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1 Introduction

Complementarities are pervasive in economics, ranging from coordination
problems in macroeconomics and finance to pricing and product selection
issues in industrial organization. At the heart of complementarity is the no-
tion that the marginal value of an action or variable increases in the level
of another action or variable. This is the notion of ”Edgeworth complemen-
tarity”. Complementarities have been a recurrent and somewhat contentious
topic of study for economic analysis. Indeed, while Samuelson (1947) in his
Foundations stated that ”In my opinion, the problem of complementarity has
received more attention than is merited by its intrinsic importance” (at the
start of the section on complementarity, p.183, 1979 edition), he corrected
himself later on in this very Journal in 1974, on the occasion of the 40th
anniversary of the Hicks-Allen revolution in demand theory, when he stated
at the very beginning of his paper that ”The time is ripe for a fresh, modern
look at the concept of complementarity. Whatever the intrinsic merits of
the concept, forty years ago it helped motivate Hicks and Allen to perform
their classical ”reconsideration” of ordinal demand theory. And, as I hope
to show, the last word has not yet been said on this ancient preoccupation
of literary and mathematical economists. The simplest things are often the
most complicated to understand fully”.
The theory of supermodular games and monotone comparative statics,

based on lattice-theoretic methods, has provided a powerful toolbox to an-
alyze the consequences of complementarities in economics. Monotone com-
parative statics analysis provides conditions under which optimal solutions
to optimization problems move monotonically with a parameter. In this
paper I will provide an introduction to this methodology and I will apply
it to study strategic interaction in the presence of complementarities. The
approach exploits order and monotonicity properties in contrast to classical
convex analysis. The central piece of attention will be games of strategic
complementarities where the best response of a player to the actions of rivals
is increasing in their level. The purpose of the article is to bring forward some
recent applications of the lattice-theoretic methodology, mostly in industrial
organization and finance, and at the same time provide an introduction to
the toolbox. The paper will show the usefulness of the approach in:

• providing a common analytical frame to study complementarities,
• derive new results, and
• cast new light on old ones (by getting rid of unnecessary assumptions).
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Modeling strategic interaction presents formidable problems. Nash equi-
librium may not exist (at least in pure strategies) and even if it exists there
may be multiple equilibria. Multiple equilibria present problems of interpre-
tation (how do players coordinate on one of them?) and of policy analysis
(how can the policy maker be sure that a change of a parameter will impinge
in the desired direction?). Classical comparative statics analysis provides
ambiguous results in the presence of multiple equilibria. Indeed, classical
convex analysis imposes very strong regularity conditions and leaves the an-
alyst orphan when those stringent conditions are not met. The regularity
conditions become particularly strong when applied to games with complex
functional strategy spaces like dynamic or Bayesian games. We will see how
complementarities are intimately linked to multiple equilibria and how su-
permodular methods provide a natural tool to characterize them.
The approach has several advantages:

• Allows very general strategy spaces including indivisibilities and func-
tional spaces such as those arising in dynamic or Bayesian games.

• Ensures the existence of equilibrium in pure strategies (without re-
quiring quasiconcavity of payoffs, smoothness assumptions or interior
solutions).

• Allows a global analysis of the equilibrium set, which has an order
structure with largest and smallest elements.

• Equilibria have nice stability properties and there is an algorithm to
compute extremal equilibria.

• Monotone comparative statics results are obtained with minimal as-
sumptions.

• Results can be extended beyond games of strategic complemenatrities.

The above considerations are not only of theoretical interest. In many
situations we would like to know how a change of a parameter affects the
market equilibrium. Let me provide here two examples, developed in the
text, of how the lattice-theoretic approach either obtains new results, hard
or impossible to get with the classical approach, or improves upon the results
obtained by getting rid of unnecessary assumptions.

• Consider an R&D race where each firm invests continuously to obtain a
breakthrough and where we want to know what is the effect of increas-
ing the number of participants n in the race (Lee and Wilde (1980)).
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Under very weak assumptions this game is one of strategic complemen-
tarities and it will have multiple equilibria naturally. The problem of
using the classical approach is that increasing n may make disappear
some equilibria and some other may appear. Classical analysis will
not help here but with the lattice approach we obtain an unambiguous
comparative statics result: increasing n will necessarily increase R&D
effort, provided that out of equilibrium adjustment dynamics are of a
general adaptive form.

• Fudenberg and Tirole (1984) derived an ”animal” taxonomy of strategic
behavior in two-stage games under the stringent assumptions of concave
payoffs yielding a unique an stable equilibrium at the second stage.
What if those assumptions are not fulfilled? We show that in fact
none of the strong regularity assumptions imposed are needed and that
only the type of competition (strategic complements or substitutes)
and whether investment makes the strategic incumbent soft or tough
matters.

Instances of coordination failure with multiple equilibria abound: bank
runs, debt runs on a country, low employment/activity equilibria, revolutions,
and development traps provide some examples. A key issue is how to build
coherent models of those situations that are useful for policy analysis. A
challenging aspect of any crisis situation is to disentangle self-fulfilling from
fundamentals-driven explanations that help answer questions such as: What
is the effect of an increase in the amount of central bank reserves in the
probability of a run on the currency? What is the impact of an increase in
the solvency ratio on the probability of failure of a bank? What is the effect
of a change in foreign short-term debt exposure on the probability of default
of a small open economy?
Global games (Carlsson and van Damne (1993), Morris and Shin (2002))

are proving to be a popular methodology for equilibrium selection with appli-
cations to currency and banking crises and macroeconomics. Global games
are Bayesian games and the lattice approach is particularly suited to analyze
them. For example, recent major advances in the difficult problem of show-
ing existence of Bayesian equilibrium in pure strategies have been done using
the lattice-theoretic methodology. Furthermore, by realizing that in many
situations of interest global games are games of strategic complementarities
we understand immediately why and how iterated elimination of dominated
strategies works and why and under what conditions equilibrium selection
is successful. Indeed, we will see how equilibrium is unique precisely when
strategic complementarities are weakened. The approach helps by providing
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a theory of crisis which is linked to the fundamentals of the economy build-
ing a bridge between self-fulfilling and fundamentals-driven theories. The
implication is that the effect of policy instruments can be understood (the
applications will provide an answer to the policy questions above).
The methodology of supermodular games provides tools and an appropri-

ate framework to confront satisfactorily multiple equilibria and comparative
statics. However, we should be aware also that the lattice-theoretic approach
is not a panacea and cannot be applied to everything as some examples will
make clear.
The paper starts in section 2 by introducing a simple class of games where

many of the important issues are highlighted. Section 3 provides an intro-
duction to the theory and basic results. Section 4 provides applications to
oligopoly and comparative statics in the context of Cournot, Bertrand and
R&D games and includes multimarket oligopoly competition. Section 5 deals
with dynamic games starting with two-stage games, reviewing the taxonomy
of strategic behavior by Fudenberg and Tirole (1984), studying when increas-
ing or decreasing dominance will obtain, and ending with a characterization
of strategic incentives in Markov games. Section 6 studies Bayesian games,
characterizing equilibria in pure strategies, comparative statics and games of
voluntary disclosure, and discussing global games with applications to cur-
rency and banking crisis. The Appendix provides a brief recollection of the
most important definitions and results of the lattice-theoretic method.

2 A simple framework

Games of strategic complementarities are those in which players respond
to an increase in the strategies of the rivals with an increase in their own
strategy. I present in this section an example that suggests the flavor of
many of the results that can be obtained with the approach.
Consider a game with a continuum of players in which the payoff to a

player is π (ai,ea; θi), where ai is the action of the player, lying in a (nor-
malized) compact interval [0, 1], ea the average or aggregate action and θi a,
possibly idiosyncratic, payoff-relevant parameter.1 I consider first the case
with homogeneous players and then with heterogeneous players.

2.1 Homogeneous players

Consider the symmetric case wherethe payoff to a player is given by π (ai,ea; θ),
suppose that π is smooth in all arguments and strictly concave in ai, and let

1The analysis with n players is similar.
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r (·) be the best response of an individual player to aggregate action ea. In this
framework equilibria will be symmetric because given any aggregate actionea there is a unique best response r (ea; θ). For interior solutions we will have
that ∂π

∂ai
(r (ea) ,ea; θ) = 0. If ∂2π

(∂ai)
2 < 0 then r is continuously differentiable

and r0 (ea) = ³ ∂2π
∂ai∂ea

´
/
³

∂2π
(∂ai)

2

´
. Therefore, sign r0 (ea) = sign ∂2π

∂ai∂ea and best
replies are increasing if ∂2π

∂ai∂ea ≥ 0. A symmetric equilibrium is characterized

by r (a; θ) = a. Suppose also that ∂2π
∂ai∂θ

≥ 0 so that an increase in θ increases
the marginal profit of the action of a player and his best response r (·) .
Two examples of the game are monopolistic competition and search. In

monopolistic competition (section 6.6 in Vives (1999)) the action would be
the price of a firm with ea the average price in the market and θ a demand
or cost parameter. For example, π (ai,ea; θ) = (ai − θ)D (ai,ea) with D (·)
the demand function and θ the (common) marginal cost. For many demand
systems ∂2 logD

∂ai∂ea > 0 (meaning that the elasticity of demand is increasing in the

average price) and therefore ∂2 log π
∂ai∂ea = ∂2 logD

∂ai∂ea > 0. Under this condition we
will have that r0 (ea) > 0 because best replies are invariant to an increasing
transformation of the payoffs, such as the logarithm. In the search model
(Diamond (1981)) the action ai is the effort of trader i in looking for a partner.
The benefit (probability of finding a partner) is proportional to own effort and
increasing in the aggregate effort of others ea: π (ai,ea; θ) = θaif (ea)− C (ai),
with θ the efficiency of the search technology, and f (·) and the cost of effort
C (·) being increasing functions. In this case ∂2π

∂ai∂ea = aif
0 (ea) ≥ 0. Models

of aggregate demand externalities, and models of Keynesian effects have a
similar flavor (see Cooper and John (1988)).
In those examples it is easy to generate multiple equilibria. For example,

in the search model let f (ea) ≡ ea and C be increasing with C(0) = 0, then
ai = 0 for all i is always an equilibrium. If C is smooth and strictly convex
with C 0 (0) = 0 , then there are two equilibria ai = 0 and ai = ba > 0, with
θba = C 0 (ba), for all i. The latter equilibrium increases strictly with θ and is
Pareto superior to the no effort equilibrium. Another possibility is when f
has an S-shaped function and C 0 (a) ≡ a, then there will be three equilibria.
They will be the solutions to θf (a) = a : a,ba,and a as depicted in Figure 1
(lower branch). In this example r (ea) = θf (ea). Obviously, equilibria are the
solution to r (a) = a and r0 (ea) = θf 0 (ea).
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Several properties of the equilibria are worth noticing.

1. A sufficient condition to have multiple equilibria is that strategic com-
plementarities be sufficiently strong. Namely, that r0 (a) > 1 for some
candidate equilibrium r (a; θ) = a (such as point ba in Figure 1).

2. The symmetric equilibria are ordered and there exits largest (a) and
smallest (a) equilibria (this follows trivially here given that actions are
one-dimensional) and equilibria can be Pareto ranked. This is a general
property whenever π is increasing in ea (positive externalities).

3. Extremal equilibria, a and a, are stable with respect to the usual best
reply dynamics. Indeed, it is immediate that best response dynamics
starting at a = 0 (at a = 1) will converge to a (to a). (See Figure 1.)

4. Iterated elimination of strictly dominated strategies defines two se-
quences that converge, respectively, to a and a. For example, let a0 = 0.
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Players will never use a strategy a < r (0) because it is strictly dom-
inated by a1 = r (0). Now, knowing that no one will use a strategy
in [0, r(0)) the region [0, r(r(0))) will also be strictly dominated. Let
a2 = r (a1) and define ak recursively. The sequence ak is increasing and
converges to a (indeed, it coincides with best reply dynamics starting
at a = 0). (See Figure 1.) This means that rationalizable strategies
will lie in the interval [a, a] and if the equilibrium is unique the game
will be dominance solvable. That is, the final outcome of the process
of iterated elimination of strictly dominated strategies is unique, and
is an equilibrium.

5. An increase in the parameter θ will lead to an increased action in
equilibrium and this increase will be over and above the direct effect
of the increase in the parameter. Indeed, increasing θ will move r (·)
upwards (as in Figure 1) and the equilibrium level of a will increase.
Starting at a = a the direct effect will lead us to r(a) > a and the full
equilibrium impact to a0 > a.2 The consequences of a common shock
(or for that matter idiosyncratic) are amplified. Because of strategic
complementarities there is a multiplier effect. Indeed, the direct effect
of an increase in θ in the action of an agent, taken as given the average
action, is amplified by the increase in the average action. This happens
either focusing at extremal (or stable) equilibria or considering best
response dynamics after the perturbation. Even starting at an unstable
equilibrium, or at an equilibrium that disappears once θ increases, an
increase in θ will result in an increase in a over and above the direct
effect. In Figure 1 the unstable equilibrium ba disappears with the
increase in θ, moving r (·) upwards and best reply dynamics lead to the
new equilibrium a0.

With strategic substitutability among strategies, ∂2π
∂ai∂ea < 0, there cannot

be multiple symmetric equilibria. In this case it is immediate that there is a
unique symmetric equilibrium (because ∂2πi

(∂ai)
2 +

∂2πi
∂ai∂ea < 0 and ∂πi

∂ai
(a, a; θ) = 0

will have a unique solution). It is easy to see that when 0 > r0 > −1 (or
|r0| < 1) the game is dominance solvable.3 This corresponds to the case where
the symmetric equilibrium is stable according to the usual cobweb dynamics.
Equivalently, in terms of iterated elimination of strictly dominated strategies

2Indeed, at a stable equilibrium r0 < 1 or ∂2πi
(∂ai)

2 +
∂2πi
∂ai∂ea < 0. Then from the

first order condition it is immediate that da
dθ = −

³
∂2πi
∂ai

´
/
³

∂2πi
(∂ai)

2 +
∂2π
∂ai∂ea

´
> ∂r

∂θ =

−
³

∂2πi
∂ai∂θ

´
/
³

∂2πi
(∂ai)

2

´
> 0.

3Guesnerie (1992) has shown this in a version of the model.
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agents recognize that no one will take an action larger than r(0) and this
starts the process of elimination of strategies, this time with alternating
regions on both sides of the candidate equilibrium.

2.2 Heterogeneous players

A variation of the search example encompasses heterogeneous agents.4 Sup-
pose an agent has to decide whether to adopt or not a new technology (or
whether to ”invest”, ”act”, or ”participate”). His action is ai = 0 if there
is no adoption, and ai = 1 if there is adoption. The cost of adoption θ
is idiosyncratic and follows a distribution function F on the interval

£
θ, θ
¤
.

The benefit of adoption is just the total mass adopting ea (which will be be-
tween 0 and 1) and therefore π (ai,ea; θi) = aiea−aiθi. The agent will adopt ifea− θi ≥ 0. An equilibrium will be given by an adoption threshold bθ and an
adopting mass ea such that ea = bθ = F ³bθ´ and an agent will adopt if θ ≤ bθ.
Letting θ < 0 and θ > 1, for θ < 0 to adopt is a dominant strategy (that
is, even if no one adopts it pays to adopt) and for θ > 1 not to adopt is a
dominant strategy (that is, even if everyone adopts it does not pay to adopt).
The equilibria can be depicted as in Figure 1 where in the horizontal axis we
have bθ and ea, and in the vertical axis ea and F (·).
It is instructive to think of the case in which θ follows a normal distri-

bution F ∼ N (µθ,σ2θ). We will have multiple equilibria if the distribution
function F (·) is S-shaped and this will be so if σ2θ is small enough. This hap-
pens when each player is not very uncertain about the costs of other players.
In contrast, when σ2θ is large and each players faces a lot of uncertainty about
the costs of other players, then F (·) has a mild curvature and the equilib-
rium is unique. Indeed, when σ2θ tends to infinity F (·) tends to a flat line
at 1/2 (see Figure 2 where the case µθ =

1
2
is displayed and bθ = µθ =

1
2

is the equilibrium threshold). When µθ =
1
2
a sufficient condition to have

multiple equilibria is that f(1
2
) > 1, where f is the density of the normal

distribution, and this is true if and only if 1
2π
> σ2θ.

5 Indeed, then bθ = 1/2 is
one equilibrium and if 1

2π
> σ2θ two more equilibria appear.

6

4See Chaterjee and Copper (1989), Pagano (1989), Dybvig and Spatt (1983) for related
examples.

5Recall that if x ∼ N ¡µ,σ2¢ then f (µ) = ¡σ√2π¢−1 where f is the density of x.
6More formally, the equilibrium is determined by bθ = F ³bθ´ or θ = Ψ (θ) ≡ Φ³ θ−µθσθ

´
,

where Φ is the cumulative standard normal distribution. Since Ψ0 (θ) = 1
σθ
φ
³
θ−µθ
σθ

´
,

where φ is the density of the standard normal which attains its (strict) maximum of 1√
2π
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When each player faces a lot of uncertainty about the other players (or
the heterogeneity of the population is very large) then strategic complemen-
tarities are weak and multiple equilibria cannot be supported. This is a very
general principle that we will revisit when studying equilibrium selection in
global games.

2.3 How general are the results?

The question that arises is how far those nice results about existence and
characterization of equilibria and comparative static properties in our game
extend to different specifications (what if payoffs are not concave and best
responses non-unique?) or general games with strategic complementarities,

at x = 0, we have that Ψ0 (θ) ≤ 1 if 1
2π ≤ σ2θ and Ψ

0 (θ) < 1 except when θ − µθ = 0. It
follows then that equilibrium will be unique if 1

2π ≤ σ2θ (unique intersection of Φ
³
θ−µθ
σθ

´
with the 45o line). Conversely, if µθ =

1
2 a sufficient condition to have multiple equilibria

is that 1
2π > σ2θ.
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or even beyond. As we will see in the next section most of the properties
generalize to multidimensional strategy spaces, discrete or continuous, and
even functional spaces, and non-smooth and non-concave payoffs. The basic
insight of the next section will be that to obtain the desired results only the
monotonicity properties of incremental payoffs and the order properties of
strategies matter. Most of the regularity conditions typically assumed will
not be crucial.

3 An introduction to games with strategic
complementarities

In this section I provide first a brief introduction to the tools and main results
and then comment on the scope of the theory.

3.1 Modeling complementarities and results

In this paper we will use the intuitive concept of game of strategic comple-
mentarities (GSC) whenever the best responses of the players in the game are
increasing in the actions of rivals, and the technical concept of supermodular
game that provides sufficient conditions for best responses to be increasing.
The analysis of supermodular games is based on lattice-theoretic results

that exploit order and monotonicity properties of strategy sets and payoffs.
The basis of the approach are monotone comparative statics results developed
by Topkis (1978) and the application of Tarski’s fixed point theorem for
increasing functions (Tarski (1955)). In a nutshell, minimal assumptions are
put on strategy sets and payoffs so that best responses are increasing and
move monotonically with the parameters of interest. Then Tarski’s fixed
point theorem delivers existence of equilibria as well as order properties of
the equilibrium set, and comparative statics results follow naturally.
This approach provides a powerful analytical tool that confronts the usual

obstacles when analyzing a game: existence of pure-strategy equilibria, com-
parison of equilibria, and comparative statics. In particular, in games of
strategic complementarities the presence of multiple equilibria need not be
an obstacle to perform comparative statics analysis.
The emphasis of the exposition will be on the intuition and not the tech-

nical details. The section will provide the minimal background necessary for

11



a reader to follow the rest of the article and the Appendix contains the tech-
nical definitions and intermediate results. Some examples will be developed
to illustrate the methodology.7

I will provide a definition of a supermodular game in a smooth context.
This is done in order to keep to a minimum the mathematical apparatus
but it is by no means the most general way to define it. Consider the game
(Ai,πi; i ∈ N) whereN is the set of players, i = 1, ..., n, Ai is the strategy set,
a compact cube in Euclidean space, and πi the payoff of player i ∈ N (defined
on the cross product of the strategy spaces of the players A). Let ai ∈ Ai
and a−i ∈ Πj 6=iAj (that is, we denote by a−i the strategy profile (a1, ..., an)
except the ith element). Let aih denote the hth component of the strategy
ai of player i.

We will say that the game (Ai,πi; i ∈ N) is smooth supermodular if for
all i

• Ai is a compact cube in Euclidean space;
• πi (ai, a−i) is twice continuously differentiable,

1. supermodular in ai for fixed a−i or ∂2πi/∂aih∂aik ≥ 0 for all k 6= h,
and

2. has increasing differences in (ai, a−i) or ∂2πi/∂aih∂aik ≥ 0 for all
j 6= i and for all h and k.

The game is smooth strictly supermodular if the inequality in (2) is strict.

Condition (1) is the complementarity property (supermodularity) in own
strategies. It means that the marginal payoff to any strategy of player i is
increasing in the other strategies of the player. Condition (2) is the strategic
complementarity property in rivals’ strategies a−i. It means that the marginal
payoff to any strategy of player i is increasing in any strategy of any rival
player. This property of πi is termed increasing differences in (ai, a−i). In
the general formulation of a supermodular game strategy spaces need to
be only ”complete lattices”, differentiability of payoffs is not needed, only
continuity, and properties (1) and (2) are stated in terms of increments.
See the Appendix for the general definitions of lattices, supermodularity,
increasing differences, and supermodular game.
In a supermodular game very general strategy spaces can be allowed, in-

cluding indivisibilities, as well as functional strategy spaces such as those
7The reader is referred to Chapter 2 Vives (1999) for a more thorough and general

treatment of the theory, as well as proofs, and further references and applications.
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arising in dynamic or Bayesian games (as we will see in Sections 5.3 and 6
below). Regularity conditions such as concavity and interior solutions can be
dispensed with. The complementarity properties are robust in the sense that
they are preserved under addition or integration, pointwise limits, and max-
imization (with respect to a subset of variables, preserving supermodularity
for the remaining variables).8

Two leading oligopoly models fit, in many specifications, the comple-
mentarity assumptions made. A first example is a Cournot oligopoly with
complementary products. In this case the strategy sets are compact inter-
vals of quantities and the complementarity assumptions are natural (what
Spence (1976) called ”strong complements”). A second example is a Bertrand
oligopoly with differentiated substitutable products with each firm producing
a different variety. The demand for variety i is given by Di (pi, p−i) where
pi is the price of firm i and p−i denotes the vector of the prices charged by
the other firms. A linear demand system will satisfy the complementarity
assumptions.
The application of the theory can be extended by considering increasing

transformations of the payoff (which does not change the equilibrium set of
the game). We say that the game is log-supermodular if πi is nonnegative
and log πi fulfils conditions (1) and (2). In the Bertrand oligopoly example,
the profit function of firm i, πi = (pi − ci)Di (pi, p−i), where ci is the constant
marginal cost, is log-supermodular in (pi, p−i) whenever

∂2 logDi
∂pi∂pj

≥ 0. This
holds whenever for firm i the own-price elasticity of demand ηi is increasing
in p−i, as with constant elasticity, logit, or constant expenditure demand
systems.9

The key results of the theory are obtained by a combination of monotone
comparative statics results due to Topkis and Tarski’s fixed point theorem.
The results by Topkis (1978) deliver monotone increasing best responses, even
when πi is not quasiconcave in ai. The basic monotone comparative statics
result states that the set of optimizers of a function u(x, t) parameterized by
t, supermodular in x and with increasing differences in x and t, has a largest
and a smallest element and that both are increasing in t.10 In a supermodular

8Supermodularity and increasing differences can even be weakened to define an ”ordinal
supermodular” game relaxing supermodularity to the weaker concept of quasisupermod-
ularity, and increasing differences to a single crossing property (see Milgrom and Shanon
(1994)). However, those properties, as opposed to supermodularity and increasing differ-
ences, have no differential characterization and need not be preserved under addition or
partial maximization operations.

9See Chapter 6 in Vives (1999). However, this is not a universal result as we will see
in Section 3.2.
10See Lemma 1 in the Appendix for a precise statement of the result.
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game this means that each player i has a largest, Ψi (ai) = supΨi (a−i), and
a smallest, Ψi (a−i) = inf Ψi (a−i), best reply and that they are increasing in
the strategies of the other players. If the game is strictly supermodular then
any selection from the best reply correspondence is increasing.
The monotone comparative static result is of wide application. Some

intuition can be gained from the one dimensional ”classic” case where best
responses are continuous functions. Let Ai be a compact interval. Suppose
that the ith player best reply to a−i is unique, interior, and equal to ri (a−i).
We have then that ∂πi

∂ai
(ri (a−i) , a−i) = 0. Furthermore, if ∂2πi

(∂ai)
2 < 0, then ri

is continuously differentiable and ∂ri
∂aj

= −
³

∂2πi
∂ai∂aj

´
/ ∂2πi
(∂ai)

2 , j 6= i. Therefore
sign ∂ri

∂aj
= sign ∂2πi

∂ai∂aj
. Now, even when πi is not quasiconcave the monotone

comparative statics result implies that if ∂2πi
∂ai∂aj

> 0, j 6= i, then any selection
from the best-reply correspondence of player i (which may have jumps) is
increasing in the actions of the rivals. In summary, the positive cross-partial
derivative of profits ensures that any best response of the firm is increasing
even though it may have jumps. If it has jumps the jumps will be up and
not down.
We could define also the (weaker) concept of game of strategic comple-

mentarities (GSC), under our maintained assumptions, as a game in which
strategy sets are compact cubes (or ”complete lattices”), the best reply of any
player has extremal (largest and smallest) elements, and those are increas-
ing. Similarly, we could define a game of strict strategic complementarities
if furthermore any selection from the best reply of any player is increasing
in the strategies of the rivals.11 All the results stated below will hold then
replacing (strictly) supermodular game by GSC (game of strict SC).
The following results hold in a supermodular game. Let Ψ =

¡
Ψ1, ...,Ψn

¢
and Ψ = (Ψ1, ...,Ψn) denote the extremal best reply maps.

Result 1. Existence and order structure (Topkis (1979)). In a su-
permodular game there always exist extremal equilibria. That is, there is a
largest a= sup

©
a ∈ A : Ψ (a) ≥ aª and a smallest element a= sup {a ∈ A : Ψ (a) ≥ a}

of the equilibrium set.

The result is shown using Tarski’s fixed point theorem (which implies that
an increasing function from a compact cube into itself has a fixed point) on
the extremal selections of the best-reply map Ψ and Ψ, which are monotone
11This definition was used in Vives (1985b) who concentrated attention on monotone

increasing best responses as the defining characteristic of games with strategic comple-
mentarities. See the Appendix for a more formal definition along those lines.
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because of the strategic complementarity assumptions. There is no reliance
on quasiconcave payoffs and convex strategy sets to deliver convex-valued
best replies as required when showing existence using Kakutani’s fixed point
theorem.12

In the Bertrand oligopoly, for example, when the payoff is supermodular
or log-supermodular we have that extremal price equilibria do exist. The
results can be extended to convex costs and multiproduct firms and provide
thus a large class of Bertrand oligopoly cases where the classical non-existence
of equilibrium problem encountered by Roberts and Sonnenschein (1977) does
not arise.

Result 2. Symmetric games. In a symmetric supermodular game (ex-
changeable against permutations of the players):

• Symmetric equilibria exist since the extremal equilibria a and a are
symmetric.13 Therefore, if there is a unique symmetric equilibrium
then the equilibrium is unique (since a = a).

• If the strategy spaces of the players are one dimensional (or completely
ordered more in general) then a symmetric strictly supermodular game
only has symmetric equilibria.14 This result proves to be a very useful
tool to show uniqueness in symmetric supermodular games. For exam-
ple, in a symmetric version of the constant elasticity demand system
Bertrand oligopoly with constant marginal costs it is easy to see that
there is a unique symmetric equilibrium. Since the game is strictly
log-supermodular we can conclude that the equilibrium is unique.

• For one-dimensional strategy spaces existence of symmetric equilib-
ria can be obtained relaxing the monotonicity requirement of best re-
sponses. It is enough then that all the jumps in the best reply of a player
be up. Existence follows from Tarski’s intersection point theorem.15

The result is easy to grasp considering a function f : [0, 1] → [0, 1]
which when discontinuous jumps up but not down. The function must
cross then the 45o line at some point. Indeed, suppose that it starts
above the 45o line (otherwise, 0 is a fixed point), then it either stays

12The equilibrium set has additional order properties (see Vives (1985), Vives (1990),
problem 2.5 in Vives (1999)), and Zhou (1994).
13Indeed, if a1 6= a2 then, because the game is symmetric, (a2, a1, a3, ..., an) will also

be an equilibrium and therefore, because (a1, a2, a3, ..., an) is the largest equilibrium
a1 ≥ a2 ≥ a1 and a1 = a2.
14See footnote 23 in Vives (1999) for a proof of the statement.
15See Section 2.3.1 in Vives (1999).
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above it (and then 1 is a fixed point) or it crosses the 45o line. Versions
of this fixed point theorem have been derived by McManus (1962, 1964)
and Roberts and Sonnenschein (1976) to show existence of equilibria
in symmetric Cournot games with convex costs.16

— The argument is very simple. Consider a symmetric game with

compact intervals as strategy spaces and πi (ai, a−i) = π

Ã
ai,
P
j 6=i
aj

!
,

as in a Cournot game with homogeneous product and identical
cost functions (or as in the game with a continuum of players in
Section 2). Existence of symmetric equilibria follows then from
the stated result if the best-reply Ψi of a player (identical for all
i due to symmetry) has no jumps down. This is in fact true if
costs are convex in the Cournot game. Symmetric equilibria are

given by the intersection of the graph of ai = Ψi

ÃP
j 6=i
aj

!
with the

line ai =

ÃP
j 6=i
aj

!
/ (n− 1). We have thus that in a symmetric

game where the strategy space of each player is a compact interval
and the payoff to a player depends only on its own strategy and
the aggregate strategy of the rivals, if the best reply of a player
has no jumps down, then symmetric equilibria exist. This implies
in particular that in the game in Section 2.1 under very weak
assumptions a symmetric equilibrium will always exist.

Result 3. Welfare (Milgrom and Roberts (1990a), Vives (1990)).
In a supermodular game if the payoff to a player is increasing in the strategies
of the other players (positive externalities) then the largest (smallest) equi-
librium point is the Pareto best (worst) equilibrium. This is a very simple
result which is at the base of the finding of equilibria which can be Pareto
ranked in many games with strategic complementarities. For example, in
the Bertrand oligopoly example the profits associated with the largest price
equilibrium are also the highest for every firm.

Result 4. Stability and rationalizability. In a supermodular game with
continuous payoffs, best-reply dynamics:
(i) Approach the ”box” [a, a] defined by the smallest and the largest

equilibrium points of the game. Therefore, if the equilibrium is unique it is
16Milgrom and Roberts (1994) also state and prove the theorem with S = [0, 1] .
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globally stable. (Vives (1990).)
(ii) Converge monotonically downwards to an equilibrium starting at any

point in the intersection of the upper contour sets of the largest best replies
of the players (A+ in Figure 3). Similarly, starting at any point in the
intersection of the lower contour sets of the smallest best replies of the players
(A− in Figure 3) converge monotonically upwards to an equilibrium. (Vives
(1990).)
(iii) The extremal equilibria a and a correspond to the largest and smallest

serially undominated strategies. Therefore, if the equilibrium is unique the
game is dominance solvable. (Milgrom and Roberts (1990a).)

This result implies that all relevant strategic action is happening in the
box [a, a] defined by the smallest and largest equilibrium points. For exam-
ple, rationalizable outcomes (Bernheim (1984), Pearce (1984)) and supports
of mixed strategy and correlated equilibria must lie in the box [a, a]. The
argument for result (ii) is quite simple because, for example, starting at any
point in A+ (see Figure 3) best reply dynamics define a monotone decreasing
sequence that converges to a point that, by continuity of payoffs, must be an
equilibrium. In fact, starting at the largest (smallest) point of the strategy
space A -recall it is a cube- best reply dynamics with the largest (smallest)
best response map Ψ

¡
Ψ
¢
will lead to the largest (smallest) equilibrium a,(a)

(Topkis (1979)). For example, starting at inf A (see Figure 3) best reply
dynamics with the smallest best reply map Ψ define a monotone increasing
sequence that converges to a point y that, by continuity of payoffs, must be
an equilibrium. Furthermore, this must be the smallest equilibrium, y = a.
For any other equilibrium x, x ≥ inf A, and iterating the best reply map Ψ,
on both sides of the inequality, we obtain x ≥ a because Ψ is increasing.
Results (1) and (2) extend to a large class of adaptive dynamics.
Starting at an arbitrary point we cannot ensure convergence because,

for example, a cycle is possible. For example, in Figure 3 starting at a0 =
(a1, (a2)) best reply dynamics cycle along the edges of the box [a, a].
In the Bertrand oligopoly example with linear, constant elasticity, or logit

demands the equilibrium is unique and therefore the game is dominance
solvable and globally stable.
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Another interesting result is that properly mixed equilibria (i.e., Nash
equilibria for which at least two players’ strategies are not pure strategies) in
strictly supermodular games are unstable with respect to best reply or more
general adaptive dynamics (Echenique and Edlin (2001)). An example is the
mixed strategy equilibrium in the battle of the sexes.

Result 5. Comparative Statics. Consider a n-player supermodular
game with payoff for firm i, πi (ai, a−i; t), parameterized by a vector t =
(t1, ..., tn). If πi has increasing differences in (ai, t) (∂2πi/∂aih∂tj ≥ 0 for all
h and j ) then with an increase in t:
(i) the largest and smallest equilibrium points increase, and
(ii) starting from any equilibrium, best reply dynamics lead to a (weakly)

larger equilibrium following the parameter change.
Furthermore, the latter result can be extended to a class of adaptive dy-

namics including fictitious play and gradient dynamics; and continuous equi-
librium selections that do not increase monotonically with t predict unstable
equilibria (Echenique (2002)).
An heuristic argument for the result is as follows. The largest best reply of

player i is increasing in t and from this it follows that the largest equilibrium
point, determined by the largest best replies, also increases with t. Indeed,
a = sup

©
a ∈ A : Ψ (a; t) ≥ aª and Ψ (a; t) is increasing in t. Obviously, for

an increase in the equilibrium to take place it is only needed, for example,
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that the payoff to firm i is affected by ti and not by any other tj. An increase
in t leaves the old equilibrium in A− (see Figure 3) and therefore sets in
motion, via best reply (or more in general via adaptive dynamics) a monotone
increasing sequence that converges to a larger equilibrium. Increasing actions
by one player reinforce the desire of all other players to increase their actions
and the increases are mutually reinforcing (i.e., exhibit positive feedback).
Another way to look at the feedback loop is to think in terms of multi-

plier effects. As stated in Section 2 a multiplier effect in the parameter tj
obtains if the equilibrium reaction of each player to a change in the para-
meter is strictly larger than the reaction of the player keeping the strategies
of the other players constant. This will happen, for example, in a smooth
strictly supermodular game with one dimensional strategy spaces for which
∂2πi/∂ai∂tj ≥ 0 with strict inequality for at least one firm if we consider
extremal equilibria or following best reply adjustment dynamics after a pa-
rameter change. In Figure 4, where there is a unique equilibrium, the effect
of an increase in t1 is to move outwards the best reply of player 1. If player
2 were to stay put at a02 then the best response of player 1 would be ba1 but
in equilibrium a01 > ba1.17
17See Peitz (2000) for sufficient conditions for a price game to display multiplier effects.
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In games with strategic complementarities, unambiguous monotone com-
parative statics obtain if we concentrate on stable equilibria. This is a multi-
dimensional global version of Samuelson’s (1979) Correspondence Principle,
which links unambiguous comparative statics with stable equilibria and is
obtained with standard calculus methods applied to interior and stable one-
dimensional models.
As an example consider the (supermodular or log-supermodular) Bertrand

oligopoly. Then extremal equilibrium price vectors are increasing in an excise
tax t. Indeed, we have that πi = (pi − t− ci)Di (p) and ∂2πi

∂pi∂t
= −∂Di

∂pi
> 0.

One-dimensional strategy spaces and symmetric games With
one-dimensional strategy spaces and symmetric games we have seen how
symmetric equilibria exist if best replies have no jumps down. If equilibria
are fixed points of a function f : [0, 1]×R→ [0, 1] with no jumps down which
is (strictly) increasing in a parameter t ∈ R , then both the largest x (t) =
sup{x ∈ S : f (x; t) ≥ x} and the smallest x (t) = inf {x ∈ S : f (x; t) ≤ x}
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equilibrium are (strictly) increasing in t. As t varies, the number of equi-
libria may change, but still the largest and the smallest equilibrium will be
increasing in t. The argument for the result is immediate by looking, say,
at Figure 1 where as the parameter increases, the number of equilibria goes
from three to one and by realizing that upward jumps in the function can
be allowed. This result generalizes the comparative statics property 5 of
symmetric equilibria of the game considered in Section 2.1.

Result 6. Duopoly with strategic substitutability (Vives (1990)).
If n = 2 and there is strategic complementarity in own strategies, with πi
supermodular in ai or ∂2πi/∂aih∂aik ≥ 0 for all k 6= h, and strategic substi-
tutability in rivals’ strategies, with πi with increasing differences in (ai, aj)
or ∂2πi/∂aih∂ajk ≤ 0 for all j 6= i and for all h and k, then the transformed
game with new strategies s1 = a1 and s2 = −a2 is smooth supermodular.
(See Figure 5 and note that this is the mirror image of Figure 3 with respect
to the ordinate axis.) Therefore, all the stated results above apply to this
duopoly game. Unfortunately, the trick does not work for n > 2 and the
extension to the strategic substitutability case for n players does not hold.
A typical example of duopoly with strategic substitutability is a Cournot

market, where usually best replies are decreasing. In this case the welfare
result is as follows. If for some players payoffs are increasing in the strategies
of rivals, and for some others they are decreasing, then the largest equilibrium
is best for the former and worst for the latter. This is the case in the Cournot
duopoly with the strategy transformation yielding a supermodular game.
The preferred equilibrium for a firm is the one in which its output is largest
and the output of the rival lowest.
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3.2 The scope of the theory: Is anything a GSC?

If not everything is a game of strategic complementarities, where are the
bounds of the theory?
First of all, if we take the view that the order of the strategy spaces are

part of the description of the game or that there is a ”natural” order in the
strategy spaces, then there are many games that are not of strategic comple-
mentarities. For example, not all Bertrand games with product differentia-
tion are supermodular games. Roberts and Sonnenschein (1977), Friedman
(1983), and Section 6.2 in Vives (1999) provide examples, including games
with avoidable fixed costs and the classical Hotelling model when firms are lo-
cated close to each other. In those cases at some point best replies may jump
down and a price equilibrium (in pure strategies) may fail to exist.18 Indeed,
with gross substitutes goods prices may be strategic substitutes because the
18See, however, the modified Hotelling game in Thisse and Vives (1992) where best

responses may be discontinuous but are increasing.
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own-price elasticity of demand need not increase in the prices charged by
rivals. A price increase by rival j may lead to a decrease in the own-price
elasticity of demand for firm i because it makes consumers of that brand who
do not have strong preference for any product, i.e. who are more price sen-
sitive, more willing to switch brands. Then it may be that for firm i it pays
to cut the price to gain these consumers. Berry, Levinshon and Pakes (1999)
find some empirical support for this in certain markets. Another instance of
strategic price substitutability among prices may come from the presence of
strong network externalities. For example, in the logit model with network
externalities (Anderson, de Palma and Thisse (Ch. 7, 1992)) increasing the
price set by a rival raises the value for consumers of the network of firm i and
it may pay this firm to cut prices to enlarge this lead (although this will not
happen for small network externalities). Put it another way, in many games
best responses are just non-monotone. For example, they are increasing in
some portion of the strategy space and decreasing in another.
However, we could take also the view that the order of the strategy sets

of the players is a modeling choice at the convenience of the researcher. This
is what we have done to extend the reach of the theory to duopolies with
strategic substitutes. Then, if we allow also to construct this order ex post,
with knowledge of the equilibria of the game, the answer to the question of
the bounds of the theory is that most games are of strategic complementar-
ities. This means that complementarities alone, in the weak sense stated,
do not have much predictive power unless coupled with additional structure
(Echenique (2004a)). Indeed, define a game with strategic complementari-
ties (GSC) as one in which there is a partial order on strategies (that can be
chosen by the modeler) so that best responses are monotone increasing (and
with strategy sets having a lattice structure). Then (i) a game with a unique
pure strategy equilibrium is a GSC if and only if Cournot best response dy-
namics (with unique or finite-valued best replies) have no cycles except for
the equilibrium; (ii) a game with multiple pure strategy equilibria is always
a GSC. As a corollary (iii) 2× 2 games, generically, are either GSC or have
no pure strategy equilibria (like matching pennies). Result (i) in particular
means that a game with a unique and globally stable equilibrium is a GSC,
according to the definition given. An example is the strategic substitutes
case in the continuum of agents model of Section 2 when r0 > −1. Note that
in this case the game is dominance solvable.
Result (ii) is shown by taking one equilibrium to be the largest and an-

other the smallest strategy profiles in a way that best responses are increas-
ing.19 Indeed, a game with multiple equilibria always involves a coordination
19If a correspondence φ from X to X has two fixed points a and b, then define an order
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problem (i.e., coordinating on one equilibrium). We can find then an order
on strategies that makes the game one of strategic complementarities. How-
ever, note that this is done with a priori knowledge of the equilibria and the
defined order, indeed, may not be ”natural” at all.20

The bottom line is that complementarities cannot be applied in the void,
they need to be coupled with the structure of the problem at hand to deliver
(hopefully powerful) results. Indeed, the fact that with multiple equilibria we
can always define an order that makes best responses increasing by taking
two equilibria and letting those strategy profiles be the extremal ones in
the strategy sets of players, does not mean that the interval prediction (the
”box”), once we use a natural order in the game, does not provide a narrowing
down of the possible outcomes of strategic interaction.

4 Oligopoly and comparative statics

This section reviews some of the basic applications to oligopoly, surveys very
recent ones and provides some new ones. It develops comparative statics
results in Cournot markets (including entry), patent races, and multidimen-
sional competition.
The analysis illustrates several points: The potential pitfalls of classical

analysis, the extension of the methods to games that need not display comple-
mentarities globally, and the isolation of the crucial assumptions driving the
results. As an example of the first issue, when studying the effects of increas-
ing the number of firms n into a Cournot market, classical analysis obviates
the point that some equilibria may disappear (or appear) when changing
n, making any ”local” study meaningless (Amir and Lambson (2000)). An
analysis of a multimarket oligopoly coming from two-sided competition will
exemplify the second issue. Using lattice-theoretic methods conditions for
”perverse” comparative statics will be derived in a context where the under-
lying game is not supermodular (Cabral and Villas-Boas (2003)). Finally, an
examination of a patent race will isolate the crucial assumptions behind the
comparative statics of R&D effort with respect to the number of participants
in the race (Vives (1999)). We deal in turn with a comparison of Cournot and

on X,≥ , as follows. Let y ≥ x if and only if any of the following is true: x = y, x = a or
y = b. Then in fact φ is weakly increasing, in the sense that if y ≥ x then there is z in φ
and z0in φ (y) with z0 ≥ z. (In fact (X,≥) is a complete lattice, see the Appendix.)
20In fact, given that the order is endogenous it may be that in a GSC, as defined in

this section, there is no equilibrium in pure strategies because strategy sets may not be
complete lattices.
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Bertrand equilibria, comparative statics in Cournot markets, patent races,
and multidimensional competition.

4.1 Comparison of Cournot and Bertrand equilibria

Consider the same market as in the n-firm Bertrand oligopoly example with
firm i producing qi of variety i at cost Ci (qi). As before the demand for va-
riety i is given by Di (pi, p−i). In the Bertrand game firms compete in prices
and πi = piDi (pi, p−i)−Ci (Di (pi, p−i)). In the Cournot game firms compete
in quantities and profits for firm i are given by Pi (qi, q−i) qi − Ci (qi), where
Pi (qi, q−i) is the inverse demand for firm i. Bertrand equilibria are typi-
cally thought to be more competitive than Cournot equilibria. The lattice-
theoretical approach makes precise in what sense this is true and what drives
the result.
It can be shown that with gross substitute, or complementary, products if

the price game is supermodular and quasiconcave (that is, πi is quasiconcave
in pi for all i) then at any interior Cournot equilibrium prices are higher
than the smallest Bertrand equilibrium price vector. A dual result holds also.
With gross substitute, or complementary, products, if the quantity game is
supermodular and quasiconcave, then at any interior Bertrand equilibrium
outputs are higher than the smallest Cournot equilibrium quantity vector
(Vives (1985b, 1990)).
To show the result first note that Cournot prices pc must lie in region

A+(Figure 3), that is, the region in price space defined by the intersection of
the upper contour sets of the best replies of the firms in the Bertrand game.
This is so because the perceived elasticity of demand for a firm is larger
in price than in quantity competition and, consequently at Cournot price
levels firms would have an incentive to cut prices if they were to compete
in prices. Indeed, with quantity competition no market can be stolen from
your competitor given their strategies. Then apply Result 4(ii) to the price
game to conclude that starting at any Cournot price vector pc best reply
dynamics will lead the system to a Bertrand equilibrium with lower prices.
A corollary is that starting at any interior Cournot equilibrium if firms were
to compete in prices they will cut prices until the market stabilizes at a
Bertrand equilibrium. The result for quantities is analogous.

4.2 Comparative statics in Cournot markets
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Consider a Cournot market in which the profit function of firm i is given by
πi = P (Q) qi − Ci (qi), where P (·) is the inverse demand, Q total output,
Ci (·) the cost function of the firm and qi its output level.
The standard approach (Dixit (1986)) assumes quasiconcavity of payoffs,

downward sloping best replies, and that the equilibrium analyzed is unique
and stable to derive comparative statics results. Are all those strong assump-
tions needed? What can we say if payoffs are not quasiconcave and/or there
are multiple equilibria?
Let us review first the standard approach. Let P and Ci be smooth with

P 0 < 0, P + qiP 00 ≤ 0 (implying that the game is of strategic substitutes),
and C

00
i − P 0 > 0 for all i. Those conditions ensure uniqueness and local

stability (with respect to continuous best reply dynamics). Parameterize the
cost function of firm i by θi and let Ci (qi; θi) be such that ∂Ci

∂θi
> 0 and

∂2Ci
∂θi∂qi

> 0. Then it can be shown, using the standard calculus apparatus
with the implicit function theorem, that an increase in θi decreases qi and
πi, and increases qj and πi, j 6= i.
The lattice-theoretical approach (Amir (1996), Vives (1999)) makes the

minimal assumptions to obtain the results. Let us consider two cases: a
general (potentially asymmetric) oligopoly and a symmetric case.
In the general case consider a Cournot duopoly in which strategies are

strategic substitutes and potentially there are multiple equilibria. A sufficient
condition for best replies to be decreasing is that the inverse demand be log-
concave (and costs strictly increasing in output for both firms).21 According
to Result 6 the strategic substitutes game is transformed into a strategic
complements game by changing the sign of the strategy space of one player.
We know then that extremal equilibria exist (Result 6) and that an increase
in the parameter θi decreases qi and increases qj and πi, j 6= i. The latter
results follows from comparative statics Result 5, where the parameter of
interest only affects directly the payoff function of one player. This explains
why the increase in θi decreases qi and increases qj. The result for profits
follows immediately from ∂Ci

∂θi
> 0 and ∂πi

∂qj
< 0, j 6= i. What if we are not at

an extremal equilibrium? Similarly as in Result 5(ii), best reply dynamics
lead to the comparative static result following the increase in θi starting at
any equilibrium.
Restrict attention now to a symmetric Cournot oligopoly. In the stan-

dard approach (Seade (1980 a, b)) it is assumed that payoffs are quasi-
21Decreasing best replies in fact imply the existence of a Cournot equilibrium in a n-

firm game (see Theorem 2.7 in Vives (1999)). Decreasing best replies are considered the
normal case with Cournot competition but it is easy to generate examples with increasing
or nonmonotone best replies (see Section 4.1 in Vives (1999) for a discussion of the topic).
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concave and conditions are imposed ((n+ 1)P 0 (nq) + nP 00 (nq) q < 0 and
C 00 (q)−P 0 (nq) > 0 ) so that there is a unique and locally stable symmetric
equilibrium q∗. Let ∂2C

∂θ∂qi
≤ 0. Then standard calculus techniques show that

an increase in θ increases q∗, and that total output increases and profits per
firm decrease as n increases. The comparative statics of output per firm with
respect to the number of firms are ambiguous. The classical approach has
several problems. First of all, it is silent about the potential existence of
asymmetric equilibria. Second, it is restrictive and may be misleading. For
example, if the uniqueness condition for symmetric equilibria does not hold
and there are multiple symmetric equilibria, changing n either may make
disappear the equilibrium considered or introduce more (as in Figure 1).
In the lattice-theoretic approach (Amir and Lambson (2000), Vives (1999))

it is assumed only that P 0 < 0 and C 00 − P 0 > 0. As will be shown below,
a symmetric equilibrium (and no asymmetric equilibrium) exists. Under the
assumption that ∂2C

∂θ∂qi
≤ 0, then at extremal (symmetric) Cournot equilib-

ria: Individual outputs are increasing in θ, total output is increasing in n
and profits per firm decrease with n. Furthermore, individual outputs de-
crease (increase) with n if demand is log-concave (log-convex and costs are
zero). This approach does away with all the unnecessary assumptions of the
standard approach and derives new results.
To illustrate the approach let us sketch the proof that, under the assump-

tions P 0 < 0 and C 00 − P 0 > 0, a symmetric equilibrium (and no asymmetric
equilibrium) Cournot exists; that individual outputs are increasing in θ and
that total output is increasing in n. Let Ψi be the best reply map of firm
i (identical for all i because of symmetry). Define the correspondence ϕ
by assigning (qi +Q−i) (n− 1) /n, where qi ∈ Ψi

¡
Q−i)

¢
, to Q−i. Symmet-

ric equilibria are given by fixed points of this correspondence. Under the
assumptions it can be checked that Ψi has slopes larger than −1.22 This
implies that all selections from Ψi

¡
Q−i)

¢
+Q−i are (strictly) increasing and

that no asymmetric equilibria can exist.23 Furthermore, all selections from
the correspondence ϕ will be increasing. We can use then Tarski’s fixed point
theorem to show existence of extremal equilibria. Those extremal equilibria
can be found using the extremal selections of ϕ (which are well-defined in our
context). Similarly as in Result 5(i), individual outputs at those extremal
equilibria will be increasing in θ because, from the assumption ∂2C

∂θ∂qi
≤ 0,

extremal selections of ϕ (and Ψi ) are increasing in θ. Let us see now that
22That is, the segment joining any two points on the graph of the correspondence Ψi

has a slope larger than -1.
23This is so because for any total output there is a unique output for every firm, identical

for all firms because of symmetry, consistent with optimization behavior (see remark 17
in Section 2.3 in Vives (1999)).
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total output is increasing in n at extremal equilibria. First of all, it is easy
to see that extremal selections of ϕ are increasing in n. This means that the
total output of (n− 1) firms is increasing in n at any extremal equilibrium.
It follows then that total output at extremal equilibria must be increasing in
n because all selections from Ψi

¡
Q−i)

¢
+Q−i are (strictly) increasing in Q−i.

The results for profits and individual outputs in relation to n follow along
similar lines.24

4.3 Patent races

Suppose that n firms are engaged in a memoryless patent race and have access
to the same R&D technology (Lee and Wilde (1980)). An innovating firm
obtains the prize V and losers obtain nothing. If a firm spends x continuously
the (instantaneous) probability of innovating is given by h (x) where h is a
smooth concave function with h (0) = 0, h0 > 0, limx→∞ h0 (x) = 0, h0 (0) =
∞ (a region of increasing returns for small x may be allowed). Without
innovating the normalized profit of firms is zero. Under these conditions the
expected discounted profits (at rate r) of firm i investing xi if rival j invests
xj is given by πi = (h (xi)V − xi) / (h (xi) + Σj 6=ih (xj) + r) (see Lee and
Wilde (1980) and Reinganum (1989)). Denote the best response of a firm
by xi = R (Σj 6=ih (xj) + r), this is well defined under the assumptions. Lee
and Wilde (1980) restrict attention to symmetric Nash equilibria of the game
and show that under a stability condition at a symmetric equilibrium, x∗,
R0 ((n− 1)h (x∗)) (n− 1)h0 (x∗) < 1, x∗ increases with n.
This approach, however, suffers from the same problems as the compara-

tive statics of entry in Cournot markets. It requires assumptions to ensure a
unique and stable symmetric equilibrium and cannot rule out the existence of
asymmetric equilibria. However the following mild assumptions ensure that
the game is strictly log-supermodular: h (0) = 0 and h strictly increasing in
[0, x]with h (x)V − x < 0 for x ≥ x > 0. It follows then from Result 2 that
equilibria exist and all are symmetric. Let xi = x and xj = y for j 6= i,
then log πi has (strictly) increasing differences in (x, n) for all y (y > 0) and
at extremal equilibria the expenditure intensity x∗ is increasing in n. Fur-
thermore, if h is smooth with h0 > 0 and h0 (0) = ∞ then ∂ log πi/∂xi is
strictly increasing in n and at extremal equilibria x∗ is strictly increasing in
n. This follows because under the assumptions equilibria are interior and
have to fulfill the first order conditions.
24See pp. 42-43, 93-96 and Section 4.3.1 in Vives (1999) for details.
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Similarly as before, starting at any equilibrium an increase in n will raise
the research intensity with out-of-equilibrium adjustment according to best
reply dynamics. This will be so even if by increasing n some equilibria
disappear or some new appear.

4.4 Multidimensional competition

Multidimensional competition provides another fertile ground for applica-
tion of the approach because it can handle readily multidimensional strategy
spaces. We will consider first an example with advertising and price as strate-
gies and then multimarket oligopoly situations.

4.4.1 Advertising and prices

Consider our Bertrand oligopoly example where the demand of firm i,Di (p; ti),
depends on advertising effort ti with ∂Di

∂ti
> 0. Suppose that goods are gross

substitutes ∂Di
∂pj
≥ 0, j 6= i and demand downward sloping ∂Di

∂pi
< 0. Let πi =

(pi − ci)Di (p; ti)−Fi (ti)where Fi is the cost of advertising with F 0i > 0. The
action of firm is ai = (pi, ti), with natural upper bounds for pi and ti. Profits
πi are strictly supermodular in ai = (pi, t) if ∂2πi

∂pi∂ti
= (pi − ci) ∂2Di

∂pi∂ti
+ ∂Di

∂ti
> 0.

A sufficient condition for the condition to hold is that ∂2Di
∂pi∂ti

≥ 0 or that ad-
vertising increases the willingness to pay. Furthermore, πi has increasing
differences in ((pi, ti) , (p−i, t−i)) if ∂2Di

∂pi∂pj
≥ 0, j 6= i (given that ∂Di

∂pi∂tj
= 0,

j 6= i). Under these assumptions the game is supermodular and the largest
(smallest) equilibrium have the feature of having high (low) prices and ad-
vertising levels. Multiple equilibria obtain with a symmetric linear demand
system where ti increases the demand intercept if F 0 is concave enough. We
have found thus conditions under which high prices are associated to high
advertising levels.

4.4.2 Multimarket oligopoly

Consider now a multimarket version of the Bertrand oligopoly where firm i =
1, ..., n producesHi varieties, h = 1, ...,Hi and has profits πi =

PH
h=1 (pih − cih)Dih (pi, p−i; θih).

If πi is (log-)supermodular in prices and has increasing differences (log-
supermodular) in (pi, (ci, θh)), then extremal equilibrium prices are increasing
in demand and cost parameters of any firm. For example, if demand Dih is
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linear with intercept θih, goods are gross substitutes, and θi is advertising
effort by firm i, then advertising raises (extremal) equilibrium prices.
The approach can be extended to pricing games not supermodular (nei-

ther log-supermodular). A nice example of a multimarket Bertrand oligopoly
is provided by the multiproduct logit model of Spady (1984). This is a
case where best responses are increasing and there is a unique Bertrand
equilibrium despite the fact that payoffs are nor quasiconcave, but single
peaked, neither supermodular (or log-supermodular) in own actions (prices),
but strategic complementarity across prices of different firms holds.
Amultimarket mixed oligopoly with products demand complements within

the firm and substitutes across firms provides another example. This situ-
ation is typical of two-sided markets where two groups of market partici-
pants benefit from interaction via a platform or intermediary. Intermediaries
compete for business from both groups and set prices. Examples are numer-
ous and include readers/viewers and advertisers in media markets, cardhold-
ers/consumers and merchants/retailers in payment systems such as credit
cards, consumers and shops in shopping malls, authors and readers in acad-
emic journals, borrowers and depositors in banking, ”subscription to a net-
work” and ”number of calls made to a network” in telecom markets, and in
general buyers and sellers put together with the help of intermediaries (in
real state, financial products or auction markets). The interaction between
the two sides gives rise to complementarities or externalities between groups
that are not internalized by end users. For example, when a consumer uses
a credit card does not internalize the benefit that it confers to the other side
of the market (the merchants).
Consider a situation of two-sided exclusive intermediation with two groups

of participants (say columnists and readers, dating bars, workers and firms in
a single region, consumers and shops in a mall) where each participant joins
one of the two existing intermediaries only and where the utility derived
by a member of a group by joining a particular intermediary is increasing
in the number of members of the other group joining the same intermedi-
ary.25 With linear demands arising from Hotelling-type preferences for the
intermediaries (Armstrong (2002)) the result is that products are strategic
complements across firms but strategic substitutes within the firm. The mul-
timarket oligopoly game is therefore not a supermodular game as defined in
Section 3. However, best replies will be increasing as long as the demand com-
plementarity among the products of the same firm/intermediary is not very
strong. In the context of the linear demand game with small and symmetric
network effects, best replies are increasing and there is a unique symmetric
25See Armstrong (2002) for a survey of two-sided competition.
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equilibrium.
An interesting result in the Hotelling game, where total demand is inelas-

tic, is that an increase in the cross-group network effect, or, in other words,
an increase in the degree of demand complementarity of the ”products” of
the intermediary, reduces equilibrium profits. An increase in the impact of
the benefits that one side of the market confers on the other when they go
to an intermediary has in fact a detrimental equilibrium effect on profits.
The reason is that the externality increase has no positive direct impact in
demand at a symmetric equilibrium in which the whole market is covered
and it incentivates each intermediary to cut prices. Since total demand stays
constant because it is price-inelastic equilibrium profits decrease. This result
can be generalized whenever the direct effect of the externality on demand
at symmetric equilibria is small, so that profits for any intermediary have
decreasing differences in the price charged to a group (and in consequence
the externality parameter and best replies shift inwards as the externality pa-
rameter increases), and total demand is fixed (or it is quite price-inelastic),
so that the equilibrium price decrease translates into a profit decrease. In
those circumstances the strategic pricing effect dominates the direct effect
(Cabral and Villas-Boas (2003)). Economies of scope have a similar effect
than demand externalities.
Peitz (2002) uses supermodular methods to study the effects of asymmet-

ric access price regulation in telecom markets. He finds that networks are
strategic complements around any cost-based (regulated access) equilibrium
and that raising the access price for the incumbent shifts in the best response
of both the incumbent and the entrant. The result is that subscription fees
are decreased for both operators (whenever networks compete with two-part
tariffs with termination-based price discrimination).

5 Dynamic games

This section will take a look at dynamic issues building on comparative statics
results for supermodular games (like Result 5) that predict movements of
equilibrium variables when a parameter changes.
I examine three issues. I review first the taxonomy of strategic behavior

due to Fudenberg and Tirole (1984) and provide the minimal assumptions
so that the classification of strategies (in terms of fat cats and puppy dogs)
holds (Vives (1999)). It will be shown that all that matters is the character of
competition (strategic substitutes or complements) and whether investment
makes the incumbent tough or soft, and nothing else (in particular the strong
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regularity conditions implying uniqueness of equilibria usually imposed). The
second application is to examine the conditions under which increasing or
decreasing dominance occurs in oligopoly (Athey and Schmutzler (2001)).
That is, whether leaders or laggards have more incentives to invest. This
is particularly relevant in situations where investment today, which could
be a larger firm size if there are learning effects and/or adjustment costs,
affects competitive conditions tomorrow. These applications will illustrate
the power of the approach to isolate the drivers of results and extend them
beyond GSC. Finally, full-blown dynamic games are considered restricting
attention to Markov games and Markov perfect equilibria (MPE). First I
tackle how static complementarities translate into dynamic complementari-
ties and use the methodology to characterize MPE. Conditions are given so
that contemporaneous (intra-period) strategic complementarity (SC) and in-
tertemporal (inter-period) SC obtain. The relationships between static and
dynamic strategic substitutability and complementarity will be studied in
alternating move games (Maskin and Tirole (1987, 1988)) and in games with
adjustment costs (Jun and Vives (2003)). Finally, the problem of existence
and characterization of Markov perfect equilibria will be addressed (Curtat
(1996), Sleet (2001)).
The outcome of the analysis are new results uncovered (characterization

of dynamic strategic complementarity and linkage between static and dy-
namic complementarity concepts, existence of MPE) and isolation of crucial
assumptions in know results (increasing dominance, monotonicity of dynamic
reaction functions in alternating move games).

5.1 Taxonomy of strategic behavior

Fudenberg and Tirole (1984) provided a taxonomy of strategic behavior in
the context of a simple two-stage game between an incumbent and an entrant.
At the first stage the incumbent (firm 1) can make an observable investment t
yielding at the market stage π1 (a1, a2; t) where ai is the market action of firm
i. The payoff of the entrant is π2 (a1, a2). The incumbent can influence the
market outcome at the second stage by taking into account the effect of his
investment on the equilibrium behavior of the rival at the market stage. The
goal is to sign this strategic effect taking as benchmark ”innocent” behavior
where the incumbent when deciding about t only takes into account the
direct effect of the investment on his payoff. Innocent behavior obtains in
the open-loop equilibrium of the two-stage game, which is equivalent to the
game with simultaneous choice by the incumbent of t and a1.
The standard approach assumes that at the second stage there are well-
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defined best-response functions for both firms, and that there is a unique
and (locally) stable Nash equilibrium that depends smoothly on t, a∗ (t).

To obtain this it is assumed that − ∂2πi
(∂ai)

2 >
¯̄̄

∂2πi
∂ai∂aj

¯̄̄
, i 6= j, i = 1, 2. At

a subgame-perfect equilibrium, we will have that ∂πi
∂t
+ ∂π1

∂a2

∂a∗2
∂t
= 0 where

S ≡ ∂π1
∂a2

∂a∗2
∂t
is the strategic effect. That is, the effect of the investment t

on the equilibrium profits of the incumbent because of the modified market
behavior of the entrant. Under the stated assumptions it follows, using stan-
dard calculus techniques, that sign∂a∗2

∂t
= sign

³
∂2π2

∂a1∂a2

∂2π1
∂t∂a1

´
and therefore

sign S = ∂π1
∂a2

∂2π1
∂t∂a1

∂2π2
∂a1∂a2

. If ∂π1
∂a2

∂2π1
∂t∂a1

< 0 (< 0), we say that the investment
makes firm 1 tough (soft). Indeed, suppose that ∂πi

∂aj
< 0, j 6= i so that an

increase in the market action of firm j hurts firm i. Then if ∂2π1
∂t∂a1

> 0 an
increase in t will shift the best response function of firm 1 out and this will
be an aggressive move, making firm 1 tough.
A taxonomy of strategic behavior (see Table 1) can be provided then de-

pending on whether competition is of the strategic substitutes
³

∂2π2
∂a1∂a2

< 0
´

or complements
³

∂2π2
∂a1∂a2

> 0
´
variety and on whether investment makes firm

1 soft
³
∂π1
∂a2

∂2π1
∂t∂a1

> 0
´
or tough

³
∂π1
∂a2

< 0
´
. If competition is of the strate-

gic substitutes type and investment makes firm 1 tough then the incumbent
wants to overinvest (S > 0) to push the entrant down his best response curve
(see Figure 6). This is the top dog strategy. Cournot competition and in-
vestment in cost reduction are an example. If competition is of the strategic
complements type and investment makes firm 1 tough then the incumbent
wants to underinvest (S > 0) to move the entrant up his best response curve.
This is the puppy dog strategy. Price competition with differentiated prod-
ucts and investment in cost reduction are an example. Similarly, we can
define the strategies ”lean and hungry” and ”fat cat”.
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Table 1

Taxonomy of strategic behavior
Investment makes player 1:

Strategic\ Tough Soft

Substitutes Overinvest (top dog) Underinvest (lean and hungry)
Complements Underinvest (puppy dog) Overinvest (fat cat)

In the lattice theoretic version of the result (section 7.4.3, Vives (1999))
the taxonomy follows from minimal assumptions, the character of competi-
tion and investment, as applied to extremal equilibria. There is no need to
impose the strong restrictions above to obtain a unique and stable equilibrium
at the market stage. Indeed, comparative statics Result 5 holds, obviously,
in a duopoly when only the parameter ti changes and it affects only the
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payoff of one firm. Let us formulate the result in the duopoly case with ac-
tions of firms in a compact interval. Consider a supermodular duopoly game
in which the payoff to player 1, parameterized by t, is π1 (a1, a2; t), and to
player 2 is π2 (a1, a2). If ∂2π1/∂a1∂t ≥ 0 then extremal equilibria are increas-
ing in t. Note then that if the game is of strategic substitutes then extremal
duopoly equilibrium strategies for firm 1(2) are increasing (decreasing) in t
if ∂2π1/∂a1∂t ≥ 0 . The results are reversed if ∂2π1/∂a1∂t ≤ 0.
In our case this means that if the market game is supermodular

³
∂2π2

∂a1∂a2
≥ 0

´
and ∂2π1

∂t∂a1
≥ (≤) 0 then extremal equilibria are increasing (decreasing) in t.

If the market game is of the strategic substitutes variety
³

∂2π2
∂a1∂a2

≤ 0
´
then

changing signs in the strategy space of one player the game becomes a su-
permodular game and extremal equilibrium strategies for player 1(2) are
increasing (decreasing) in t if ∂2π1

∂t∂a1
≥ 0 and the result is reversed if ∂2π1

∂t∂a1
≤ 0.

Therefore, sign∂a∗2
∂t
= sign

³
∂2π2

∂a1∂a2
∂2π1
∂t∂a1

´
when a∗2 is an extremal equilibrium

and the taxonomy follows for extremal equilibria.
What if at the market stage firms are sitting on a non-extremal equilib-

rium (for instance at the unstable equilibrium ba in Figure 6)? Then if out of
equilibrium adjustment is governed by best reply dynamics the sign of the
impact of a change in t is teh same as with an extremal equilibrium. In Fig-
ure 6, depicting teh case of strategic substitutes competition and investment
that makes the incumbent tough, an increase in t will generate an adjustment
process that will lead to the new equilibrium ea with ba2 > ea2.
In summary, the taxonomy of strategic behavior can be obtained with

just the crucial assumptions on monotonicity of marginal payoffs without
any need of quasiconcavity of payoffs and the requirement of a unique and
stable market equilibrium.

5.2 Increasing or decreasing dominance?

The generalization of the taxonomy was based on a monotone comparative
static result for a duopoly. The following comparative statics result deals with
n-player competition in a strategic substitutes game and can be used to study
in what situations leaders or laggards in an industry have more incentive to
invest, in cost reduction or quality enhancement, and whether this leads to
increasing or decreasing dominance (Athey and Schmutzler (2001)).
Suppose that the payoff to player i is given by πi (ai, a−i; t) with t =

(t1, ..., tn). The parameter ti is to be interpreted as the state variable or
initial conditions of player i in the game. Let both actions and state variables
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be one dimensional. We would like to find conditions under which if two
firms only differ in their state variables and ti > tj then at any equilibrium
ai (t) ≥ aj (t), the interpretation being that an initial dominance is reinforced
by the actions of the firms. For example, in the presence of a learning curve,
the firm that has accumulated more output has incentive to produce more.
Suppose that πi (ai, a−i; t) has increasing differences in (ai, aj), i 6= j

(strategic complementarity) and increasing differences in (ai, (ti,−t−i)). As-
sume also that all the players have the same strategy set and that the pay-
offs are exchangeable (any player does not care about the identity of the
opponents, only about their action and payoff relevant parameters or state
variables). This means that the payoffs of two players are the same if actions
and state variables are exchanged among them. Suppose also that payoffs
are strictly quasiconcave so that there is a unique best response function
for any player, and that we have an equilibrium for which, without loss of
generality, a1 < a2 with t1 > t2. Fix the actions of the players n = 3,...,n
at their equilibrium levels. Because of strict quasiconcavity and exchange-
ability we can write the best response of firm 1 as r (a2; t1, t2) and that of
firm 2 as r (a1; t2, t1). Because of strategic complementarity and a1 < a2
we have that a1 = r (a2; t1, t2) ≥ r (a1; t2, t1). Because t1 > t2 and the fact
that πi (ai, a−i; t) has increasing differences in (ai, (ti,−t−i)) we have that
r (a1; t1, t2) ≥ r (a1; t2, t1) = a2, contradicting the supposition that a1 < a2.
We conclude that a1 ≥ a2, if t1 > t2.26
To help the intuition just think of the case n = 2 in Figure 7 starting

from a symmetric equilibrium at t1 = t2 and increasing t1. We see how the
best reply of firm 1 shifts outwards while the best reply of player 2 shifts
inwards and the equilibrium moves to a region with a1 ≥ a2.
26Without requiring quasiconcavity we could make the same argument with the extremal

best replies. The result would be true then for extremal equilibria.
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An example is provided by the Bertrand oligopoly model with product
differentiation with learning by doing or, alternatively, with production ad-
justment costs, or still with switching costs. With learning by doing the
profit function of firm i is πi = (pi − (c− f (ti))Di (p) where ti is the accu-
mulated output of the firm. Letting ai = −pi we have that ∂2πi

∂ai∂ti
> 0 and

∂2πi
∂ai∂tj

< 0. With production adjustment costs we have that
πi = (pi − c)Di (p)− F (Di (p)−Di (t)), where ti is the price of the firm in
the previous period and F is the increasing and convex production adjust-
ment cost with F (0) = 0. Then ∂2πi

∂pi∂ti
> 0 and ∂2πi

∂pi∂tj
< 0. In both cases

the firm starting with a higher output level (lower price) has an incentive to
set lower prices in equilibrium. However, this does not mean that there is
increasing dominance. Even tough in any period the larger firm sets a lower
price it may well be that the price difference between the firms disappears
overtime. In fact, this is exactly what happens at the MPE of an infinite
horizon version of the model (see section 4.3 and Jun and Vives (2003)).

In the switching costs model (Beggs and Klemperer (1992)) firms compete
in prices and ti is the loyal customer base of firm i. In this case we have that
∂2πi
∂pi∂ti

> 0, because of a fat cat effect, lowering prices is more costly to a

firm with a larger customer base, and ∂2πi
∂pi∂tj

< 0. It follows then that a
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firm with a larger customer base will be softer in pricing. This is to be
interpreted as decreasing dominance (and indeed the authors show that at
an MPE of the full-blown dynamic game initial asymmetries in market shares
are eroded). The reader is warned however that in a dynamic game firms
are forward looking and the continuation payoffs need not look like the static
payoffs. Therefore the static dominance need not translate in dominance in
the dynamic game. We will see in the next section the relationships between
static and dynamic properties of payoffs.
The result can be extended to the strategic substitutes case (πi (ai, a−i; t)

has decreasing differences in (ai, aj), i 6= j) with the restriction that− ∂2πi
(∂ai)

2 >¯̄̄
∂2πi
∂ai∂aj

¯̄̄
, i 6= j (this implies that the profit function of any player is concave

and that a duopoly game would have a unique equilibrium).27

The conditions in the result are met typically when actions are invest-
ments in cost reduction and also in some models of quality enhancement.28

Then profits at the market stage as a function of those investments dis-
play strategic substitutability both in Cournot and Bertrand models. The
result can also be used to show that learning by doing in a Cournot mar-
ket leads to increasing dominance. That is, the firm that is ahead of the
learning curve remains ahead because it has incentives to produce more.
Actions are current rates of output and state variables the inherited accu-
mulated production of each firm. Let the profit function of firm i be given
by πi = (P (Q) − (c− f (ti)) qi where P (·) is the inverse demand, Q total
output, f (·) the learning curve, a differentiable and concave function of to-
27The argument is as follows. For n = 2 the result follows from the basic comparative

statics result for equilibria in a supermodular game (Result 5) because the duopoly game
with strategic substitutes can be seen as a game of strategic complementarities with in-
creasing differences in the parameters considering the transformation ba1 = a1, ba2 = −a2,bt1 = t1 and bt2 = −t2. Result 5 implies directly that a1 (t1, t2) ≥ a1 (t2, t1) whenever
t1 > t2. However, because of exchangeability, we have that and a1 (t2, t1) = a1 (t1, t2),
therefore a1 (t1, t2) ≥ a2 (t1, t2), whenever t1 > t2. Indeed, starting at t1 = t2 (with
a1 = a2 because of exchangeability) and increasing t1 will increase a1 and −a2. For n > 2,
consider, without loss of generality, players 1 and 2. Let t1 > t2 and consider an equi-
librium. Fix the actions of players i = 3, ..., n at their equilibrium levels. Then, because

of the assumption − ∂2πi
(∂ai)

2 >
¯̄̄
∂2πi
∂ai∂aj

¯̄̄
, i 6= j there is a unique equilibrium of the duopoly

game between players 1 and 2. We can reverse the roles of players 1 and 2 and the equi-
librium actions of the rest of the players are not affected. Apply then the same reasoning
as in the n = 2 case to conclude that a1 (t) ≥ a2 (t).
28This is so in the Shaked and Sutton (1982) model of vertical quality differentiation

when the market is covered. However, in the classical linear Bertrand duopoly with prod-
uct differentiation investments in quality that raise the intercept of demand for the own
product (Vives (1985a)) or that increase the willingness to pay by lowering the absolute

value of the slope of demand
¯̄̄
∂Di

∂pi

¯̄̄
(Vives (1990b)) are strategic complements.
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tal accumulated output of the firm ti with f 0 > 0, and qi its current output
level. If inverse demand is log-concave then best replies are downward slop-
ing (strategic substitutes). Furthermore, we have that ∂2πi

∂qi∂ti
= f 0 > 0 and

∂2πi
∂qi∂tj

= 0. It follows then that ti > tj implies that at the (unique) Cournot
equilibrium qi (t) ≥ qj (t).29

5.3 Markov games

An important issue is how static complementarities translate or not into dy-
namic complementarities. In this section we will explore the issue in the
context of discrete time Markov games.30 A Markov strategy depends only
on (state) variables, denoted y, that condense the direct effect of the past
on the current payoff. Let the current payoff of player i be πi (x, y), where
x is the current action profile vector, and y is the state evolving according
to y = f(x−, y−) where x−, and y− are, respectively, the lagged action pro-
file vector and the lagged state. A Markov perfect equilibrium (MPE) is a
subgame-perfect equilibrium in Markov strategies. That is, an MPE is a set
of strategies optimal for any firm, and for any state of system, given the
strategies of rivals.
What do we mean by dynamic strategic complementarity (SC) or dy-

namic strategic susbtitutability (SS)? We could think of ”contemporaneous”
SC when the value function at an MPE Vi (y) displays SC (Vi has increas-
ing differences in (yi, y−i)). We could think also about ”intertemporal” SC
when dynamic best replies, or the policy function at an MPE, are monotone.
There is intertemporal SC (SS) when a player raising his state variable today
increases (decreases) the state variable of the rival tomorrow. I will inves-
tigate those properties for a class of simple dynamic Markov games which
admits two-stage games, simultaneous move games with adjustment costs,
and alternating moves games.
The class of simple dynamic Markov games is defined as follows. Consider

the n-player game (Ai,πi; i ∈ N) where the actions of player i lie inAi, a com-
pact cube of Euclidean space, πi (x, y) is the current payoff for player i with
y ∈ A the action profile in the previous period (state variables), and x ∈ A
the current action profile. This simple class of games encompasses two-stage
games and infinite horizon games of simultaneous moves with adjustment
costs or of alternating moves. In a two-stage game y ∈ A is the action profile
29A similar example with product differentiation and network demand externalities

(Katz and Shapiro (1986)) would have πi = (Pi (q) − (c− f (ti)) qi where q is the vec-
tor of output levels of the firms and ti the accumulated sales of product i.
30This section draws on Vives (2003).
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in the first stage, x ∈ A the action profile in the second stage, and πi (x, y)
the payoff for player i. Consider now an infinite horizon, discrete time, game
with discount factor δ. With simultaneous moves and adjustment costs the
payoff to player i is given by πi (x, y) = ui(x) + Fi (x, y) , where ui(x) is the
current profit in the period and Fi (x, y) the adjustment cost in going from
past (y) to current actions (x). Assume that Fi (x, x) = 0, i = 1, 2; that is,
when actions are not changed, there is no adjustment cost. With alternating
moves in a duopoly x is the action of the player moving now and y action of
the player who moved last period.
We take in turn the issues of contemporaneous SC in two-stage games

and intertemporal SC or SS in infinite horizon games. We end the section
with some remarks on existence of MPE.

5.3.1 Contemporaneous SC in two-stage games

We will have the contemporaneous SC property when at the second stage, for
any y, payoffs are SC, and when the SC property is preserved when payoffs
are folded back at the first stage in a subgame-perfect equilibrium.
Suppose that πi (x, y) displays increasing differences (or is supermodu-

lar) in any pair of variables. Let Vi (y) ≡ πi (x
∗ (y) , y) , where x∗ (y) is

an extremal equilibrium in the second stage. Extremal equilibria exist at
the second stage for any y because the second stage game is supermodu-
lar. A particular case is when, contingent on y, a unique Nash equilibrium
x∗ (y) obtains at the second stage. Vi (y) is thus the first period reduced form
payoff for player i. I claim that Vi (y) is supermodular in y. The argument is
very simple. We have that Vi (y) ≡ πi (x

∗ (y) , y) = maxxi πi
¡
xi, x

∗
−i (y) , y

¢
.

Note that x∗j (y) increases in y because πihas increasing differences in (xi, y).
It follows then that Vi (y) is supermodular in y because (i) πi is supermod-
ular in all arguments; (ii) x∗j (y) is increasing in y; (iii) supermodularity is
preserved by increasing transformations of the variables, and (iv) supermod-
ularity is preserved under the maximization operation.
The result can be readily generalized to potentially multiple equilibria at

the second stage, provided that only second stage equilibria resulting from
best reply dynamics are considered after a first period strategy change, and
to finite horizon games where the payoff to each player displays increasing
differences in any two variables.31

31However, the result cannot be extended to the case where each payoff function πi (x, y)
fulfils the ordinal complementarity conditions (or single crossing property SCP) in any pair
of variables. Indeed, it is easy to construct examples where each payoff fulfills the SCP for
all pairs of variables while the property is not preserved in the reduced form first period
payoffs (Echenique (2004b)). Supermodularity/increasing differences cannot be weakened
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An example of the result is provided by the Bertrand oligopoly with adver-
tising. Under the assumptions made (Section 4.4.1) πi = (pi − ci)Di (p; zi)−
Fi (zi) is supermodular in any pair of arguments and the first stage value
function at extremal equilibria is supermodular. That is, advertising ex-
penditures are strategic complements. The assumptions are fulfilled in the
classical linear differentiated product Bertrand competition model with con-
stant marginal costs when either advertising or investment in product quality
raises the demand intercept of the firm exerting the effort (Vives (1985a)) or
increases the willingness to pay for the product of the firm by lowering the
absolute value of the slope of demand

¯̄̄
∂Di
∂pi

¯̄̄
(Vives (1990b)). In this case for

a given advertising effort there is a unique price equilibrium at the second
stage.32

The result can be extended easily to a duopoly case in which for all i,
πi (x, y) has increasing differences in (xi,−xj) , (yi,−yj) and (xi, (yi,−yj)),
j 6= i. An example is provided by a Cournot duopoly in which outputs
are strategic substitutes and yi is the cost reduction effort by firm i. Let
πi = P (x1, x2)xi − Ci (xi, yi) with ∂2Ci

∂xi∂yi
≤ 0. Then the assumptions are

fulfilled because ∂2πi
∂xi∂yi

≥ 0, and ∂2πi
∂xi∂yj

= ∂2πi
∂zi∂yj

= 0, j 6= i. We have then
that cost reduction investments are strategic substitutes at the first stage.
With linear demand there is a unique equilibrium at the second stage (see
Vives (1990b) for a computed example where investment reduces the slope of
marginal costs and a reinterpretation in terms of firms investing in expanding
their own market).33

5.3.2 Intertemporal strategic complementarity

Consider a stationary MPE of an infinite horizon simultaneous move game
with discount factor δ and let Vi (y) be the value function associated to player
i at the MPE. Player i solves maxxi {πi (x, y) + δVi (x)}. Let x∗ (y) be the
(assumed unique) contemporaneous Nash equilibrium given y and the MPE

to the ordinal SCP. This happens even though the simultaneous move (”open loop”) game
would be an ordinal GSC and even though the second period equilibrium is monotone in
first period choices.
32However, if firms invest in cost reduction the second stage SC is transformed into a

first stage SS. The same happens with product enhancement investments in the Shaked
and Sutton (1982) model of vertical quality differentiation when the market is covered.
33It is worth noting that with high enough spillovers firms’ R&D cost reduction invest-

ment are SC in the two-stage game (d’Aspremont and Jacquemin (1988)). Ceccagnoli
(2003) shows that adding fringe firms that do not invest in R&D and do not benefit from
the spillover the degree of SC increases with the number of fringe firms.
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policy functions for the players. From Result 5 we have that if for all i

1. πi (x, y) + δVi (x) has increasing differences in (xi, x−i), and

2. πi has increasing differences in (xi, y),

then x∗ (y) is increasing in y (i.e., we have intertemporal SC: x∗i increases
with yj , j 6= i).
For (1) to hold it is sufficient that both πi and Vi have increasing differ-

ences in (xi, x−i) .
Similarly as before we have the corresponding result for a duopoly with

strategic substitutability. If for all i

1. πi (x, y) + δVi (x) has increasing differences in (xi,−xj), j 6= i, and
2. πi has increasing differences in (xi, (yi,−yj)),

then x∗i increases in (yi,−yj) (i.e., we have intertemporal SS: x∗i decreases
with yj, j 6= i).
The question is when are the assumptions going to be fulfilled. We will

consider in turn the adjustment cost model and the alternating move duopoly.

Simultaneous moves with adjustment costs Consider the adjustment
cost model and interpret actions as either prices or quantities. Let production
or price bear the convex adjustment cost F . Models with price adjustment
costs, or ”menu costs”, are commonly used in macroeconomics. It is easy to
see that with price competition (with static SC) and menu costs the marginal
profit for firm i is increasing in the price yi charged by the firm in the previ-
ous period and decreasing in the price yj charged by the rival in the previous
period. This case falls in the domain of the general result above provided
that the value function Vi displays SC (this is true in the linear-quadratic
specification). With quantity competition (static SS) and production adjust-
ment costs the marginal profit for firm i is increasing in the production yi
of the firm in the previous period and decreasing in the production yj of the
rival in the previous period. This case falls in the domain of the duopoly
result with SS above provided that the value function displays SS (as in the
linear-quadratic specification).
In those two cases static SC or SS is transformed into intertemporal SC

or SS. However, this need not be always so. Jun and Vives (2003) have
fully characterized the linear and stable MPE in a symmetric differentiated
duopoly model with quadratic payoffs and adjustment costs in a continu-
ous time infinite horizon differential game building on the work of Reynolds
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(1987) and Driskill and McCafferty (1989). Jun and Vives (2003) consider
both SC (Bertrand) and SS (Cournot) competition and production or price
(menu) adjustment costs. It is found that contemporaneous (dynamic) SC
or SS are inherited from static SC or SS. Indeed, Vidisplays increasing (de-
creasing) differences in (yi, yj)when there is static SC (SS). Intertemporal SC
or SS obtains then depending on what variable bears the adjustment cost.
We know already from the previous paragraph that with price competition
with menu costs (quantity competition with production adjustment costs)
static SC (SS) is transformed into intertemporal SC (SS). However, in the
mixed case of price competition with production adjustment costs Jun and
Vives show that the static SC is transformed into intertemporal SS. Then
we have that the marginal profit for firm i is increasing in the price yi of
the firm in the previous period and decreasing in the price of the rival yj in
the previous period. The reason, much as in the learning curve model with
price competition, is that a firm wants to make the rival small today in order
to induce him to price softly tomorrow. Indeed, a smaller rival will face a
stiff cost of increasing his output. A cut in price today therefore will bring
a price increase by the rival tomorrow. The result is that if production is
costly to adjust intertemporal SS obtains while if price is costly to adjust
intertemporal SC obtains.
Having intertemporal SC or SS matters because it governs strategic in-

centives at the MPE with respect to innocent behavior at the open-loop
equilibrium. Indeed, Jun and Vives show that with intertemporal SC (SS)
steady state prices at the MPEwill be above (below) the stationary open-loop
equilibrium prices (which coincide with the static equilibrium prices with no
adjustment costs). This in fact provides a generalization of the Fudenberg-
Tirole taxonomy of strategic behavior in two stage games to the full-blown
infinite horizon game.

Alternating move duopoly Consider a duopoly game in which the payoff
to firm i, i = 1, 2, is πi (a1, a2) and the action set available to the firm is a
compact interval. Two players in a duopoly interact repeatedly with player
1 moving in odd periods t = 1, 3, ... and player 2 in even periods t = 0, 2, ...
(Cyert and DeGroot (1970), Maskin and Tirole (1987, 1988)). The action of
player i, price or quantity for example, is fixed for one period. Denote by x
the action of the player moving now and by y the action of the player who
moved last period. The state variable for firm i is therefore the action taken
in the previous period by firm j. A (pure) Markov strategy for firm i is a
function Ri (·) that maps the past action of firm j into an action for firm i.
This is truly a dynamic reaction function in contrast with the best-response
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functions derived in the static games considered in Section 3 (in which best-
response functions are useful in finding equilibria and characterizing stability
properties).
A Markov perfect equilibrium (MPE) is a pair of dynamic reaction func-

tions (R1 (·) , R2 (·)) such that for any state a firm maximizes its present dis-
counted profits given the strategy of the rival. The pair (R1 (·) , R2 (·)) is a
MPE if and only if there exist value functions (V1 (·) , V2 (·)) such that player
1 solves
R1 (y) ∈ argmaxx

n
π1 (x, y) + δeV1 (x)owhereeV1 (x) = [π1 (x,R2 (x)) + δV1 (R2 (x))], and V1 (y) = maxx

n
π1 (x, y) + δeV1 (x)o,

and similarly for player 2. That is, given the state variable y (the current
action of firm 2) for firm 1, V1 (y) gives the present discounted profits when
it is the turn of firm 1 to move and both firms use the dynamic reaction
functions (R1 (·) , R2 (·)).
Suppose that MPE dynamic reaction functions exist. Then, according to

our result, they will be monotone increasing (decreasing) if the underlying
one-shot simultaneous move game is strictly supermodular (supermodular in
(x,−y)) . That is, if πi (x, y) has strictly increasing differences in (x, y) (in
(x,−y)). Then any selection R1 (·) from the set of maximizers of π1 (x, y) +
δeV1 (x) is increasing (decreasing). No other property is needed.
Existence of a MPE can be established easily with quadratic payoff func-

tions: Cournot with homogeneous products (Maskin and Tirole (1987)) and
Bertrand with differentiated products (exercise 9.12 in Vives (1999)). It can
be shown that for any δ there is a unique linear MPE that is symmetric and
(globally) stable and that the steady state action is increasing in δ and equals
the static Nash equilibrium when δ = 0.
In the Cournot case the strategic incentives for a firm are to increase its

output in order to reduce the output of the rival, and in the Bertrand case
(with product differentiation) to increase price to induce the rival to be softer
in pricing. Thus, in the Cournot (Bertrand) case, the static strategic sub-
stitutability (complementarity) translates into intertemporal strategic sub-
stitutability (complementarity). In other words, in the Cournot (Bertrand)
case, both static and dynamic reaction functions are downward (upward)
sloping. An increase in the weight firms put into the future (a larger δ) in-
creases the strategic incentives with the result of a higher output (price) in
the Cournot (Bertrand) market. In any case the equilibrium action is larger
than the static equilibrium when δ > 0.
With homogenous products and price competition dynamic reaction func-

tions are no longer monotone. This is so because with a homogeneous product
the marginal profit of a firm is not monotone in the price charged by the rival.
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For example, if the rival sets a (strictly) lower price than firm i, then firm i’s
marginal profit of changing its price is zero, and if the rival sets a (strictly)
larger price, then firm i’s marginal profit is positive, provided that its price
is below the monopoly price. However, if the prices of both firms are equal,
the marginal profit is negative. A consequence of this lack of monotonicity is
the finding of multiple equilibria (including equilibria of the ”kinked demand
curve” type and price cycles, see Maskin and Tirole (1988b)).

5.3.3 Existence of MPE

Up to now we have not dealt with the existence problem for MPE, only with
the characterization of equilibria. Lattice-theoretic methods can be used
when there is enough monotonicity in the problem studied.
Curtat (1996) shows existence of MPE of stochastic games with comple-

mentarities with discrete time and infinite horizon. He considers multidi-
mensional action spaces and a mutidimensional state evolving according to
a transition probability as a function of the current state and action profile.
Payoffs are smooth and display per period complementarities and positive
externalities or spillovers (the payoff to a player is increasing in the actions
of rivals and the state), the transition distribution function is smooth and
displays complementarities and is stochastically increasing in actions and
states, and the payoff to a player as well as the transition distribution func-
tion have a strict dominant diagonal condition. These strong assumptions
allow to collapse the multiperiod problem to a reduced form static game (with
continuation value functions increasing in the state variable) which is shown
to be supermodular. An equilibrium can be found then with value functions
increasing in the state. Examples of games fulfilling the assumptions are a
dynamic version of the search game considered in Section 2 (where the para-
meter θ evolves stochastically in a monotone increasing way with the average
search effort of the population: the higher the average effort eat in period t the
higher will θt+1 be in expected terms); and a dynamic version of a Cournot
oligopoly with complementary products and learning by doing where a high
level of accumulated output by one firm yields stochastically higher levels of
cumulated experience, and lower production costs, to the firm (learning by
doing) and to the rivals (spillovers).
Another successful application of the techniques to proof existence of a

MPE is provided by Sleet (2001). Sleet considers a version of the adjust-
ment cost model of the previous section in an infinite horizon discrete game
with a continuum of players and symmetric payoffs. Firms set prices and
prices are costly to adjust. The payoff to a player in any period is given by
π (x, y,G, θ) = R (x,G, θ)−F (x, y)where x is the current price of the firm, y
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the price in the previous period, G the distribution of prices chosen by other
firms, θ a firm specific shock (which is iid across firms and dates), R is the
net revenue function and F the adjustment cost. The payoff is increasing
in G, has increasing differences in (x, (G, θ)), and −F (x, y) is supermodu-
lar. Under some further technical restrictions the existence of a symmetric
monotone MPE is shown in which each firms uses the same increasing MPE
policy function yielding the current period action contingent on last period’s
action, last period’s distribution of actions, and the player’s specific shock θ.
This is done by showing the existence of a fixed point of an increasing func-
tion that maps (increasing) policy functions into themselves. The problem
is simplified because with a continuum firms no firm can influence any ag-
gregate and each firm faces a dynamic programming problem. Furthermore,
as usual with the lattice-theoretic approach, an algorithm to compute the
largest or the smallest equilibrium policy functions can be provided.
The model corresponds to a monopolistic competition model where each

firm does not influence the market aggregates but retains some market power,
the demand or the technology of a firm is subject to a period specific shock
and prices are subject to continuous adjustment costs. For example, the
demand for the product of a firm may depend on the average price charged
in the market or on a price index. The assumptions are fulfilled with linear or
constant elasticity demands and quadratic or constant elasticity production
costs (subject to a multiplicatively shock) and with quadratic costs of price
adjustment.34

6 Bayesian games

Bayesian games provide a fertile ground for applications of the lattice-theoretical
approach. The reason is that it allows for general strategy spaces and payoff
functions. In Section 6.1 I present the basic set up of the Bayesian game
and basic approaches to the difficult issue of existence of equilibrium in pure
strategies. Most recent advances are based on the lattice-theoretic approach,
be it with supermodular games (Vives (1990)), single-crossing properties
(Athey (2001)), or monotone supermodular games (Van Zandt and Vives
(2003)). Section 6.2 presents a comparative statics application in monotone
supermodular games that allows to extend substantially results by Okuno-
Fujiwara et al (1990) on the existence of fully revealing equilibria in games
of voluntary disclosure. Again, many of the regularity conditions assumed
by these authors turn out not be necessary. Finally, Section 6.3 deals with
34See Section 8.1 in Blanchard and Fischer (1989) and Rotemberg (1982).
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global games and applications to currency and banking crisis. It makes clear
in one stroke that dominance solvability and uniqueness in the standard
global game (Morris and Shin (2002)) obtain because the underlying game
is one of strategic complementarities and the key to uniqueness is precisely
that the strength of the strategic complementarities do not be too large.
The lattice-theoretic approach does away with the need to go through the
process of iterated elimination of dominated strategies to obtain a unique
equilibrium. Indeed, we have seen that a supermodular game with a unique
equilibrium is dominance solvable.

6.1 Bayesian Nash equilibrium: existence and charac-
terization

In a Bayesian game the type of a player embodies all the decision-relevant
private information. Let Ti be a subset of Euclidean space and the set of
possible types of player i (ti). The types of the players are drawn from a
common prior distribution µ on T = Xn

i=0Ti where T0 is residual uncertainty
not observed by any player. Let µi represent the marginal distribution on Ti.
The action space of player i is a compact cube of Euclidean space Ai, and
his payoff is given by the measurable and bounded function πi : A× T → R,
where A = Xn

i=1Ai . The (ex post) payoff to player i when the vector of
actions is a = (a1, ..., an) and the realized types t = (t1, ..., tn) is thus πi (a; t).
Endow strategy and type profiles with the usual component-wise or product
order (that is, a ≥ a0 if and only if ai ≥ a0i for all i, and t ≥ t0 if and
only if ti ≥ t0i for all i). Action spaces, payoff functions, type sets, and the
prior distribution are common knowledge. The Bayesian game is then fully
described by (Ai, Ti,πi; i ∈ N).
A (pure) strategy for player i is a (measurable) function σi : Ti → Ai

which assigns an action to every possible type of the player. Let Σi denote
the strategy space of player i and identify strategies σi and τ i if they are
equal with probability one (µi-almost surely (a.s.)). Let σ = (σ1, ...,σn).
The expected payoff to player i, when agent j uses strategy σj, is given by
Ui (σ) = Eπi (σ1 (t1) , ...,σn (tn) ; t).
A Bayesian Nash equilibrium (BNE) is a Nash equilibrium of the game

where the strategy space of player i is Σi and his payoff function Pi. Given the
strategies σj (·), j 6= i, denote by σ−i (t−i) the vector (σ1 (t1) , ...,σn (tn)) ex-
cept the ith component. The expected payoff of player i conditional on ti when
the other players use σ−i and player i uses ai is E {πi (ai,σ−i (t−i) ; t | ti)}.
The profile of strategies σ is a BNE if and only if for every i the action
σi (ti) maximizes over Ai the conditional payoff E {πi (ai,σ−i (t−i) ; t | ti)} (
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µi-almost surely on Ti). Consider the game (Σi, Ui, i ∈ N) and define a nat-
ural order in the strategy space Σi : σi ≤ σ0i if σi (ti) ≤ σ0i (ti) for µi-a.s. on
Ti.
This formulation of a Bayesian game is general and encompasses com-

mon and private values as well as perfect or imperfect signals. In a “pure”
private values, allowing for correlated types, we have πi (a; ti). For exam-
ple, types are private cost parameters of firms. A “common value” case is
πi (a; t) = vi(a;Σiti). For example, there is a common demand shock in an
oligopoly and firm i observes component ti only. As an example of imper-
fect signals, suppose firms observe with noise their cost parameters. Then
t0 could represent the n-vector of firms’ cost parameters and ti the private
cost estimate of firm i. Both the cost parameters and the error terms in the
private signals may be correlated.

6.1.1 Equilibrium existence in pure strategies

Existence of pure-strategy Bayesian equilibria in games with a continuum of
types and/or actions has proved to be a difficult issue. Typical sufficient con-
ditions for existence of pure-strategy Bayesian equilibria include conditionally
independent types, finite action spaces, and atomless distributions for types
(see Radner and Rosenthal (1982) and Milgrom and Weber (1985)).35 Un-
der these assumptions the authors show first the existence of mixed strategy
equilibria and then obtain a purification result. For this approach to work
independence, or at least, conditional independence, of the distribution of
types is needed.
The lattice-theoretic method has provided three types of results:

1. for supermodular games with general action and type spaces (Vives
(1990));

2. for games in which each player uses a strategy increasing in type in
response to increasing strategies of rivals (Athey (2001)); and

3. for ”monotone” supermodular games with general action and type
spaces (Van Zandt and Vives (2003)).

Supermodular games In the first approach (Vives (1990) and Vives (sec-
tion 2.7.3, 1999)), existence of pure strategy Bayesian equilibria follows from
35Khan and Sun (1995) show existence of pure-strategy equilibria when types are inde-

pendent, payoffs continuous and action sets countable.
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supermodularity of the underlying family of games defined with the ex post
payoffs for given realizations of the types of the players. A key observation is
that supermodularity of this underlying family of games is inherited by the
Bayesian game. Let πi be supermodular in ai and have increasing differences
in (ai, a−i). Then Ui(σ) is supermodular in σi and has increasing differences
in (σi,σ−i) because supermodularity and increasing differences are preserved
by integration. Furthermore, strategy spaces in the Bayesian game Σi can be
shown to have the appropriate order structure (i.e., they are complete lat-
tices). Then the game (Σi, Ui, i ∈ N) is a GSC and for all σ−i ∈ Σ−i, βi(σ−i)
contains extremal elements, β̄i(σ−i) and β

i
(σ−i). Existence of extremal pure

strategy Bayesian equilibria follows then from the general versions of the
results in Section 2 (Vives (1990, and Section 2.7.3, 1999)). This existence
result holds for multidimensional action spaces and no distributional restric-
tions. The driving assumption is strategic complementarities.
Applications of this approach can be found in oligopoly games and team

theory (as we will see below), Diamond’s search model (1982), natural re-
source exploration games with private information (see Hendricks and Kovenock
(1989) and Milgrom and Roberts (1990)), and global games (see Section 6.3).

Single-crossing properties In the second approach (Athey (2001)) con-
ditions are imposed so that an equilibrium in monotone increasing strategies
(in types) can be found. Suppose that both action Ai and types sets Ti for
any player i are compact subsets of the real line, and that types have a joint
density µ that is bounded, atomless and log-supermodular (i.e., types are
affiliated). Suppose also that πi (a, t) is continuous and supermodular in ai,
has increasing differences in (ai, a−i) and (ai, t) or, alternatively, πi (a, t) is
nonnegative and log-supermodular in (a, t). Then the Bayesian game has
a pure strategy equilibrium in increasing strategies. Note that in the first
case the first approach outlined already delivers existence of a pure-strategy
equilibrium.
The proof of those results relies on the standard Kakutani’s fixed point

theorem which relies on convex-valued correspondences. It turns out that
with discrete action spaces, and under the assumptions, best-response cor-
respondences are convex valued. A key step in the proof is to show that,
under the assumptions, if the rivals of player i use increasing strategies, the
payoff to player i is log-supermodular or has increasing differences (or, in
general, fulfills an appropriate single crossing property) in action and type.
This makes sure that a player uses a strategy increasing in its type as a best
response to increasing strategies of rivals.36 The existence result for discrete
36The result follows directly from the assumptions noting that if f : Rn → R is su-
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action spaces can be used then to show existence with a continuum of actions
using a purification argument.
An example of the result is our differentiated Bertrand oligopoly in which

firm i has randommarginal cost θi. Then it is immediate thatE(Di(pi, p−i(θ−i) |
θi) is log-supermodular in (pi, θi) if both Di(pi, p−i) and the joint density of
(θ1, ..., θn) are log-supermodular and if the strategies of rivals, pj (·), j 6= i, are
increasing in types. It follows then thatE(πi | θi) = (pi−θi)E(Di(pi, p−i(θ−i) |
θi) is log-supermodular in (pi, θi) and the best reply map of player i is in-
creasing in θi.
The approach can be used also in games which are not of SC and with

discontinuous payoffs. For example, in auctions the existence of monotone
equilibria in pure strategies can be shown for

• first-price auctions with heterogeneous (weakly) risk averse bidders
with private affiliated values or common value and conditionally in-
dependent signals (Athey (2001)), and for

• uniform price auctions with multiunit demand with non-private values
and independent types (McAdams (2003)).37

Monotone supermodular games Combining both approaches Van Zandt
and Vives (2003) show a stronger result for ”monotone” supermodular games
with multidimensional action spaces and type spaces. Let ∆(T−i) be the set
of probability distributions on T−i and let player i’s posteriors be given by
the (measurable) function pi : Ti → ∆(T−i), consistent with the prior µ,
where pi (· | ti) ∈ ∆(T−i) denotes i’s posteriors on T−i conditional on ti. A
monotone supermodular game is defined by

1. supermodularity and complementarity between action and type: πi
supermodular in ai, and with increasing differences in (ai, a−i) and in
(ai, t); and by

permodular (or log-supermodular) so is the function f(h1(x1), ..., hn(xn)) if the hi func-
tions are increasing, and that if g(x, t) is supermodular (log-supermodular) in (x, t) then
E {g(x, t) | ti} is supermodular (log-supermodular) in (x, ti) provided that (the random
vector) t is affiliated. See Vives (1999, p.69 and p. 229-230) and Athey (2001) for details.
37The result is shown using an intermediate result, allowing multidimensional types and

multidimensional (Euclidean) action spaces, that puts assumptions on non-primitives. The
conditions are: atomless types and interim (conditional on type) expected payoff of each
player (quasi)-supermodular in his action, and with single-crossing in own action and type
given that other players use strategies increasing in types.
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2. monotone posteriors: pi : Ti → ∆(T−i) increasing with respect to the
partial order on ∆(T−i) of first order stochastic dominance (a sufficient
but not necessary condition is that µ is affiliated).

Under these conditions there is a largest and a smallest Bayesian equilib-
rium and each one is in monotone strategies. The argument for the result is
very powerful and simple.38 First, the Bayesian game is of strategic comple-
mentarities. This follows as in the first approach to existence. This means
that the extremal best reply maps are well defined for each player and are
increasing. Second, the extremal best replies to monotone strategies are
monotone. Let Vi (ai, ti, P−i) ≡

R
T−i

πi (ai,σ−i (t−i) , ti, t−i) dP−i (t−i). Then
Vi has increasing differences in (ai, ti) and in (ai, P−i) because πi (ai,σ−i (t−i) , ti, t−i)
has increasing differences in (ai, t) as πi has increasing differences in (ai, (a−i, t))
and σ−i is increasing, and because of the monotone posteriors condition. The
latter implies that higher types believe that the other players are more likely
to be of higher types as well (and this is implied by affiliation, for exam-
ple). Furthermore, Vi is supermodular in ai because πi is supermodular in ai.
The result is that a higher type for i chooses a higher action both because
a shift in beliefs (pi is increasing and higher types believe that other play-
ers are more likely to be of higher types as well) and because the induced
payoff has increasing differences in (ai, ti). Third, if the largest best reply
map β̄i(σ−i) is increasing, the largest best reply to monotone strategies is
monotone, and payoffs are continuous then there is a largest equilibrium and
it is in monotone strategies. This follows by starting a Cournot tâtonnement
with strategies for each player i equal, for any type, to the largest element in
the action set Ai (it exists because Ai is a cube in Euclidean space). Then the
Cournot tâtonnement defines a decreasing sequence of monotone strategies
and its limit must be an equilibrium because of the continuity of payoffs, and
the limit is also in monotone strategies. Furthermore, it is easy to see that
the limit must be the largest equilibrium. (The reader will appreciate that
the argument is similar to the proof of Result 4 in Section 3.) There might be
other equilibria which are in nonmonotone strategies but, if so, they will be
“sandwiched” between the largest and the smallest one, which are monotone
in type.
Two examples with muldimensional competition are the following. In the

Bertrandmultimarket oligopoly (Section 4.4.2) with πi =
PHi

h=1 (pih − cih)Dih (pi, p−i; θih),
let the type of firm i be ti = (ci, si), where si is a signal about the random
vector θ. If θ and (ci, si)i∈N are affiliated, and Dih linear and increasing in
θihwith all goods gross substitutes, then extremal equilibrium prices p∗i in-
crease in (ci, si). In the Bertrand oligopoly with advertising (Section 4.41)
38The result cannot be extended to log-supermodular payoffs.
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with πi = (pi− ci)Di(pi, p−i, zi)−Fi(zi, ei), where ei is the random efficiency
of advertising effort zi, let the type of firm i be ti = (ci, ei) and the action
ai = (pi, zi). Under mild assumptions, with advertising increasing the will-
ingness to pay and with affiliated types, the extremal equilibrium actions
(p∗i , z

∗
i ) increase in (ci, ei).
Another application is to a team problem (Radner (1962)) where the

common function to be optimized is supermodular, there are increasing dif-
ferences between actions and types, and the distribution of types yields
monotone posteriors. Each member of the team chooses a decision rule,
a strategy, contingent on his private information (type) in order to maximize
the common objective. We know that the team optimum will be a Bayesian
equilibrium of the game among team members (Radner (1962)). Suppose
that there is a unique equilibrium. We conclude then that there is a team
optimum and at the optimum players use decision rules monotone in type.
For example, in a multidivisional firm in which the total profit of the firm
has been internalized by the division’s managers, aj could be the vector of
actions or “efforts” under the control of manager j and sj his private infor-
mation relating to cost and demand conditions for division j.

6.2 Comparative statics and strategic information rev-
elation

In this section I provide an application of the monotone supermodular game
framework. The starting point is to realize that in a monotone supermodular
Bayesian game extremal equilibria are increasing in posteriors. This yields
immediately an interesting comparative statics result for expected payoffs.
Let P be the set of increasing posteriors (with respect to first order stochastic
dominance FOSD) and {Γ(p) | p ∈ P} a parameterized family of monotone
supermodular Bayesian games. Let σ̄ (p) be the largest equilibrium in Γ (p)
and Wi (p, ti) player i’s expected utility in σ̄ (p) with type ti. Then:

• If p0i (ti) >FOSD pi (ti) for (a.e.) ti ∈ Ti and i, then σ̄ (p0) ≥ σ̄ (p)
(because β̄0i (σ−i) > β̄i (σ−i)), and

• if πi is increasing in a−i (positive externalities) thenWi (p, ti) is increas-
ing in p−i (because σ̄ (p) is increasing in p−i).

We have therefore that in a game with positive externalities the expected
payoffs of each player in an extremal equilibrium is increasing in the posteriors
of the other players (ordered by first order stochastic dominance).
This result can be strengthened when the family of games Γ(p) is differen-

tially strictly monotone (with ∂uj/∂ajh strictly increasing in tj and ti for all
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h) and differentially strictly supermodular (with ∂uj/∂ajh strictly increasing
in aih for all h) Bayesian game with strictly positive externalities. Then:

• If for a.e. tj ∈ Tj the marginal of p0j (tj) on Ti strictly FOSD pj (tj),
then σ̄jh (p

0) > σ̄jh (p) .

• If πi is strictly increasing in aj, then Wi (p, ti) is strictly increasing in
the marginal of pj (tj) on Ti.

The comparative statics result has a ready application to games of volun-
tary disclosure. Let us see how a result by Okuno-Fujiwara et al (1990) can
be improved upon. Consider a two-stage duopoly game in which at the first
stage player i can send a message mi ∈ Mi about his type ti which lies in a
finite ordered set Ti. Types are independent. At the second stage a Bayesian
equilibrium (assumed unique and interior) with updated beliefs conditional
on the messages obtains. Types are verifiable and therefore players can con-
ceal information but not lie. The mapping from message to lowest types is
well-defined and covers all the types: For each ti ∈ Ti, there is mi ∈Mi such
that minmi = ti. It is assumed furthermore that Ai is a compact interval
and πi is concave and continuously differentiable in ai. The cases of strate-
gic complementarity and positive externalities (strategic substitutability and
negative externalities) are allowed: with πi strictly increasing (decreasing)
in aj, ∂πi/∂ai strictly increasing (decreasing) in aj, and ∂πi/∂ai strictly in-
creasing in ti and increasing (decreasing) in tj. Under these conditions any
perfect Bayesian equilibrium (PBE) of the two-stage game is fully revealing.
Player i with type ti reports mi such that minmi = ti. The basic intuition
of the result is that in equilibrium inferences are sceptical: if a player reports
a set of types others believe the worst (that is, others believe that the player
is of the most unfavorable type in the reported set). This unravels the infor-
mation. For example, in a Cournot duopoly in which types are the (constant
marginal) costs of firms, which can be high or low. Then a firm reporting
nothing (the full set) will be assumed to have high costs because if teh firm
had low costs it would have said so.
The comparative statics result presented generalizes the Okuno-Fujiwara

et al (1990) result to a n-player GSC case, or to a duopoly with strategic
susbtitutability, with multidimensional actions, affiliated types and allowing
multiple non-interior second stage equilibria (provided they are extremal).
For the generalized result to obtain there is no need to assume that pay-
offs are concave, and differentiability and interior solutions are needed only
along one dimension of the strategy space. More precisely, consider a dif-
ferentially strictly monotone, differentially strictly supermodular Bayesian
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game with strictly positive externalities. Then any PBE of the two-stage
game in which a plausible refinement about out of equilibrium path beliefs
holds (the ”increasing posteriors” condition is satisfied in the second stage
following nonequilibriummessages also) and for which extremal equilibria are
selected in the second stage, is fully revealing.39 Again beliefs are sceptical
(on the equilibrium path): a player is believed to be of the lowest type in
the reporting set. The argument is the following. Let ti be highest type for
i not fully revealed at an extremal PBE; hence ti is pooled with lower types.
Player i gains strictly by deviating and sending mi such that minmi = ti be-
cause then other players’ posteriors about his type go up (according to strict
FOSD). This is so because in a differentially strictly monotone, differentially
strictly supermodular Bayesian game with strictly positive externalities the
expected payoff of player i at extremal equilibria is strictly increasing in
the posteriors of other players p−i since larger posteriors (according to strict
FOSD) increase strictly extremal equilibria. Therefore, the equilibrium is
fully revealing. Suppose now that, for some i and type ti, ti > minmi. Since
mi is fully revealing, others believe that i is of type ti. Then type minmi

could deviate from his message by sending instead mi, causing a shift in all
player’s beliefs from his being of type minmi to being of type ti. Therefore,
player i with type ti reports mi such that minmi = ti.

6.3 Global games

Global games are games of incomplete information with type space deter-
mined by each player observing a noisy signal of the underlying state. The
aim is equilibrium selection via perturbation of a complete information game.
The basic idea is that when analyzing a complete information game with po-
tentially multiple equilibria players have to entertain the ”global picture”
of slightly different possible games being played. Each player has a noisy
estimate of the game being played and knows that the other players are also
receiving noisy estimates.
Carlsson and van Damme (1993) show the following result. In 2 × 2

games if each player observes a noisy signal of the true payoffs and if ex ante
feasible payoffs include payoffs that make each action strictly dominant then
as noise becomes small, iterative strict dominance selects one equilibrium.
The equilibrium selected is the Harsanyi-Selten (1988) risk dominant one if
there are two equilibria in the complete information game. Carlsson and van
Damme do not consider explicitly supermodular games but in the interesting
39In Okuno-Fujiwara et al (1990) the two refinements are satisfied automatically because

types are independent (and therefore posteriors are trivially monotone) and at the second
stage a unique equilibrium is assumed.
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case in which there are two equilibria in the complete information game then
the game is one of strategic complementarities.
I will analyze a standard symmetric binary action game of strategic

complementarities with the tools of supermodular games, provide some ap-
plications to finance, and conclude with a robustness exercise.

6.3.1 A symmetric binary action game of SC

Consider a version of the game with a continuum of players of Section 2. The
action set of player i is Ai ≡ {0, 1} with ai = 1 interpreted as ”acting” and
ai = 0 ”not acting” (and let ai = 1 be ”larger” than ai = 0). To act may be
to invest, adopt a technology or standard, revolt, attack a currency, or run
on a bank. The fraction of people acting is ea and the state of the world θ.
There is a critical fraction of people h (θ) above which it pays to act with
h (·) strictly increasing and crossing 0 at θ = θ and 1 at θ = θ. (See Figure
8.)

Let π1 = π(ai = 1,ea; θ) and π0 = π(ai = 0,ea; θ). The differential payoff
to acting is given by:

ea ≥ h (θ) ea < h (θ)
π1 − π0 B − C > 0 −C < 0
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For any given state of the world θ this defines a supermodular game
in which π1 − π0 is increasing in ea and −θ or, equivalently, π(ai,ea; θ) has
increasing differences in (ai, (ea,−θ)). It is immediate that if θ ≤ θ it is a
dominant strategy to act; if θ ≥ θ it is a dominant strategy not to act; and
for θ ∈ ¡θ, θ¢ there are multiple equilibria: Either everyone acting or no one
acting are equilibria. We know also, according to Result 5 in Section 3, that
extremal equilibrium strategies will be monotone (decreasing) in θ. Indeed,
the largest equilibrium is ai = 1 for all i if θ ≤ θ and ai = 0 for all i if θ > θ
and it is (weakly) decreasing in θ.
Consider now the incomplete information game where players have a nor-

mal prior on the state of the world θ ∼ N(µθ, τ−1θ ) and player i observes a
private signal si = θ+εi with normally distributed noise εi ∼ N(0, τ−1ε ), i.i.d.
across players. Morris and Shin (2002) show then that iterated elimination
of dominated strategies leads to a unique outcome provided that τ θ/

√
τ ε is

small. We have then a unique Bayesian equilibrium. We will show here how
using the tools of supermodular games we obtain the conclusion that the
game is dominance solvable without actually having to go through the elab-
orate process of iterated elimination of dominated strategies. Furthermore,
we will see how the approach brings in a very transparent way the intuition
behind the uniqueness result.
Note first that the game is monotone supermodular because π(ai,ea; θ) has

increasing differences in (ai, (ea,−θ)) and signals are affiliated. This means
that extremal equilibria exist, are symmetric (because the game is symmet-
ric), and are in monotone (decreasing) strategies of the form ai = 1 if and only
if si < t (according to the results in Section 6.1.1). Therefore, the extremal
equilibrium thresholds t and t bound the set of rationalizable strategies.
Now, an equilibrium will be characterized by two thresholds (t∗, θ∗) with

t∗ yielding the acting signal threshold and θ∗ the state of the world threshold
below which the acting mass is successful and an acting player obtains the
payoff B − C > 0 (the currency falls, the bank fails or the revolt succeeds).
The critical thresholds must fulfil two equations:

1. ea(θ∗, t∗) = Pr (s ≤ t∗ | θ∗) = h (θ∗) , and
2. E {π(1,ea(θ); θ)− π(0,ea(θ); θ) | s} = t∗ = 0, or Pr (θ ≤ θ∗ | t∗) (B −
C) + Pr (θ > θ∗ | t∗) (−C) = 0, or Pr (θ ≤ θ∗ | t∗) = γ, where γ ≡
C/B < 1.

The first equation states that at the critical state of the world, in equi-
librium, the fraction of acting players must equal the critical fraction above
which it pays to act. The second equation states that at the critical signal
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threshold the expected payoff of acting and not acting is the same. Those
equations may have multiple solutions. However, it can be shown that if
(and only if) τ θ/

√
τ ε is small enough the solution is unique, in which case

the equilibrium is unique and the game is dominance solvable because then
t = t.
If τ θ/

√
τ ε is not small enough then typically there are three equilibria.

The basic reason why with small noise in the signals the equilibrium is unique
is that decreasing the amount of noise decreases the strength of the strategic
complementarity among the actions of the players. Indeed, multiple equilib-
ria come about when the strategic complementarity is strong enough.
It is instructive to sketch the proof of uniqueness to bring about the

intuition. Suppose that h (·) is continuously differentiable with h0 > 0. Let
h0 ≡ minθ∈[θ,θ] h

0 (θ) > 0. Let P (s, t) be the probability that the acting
players succeed if they use a threshold t and the player receives a signal s.
This is P (s, t) ≡ Pr[θ < bθ(t)|s] = Φ

³√
τ θ + τ ²

³bθ(t)− τθµθ+τ²s
τθ+τ²

´´
where bθ(t)

is the critical θ below which an attack succeeds when players use a strategy
with threshold t, and Φ is the cumulative distribution of the standard normal
random variable N(0, 1).
It is immediate that P is strictly decreasing in s, ∂P

∂s
< 0, and nonde-

creasing in t, ∂P
∂t
≥ 0. Given that other players use a strategy with thresh-

old t the best response of a player is to use a strategy with threshold s
where P (s, t) = γ: act if and only if P (s, t) > γ or, equivalently, if and
only if s < s where P (s, t) = γ. This defines a best response function
r(t) = τθ+τ²

τ²
bθ(t) − τθ

τ²
µθ −

√
τθ+τ²
τ²

Φ−1 (γ). The game is of strategic comple-

mentarities and we have that r0 = − ∂P/∂t
∂P/∂s

≥ 0 : a higher threshold t by others
induces a player to use also a higher threshold. Furthermore, we have that

r0(t) = τθ+τ²
τ²
bθ0(t) ≤ τθ+τ²

τ²

h
1 +

q
2π
τ²
h0
i−1
.40 If τθ√

τε
≤ √2πh0 then r0(t) ≤ 1

with equality only when h (θ) = 1/2. This ensures that r(t) crosses the 45o

line only once and the equilibrium is unique. When h(θ) = θ, h0 = 1 and if
τθ√
τε
>
√
2π then r0(t) > 1 for h (θ) = θ = 1/2. Therefore, for example, for

40We have that bθ(t) is the solution in θ of Pr (s ≤ t | θ) = Φ ¡√τ ²(t− θ)
¢
= h (θ). From

this equation we can solve for the inverse function and obtain bt (θ) = θ + 1√
τ²
Φ−1 (h (θ))

with derivative bt0 = 1+ 1√
τ²
h0 (θ)

£
φ
¡
Φ−1 (h (θ))

¢¤−1
, where φ is the density of the standard

normal. Since φ is bounded above by 1√
2π
, bt0 is bounded below: bt0 (θ) ≥ 1+q2π

τ²
h0, where

h0 = minθ∈[θ,θ] h
0 (θ) > 0. Hence, bθ0(t) ≤ h1 +q2π

τ²
h0
i−1

(with strict inequality except

when h (θ) = 1/2 because then Φ−1 (1/2) = 0 and φ attains its maximum: φ (0) = 1√
2π
).

57



γ such that θ∗ = 1/2 there are three equilibria.41

With small noise the strategic complementarity is lessened, and r0(t) ≤ 1,
because then a player faces a lot of uncertainty about the behavior of others.
Indeed, consider the limit cases τ ε → +∞ (or equivalently a diffuse prior
τ θ = 0). Then it is not hard to see that the distribution of the proportion of
acting players ea(θ, t∗) is uniformly distributed over [0, 1] conditional on si =
t∗ . This means that players face maximal strategic uncertainty and cannot
coordinate on different equilibria. In contrast, with complete information
there are multiple equilibria when θ ∈ ¡θ, θ¢. Indeed, at any of the equilibria
players face no strategic uncertainty. For example, in the equilibrium in
which everyone acts a player has a point belief that all other players will
act.
It is worth to note that the uniqueness argument made is robust to general

distributions for the uncertainty as long as noise is small. Indeed, with very
precise signals all priors ”look uniform” (Morris and Shin (2002)).
In summary, using the theory of supermodular games we bring forward

the intuition for the uniqueness result, clarify the role of the assumptions
and we need not solve the process of iterated eliminated of dominated strate-
gies. Indeed, we start noting that the game is monotone supermodular. This
means that extremal equilibria exist and are in monotone (threshold) strate-
gies. Those extremal equilibria can be found starting at extremal points of
the strategy sets of players (t =∞ and t = −∞) and iterating using best re-
sponses (Vives (1990)). The boundary assumptions on h guarantee that the
process is not stuck at extremal points of strategy space, e.g., if 1 > h(θ) > 0
(or θ =∞ and θ = −∞) then both to act and not act coexist as equilibria no
matter what signal realizations. The extremal equilibrium thresholds t and
t bound set of rationalizable strategies and if the equilibrium is unique game
is dominance solvable. The condition for equilibrium uniqueness is precisely
that strategic complementarities do not be too strong and this holds when
noise in the signals is small. It is in this situation when each player faces a
lot of uncertainty about the aggregate action of the other players. This is
exactly the same intuition as in the heterogenous population adoption ex-
ternalities game in Section 2. A similar figure to Figure 2 would depict the
situation here.
In the region where the equilibrium is unique (i.e., τ θ/

√
τ ε is small enough)

we can obtain several useful results:

• When θ < θ∗ the acting mass of players succeeds. In the range
£
θ∗, θ

¢
there is coordination failure from the point of view of players because
if all them where to act then they would succeed.

41As γ ranges from 0 to 1, θ∗ goes from θ = 1 to θ = 0.
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• θ∗ (and the probability that the acting mass succeeds) is decreasing in
the relative cost of failure γ ≡ C/B and in the expected value of the
state of the world µθ.

42

Comparative statics properties with respect to τ θ and
√
τ ε will depend

on parameter configurations.
The approach is useful for policy analysis because it links the probability

of occurrence of a ”crisis” (successful mass action) at the unique equilibrium
with the state of the world: Pr (θ ≤ θ∗). This is in contrast with the complete
information model where multiple self-fulfilling equilibria arise in the range¡
θ, θ
¢
. The theory builds a bridge therefore between the self-fulfilling theory

of crisis (e.g., Diamond and Dybvig (1983)) and the theory that links crisis
to the fundamentals (e.g, Gorton (1985, 1988)).43 In the global game model
there is both coordination failure and link between crisis and fundamentals.

Applications It is well known that multiple equilibria make comparative
statics and policy analysis difficult. The uniqueness of equilibrium delivered
by the global game approach comes to the rescue. We present here three
applications that illustrate the power of the approach. Suppose in all of
them that the uniqueness condition is fulfilled (i.e., τ θ/

√
τ ε is small enough).

The first application is a modified version of the currency attacks model of
Morris and Shin (1998). This is an extremely streamlined model of currency
attacks. Let θ be the reserves of the central bank (with θ ≤ 0 meaning that
reserves are exhausted). There are a continuum of speculators and speculator
i has one unit of resources to attack the currency (ai = 1) at a cost C, and
receives a signal about the level of resources of the central bank. Let h(θ) = θ
and the attack succeeds if ea ≥ θ. The (capital) gain if there is a depreciation
is B (and it is fixed). The result is that the probability of a currency crisis
is decreasing in C/B and in the expected value of the reserves of the central
bank. In the region

£
θ∗, θ

¢
if speculators were to coordinate thier attack they

would succeed but in fact the currency holds.
The second application is an instance of coordination failure in the in-

terbank market proving a rationale for a Lender of Last Resort intervention
(Rochet and Vives (2002)). Consider a market with three dates: τ = 0, 1, 2.
At date τ = 0 the bank possesses own funds E and collects uninsured whole-
sale deposits (CDs for example) for some amount D0 ≡ 1. These funds are
used to finance some investment I in risky assets (loans), the rest being held
42This follows immediately because θ∗ solves ϕ(θ) = τθ(θ − µθ) −

√
τ ²Φ

−1 (h(θ)) −√
τθ + τ ²Φ

−1(γ) = 0, and ϕ0 < 0 when τθ/
√
τ ² is small enough.

43An early model of incomplete information that bridges both approaches in the context
of bank runs is Postlewaite and Vives (1987).
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in cash reserves M . Under normal circumstances, the returns θI on these
assets are collected at date τ = 2, the CDs are repaid at their face value
D, and the stockholders of the bank get the difference (when it is positive).
However, early withdrawals may occur at an interim date τ = 1, following
the observation of private signals on the future realization of θ. If the pro-
portion ea of these withdrawals exceeds the cash reserves M of the bank, the
bank is forced to sell some of its assets. A continuum of fund managers,
make investment decisions in the interbank market. At τ = 1 each fund
manager, after having received a private signal about θ, decides whether to
cancel (ai = 1) or renew his CD (ai = 0). Let m ≡ M/D be the liquidity
ratio, θ ≡ D−M

I
the solvency threshold of the bank, λ > 0 the fire sales

premium of early sales of bank assets, and θ ≡ (1 + λ)θ the ”supersolvency”
point where a bank does not fail even if no fund manager renews his CDs.
The bank fails if ea ≥ h(θ), where h(θ) ≡ m+ 1−m

λ
(θ
θ
− 1) for θ ∈ £θ, θ¤ and

h(θ) = 0 for θ ≤ θ. A fund manager obtains B > 0 except if he renews the
CDs and the bank fails, and the (reputation) cost of withdrawing is C > 0.
The equilibrium failure threshold of the bank is θ∗ ∈ £θ, θ¤ and in the range
[θ, θ∗) the bank is solvent but illiquid. This provides a rationale for a LLR
intervention with the discount window. Comparative statics results are also
easily obtained. The critical θ∗ (and probability of failure) is a decreasing
function of the liquidity ratio m and the solvency (E/I) of the bank, of the
critical withdrawal probability γ and of the expected return on the bank’s
assets µθ; and an increasing function of the fire sales premium λ and of the
face value of debt D.
The third application is basically a reinterpretation of the second in terms

of sovereign default and an international LLR. Suppose that θ is the unit
return of the aggregate risky investment of a country which has foreign short-
term debt with face value D and foreign reserves of M. At an interim period
international fund managers may recall (ai = 1) or roll over (ai = 0) the
foreign short-term debt of the country. The country defaults if ea ≥ h(θ) =
m + 1−m

λ
( θ
θs
− 1), where m ≡ M/D is the reserves ratio, θ ≡ D−M

I
the

solvency threshold of the country, and λ the fire sales premium of early asset
liquidation in the international market. The parameters B and C are as
before. An interesting implication of the analysis, for example, is that the
probability of default is decreasing in the reserves ratio.

Robustness Frankel, Morris and Pauzner (2003) obtain a generalization
of the limit uniqueness result to games of strategic complementarities. They
work in fact within the frame of monotone supermodular games (Section 6.1).
The authors consider a Bayesian game (Ai, Ti,πi) for i ∈ N , where Ai is a
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compact interval, πi(ai, a−i; θ) is continuous and has increasing differences in
(ai, (a−i, θ)). The state θ is drawn from a continuous density with connected
support and player i receives a private signal si = θ+κεiwith κ > 0where εi is
drawn from an atomless density with compact support (and the error terms
are iid across players). The authors also assume that for extreme values
of θ, extreme actions in Ai are strictly dominant (this is the equivalent of
the assumption that h (·) crosses 0 and 1 at finite values) and the technical
assumption that πi (a, θ) has sensitivity to actions with a Lipschitz bound.
The result is then that if θ is uniformly distributed or for κ tending to 0
there is a (essentially) unique Bayesian equilibrium in pure strategies (and
it is increasing in type). However, the limit equilibrium may depend on the
distribution of noise. Frankel, Morris and Pauzner give conditions for noise
independent selection.

Extensions The framework can be extended:

• To include large players (see Corsetti, Dasgupta, Morris and Shin
(2004) on currency attacks and Corsetti, Guimaraes and Roubini (2003)
and Morris and Shin (2002) on the impact of the IMF as provider of
”catalytic finance”).

• To relax the strategic complementarity condition of actions to a single
crossing condition and obtain a uniqueness result in switching strategies
assuming that signals fulfill the monotone likelihood ratio property.
However, then it cannot be guaranteed that there are no other equilibria
in non-monotone strategies (see Athey (2001)); Goldstein and Pauzner
(2003) apply a similar strategy to model bank runs when the depositor’s
game is not of strategic complementarities.

• To consider dynamic settings modeling, for example, contagion (Das-
gupta (2003)) and dynamic speculative attacks (Chamley (2003)).

7 Concluding remarks

In the paper I have surveyed the theory and several applications of the lattice-
theoretic approach in the study of complementarities in games. The survey
has been by no means exhaustive. For example, no mention has been made
of cooperative games (see Topkis (1998) for a survey). Furthermore, the
method, as has been made clear in the text, can be applied fruitfully to
comparative statics analysis and therefore is useful in basically all domains of
economic theory: demand analysis, the theory of the firm and organizations,
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and dynamic optimization (see, for example, the applications in Milgrom and
Roberts (1990b) and Milgrom and Shanon (1994)). The empirical analysis of
complementarities based in the new methods is already taking off (see, e.g.,
Miravete and Pernías (2002) and Mohnen and Röller (2002)).

8 Appendix: Summary of lattice-theoretic meth-
ods

For the convenience of the reader I include a few definitions and results of
lattice methods. More complete treatments can be found in Vives (1999, ch.
2) and Topkis (1998).
A binary relation≥ on a nonempty setX is a partial order if≥ is reflexive,

transitive, and antisymmetric. An upper bound on a subset A ⊂ X is z ∈ X
such that z ≥ x for all x ∈ A. A greatest element of A is an element of
A that is also an upper bound on A. Lower bounds and least elements are
defined analogously. The greatest and leat elments of A, when they exist,
are denoted, repsectively, max A and min A. A supremum (resp., infimum)
of A is a least upper bound (resp., greatest lower bound); it is denoted supA
(resp., inf A).
A lattice is a partially ordered set (X,≥) in which any two elements have

a supremum and an infimum. A lattice (X,≥) is complete if every non-empty
subset has a supremum and an infimum. A subset L of the lattice X is a
sublattice of X if the supremum and infimum of any two elements of L belong
also to L.
Let (X,≥) and (T,≥) be partially ordered sets. A function f : X → T is

increasing if, for x, y in X, x ≥ y implies that f(x) ≥ f(y).
A function g : X → R on a lattice X is supermodular if, all x, y in X,

g(inf(x, y)) + g(sup(x, y)) ≥ g(x) + g(y). It is strictly supermodular if the
inequality is strict for all pairs x, y in X that cannot be compared with
respect to ≥ (i.e., neither x ≥ y nor y ≥ x holds). A function f is (strictly)
submodular if −f is (strictly) supermodular; a function f is (strictly) log-
supermodular if log f is (strictly) supermodular.
LetX be a lattice and T a partially ordered set. The function g : X×T →

R has (strictly) increasing differences in (x, t) if g(x0, t)− g(x, t) is (strictly)
increasing in t for x0 > x or, equivalently, if g(x, t0) − g(x, t) is (strictly)
increasing in x for t0 > t. Decreasing differences are defined analogously. IfX
is a convex subset of Rn and if g : X → R is twice-continuously differentiable,
then g has increasing differences in (xi, xj) if and only if

∂2g(x)
∂xi∂xj

≥ 0 for all x
and i 6= j.
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Supermodularity is a stronger property than increasing differences: If
T is also a lattice and if g is (strictly) supermodular on X × T , then g
has (strictly) increasing differences in (x, t). The two concepts coincide on
the product of linearly ordered sets: If X is such a lattice, then a function
g : X → R is supermodular if and only if it has increasing differences in any
pair of variables.
The main comparative-statics tool for our purposes is the following.

Lemma 1 Let X be a compact lattice and let T be a partially ordered set.
Let u : X×T → R be a function that (a) is supermodular and continuous on
the lattice X for each t ∈ T and (b) has increasing differences in (x, t). Let
ϕ(t) = argmaxx∈X u(x, t). Then:

1. ϕ(t) is a non-empty compact sublattice for all t;

2. ϕ is increasing in the sense that, for t0 > t, for x0 ∈ ϕ(t0) and x ∈ ϕ(t),
we have sup(x0, x) ∈ ϕ(t0) and inf(x0, x) ∈ ϕ(t); and

3. t 7→ maxφ(t) and t 7→ minφ(t) are well-defined increasing functions.

Remark 2 If u has strictly increasing differences in (x, t), then all selections
of ϕ are increasing.

Remark 3 If X ⊂ Rm, solutions are interior, and ∂u/∂xi is strictly in-
creasing in t for some i then all selections of ϕ are strictly increasing (Edlin
and Shannon (1998)).

The basic fixed point theorem in the lattice-theoretic approach is Tarski
(1955).

Theorem 4 (Tarski (1955)): Let A be a complete lattice (e.g., compact cube
in Rm). Then an increasing function f : A→ A has a largest sup {a ∈ A : f(a) ≥ a}
and a smallest inf {a ∈ A : a ≥ f(a)} fixed point.

Supermodular game The game (Ai,πi; i ∈ N) is supermodular if for all
i

• Ai is a compact lattice;
• πi (ai, a−i) is continuous,

1. supermodular in ai, and

2. has increasing differences in (ai, a−i).
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Game of strategic complementarities Given a set of players N , strat-

egy spaces Ai, and (non-empty) best reply maps Ψi, i = 1, ..., n, define a
game of strategic complementarities (GSC) as one in which for each i, Ai is a
complete lattice and Ψi is increasing and has well-defined extremal elements.
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