(B − 1) (B − 2) · · · (B − h)

h!
αh (1− α)B−1−h + ...

...+
(
1− I

I

)
(B − 1) (B − 2) · · · (B − I + 1)

(I − 1)!
αI−1 (1− α)B−I

The h+1-th term in the above expression, which we denote as ηm
2 [h], is the h-th order multi-nominal,

and can be rearranged with a sequence of coefficient {ci}h
i=0 ⊂ R as follows:

ηm
2 [h] =

(
1− I

h+1

)
h!

αh (1− α)B−1−h (B − 1) (B − 2) · · · (B − h)

=

(
1− I

h+1

)
h!

αh (1− α)B−1−h (
c0B

h + c1B
h−1 + ...+ ch−1B + ch

)

=

(
1− I

h+1

)
h!

(1− α)B−1−h (Bα)h
(
c0 + c1B

−1 + ...+ ch−1B
1−h + chB

−h
)
.

By noticing that c0 = 1, and (1 − α)B−1−h = (1 − Bα
B )B−1−h converges to e−x, it follows in the

limit that

lim ηm
2 [h] =

(
1− I

h+1

)
h!

e−xxh.
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This manipulation is allowed as I (over which h is summated) is finite. By summing up this term
over h ∈ {0, 1, ..., I − 1}, we obtain the limit expression as follows:

lim ηm
2 = lim

I−1∑
h=0

ηm
2 [h] = e−x

I−1∑
h=0

xh

h!
− e−x

I−1∑
h=0

I

h+ 1
xh

h!

=
Γ (I, x)
Γ (I)

− I

x

(
Γ (I + 1, x)
Γ (I + 1)

− e−x

)
.

In the first term of the third equality we have applied integration by part I − 1 times:

e−x
I−1∑
h=0

xh

h!
= e−x + xe−x + ...+

xI−2e−x

(I − 2)!
+

xI−1e−x

(I − 1)!

=
1

(I − 1)!

{
(I − 1)!
0!

e−x +
(I − 1)!
1!

xe−x + ...+
(I − 1)!
(I − 2)!

xI−2e−x +
(I − 1)!
(I − 1)!

xI−1e−x

}

=
1

(I − 1)!

∫ ∞

x

tI−1e−tdt

(
=
Γ(I, x)
Γ(I)

)
,

where Γ(I, x) =
∫∞

x tI−1e−tdt is the incomplete gamma function, and Γ(I) =
∫∞
0 tI−1e−tdt = (I−1)!

is the gamma function. The second term has been similarly manipulated. These limiting terms are
summated to yield the result:

ηm(x) = lim ηm
1 + lim ηm

2 =
Γ (I, x)
Γ (I)

+
I

x

(
1− Γ (I + 1, x)

Γ (I + 1)

)
.

QED

8.2 Complementary Proof of Proposition 6, 7

Hereafter, simplify the notation to set x = xm. In this complementary proof, I will show formally
that the limiting equilibrium given in Proposition 9 must satisfy the item (c), that is, 0 < Γ(I,x)

Γ(I) < 1
if and only if Mx = MI as M → 0. Given x → ∞ and I → ∞ as M → 0, it is sufficient to prove in
the limit that: Γ(I,x)

Γ(I) → D where D = 1 if and only if x < I and D = 0 if and only if x > I.
For that purpose, I use a uniform asymptotic expansion for the incomplete gamma function

obtained in Temme (1975, 1979): For any x ≥ 0,

q ≡ Γ(I, x)
Γ(I)

=
1
2
erfc(ξ

√
I/2) +RI(ξ), (16)

where

ξ = (λ− 1)

√
2(λ− 1− lnλ)

(λ− 1)2
; λ =

x

I
; erfc(v) =

2√
π

∫ ∞

v

e−t2dt

with erfc(0) = 1, erfc(+∞) = 0 and erfc(−∞) = 2. See also Temme (1996) p.285. This expression is
exact, and the asymptotic representation for the remainder, holding uniformly in λ ≥ 0 for I → ∞
and x → ∞, is given as: RI(ξ) = O(I−1/2e−Iξ2/2) as I → ∞ (see Temme (1982) p.245).

Clearly, 0 < Mx < ∞ and 0 < MI < ∞ guarantee that 0 < λ < ∞ and −∞ < ξ < +∞.
Suppose now x < I. Then, we have λ < 1 and ξ < 0 as I → ∞. This implies in the limit that:

ξ
√

I/2→ −∞ and ξ2I/2→ +∞ ,
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therefore, RI(·) → 0 and q → 1. Since q → 1 implies RI(·) → 0 and ξ < 0 in the limit, this proves
the first claim.

Similarly, suppose next that x > I. Then, λ > 1 and ξ > 0 as I → ∞, implying:

ξ
√

I/2→ +∞ and ξ2I/2→ +∞ ,

therefore, RI(·)→ 0 and q → 0 as I → ∞. Further, q → 0 implies RI(·)→ 0 and ξ > 0 in the limit,
proving the second claim. QED

8.3 Complementary Proof of Proposition 10, 11

By the complementary proof of Proposition 6, 7, it is now clear that the followings are true in the
planner’s solution described in Proposition 10, 11.

Case (A): Mx > MI ⇐⇒ Γ(I,x)
Γ(I) → 0 as I → ∞ and x → ∞.

Case (B): Mx = MI ⇐⇒ 0 < Γ(I,x)
Γ(I) < 1 as I → ∞ and x → ∞.

Case (C): Mx < MI ⇐⇒ Γ(I,x)
Γ(I) → 1 as I → ∞ and x → ∞.

In this complementary proof, I will show that the limit exists for 0 < q ≡ Γ(I,x)
Γ(I) < 1 satisfying

the equilibrium condition (11). Specifically, I will show that the limit exists in case (B) if and only
if x

I = 1 + O(M δ) and δ ≥ 1/2 as M → 0, that is, x − I must disappear quickly enough in the
limit. To prove it formally, I will follow the procedure of the asymptotic inversion of the incomplete
gamma function developed in Temme (1992) as follows.

The proof is built on the complementary proof of Proposition 9. First, since x = I implies ξ is
small, an expansion of ξ2/2 = λ− 1− lnλ is allowed to yield:24

λ = 1 + ξ +O(ξ2). (17)

Second, the asymptotic expansion formula, equation (16), can be inverted as:

ξ0 =
inverfc(2q)√

I/2
, (18)

where ξ = ξ0 + ε1/I + ε2/I
2 + ... . ξ0 = ξ0(q, I) has the following properties: ξ0(0, I) = +∞;

ξ0(1/2, I) = 0; ξ0(1, I) = −∞. The value of each εi is given in Temme (1992) p.760. u(v) =
inverfc(v) is the inversion of v = erfc(u) with u(0) = +∞, u(1) = 0 and u(2) = −∞.

Finally, since ξ = ξ0 → 0 as I → ∞ with x = I, equations (17) and (18) can be combined to
yield:

x = I + inverfc(2q)
√
2I,

which will further be arranged to:

Mx−MI√
M

√
2MI

= inverfc(2q).

Since 0 < MI < ∞ as M → 0, the LHS of this equality is bounded when x
I = 1 + O(M δ) and

δ ≥ 1/2 as M → 0. Hence, there exists 0 < q < 1, which identifies {x, I} by specifying the value of
δ. QED

24ξ2/2 = λ−1− ln λ = (λ−1)2/2−(λ−1)3/3+(λ−1)4/4+ .... This leads to: λ = 1+ξ+ξ2/3+ξ3/36−ξ4/270+ ...
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Figure 1.  Day-Market Equilibrium 
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