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Abstract

I analyze the effects of competition on R&D effort (in a non-tournament context)

and obtain robust results that hold for a variety of market structures, including markets

with and without barriers to entry and markets characterized by either price or quantity

competition. The approach encompasses models of direct investment to reduce costs

as well as models where cost reduction arises because the agency problem between

managers and owners in an asymmetric information context (X-inefficiency) is better

resolved. It is found that increasing the number of firms tends to reduce R&D effort,

whereas increasing the degree of product substitutability, with or without free entry,

increases R&D effort–provided that the total market for varieties does not shrink.

Increasing the total market size increases R&D effort.
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1 Introduction

Competition is known to have an ambiguous impact on innovation incentives. There is by

now a large body of work, going back at least to Schumpeter and continuing with Arrow

(1962) and many other scholars, that obtains conflicting results with regard to the effect

of competitive pressure on innovation incentives. Schumpeter himself oscillated between

thinking that monopoly profit or competitive pressure were the drivers of innovation. Quite

a few theoretical models tend to conclude that competition reduces innovation effort despite

the fact that available empirical evidence (Porter (1990), Geroski (1990, 1994), Baily and

Gersbach (1995), Nickell (1996), Blundell, Griffith, and Van Reenen (1999), Symeonidis

(2002a,b), and Galdón-Sánchez and Schmitz (2002)) is favorable to the positive effect of

competition on innovation. For example, leading nontournament models like Dasgupta

and Stiglitz (1980) and Spence (1984) find, with constant elasticity functional forms, that

increasing the number of firms reduces innovation effort. Theoretical work has relied on

particular functional specifications. Bester and Petrakis (1993) and Qiu (1997) compare

innovation incentives in Cournot and Bertrand markets with a linear-quadratic specification.

Similarly, models of X-inefficiency in which there is an agency problem between owners and

managers rely on very simple and parameterized specifications of market competition. This

is the case, for instance, in the linear model of Martin (1993), the examples in Schmidt

(1997), and the linear-quadratic model of Raith (2003).

In the present paper I obtain results which are robust and consistent with the available

empirical evidence.

Most of the models display a trade-off between fixed and variable costs. Those include

R&D and cost—reduction models as well as agency models. In the latter, the innovation

incentive of owners typically translates monotonically, via the incentive scheme of the man-

ager, into the managers’ incentives. The owner must pay the manager his reservation utility,

the cost of effort, and an information rent (owing to asymmetric information) in order to re-

duce costs. In this way, for example, more competition may induce a higher cost—reduction

effort through an incentive scheme that is more sensitive to performance.1

1Hubbard and Palia (1995) and Cuñat and Guadalupe (2002) provide evidence of how competition in-

creases the performance-pay sensitivity, respectively, of CEOs in the U.S. banking industry after deregulation
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In this paper I consider a benchmark symmetric reduced-form non-tournament model,

with no spillovers, that displays the trade-off between fixed and variable costs and where in

R&D investment has no strategic commitment value. This central scenario is plausible on

empirical grounds. Indeed, patents (inducing a patent race or tournament) do not seem to

be the major source of returns to innovative activity (Schankerman (1991) and Cohen et al.

(2000))2 and, according to Cohen,“The empirical findings to date do not establish whether

the net effect of appropriability on R&D incentives is positive or negative” (1995, p. 230).

At the same time, it is possible that strategic effects have been overplayed in the literature.

For example, the same source states: “Despite the considerable theoretical attention devoted

to strategic interaction, we know surprisingly little about its empirical relevance” (Cohen

(1995, p. 234; see also Griliches (1995)). Geroski (1991) hints that strategic effects may

be of second—order importance in determining innovation incentives. It is worth remarking

that even though R&D investment typically precedes market interaction, this does not

mean that it can be used strategically. That is, it does not follow that R&D investment, or

contracts with managers that reward effort, are observable and that firms can commit to

it.3 Despite this, I do check the robustness of the results to the strategic commitment effect

of R&D and the effect of spillovers. No claim is made about the realism of the symmetry

assumption.4

Firms compete à la Cournot (with homogenous product) or à la Bertrand (with dif-

ferentiated products), and innovation is investment in cost reduction (although I look also

at product introduction when goods are differentiated). I consider four (classical) different

possible measures of enhanced competitive pressure:5

and of CEO, executives, and workers in a panel of U.K. firms after the pound’s appreciation in 1996. Com-

petition may also provide information (e.g., on the cost structure of firms) and enlarged opportunities for

comparison, and therefore stronger incentives. The informational role of competition in enhancing efficiency

has been highlighted in a series of models. I will not pursue this line of inquiry in this paper but see Hart

(1983), Scharfstein (1988), Hermalin (1992, 1994), and Meyer and Vickers (1985).
2Recent empirical analysis does not seem to favor the patent race model (with its first-mover advantage).

See Tellis and Golder (1997) and Lieberman and Montgomery (1998).
3The evidence on the strategic commitment value of R&D is scant.
4See Boone (2000) for an analysis of innovation incentives with asymmetric industry structures.
5Sometimes a change from Cournot to Bertrand behavior is interpreted as an increase in competitive

pressure. This may be so, since Bertrand equilibria tend to be more competitive than Cournot, but this
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• with barriers to entry, as an increase

(1) in the number of competitors or

(2) in the degree of product substitutability;

• with free entry, as an increase

(3) in the total size of the market or

(4) in the degree of product substitutability.

In the central scenario considered, individual firms’ cost—reduction incentives depend

on the output per firm because the value of a reduction in unit costs will increase with

the output produced by the firm. Output per firm depends in turn on demand and price—

pressure effects. For a given total market size, competition affects the effective market of a

firm, its residual demand (a level or size effect), and the elasticity of the residual demand

faced by the firm (an elasticity effect). For example, typically an increase in competition

with more competitors for a given total market size will decrease the residual demand for

the firm and will increase the demand elasticity. The first effect will tend to decrease R&D

effort because a unit cost reduction will benefit a diminished output, whereas the second

will tend to increase R&D effort, because a unit reduction in costs will allow the firm to

decrease price with a higher output impact.6

I obtain the following results. In a market with barriers to entry:

• Increasing the number of firms tends to reduce R&D effort (either in Cournot or

Bertrand) because the residual demand (size) effect dominates the price pressure

(elasticity) effect. Exceptions are difficult to find: in Cournot the result holds in

the usual case of outputs being strategic substitutes; in Bertrand the result holds for

all leading examples (including linear, constant elasticity, constant expenditure, and

logit demand systems).

• With Bertrand and product differentiation, increasing the degree of product substi-
tutability increases R&D effort provided the total market for varieties does not shrink.

interpretation need not make sense within a given industry. Indeed, the mode of competition is typically

dictated by the structural conditions in the industry (see Vives (1999, Chap.7)).
6See Kamien and Schwartz (1970) and Willig (1987) for related analyses.
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The reason is that the demand effect and the price-pressure effect both work in the

same direction. This holds for leading examples such as linear (Shapley—Shubik spec-

ification), constant elasticity, and constant expenditure demand systems. With logit

there is neither demand effect nor price—pressure effect.

The results in a market with barriers to entry generalize those obtained by (among

others) Dasgupta and Stiglitz (1980), Spence (1984), Tandon (1984), and Martin (1993)

in the context of a Cournot model with constant elasticity or linear specifications, and by

Raith (2003) with price competition and product differentiation à la Salop (1979). Bertrand

and Kramarz (2002) and Ebell and Haefke (2003) provide evidence on the output expansion

effect of competition.

In a market with free entry:

• In a Cournot homogenous product market, increasing the total market size increases
R&D effort (and per—firm output). Increasing the market size has a direct positive

impact on R&D effort and output per firm, but at the same time it may increase the

free—entry number of firms. However, the latter increases less than proportionately,

owing to the reduction in margins, and the direct effect prevails. In fact, the free-entry

number of firms may even decrease with market size. In a constant elasticity example

with no entry cost, the free—entry number of firms is independent of market size.

• In a Bertrand market with product differentiation:

— Increasing the total market size increases per-firm output and R&D effort. Process

innovation is enhanced in larger markets. Similarly as in the Cournot case the

number of firms and varieties may increase or diminish.

— Increasing the degree of product substitutability increases R&D effort (and per-

firm output) provided the total market does not shrink. The number of varieties

introduced may diminish.

Schmookler (1959, 1962) emphasized the role of demand and market size in the innova-

tion incentive. The empirical literature tends to confirm the role of market size in explaining

the incentives to innovate (see Scherer and Ross (1990) and Cohen (1995) for surveys as
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well as Symeonides (2002a, chap. 6)).7 Syverson (2003) provides evidence that industries’

median productivity levels are increasing in the degree of product susbtitutability of the

industry products. The results here also generalize those obtained by Raith (2003). The

result that increasing product substitutability increases innovation effort but may decrease

the number of varieties introduced is consistent with the findings in Boone (2000) for sym-

metric market structures.

The results with free entry suggest also that market integration and opening of markets

may yield unambiguous benefits in terms of innovation effort. Indeed, an increase in market

size can result from international market integration or the dismantling of barriers to trade.

We would thus have a connection between globalization, understood as the general lowering

of transport costs and barriers to trade, and innovation effort.8 Our results in particular

are consistent with the findings in Baily and Gersbach (1995) that competition in the global

marketplace is what gives companies a productivity advantage.

The plan of the paper is as follows. Section 2 considers the case of markets with bar-

riers to entry and studies price—pressure and demand effects of increasing competition in

Cournot and Bertrand markets. Section 3 deals with the free—entry case and performs a

comparative statics exercise with market size, the level of entry costs, and the degree of

product substitutability. Section 4 explores extensions of the results. Concluding remarks

close the paper, and the Appendix collects several proofs and the details of the examples.

2 Barriers to entry: Price pressure and demand effects

In this section I consider Cournot and Bertrand markets with barriers to entry and perform

a comparative statics exercise on the number of firms (Cournot and Bertrand) and on

the degree of product susbtitutability (Bertrand). I consider first a Cournot market with

homogenous product and then a Bertrand market with differentiated products. In both

cases, a robustness exercise to the strategic commitment effect of R&D is performed. The

section concludes by establishing some connections with the empirical literature.
7Blundell, Griffith, and Van Reenen (1999) provide evidence on the positive impact of market share on

innovation output for a panel of British manufacturing firms.
8See e.g. Krugman (1995).
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2.1 Cournot competition with homogenous product

Consider an n-firm Cournot market for a homogenous product with smooth inverse demand

P (·), P 0 < 0. Firm i can invest zi to reduce its constant marginal cost of production ci

according to a smooth function ci = c (zi) with c (z) > 0, c0 (z) < 0, and c00 (z) > 0 for all

z > 0. The profit to firm i is given by

πi = P (X)xi − c (zi)xi − zi,

where xi is the output of the firm and X is total output. For convenience we will think of

n as a continuous variable but all results hold with n discrete.

Consider a simultaneous—move game where firm i, for each i, chooses (zi, xi). This can

be interpreted also as an open—loop strategy in a two—stage investment—quantity game.

Consider an (interior) symmetric equilibrium (x, z) of the game. From the first—order con-

ditions (FOCs) we have P (xn) + xP 0(xn) − c(z) = 0, which yields a Cournot equilibrium
x(z, n), and −xc0(z)− 1 = 0. Let

φ (z, n) ≡ −x(z, n)c0(z)− 1.

If (n+ 1)P 0+nP 00x < 0 (which implies in turn uniqueness and local stability of the Cournot

equilibrium x(z, n); see Vives (1999, Sec. 4.3.1)) then ∂x
∂z = − −c 0

(n+1)P 0+xnP 00 . We have thus
∂φ
∂z = −xc00 − c0 ∂x∂z < 0 if and only if

D ≡ ¡(n+ 1)P 0 + nP 00x¢ c00x+ ¡c0¢2 < 0.
Note that D < 0 implies (n+ 1)P 0 + nP 00x < 0. We thus conclude that the symmetric

equilibrium is unique if D < 0. From dz
dn = −

³
−c0 ∂x(z,n)∂n

´
/∂φ∂z and

∂φ
∂z < 0 we obtain that

sign

½
dz

dn

¾
= sign

½
∂x(z, n)

∂n

¾
.

This is the output effect, there is more incentive to invest in reducing costs (with c0 < 0)

when the output is larger. Furthermore, ∂x
∂n = −x P 0+xP 00

(n+1)P 0+xnP 00 and therefore

sign

½
∂x(z, n)

∂n

¾
= sign

©
P 0 + P 00x

ª
.

In conclusion, the innovation effort z increases or decreases with the number of firms accord-

ing to the impact on output, and this in turn depends on whether Cournot best responses
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are increasing or decreasing (i.e., on whether P 0 + P 00x is positive or negative at the equi-

librium).9 The following proposition summarizes the result.

Proposition 1 Let P 0 < 0 and let c0 < 0, and c00 > 0. Consider a symmetric interior equi-

librium (x∗, z∗). If D ≡ ((n+ 1)P 0 + nP 00x) c00x+ (c0)2 < 0 (at the candidate equilibrium)
then the symmetric equilibrium is unique and

sign

½
dz∗

dn

¾
= sign

½
dx∗

dn

¾
= sign

©
P 0 (nx∗ ) + P 00 (nx∗)x∗

ª
.

The normal case is that best responses are decreasing. Indeed, the conditions for upward

sloping best replies in Cournot oligopoly are quite stringent. Letting

E ≡ −XP 00(X)/P 0

we have upward sloping best responses (with constant marginal costs) if n + 1 > E > n.

The first inequality yields uniqueness (and stability) of the symmetric Cournot equilibrium

((n+ 1)P 0 + nP 00x < 0 is equivalent to n+ 1 > E); the second yields upward sloping best

responses (see Seade (1980) and Vives (1999, Sec. 4.3.1)). In practice this means that

upward sloping best responses will hold, if at all, for a single change in the number of firms

n. This is clearly the case if E is constant. Then demands are of the form P (X) = a−bX1−E

if E 6= 1 or P (X) = a− b log X if E = 1, with a ≥ 0 and b > 0 if E ≤ 1 and b < 0 if E > 1,
and they include linear and constant elasticity. If E is constant and we require n+ 1 > E

for all n ≥ 1, then 2 > E and only 2 > E > 1 is possible.
A sufficient condition to have upward sloping best replies is that P is log-convex and

costs zero. Indeed, we need to have P 0 + xiP 00 > 0 only along best responses (and P log-

convex with zero costs is sufficient to ensure that). Then the game is log-supermodular, and

extremal individual Cournot equilibrium outputs are increasing in n. However, for c > 0,

P (X) − c cannot be log-convex (Amir (1996); see also Vives (1999, Sec. 4.1)). Positive
costs bias best responses decisively toward being downward sloping.

9Note that sign
n
dx∗
dn

o
= sign

©
∂x
∂n

ª
because dx∗

dn
= ∂x

∂z
dz
dn
+ ∂x

∂n
and ∂x

∂z
> 0. (Alternatively, differentiating

the FOCs yields dx
dn
= −x2(P 0+xP 00)c00

D
< 0 so dz

dn
=

xc0(P 0+xP 00)
D

< 0, and sign
n
dz∗
dn

o
= sign{ dx∗

dn
} = sign

{P 0 (nx∗) + P 00 (nx∗)x∗}.)
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Remarks

• Sufficient conditions for D < 0 when c00 > 0 are that P 0 + xiP 00 < 0 and (2P 0 +

xP 00)c00xi+(c0)2 < 0. These conditions imply that πi = P (X)xi− cixi− zi is strictly
concave in (xi, zi).10

• Under the assumptions of Proposition 1, it is easily checked that equilibrium profits

π∗n are decreasing in n. Indeed, with D < 0 we have that

sign {dπ∗n/dn} = sign{(2P 0 + xP 00)c00xi + (c0)2},

and the second—order necessary condition yields (2P 0+ xP 00)c00xi+ (c0)2 ≤ 0. Profits

are strictly decreasing in n if πi = P (X)xi − cixi − zi is strictly concave in (xi, zi).

Examples The models of Dasgupta and Stiglitz (1980) and Tandon (1984) are particular

cases of Proposition 1.

Constant elasticity (Dasgupta and Stiglitz (1980)). Let P (X) = bX−ε (a = 0, E − 1 =
ε > 0) and let c(z) = αz−γ . The parameter α can be interpreted as the underlying scientific

base in the industry, while the elasticity γ of c(·) would indicate innovation opportunities
in the industry (with a higher γ increasing opportunities). The condition n + 1 > E > n

becomes in this case n > ε > n − 1. Assume that ε(1 + γ)/γ ≥ n > ε (this implies that

D < 0); then there is a unique symmetric equilibrium with

z∗ =
£
b (γ/n)ε αε−1 (1− ε/n)

¤1/(ε−γ(1−ε))
and

x∗ = (1/γα)
£
b (γ/n)ε αε−1 (1− ε/n)

¤(1+γ)/(ε−γ(1−ε))
.

If we require that n > ε for all n ≥ 1, then z∗ and x∗ increase with n only when going
from monopoly to duopoly. Total output nx∗ and industry R&D expenditure nz∗ both
10Profits πi are strictly concave in (xi, zi) if c00 > 0, 2P 0 + xiP

00
< 0, and (2P 0 + xP

00
)c00xi + (c0)2 < 0. If

P 0 +xiP 00 < 0 then a sufficient condition to have that (2P 0 +xP 00)c00xi +(c0)2 < 0 is that c(·) is sufficiently
convex, that is, −c00x/c0 > c0/P 0 > 0. Strict concavity plus a mild boundary condition implies the existence
of an interior equilibrium.
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increase with n. R&D intensity
z∗

p∗x∗
= γ

³
1− ε

n

´µα
β

¶ε−1
increases with n and with γ. It

is immediate also that z∗ and profit π∗ increase (decrease) with α if ε > 1 (ε < 1) .

Linear demand (Tandon (1984)). Consider a market with linear demand p = a − bX
and c (z) = a− βzδ. We need δ < 1

2 to guarantee strict concavity of profits of firm i with

respect to xi and zi (if δ < 1 then c (·) is strictly convex). Then z∗ =
³

δβ2

b(n+1)

´1/(1−2δ)
and

x∗ =
³

β
(n+1)b

´³
δβ2

b(n+1)

´δ/(1−2δ)
are both decreasing in n for δ < 1

2 , while R&D intensity

z∗/p∗x∗ may decrease or increase with n (it decreases for δ ∈ ¡15 , 12¢).
Multiple equilibria We may use latteic-theoretic methods to extend Proposition 1 in

order to encompass multiple equilibria and remove the regularity conditions, asl ong as we

restrict attention to extremal equilibria. All that is needed is downward sloping demand

and a decreasing innovation function plus some mild boundary conditions. The following

proposition states the result and the proof is in the Appendix.

Proposition 2 Let P 0 < 0 and c0 < 0, and let the following boundary conditions hold:

There exist c > c > 0 and X > 0 such that c > c (z) > c > 0, c0(0+) = −∞, c0(z) → 0 as

z →∞, P (xn) ≤ c if xn ≥ X, and limx→0 {P (xn) + xP 0 (xn)} ≥ c . Consider an extremal
symmetric interior equilibrium (x∗, z∗). Then x∗ and z∗ are strictly decreasing (increasing)

in n if Cournot best replies are strictly decreasing (increasing).

Downward sloping demand ensures that for a given symmetric investment profile z

there exist extremal symmetric Cournot equilibria x (z, n) and x (z, n) that are increasing

in z (Amir and Lambson (2000), Vives (1999, pp. 106—107)). This means that there

exist extremal symmetric equilibria in the game. It can be shown, under the boundary

assumptions, that the required regularity condition characterizing the equilibrium (i.e.,

φ (z, n) decreasing in z) is fulfilled at a symmetric interior extremal equilibrium. It follows

then as before that z is strictly increasing (decreasing) in n if and only if the extremal

x (z, n) is strictly increasing (decreasing) in n, and this, in turn, depends on the slopes of

Cournot best replies.
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2.1.1 Strategic commitment effects

It may be asked if the results are robust with respect to strategic effects. Toward this end

we analyze the subgame-perfect equilibria (SPE) of the two-stage game where firms first

invest in cost reduction and then compete in quantities. Denote by x∗ (zi, z−i), i = 1, ..., n,

a second—stage Cournot equilibrium for a given investment profile and let

V (zi, z−i) ≡ P (X∗ (z))x∗i (z)− c (zi)x∗i (z)− zi

be the associated profit for firm i. The following proposition strengthens the requirements on

demand to ensure that investments in the first stage are strategic substitutes ( ∂2V
∂zi∂zj

< 0, j 6=
i) and that increasing n reduces both output and innovation effort. When investments are

strategic substitutes, increasing the number of firms will tend to decrease innovation effort

of any firm because the aggregate investment of rivals increases. The following proposition

states the result formally (with proof in the Appendix).

Proposition 3 Consider a symmetric interior SPE of the two-stage game: (z∗, {x∗ (zi, z−i)}ni=1).
Suppose that P 00 ≤ 0 and that −P 0 is log—concave (i.e., P 0P 000 − (P 00)2 ≤ 0). Then invest-
ments are strategic substitutes at the first stage, and we have dz∗

dn < 0 and
dx∗
dn < 0.

Assume for the rest of this section that E is constant, E < 1 + n, n > 1, and c (·) is
sufficiently convex (−c00x/c0 > c0/((1 + min(n−E, 0))P 0) > 0). Then11

sign

½
dz∗

dn

¾
= sign{E − 2(n−E)2}.

Therefore, dz
∗

dn < 0 for E ≤ 0 (or P 00 ≤ 0)12 and dz∗
dn > 0 for 1 + n > E > n (strategic

complementarity at the output stage). Note that we could have dz∗
dn > 0 for E close to n

and 0 < E < n, i.e., with strategic substitutes at the output stage.13 This is the case in the
11 It can be checked after some tedious computations (see Suzumura (1995)) that with these assumptions

dz∗
dn

= −∂ϕ/∂n
∂ϕ/∂z

with ∂ϕ/∂z = −(1 + G(x, n))(c00x + (c0)2/(1 + n − E)P 0)) < 0 and ∂ϕ/∂n = xc0(z)(n −
1)(2(n−E)2 −E)/(1 + n−E)2n2.
12This actually follows from Proposition 2 because −P 0 is log-concave if E is constant and E ≤ 0 (i.e.,

P 00 ≤ 0).
13With E constant and E < n (strategic substitutes at the Cournot stage), investments are also strategic

substitutes at the investment stage.
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constant elasticity demand model considered by Spence (1984). Then E = 1− ε and, with

an exponential innovation function (as in the following example), z∗ increases from n = 1

to n = 2 for ε = 1/2; otherwise, z∗ is decreasing with n. Note that for ε < 1 and 1 ≤ n ≤ 2,
E − 2 (n−E)2 > 0 (whereas for n ≥ 3 it is negative).

An agency model with linear demand (Martin (1993)) Here every firm has an

owner and a manager and the manager’s unobservable effort reduces cost. The constant

marginal cost of firm i is given by

c (θi) = m+ θie
−li

for m > 0, θi a random variable (IID across firms) with compact positive support
£
θ, θ
¤
,

and li the labor input (effort) of the firm’s manager. The manager observes θi and knows

li but the owner does not. The latter sets up an incentive scheme with a cost target c (θi)

and a payment schedule ϕ (θi). The interpretation is that, given a reported efficiency θi,

the manager must achieve the cost target c (θi) in order to obtain the compensation ϕ (θi).

The utility of the manager equals the compensation minus the disutility of effort λli, where

λ > 0. It is easy to check that an incentive-feasible compensation schedule must satisfy

ϕ (θi) = λ log θ
c(θi)−m . Market competition is à la Cournot with linear demand, and in the

first stage owners compete by setting cost targets. It is then immediate that the optimal

cost target and the compensation are constant. We are thus in the frame of our model with

an innovation function (or reduced—form cost function)

c (z) = m+ θ exp {−z/λ} , λ > 0.

Note that c0 < 0 and c00 > 0. Given that demand is linear (E = 0) we have that dz
dn < 0

or that increasing the number of firms reduces cost-reduction effort and increases costs.

Indeed, this is the result obtained by Martin (1993).

2.2 Bertrand competition with product differentiation

Consider a differentiated product market with n firms, where each firm produces a different

variety. The demand system for the varieties is symmetric and is given by the smooth

(whenever demand is positive) and exchangeable functions xi = Di (p), p = (p1, ..., pn),

12



i = 1, ..., n.14 Demand is downward sloping ∂Di
∂pi

< 0, products are gross substitutes ∂Di
∂pj

> 0,

j 6= i, and the Jacobian of the demand system is negative definite. The cost function for

firm i is C (xi; zi) = c (zi)xi, with c0 < 0 and c00 > 0. The profits for firm i are therefore

πi = (pi − c (zi))Di (p)− zi.

Consider the simultaneous—move game in which each firm chooses an investment—price

pair. Let H (p;α) ≡ Di (p, ..., p;α) be the demand for a variety when all firms set the same
price (the Chamberlininan DD function) where α is a parameter that affects demand. I

will consider α = n, the number of firms, and α = σ, a measure of product substitutability

(typically, the elasticity of substitution between any two products, either the Allen-Hicks

or the direct elasticity of substitution). It follows from our assumptions that ∂H
∂p (p;α) ≡

∂Di
∂pi

(p, ..., p;α) +
P
j 6=i

∂Di
∂pj

(p, ..., p;α) < 0.15 Let h (p;α) ≡ ∂Di
∂pi

(p, ..., p;α) and note that

h (p;α) < 0. The parameter α will be suppressed to ease notation in functions when no

confusion is possible. A very wide range of demand systems fulfill the assumptions.

Fix a symmetric profile of investment zi = z and consider an associated (interior)

symmetric Bertrand equilibrium p(z,α) satisfying

L ≡ p− c
p

=
1

η
,

where L is the Lerner index and

η ≡ − p

H (p)
h (p)

is the elasticity of demand for an individual firm. The first-order condition for a symmetric

interior equilibrium is (p− c) ∂Di∂pi
+Di = 0, or

φ (p;α) ≡ (p− c)h (p;α) +H (p;α) = 0.

Therefore, this symmetric equilibrium will be unique if ∂φ
∂p = (p− c) ∂h∂p + h+ ∂H

∂p < 0. It is

then immediate that

sign

½
∂p(z,α)

∂α

¾
= sign

½
(p− c) ∂h

∂α
+

∂H

∂α

¾
= sign

½
−∂η

∂α

¾
.

14That is, interchanging the prices of rival goods does not affect the demand for any good (as a function of

its own price) and any two goods that sell at the same price have the same demand. Formally, the demand

system can be described by a unique demand function for any good depending on its own price and the

prices of rivals, Di(pi; p−i) = D(pi; p−i) for all i.
15See Vives (1999, Sec. 6.3).
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If α = n then typically ∂η
∂n > 0, and increasing the number of firms increases the elasticity of

demand and decreases prices. If α = σ then typically ∂η
∂σ > 0, and increasing product substi-

tutability decreases prices.16 Table 1 provides properties of examples of several commonly

used demand systems: linear (Shapley—Shubik (1969) and Bowley (1924) specifications),

location (Salop (1979)), constant elasticity, constant expenditure demand systems (with

exponential and constant elasticity specifications) and logit. The term S parameterizes

total market size.

A symmetric (interior) equilibrium of the full investment—price game17 will satisfy the

first—order condition for investment: −xc0 (z)− 1 = 0 or

Ψ (z,α) ≡ −H (p(z,α);α) c0 (z)− 1 = 0.

It follows that if ∂Ψ/∂z < 0, for which a sufficient condition is

B ≡
µ
(p− c) ∂h

∂p
+ h+

∂H

∂p

¶
c00H +

¡
c0
¢2
h
∂H

∂p
< 0,

then the symmetric equilibrium will be unique (note that B < 0 implies that (p− c) ∂h∂p +
h+ ∂H

∂p < 0).

We are now ready to assess the impact of the parameter α on the equilibrium z. From

dz
dα = −∂Ψ/∂α

∂Ψ/∂z we have that

sign
dz

dα
= sign

∂Ψ

∂α
= sign

½
−c0∂x (z;α)

∂α

¾
,

where x (z;α) ≡ H (p(z,α);α) is the equilibrium output per firm in the Bertrand equilibrium
for a given z. This means that, as before, investment increases if and only if output per
16Suppose that demands come from a representative consumer with (strictly quasiconcave) utility function

U(x0, x), where x is the vector of differentiated commodities and x0 is the numéraire (this a generalization of

the quasilinear case, for which W (x0, x) = x0 +U(x)). For a symmetric allocation, denote by σ the (Allen—

Hicks) elasticity of substitution between any pair of differentiated goods, by σ0 the elasticity of substitution

between the numéraire and a differentiated good, and by ηI the income elasticity of the demand for a

differentiated good. Assuming that the latter is bounded, at a symmetric Bertrand equilibrium we have

η = µσ0+(1− µ)σ (n− 1)n−1+(1− µ) ηIn−1, where µ is the expenditure share of the numéraire good. It
is clear that η increases with σ. Increasing n has a more complex effect in the formula, but typically it will

(among other effects) increase η by weakly increasing σ. See Benassy (1989) and Vives (1999, Sec. 6.4).
17 If πi = (pi − c (zi))Di (p)− zi is strictly concave in (pi, zi), then some mild boundary conditions ensure

the existence of an interior equilibrium.
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firm increases. The decomposition

∂x

∂α
=

∂H

∂p

∂p

∂α
+

∂H

∂α

is instructive. The term
∂H

∂p

∂p

∂α

is the price pressure effect: increasing α decreases p (in the leading examples considered

with either α = n or α = σ), which in turn increases demand. The term

∂H

∂α

is the demand effect: the direct impact of α on demand. We will see how, when α = n, the

price pressure and the demand effects have different signs– provided that there is a limited

market for the differentiated varieties
¡
∂H
∂n < 0

¢
and the latter typically dominates. On the

other hand, if α = σ then typically both the price—pressure effect and the demand effect

(weakly) work in favor of more R&D effort. Indeed, there is no presumption that increasing

the elasticity of substitution will decrease the symmetric demand for varieties. Proposition

4 summarizes the results so far.

Proposition 4 Let the demand system fulfill ∂Di
∂pi

< 0 and ∂Di
∂pj

> 0 for j 6= i with negative
definite Jacobian, and let c0 < 0 and c00 > 0. Consider a symmetric and interior equilibrium

(p∗, z∗). Then the following statements hold.

(i) If B ≡
³
(p∗ − c) ∂h∂p + h+ ∂H

∂p

´
c00H + (c0)2 h∂H

∂p < 0 (evaluated at the candidate

equilibrium), then the equilibrium is the unique symmetric one and

sign

½
dz∗

dα

¾
= sign

½
∂x (z;α)

∂α

¾
= sign

½
∂H

∂p

∂p(z,α)

∂α
+

∂H

∂α

¾
,

where (p(z,α), x (z;α)) is the symmetric Bertrand equilibrium for given α and z.

(ii) When changing the number of firms n for linear, constant elasticity, logit, and

constant expenditure demand systems, we have ∂H
∂n < 0 and ∂η

∂n > 0; the demand effect

dominates the price—pressure effect, and ∂x(z;n)
∂n < 0.18

18When B < 0 we have that sign dz∗
dn

= sign
n
∂H
∂p
(p− c) ∂h

∂n
− ∂H

∂n

³
(p− c) ∂h

∂p
+ h

´o
and sign dp∗

dn
=

sign
n¡
(p− c) ∂h

∂n
+ ∂H

∂n

¢
c00H + (c0)2 h∂H

∂n

o
. A sufficient condition for dz∗

dn
< 0 is that ∂h

∂n
> 0 and ∂h

∂p
< 0.
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(iii) When varying product substitutability σ in all cases considered, ∂η
∂σ > 0. For linear

(Shapley—Shubik specification), logit, and constant expenditure demand systems, ∂H
∂σ = 0; for

constant elasticity, ∂H
∂σ > 0. The logit system (like classical location models) is a boundary

case with neither price—pressure nor demand effects so ∂x(z;σ)
∂σ = 0. For the other cases,

price—pressure and demand effects work in the same direction and so ∂x(z;σ)
∂σ > 0. For the

linear demand specification of Bowley, ∂H
∂σ < 0 and

∂x(z;σ)
∂σ < 0.

Remarks

• Under the assumptions of Proposition 4 we have that sign© dxdαª = signn∂x(z;α)
∂α

o
for

α = n and α = σ, because dxdα =
∂x(z;α)

∂z
dz
dα+

∂x(z;α)
∂α and sign ∂x(z;α)

∂z = sign {−c0h} > 0.

It follows, indeed, that innovation effort and individual output move in the same

direction.

• Strengthening the condition B ≡
³
(p∗ − c) ∂h∂p + h+ ∂H

∂p

´
c00H + (c0)2 h∂H

∂p < 0 to

bB ≡ µ(p∗ − c) ∂h
∂p
+ h+

∂H

∂p

¶
c00H +

¡
c0
¢2
h2 ≤ 0

(note that |∂H/∂p| < |h|), and assuming ∂H
∂n < 0 and ∂η

∂n > 0, yields that profits at

the symmetric equilibrium, π∗n, are strictly decreasing in n. This follows because

dπ∗n
dn

= (p∗ − c)
µ
∂H

∂n
+
dp∗

dn

µ
∂H

∂p
− h

¶¶
and dπ∗n

dn < 0 if and only if −∂H
∂n
bB+³∂H

∂p − h
´ ¡
(p∗ − c) ∂h∂n + ∂H

∂n

¢
c00H < 0 (since∂H∂p −

h > 0, c00H > 0, and sign
©
(p− c) ∂h∂n + ∂H

∂n

ª
= sign

n
− ∂η

∂n

o
). Alternatively, with

B < 0, a sufficient condition for dπ∗n/dn < 0 is that dp∗/dn < 0.

• The parameter α could also be interpreted as “regulatory pressure”. It is then akin
to our product substitutability measure with ∂η

∂α > 0 and
∂H
∂α = 0. Increasing α would

exert price pressure, increasing output and R&D effort.

• Similarly to the Cournot case, we can extend the characterization in Proposition 4(i)
to multiple equilibria situations as long as we restrict attention to extremal symmetric

interior equilibria.
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Table 1 provides the properties of the examples claimed in Proposition 4, as well as

computed equilibrium solutions for c (z) = αz−γ with α > 0 and γ > 0 and for the demand

systems of constant elasticity, constant expenditure (constant elasticity specification), and

logit. For those computed examples we find also that R&D intensity (R&D expenditures

over sales) z∗
p∗x∗ is increasing in n and σ. The Appendix provides details for each example.

2.2.1 Strategic commitment effects

I analyze the subgame-perfect equilibria of the two-stage game in which firms first invest

in cost—reducing R&D and then compete in prices. Denote by p∗ (zi, z−i) , i = 1, ..., n, a

second—stage Bertrand equilibrium for a given investment profile z, and let

(p∗i (zi, z−i)− c (zi))SDi (p∗ (zi, z−i))− zi

be the corresponding profit of firm i in the reduced—form game at the first stage.

It is not difficult to see that, at a symmetric interior SPE of the two-stage game (p, z),

we have H(p) + (p− c (z))h(p) = 0 and −c0 (z)SH − 1 − (p− c (z))S (n− 1) ∂Di∂pj

∂p∗j
∂zi

= 0.

The term

− (p− c (z))S (n− 1) ∂Di
∂pj

∂p∗j
∂zi

is the strategic commitment effect and it does not appear in the characterization of the

equilibrium in the simultaneous move game. With strategic complementarity in prices

and the condition for uniqueness of a symmetric Bertrand equilibrium at the second stage³
∂H
∂p + h+ (p− c) ∂h∂p < 0

´
, it follows that

∂p∗j
∂zi
≤ 0 and therefore− (p− c (z))S (n− 1) ∂Di∂pj

∂p∗j
∂zi
≥

0. Increasing the innovation effort of firm i reduces the equilibrium prices of rivals, be-

cause firm i is more aggressive and best responses are upward sloping. In order to perform

comparative statics with respect to n note that the SPE z will be characterized by

F (z;n) ≡ −c0 (z)Sx(z;n)− 1− (p∗(z, n)− c(z))S (n− 1) ∂Di
∂pj

∂p∗j
∂zi

= 0

with x(z;n) ≡ H (p∗(z, n);n) and, provided ∂F
∂z < 0, we have sign

dz
dn = sign

∂F
∂n .

We know that sign ∂
∂n (−c0 (z)SH − 1) = sign

³
−c0S ∂x(z;n)

∂n

´
= sign ∂x(z;n)

∂n . This

confirms the result in the simultaneous—move game, with dz/dn < 0 when ∂x(z;n)/∂n < 0.
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The derivative of the strategic effect has an ambiguous sign. The reason is that increas-

ing the number of firms may induce the firms in the first stage to distort their investment

more (because there will be more competition at the second stage) or to distort it less (be-

cause, with more firms, the possibilities of manipulating the second—stage price equilibrium

diminish).

However, tedious algebra shows that, in the case of constant expenditure demand system

(with constant elasticity specification for demand and constant elasticity innovation costs)

as well as in the Shapley—Shubik linear demand system and the logit case (both for a general

innovation cost function) the result of the simultaneous game holds and dz/dn < 0. In all

these examples investments at the first stage are strategic substitutes. Furthermore, in

these examples the same comparative statics with respect to σ hold: dz/dσ > 0 for the first

and second cases and dz/dσ = 0 for the logit.19 Using the Bowley linear demand system,

Qiu (1997) finds that sign dz
dσ = sign ∂x

∂σ < 0 in the strategic two-stage game. This is the

same result as in the simultaneous game according to Proposition 4.

2.2.2 Bertrand and Cournot

We can think of still another way to change competitive pressure in the market: by switch-

ing from Bertrand to Cournot. It is well known that Bertrand equilibria tend to be more

competitive than Cournot equilibria (see Vives (1985), Singh and Vives (1984), and Vives

(1999, Chap. 6) for a precise statement of the needed conditions). Typically we would then

have, at symmetric equilibria and for the same level of costs, that the Bertrand output will

be larger than the Cournot output and hence the incentive for cost reduction is greater

in the former. However, this conclusion need not be robust to strategic commitment ef-

fects. Indeed, in Cournot (with competition between strategic substitutes) it pays a firm

to overinvest in order to gain an advantage, whereas in Bertrand (with strategic comple-

ments) it pays to underinvest in order to gain an advantage (Fudenberg and Tirole (1984)).

This means that Cournot competition may induce more cost—reduction effort owing to this

strategic effect even though the output in Bertrand may be higher (see the linear-quadratic

models of Bester and Petrakis (1993), Qiu (1997), and Symeonidis (2003); in the latter,
19The (lengthy) computations of the examples are available upon request.
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R&D increases product quality in a quality-augmented version of the Bowley demand sys-

tem). However, it should be noted that, in general, if we want to know how an increase of

competitive pressure in a particular industry affects innovation effort, then a comparison

between Bertrand and Cournot equilibria will not be appropriate. Indeed, institutional

features of the market typically determine the mode of competition.20

2.3 Empirical results

The result obtained –that in markets with barriers to entry, the innovation effort per firm

decreases in the number of firms– should be contrasted with some results in the empirical

literature where an inverted U-shaped relationship is found between market concentration

and R&D effort or output (see e.g. Scherer and Ross (1990), Caves and Barton (1990),

and Aghion et al. (2002))21. For highly concentrated markets, a decrease in concentration

seems to benefit innovation, although the effect is reversed for lower concentration levels.

Aghion et al. (2002) relate a measure of innovative output (the count of successful patent

applications) to a measure of competition (the Lerner index22) as a proxy for competitive

pressure measured by σ in a market with a fixed number of firms. In their step-by-step

innovation model there are two forces: competition may increase the incremental profit

from innovating (i.e., escape the competition effect for firms that are neck-to-neck) but also

may reduce innovation incentives for laggards when it is intense enough (by reducing rents

to innovation). When competition is low the first force dominates, yet when competition

is intense the second does owing to a composition effect in the steady-state distribution of

technology gaps.

These empirical results can be reconciled with the analysis in this paper provided that

competition involves also a liquidation effect that induces cost—reduction effort.23 By re-
20See Vives (1999, Chap.7).
21See also Ceccagnoli (2003) for a nonmonotonic effect in an increase in the number of non-innovating

firms.
22 In fact, they use average cost instead of marginal cost and hence their measure of competition (in terms

of our model) is instead bL ≡ p−c−(z/x)
p

= L− z
px
.

23We might also try to explain the inverted U-shaped relationship between an average Lerner index and

average innovation output (or effort) in an industry with asymmetric firms and composition effects.
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ducing profits, competition may put in danger the survival or the company and/or its

management and so induce more effort whenever there are liquidation costs (be they bank-

ruptcy costs or termination costs for the manager; see e.g. Schmidt (1997)). This means,

for example, that increasing the number of firms increases the probability of liquidation and

thus tends to increase innovation effort. This effect is then dominated by the reduction in

profit (or demand) effect when the number of firms grows large.

3 Free entry

In this section I analyze markets with free entry and perform a comparative statics analysis

with the size of the market, the size of the entry cost F ≥ 0, and the degree of product
susbtitutability. As before, I consider first a Cournot market with homogenous product and

then the Bertrand market with differentiated products. Firms choose whether to enter or

not at a first stage and then choose simultaneously investment and output in the Cournot

case and investment and price in the Bertrand case.

Suppose that for any n there is a unique, symmetric equilibrium at the second stage

with associated profits per firm of πn. At a free-entry equilibrium with ne firms in the

market, each firm makes nonnegative profits, πne ≥ F , and further entry would result in
negative profits, πne+1 < F (I assume that firms when indifferent enter). If πn is strictly

decreasing in n then there can be at most one free-entry equilibrium, and there will be one

if πn tends to zero as n grows.

I will finesse the game form positing a free-entry zero-profit condition. We will say

that the free-entry equilibrium is regular if ∂πn/∂n < 0 for n = ne. If ne is such that

πn = F , then the free-entry number of firms is [ne].24 Obviously, if we have a result, say,

that dn
e

dS > 0, this means that
d[ne]
dS ≥ 0.

Alternative game forms involve firms choosing simultaneously whether to enter, their in-

vestment in cost reduction, and level of output (Dasgupta and Stiglitz (1980)); or entry and

investment at a first stage followed by market competition (Boone (2000)); or a sequential

three-stage entry—investment—market competition (Sutton (1991), Suzumura (1995)).25

24The brackets [x] denote the largest integer less than x.
25See Mas-Colell, Whinston, and Green (1995, Sec.12E) for a careful discussion of the differences in the
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3.1 Cournot competition with homogenous product

Parameterize the demand by the size of the market S > 0. Inverse demand is now given

by p = P (X/S), and we look for a free-entry equilibrium in which entering firms incur a

fixed cost F ≥ 0. Firms choose whether to enter or not at a first stage and then choose
simultaneously investment and output.

Proposition 5 Suppose that the assumptions of Proposition 1 hold and let (xe, ze, ne) be

a symmetric (interior) free-entry equilibrium. Let profits of firm i be strictly concave with

respect to xi and zi, and let D ≡ xc00
¡
n+1
S P 0 + nx

S2
P 00
¢
+ (c0)2 < 0. Then the equilibrium is

unique and

sign

½
dze

dS

¾
= sign

½
dxe

dS

¾
> 0.

Furthermore,

sign

½
dze

dF

¾
= sign

½
dxe

dF

¾
= sign

©− ¡P 0 + (x/S)P 00¢ª anddne
dF

< 0.

Under the assumptions we know that equilibrium profits π∗n for a given n are strictly

decreasing in n. We will thus have a unique (x, z, n) fulfilling the FOCs for output and

innovation effort as well as the zero profit condition (P (xn/S)− c(z))x− z − F = 0. The
results follow by differentiating totally the equilibrium conditions under the assumptions

(see the Appendix).

Some intuition for the market size S comparative statics result in the proposition can be

gained as follows. Increasing S will have a positive direct impact on x and z and an indirect

effect because of the changes in n. However, the indirect effect is always dominated because

n increases (if at all) less than proportionately than S. The reason is that, with constant

marginal costs, increasing the market size increases also the toughness of competition and

puts pressure on margins, moderating the rate of entry.26 In fact, n may even decline as

a result of the intensity of the R&D competition. A condition for this not to be the case

is strategic substitutability in outputs (i.e., P 0 + (x/S)P 00 < 0) and c(·) sufficiently convex
(i.e., −c00x/Sc0 > nc0/P 0 > 0). Then dne

dS > 0.

game forms. Novshek (1980) and Kihlstrom (1999) consider simultaneous entry and output or price decisions.
26For example, if P (X/S) = (X/S)−1 then, letting n(S) denote the free-entry number of firms for a given

symmetric investment profile z and Cournot competition, we have n(S)/S = (F/S)1/2.
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The comparative statics results on F are very intuitive. Increasing the entry cost de-

creases the free—entry number of firms, and it increases (decreases) output and R&D effort

whenever outputs are strategic substitutes (complements).

Remarks

• It is easy to check that in equilibrium

L ≡ p− c
p

=
1 + F

z

1 + 1
γ(z) +

F
z

=
ε(nx)

n
,

where γ (z) ≡ −zc0 (z) /c (z) and ε (X) ≡ −XP 0 (X) /P (X).27 It is immediate also
that L = (z + F )/px.

• If F = 0 then L = z/px (R&D intensity) and

ne = ε(nexe)
1 + γ(ze)

γ(ze)
.

If γ is increasing in z, then increasing S increases z and R&D intensity. Note that, for

a given inverse elasticity ε, increasing the technological opportunities γ will tend to

increase concentration. This is consistent with the empirical findings that industries

with more technological opportunities are more concentrated (see, e.g. Scherer and

Ross (1990)).

• With constant elasticity innovation and demand functions and F > 0, we have that
L decreases (strictly) with z and hence increasing S increases z, decreases L, and

increases n. However, if F = 0, then L = γ/(1 + γ) and ne = ε(1 + γ)/γ are

independent of S.

Constant elasticity examples

• Let p = (X/S)−ε (E − 1 = ε > 0), c(z) = αz−γ and F = 0. Then, indeed, both

ze =
³
Sεγ2εαε−1ε−ε (1 + γ)−(1+ε)

´1/(ε−γ(1−ε))
27Note that sign ε0 = sign {1− ε−E} .
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and

xe =
1

γα

³
Sεγ2εαε−1ε−ε (1 + γ)−(1+ε)

´(1+γ)/(ε−γ(1−ε))
increase with S and the free—entry number of firms is [ε (1 + γ) /γ] (Dasgupta and

Stiglitz (1980)).

• Tandon (1984) considers a linear demand example p = a − bX with c (z) = a − βzδ

and F = 0. Strict concavity of profits of firm i with respect to xi and zi requires

δ < 1
2 . Then n

e = 1−δ
δ . Both z

e =
³
δ2β2

b

´ 1
1−2δ

and xe =
³
δβ
b

´³
δ2β2

b

´ δ
1−2δ

, as well as

R&D intensity ze/pexe, increase in S (decrease in b) since δ < 1
2 , and n

eze increases

in δ.

• Sutton (1991) considers a three-stage game featuring (i) an entry decision, (ii) in-
vestment in cost reduction, and (iii) quantity competition. Demand is given by

P (X/S) = (X/S)−1and the innovation curve by c(z) = (zγa−1 + 1)−1/γ , where

γ > max{1, 2a/3F} and F is the sunk cost of entry. Then, for S small, ze = 0;

for larger S, ze is increasing in S while ne decreases (increases) in S if F < a/γ

(F > a/γ). This model can also be given a quality investment or advertising inter-

pretation. In this example, investment has a strategic commitment effect.

3.2 Bertrand with free entry

3.2.1 Comparative statics with market size and entry cost

Consider again the Bertrand market of Section 2.2 and let S denote the size of the market

(number of consumers, say). Then xi = SDi(p) and the profit of firm i is

πi = (pi − c (zi))SDi (p)− zi − F,

where S is total market size and F ≥ 0 is the sunk cost of entry. Recall that we say that a
free-entry equilibrium ne is regular if ∂πn/∂n < 0 for n = ne where πn are the equilibrium

profits with exogenous n. If bB ≤ 0 then ∂πn/∂n < 0 for any n and the free-entry equilibrium
is unique.
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Proposition 6 Consider a symmetric regular interior free—entry equilibrium (pe, ze, ne).

Under the assumptions of Proposition 4 (B < 0), suppose that ∂H
∂n < 0 and

∂η
∂n > 0; then

sign

½
dze

dS

¾
= sign

½
dxe

dS

¾
= sign

½
−dp

e

dS

¾
> 0

and

sign
dne

dS
= sign

n
− bBo .

Furthermore,
dne

dF
< 0, sign

½
dze

dF

¾
= sign

½
−dzn
dn

¾
,

and

sign

½
dpe

dF

¾
= sign

½
−dpn
dn

¾
,

where (pn, zn) is the equilibrium with exogenous n evaluated at n = ne.

The symmetric regular interior free—entry equilibrium (pe, ze, ne) will fulfill the FOCs

for price and innovation effort as well as the zero profit condition (p− c(z))SH(p;n)− z −
F = 0. The results follow by differentiating totally the equilibrium conditions under the

assumptions (see the Appendix).

Increasing the size of the market reduces cost (process innovation) and may increase or

decrease the number of varities (product innovation). As in the Cournot case, increasing

market size increases the number of firms less than proportionately, if at all, and thus

increases individual firm output and innovation effort. The potential downward pressure

exerted on innovation effort by an increase in the number of firms is overwhelmed by the

expanded market. However, increasing market size, as in the Cournot case, may decrease

the number of firms and here of varieties. The reason is that increasing the market size

increases R&D rivalry and leaves less room for entry. Obviously, when ne increases with S,

total R&D effort neze increases with S.

Increasing the entry cost reduces the number of products introduced and firms (indeed,

under our assumptions profits are decreasing in n), and it affects price and R&D effort

depending on the impact of a decreased number of firms. Typically (see examples in Table

1) we have that decreasing n increases z and p, and increasing F will therefore decrease n

and increase p and z. Increasing the entry cost then has the (perhaps paradoxical) effect
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of increasing innovation effort. The reason is that it decreases the number of entrants, and

each entrant produces more and has more incentive to reduce costs.

All the demand systems considered (linear, constant elasticity, constant expenditure,

and logit demand systems) fulfill ∂H
∂n < 0 and ∂η

∂n > 0 (see Table 1). Table 2 provides

the endogenous market structure counterpart of Table 1 with computed examples when

c (z) = αz−γ with α > and γ > 0. The Appendix provides computational details of the

results reported in Table 2. In all the cases considered in Table 2 we have that sign dn
e

dS =

sign
n
− bBo ≥ 0 (with strict inequality for constant expediture-CES, logit and CES with

F > 0, and equality for CES and F = 0). In all those cases a larger market implies more

variety.

An interesting example is provided by the constant expenditure-CES demand system

with the innovation function c(z) = 1/(A+ z). In this case there is less variety in a larger

market: sign dne

dS = sign
n
− bBo < 0. For a free-entry equilibrium to exist we need that

2ne−1
(ne−1) < σ and this implies necessarily that bB > 0.
3.2.2 Comparative statics with product substitutability

As in Section 2.2, we parameterize the demand function by the degree of product substi-

tutability σ, yielding H (p) ≡ Di (p, ..., p;σ).

Proposition 7 Consider a symmetric regular interior free—entry equilibrium (pe, ze, ne).

Under the assumptions of Proposition 4 (B < 0), suppose that ∂Hn
∂n < 0, ∂η

∂n > 0,
∂H
∂σ ≥ 0,

and ∂η
∂σ > 0, then at the equilibrium

sign

½
dze

dσ

¾
= sign

½
dxe

dσ

¾
= sign

½
−dp

e

dσ

¾
> 0

and sign
©
dne

dσ

ª
is ambiguous but

dne

dσ
< 0 if

∂H

∂σ
= 0.

The proof of the proposition follows along similar lines than that of Proposition 6 and can

be found in the Appendix. Increasing the degree of product substitutability increases output

per firm and R&D effort, provided the total market does not shrink. The assumptions on

demands are fulfilled for all the examples (except the Bowley variation of linear demands).
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In the linear (Shapley—Shubik), constant expenditure, and logit demand systems, ∂H
∂σ = 0

and therefore dne

dσ < 0. It should be clear why this is so. When changes in σ are demand—

neutral, increasing σ decreases profits and so the zero—profit entry condition is restored,

decreasing the number of entrants.

Remarks

• The parameter σ could also be interpreted as “regulatory pressure”, with ∂η
∂σ > 0 and

∂H
∂σ = 0. An increase in regulatory pressure would then decrease price while increasing

R&D effort and concentration.

• As before, in a free—entry equilibrium

L ≡ p− c
p

=
1 + F

z

1 + 1
γ(z) +

F
z

=
1

η (p, n,α)
,

where γ (z) ≡ −zc0 (z) /c (z) and α may represent S or σ. We also have that L =

(z+F )/px (here this is the R&D intensity including expenditure F on product intro-

duction).

• The relationship between market power and innovation effort is ambiguous:

sign
∂L

∂z
= sign

½
−F
z2
γ−1 +

µ
1 +

F

z

¶
γ0

γ2

¾
.

If γ0 ≤ 0 and F > 0, then L = 1+F/z
1+(γ(z))−1+F/z is strictly decreasing in z. If F = 0

then sign ∂L
∂z = sign {γ0} and thus, if γ0 > 0, L is strictly increasing in z. It follows

that, if σ or S increase (and hence z also increases) then L decreases when γ0 ≤ 0
and F > 0 or if γ0 < 0 and F = 0. This is the case in particular if γ is constant

with F > 0. If γ is increasing in z and F = 0, then increasing S increases z, L, and

R&D intensity. If F = 0 and γ is constant, ne increases with S if η is increasing

in p. This is so because η is independent of S and strictly increasing in n, and also

increasing S decreases p. In this case the degree of monopoly power L is determined

by technological considerations (the elasticity of the innovation function).

• Increases in product substitutability σ need not go together with decreases in the

Lerner index L. In particular, it could be that an increase in σ increases market

26



power (L) and innovation effort z. This will happen, for example, with F = 0 and

γ0 > 0.28 This situation would be at odds with work (e.g. Aghion et al. (2002)) in

which the Lerner index, or an approximation to it, is taken as a proxy for competitive

pressure measured by σ.

• The Lerner index and the level of concentration may move in opposite directions. If
F > 0 and γ is constant, then the Lerner index is strictly decreasing with σ. It follows

that increasing σ increases z, decreases L (and R&D intensity) and also decreases ne

if ∂H
∂σ = 0.

Incentives in the Salop (1979) model (Raith (2003)) The incentive model by Raith

(2003) provides a nice illustration of our results. The author considers the model of Salop

(1979) with a mass of consumer S uniformly distributed on a circle of circumference 1 and

with quadratic transportation costs having parameter t. Each of the n firms has a cost

ci = c− ei − ui,

where ei is the unobservable effort exerted by the manager of the firm and ui is normally

distributed idiosyncratic noise with mean 0 and variance v. Owner i makes decisions and

offers a linear contract to his manager, with compensation wi = si + bi (c− ci), to reduce
costs. After all managers have chosen their effort levels, costs are realized (and are private

information to the firms), firms compete in prices, and a (Bayesian) Bertrand equilibrium

obtains. Managers have constant absolute risk aversion ρ, quadratic cost of effort k2 (ei)
2 ,

and a reservation utility of 0. Given that the manager of i will choose ei = bi/k, firm i will

set si = − 1
2k (1 − kρv)(bi)2 so that the manager will obtain a zero expected utility. The

expected compensation of the manager will be wi = si + biei =
1+kρv
2k (bi)

2; the expected

cost, ci = c− bi/k = c−
q

2wi
k(1+kρv) . In terms of our model, then,

c(z) = c−
s

2z

k(1 + kρv)
.

Under some parameter restrictions, and for a fixed number of firms n, Raith shows that

there is a symmetric equilibrium for the overall game and that cost reduction effort is

28Note that sign γ0 = sign
n
1 + γ + c00z

c0

o
. Then − c0z

c
+ c00z

c0 < 0 if and only if c is log-convex.
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independent of σ ≡ 1/t. Furthermore, with free entry and with firms paying an entry

cost F , cost—reduction effort is increasing in σ, S, and F . All these results follow from

Propositions 4, 7, and 8 –noting that in the Salop model ∂H
∂p =

∂H
∂σ = 0.

We see from Table 2 that the Lerner index is increasing in F and decreasing in σ in

the constant expenditure (constant elasticity)29 and logit cases. In the constant elasticity

(CES) case we have that ne is strictly decreasing in σ when F = 0 even tough ∂H/∂σ > 0.

Cournot The results could be easily extended to Cournot competition. In fact, Spence

(1984) has shown how a certain class of cost—reduction Cournot models with homogenous

product can be reinterpreted in a product differentiation environment. In the constant

elasticity case, for example, it is possible to check that, under quantity competition, the

same comparative statics with respect to S hold as in the Bertrand case. That is, dn
e

dS > 0 for

F > 0 and dne

dS = 0 for F = 0.
30

4 Extensions

4.1 An alternative measure of competitive pressure

Competitive pressure could be measured also by the extent that each firm internalizes the

profits of other firms. This could arise, for example, when firms in the industry have cross-

shareholdings. Suppose that firm i maximizes

πi + λΣj 6=iπj ,

where λ ranges from λ = 0 (no internalization as before) to λ = 1 (full internalization or

collusion), and consider the simultaneous—move game. An increase in λ will then mean a

decrease in competitive pressure. The parameter λ was called by Edgeworth the coefficient

of ”effective sympathy”. It is possible to check (proofs available on request) that, under

Cournot and under Bertrand competition, an increase in competitive pressure 1/λ will:

• increase output and innovation effort with barriers to entry; and
29The fact that L is decreasing in σ validates the conjecture of Aghion et al. (2002, p. 13, fn.9).
30 Inverse demand is given by pi =

S1−βθαθβθxβ−1i³P
j x

β
j

´1−θ for i = 1, ..., n (Koenker and Perry (1981)).
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• increase innovation effort and decrease the number of entrants with free entry.

The intuition is straightforward. With barriers to entry, if firms are more aggressive

(a lower λ) then output per firm and the incentive to innovate will increase. With free

entry, a firm (when deciding whether to enter) considers only its own profits but knows

that, once in the market, competition will be softer if λ is higher. Tougher competition

thus means that fewer firms will enter and that output per firm will be larger, inducing a

larger innovation effort. The results with λ parallel those obtained in the Bertrand case

with degree of susbtitutability σ whenever changes in σ are demand—neutral (∂H∂σ = 0).

4.2 Investment in quality

The cost—reduction model can be interpreted as investment in quality (product innovation)

in the context of the Cournot model (see e.g. Spence (1984) or Sutton (1991)). This is

consistent with the result that, with free entry, increasing the market size need not increase

the number of entrants under Cournot competition owing to the pressure in margins. In-

deed, the increased intensity of competition as the market grows large –when a better

quality requires a higher fixed—cost investment– may prevent further entry and so market

concentration need not decline (Sutton (1991)). Results by Symeonidis (2000) are in line

with those obtained in this paper. Symeonidis (2000) considers a (strategic) three-stage

game of entry, investment in product quality, and quantity competition within a model in

which horizontal and vertical product differentiation coexist. Demand functions are linear

(a quality-augmented version of the Bowley demand system) and the innovation function

is of the power variety. The author finds that increasing the degree of horizontal product

substitutability increases concentration and R&D effort and that increasing the market size

increases R&D effort.

It is worth noting that the same reinterpretation does not hold with price competition

and, under regularity conditions, a larger market is less concentrated.31

31 Interestingly, Berry and Waldfogel (2003) show that in the restaurant industry (where quality is produced

mostly with variable costs) the range of qualities increases with market size, whereas in daily newspapers

(where quality is produced mostly with fixed costs) the average quality increases with market size and there

is no fragmentation as the market grows large.
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4.3 Spillovers

When the effort of one firm affects (favorably) the cost reduction of other firms, we say

that there are (positive) spillovers.32 With high enough (positive) spillovers, the R&D cost

reduction investments of rivals may be strategic complements in a two-stage game with in-

vestment at the first stage and Cournot competition in the second. This is what happens in

the linear-quadratic specifications of d’Aspremont and Jacquemin (1988, 1990) and Cecca-

gnoli (2003).33 In principle this suggests that, with high enough spillovers and with Cournot

competition, it could be that increasing the number of firms increases individual firm inno-

vation effort. However, it can be checked that this does not happen in the linear-quadratic

specification where increasing the number of firms always lowers innovation effort.34

5 Concluding remarks

The testable empirical implications of our results may be summarized as follows.

• In markets with barriers to entry: More competitive pressure in terms of more firms
means less R&D effort per firm, whereas more competitive pressure in terms of a

greater product substitutability (that does not shrink the total market for varieties)

means more R&D effort per firm.

• With free entry : Increasing the market size increases innovation effort, per firm out-

put, and the number of varieties introduced (with price competition and product

differentiation); and higher product substitutability (that does not shrink the total

market for varieties) means more R&D effort and output per firm. The effect of mar-

ket size on the number of varieties will hold only for cost—reduction innovations; with

quality innovations, the number of varieties introduced may diminish.
32See Spence (1984), d’Aspremont and Jacquemin (1988, 1990) and Amir (2000).
33Ceccagnoli (2003) also shows that with fringe firms that do not invest in R&D and do not benefit from

the spillover, strategic complementarity among the investing firms increases with the number of fringe firms.
34The setting is as follows: P (X) = a− bX and c (z) = c− zi − β

P
j 6=izj . If a firm invests γz2i /2, then

its marginal cost will be reduced by zi + β
P

j 6=i zj , where β > 0 is the spillover rate.
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A potential application of these results is to deregulated markets. For example, in

banking both the deregulation process in Europe and the removal of restrictions on U.S.

intrastate and interstate branching, interpretable as increases in market size and/or product

substitutability, have been claimed (by Gual and Neven (1993) and Jayaratne and Strahan

(1998), respectively) to deliver cost efficiencies.

Many extensions of the analysis could be envisioned. I have already commented on

alternative ways of parameterizing competitive pressure, investments to enhance quality

with price competition, and spillovers. An immediate extension would be to consider in-

vestment that affects the slope of (increasing) marginal costs. More substantial extensions

would include asymmetric market structures and performing a welfare analysis with a view

toward competition and industrial policy. Leahy and Neary (1997) have developed part of

this program.
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6 Appendix:

6.1 Proofs

Proof of Proposition 2: Given a symmetric investment profile z and given that P 0 <

0, there exist extremal symmetric Cournot equilibria x (z) and x (z) that are increasing

in z (Amir and Lambson (2000), Vives (1999, pp. 106—107)). This means that there

exist extremal symmetric equilibria in the game. Indeed, just consider x (z), where z is

the smallest equilibrium associated to x (·) and z is the greatest equilibrium associated to

x (·) . At an extremal interior equilibrium (x∗, z∗), we have P (xn) + xP 0
(xn) − c(z) = 0

and −xc0(z) − 1 = 0. Therefore, φ (z, n) ≡ −x(z, n)c0(z) − 1 = 0, where x(z, n) is an

extremal Cournot equilibrium given z. We know that φ (·, n) cannot jump down, since
x(z, n) is increasing in z; φ (0+, n) > 0, since c0(0+) = −∞; and φ (z, n) < 0 for z large,

since c0(z) → 0 as z → ∞. It follows that, for extremal z, φ (z, n) is decreasing in z

(indeed, it could not otherwise be an extremal equilibrium) and therefore, if φ (z, n) is

strictly increasing (decreasing) in n then so will z be. We have that φ (z, n) is strictly

increasing (decreasing) in n if and only if x(z, n) is strictly increasing (decreasing) in n.

Given that x(z, n) fulfills ϕ(x, z, n) ≡ P (xn) + xP 0(xn) − c(z) = 0 and that, at extremal

equilibria, ϕ is decreasing in x—because (a) ϕ(x, z, n) < 0 for x large (for xn ≥ X we have

p ≤ c ) and (b) ϕ(0+, z, n) > 0 (since limx→0
n
P (xn) + xP

0
(xn)

o
> c) we conclude that

x(z, n) is strictly increasing (decreasing) in n if and only if ϕ(x, z, n) is, and this happens

if P 0(xn) + xP 00(xn) is positive (negative). ¥

Proof of Proposition 3: At the symmetric SPE we have that

ϕ (z) ≡ ∂V (zi, z−i)
∂zi

|zi=z= −xc0 (z)
·
1 + (n− 1) P 0 + xP 00

(n+ 1)P 0 + nxP 00

¸
− 1

= −x(z, n)c0(z)(1 +G(x, n))− 1 = 0,

where G(x, n) = ((n − 1)/n)(n − E)/(1 + n − E).35 Note that E(X) ≤ 0 because

P 00 ≤ 0 and therefore E(X) < 1 + n (so that, for a given symmetric profile of investments,
35With n + 1 > E, we have that signG = sign {n−E}. That is, innovation effort is larger (smaller) in

the two-stage (simultaneous) game depending on whether best responses in the Cournot game are downward

(upward) sloping.
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there is a unique and stable symmetric Cournot equilibrium). Hence, dz
∗

dn = −∂ϕ/∂n
∂ϕ/∂z . We

have ∂ϕ
∂z =

∂2V
∂z2i

+ (n− 1) ∂2V
∂zi∂zj

evaluated at a symmetric solution. Tedious algebra shows

that ∂2V
∂zi∂zj

< 0 when P 0 < 0, P 00 ≤ 0, and P 0P 000 − (P 00)2 ≤ 0; therefore, investments are
strategic substitutes at the first stage. Moreover, the second order necessary condition at

the equilibrium is ∂2V
∂z2i
≤ 0 and so ∂ϕ

∂z < 0. Under the assumptions it is possible to check

also that ∂ϕ/∂n < 0. ¥

Proof of Proposition 5: We know that equilibrium profits π∗n for a given n are strictly

decreasing in n. We will thus have a unique (x, z, n) fulfilling:

P (xn/S) + (x/S)P 0(xn/S)− c(z) = 0

−xc0(z)− 1 = 0

(P (xn/S)− c(z))x− z − F = 0

Differentiating totally the equilibrium conditions and evaluating at the equilibrium, we

find that
dxe

dS
=

(xc00)(x/S2)P 0

(2P 0 + (x/S)P 00)c00(x/S) + (c0)2

and
dze

dS
= − c0(x/S2)P 0

(2P 0 + (x/S)P 00)c00(x/S) + (c0)2
.

We have that sign
©
dze

dS

ª
= sign

©
dxe

dS

ª
> 0 because the denominator is negative (strict con-

cavity of profits of firm i with respect to xi and zi implies xc00(((n+1)P 0/S)+((xn/S)(P 00/S)))+

(c0)2 < 0 for any n, which in turn implies the result). Furthermore,

dne

dS
=
((n+ 1)P 0 + (x/S)nP 00)c00(x/S2) + (n/S)(c0)2

(2P 0 + (x/S)P 00)c00(x/S) + (c0)2
.

Sufficient conditions for dne/dS > 0 are that P 0+(x/S)P 00 < 0 and −c00x/Sc0 > nc0/P 0 > 0.
We obtain also

dxe

dF
=

c00
¡
P 0 + x

SP
00¢

−xP 0
³
xc00
S

¡
2P 0 + xP 00

S

¢
+ (c0)2

´ ,
dze

dF
=

−c0 ¡P 0 + x
SP

00¢
−xP 0

³
xc00
S

¡
2P 0 + xP 00

S

¢
+ (c0)2

´ ,
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and

dne

dF
=

xc00
S

³
(n+ 1)P 0 + nxP 00

S

´
+ (c0)2

x2

S P
0
³
xc00
S

¡
2P 0 + xP 00

S

¢
+ (c0)2

´ < 0.
As before, we have that xc

00
S

³
2P 0 + xP 00

S

´
+(c0)2 < 0, and the inequality follows because

D = xc00
S

³
(n+ 1)P 0 + nxP 00

S

´
+ (c0)2 < 0. ¥

Proof of Proposition 6: Consider the symmetric regular interior free-entry equilib-

rium (pe, ze, ne). The equilibrium will be characterized by

(p− c (z))h (p;n) +H (p;n) = 0

−SH(p;n)c0 (z)− 1 = 0

(p− c(z))SH(p;n)− z − F = 0

It can be checked that the Jacobian of the system is negative definite under the assump-

tions (B < 0 and ∂πn/∂n < 0 for n = ne). Differentiating totally the equilibrium conditions

with respect to S and evaluating at the equilibrium, we find that

sign
dpe

dF
= sign

½
H2Sc00 (p− c)

·
(p− c) ∂h

∂n
+

∂H

∂n

¸¾
< 0,

sign
dze

dF
= −H

·
(p− c) ∂h

∂n
+

∂H

∂n

¸
> 0,

and

sign
dne

dS
= sign

n
H2Sh−1 bBo = signn− bBo .

Differentiating totally the equilibrium conditions with respect to F and evaluating at the

equilibrium, we find that

sign
dne

dF
= sign

½
c00
µ
h+

∂H

∂p
+ (p− c) ∂h

∂p

¶
+
¡
c0
¢2 ∂H

∂p

¾
< 0,

because h+ ∂H
∂p +(p− c) ∂h∂p < 0 (since B < 0) and Hc00S > 0; and ∂H

∂p < 0 and (c
0)2HS > 0.

Furthermore,

sign
dpe

dF
= − sign

·¡
c0
¢2
h
∂H

∂n
+Hc00

µ
(p− c) ∂h

∂n
+

∂H

∂n

¶¸
= −sign dpn

dn

and

sign
dze

dF
= − sign

·
∂H

∂p

∂h

∂n
(p− c)− ∂H

∂n

µ
h+ (p− c) ∂h

∂p

¶¸
= −sign dzn

dn
,
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where (pn, zn) is the equilibrium with exogenous n evaluated at n = ne. ¥

Proof of Proposition 7: Similarly as in the proof of Proposition 6, differentiating

totally the equilibrium conditions and evaluating at the equilibrium yields

sign
dpe

dσ
= sign

©
Hc00 (p− c)Ωª ,

and

sign
dze

dσ
= sign

©
Hc0Ω

ª
,

where

Ω =

·
∂H

∂σ

·
(p− c) ∂h

∂n
+

∂H

∂n

¸
− ∂H

∂n

·
(p− c) ∂h

∂σ
+

∂H

∂σ

¸¸
.

We obtain that dp
e

dσ < 0 and
dze

dσ > 0 because Ω < 0 (
∂H
∂σ ≥ 0, sign

©− £(p− c) ∂h∂n + ∂H
∂n

¤ª
=

sign ∂η
∂n > 0,

∂H
∂n < 0, and sign−

£
(p− c) ∂h∂σ + ∂H

∂σ

¤
= sign ∂η

∂σ > 0); and

sign dne

dσ = sign {−HΓ}, where

Γ ≡ ∂H
∂σ

h
c00 (p− c)

³
h+ ∂H

∂p + (p− c) ∂h∂p
´
− ¡c0¢2Hi

−
³
H + (p− c) ∂H∂p

´
c00
¡
(p− c) ∂h∂σ + ∂H

∂σ

¢
.

¥

6.2 Examples

6.2.1 Exogenous market structure (barriers to entry)

Denote by x and p the symmetric Bertrand equilibria for a given z, and let S parameterize

total market size.

Linear demand (Shapley and Shubik (1969)).36 Let S = 1 and Di (p) =

S
n

¡
α− β

£
pi + γ

¡
pi − 1

n

P
i pi
¢¤¢

for i = 1, .., n, where α, β, γ are positive constants. We

have H = (α−βp)/n. At a symmetric solution, the direct elasticity of substitution is given
36This linear demand system can be derived from a quadratic utility function (with preferences linear in

the numéraire) in which the number of firms n enters as a parameter. See Vives (1999, Chap. 6).
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by σ = (1 + γ) (α− nx) /nx, and it increases with the substitutability parameter γ.37 We
have that ∂H

∂n < 0 and that
∂h
∂n > 0,

∂η
∂n > 0,

∂η
∂γ > 0, and

∂H
∂γ = 0. For a given symmetric

profile z, there is a unique and symmetric Bertrand equilibrium with price p and output

per firm x. We have that ∂p
∂n < 0,

∂x
∂n < 0,

∂x
∂γ > 0, and

∂p
∂γ < 0. In summary,

∂x
∂n < 0 and

∂x
∂σ > 0.

Linear demand (Bowley (1924)). Let Di (p) = S

Ã
an − bnpi + cn

P
j 6=i
pj

!
for i = 1..., n,

where an = α/ (β + (n− 1) γ),
bn = (β + (n− 2) γ) / ((β + (n− 1) γ) (β − γ)) , and

cn = γ/ ((β + (n− 1) γ) (β − γ)) and where α > 0 and β > γ > 0 are utility parameters.38

At a symmetric solution, the direct elasticity of substitution σ = p/ (β − γ)x increases

with γ. The Chamberlinian DD demand function is given by H = (α− p) / (β + (n− 1) γ),
where ∂H

∂n < 0, ∂h
∂n < 0, ∂η

∂n > 0, ∂η
∂γ > 0, and ∂H

∂γ < 0. For a given symmetric profile z,

there is a unique and symmetric Bertrand equilibrium with price p and output per firm

x: p = (an + bnc (z)) / (2bn − (n− 1) cn). We have that ∂p
∂n < 0, ∂x

∂n < 0, and ∂p
∂γ < 0 but

∂x
∂γ < 0. Hence, in this case, increasing competitive pressure by increasing the elasticity of

substitution decreases output. With this particular demand system we have the unusual

feature that ∂H
∂σ < 0. In summary,

∂x
∂n < 0 and

∂x
∂σ < 0.

Location models (Salop (1979)). Although formally in models with localized competi-

tion the demand system is not exchangeable for n > 2, the analysis is easily adapted. A

uniform mass of customers S is distributed within a circle in which n firms have located

symmetrically and each produces at constant marginal cost c. Consumers have a linear

transportation cost t > 0. Then the demand of firm i setting price pi (with neighbors

setting a price equal to p) is S
n +

p−pi
t when there is direct competition among firms. We

can take σ ≡ 1/t. Therefore H = S/n and H is independent of p and σ. There is neither

price—pressure effect nor a demand effect coming from σ. The unique Bertrand equilibrium

is p = c + t/n and η = 1 + nc/t, which for given c is increasing in n and in σ. If the
37For symmetric solutions (with demands arising from the maximization of a quasilinear utility function),

the (direct) elasticity of substitution is given by σ = (εij + εi)
−1, where εij is the cross—elasticity of inverse

demand, εij =
qj
pi

∂Pi
∂qj

. Note also that εij ≤ 0 and εi ≥ 0.
38This linear demand system can be derived also from a quadratic utility function (with preferences linear

in the numéraire). See Vives (1999, Chap. 6).
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transportation cost is quadratic with parameter t, then the Bertrand equilibrium is given

by p = c+ t/n2.

Constant elasticity. Let

Di (p) = S (βθ)
1

1−βθ p
1

1−β
iÃ

nP
j=1

p

β
β−1
j

! 1−θ
1−βθ

for i = 1..., n, with 0 ≤ β < 1 and also 0 ≤ βθ < 1.

The (direct) elasticity of substitution is σ = 1/ (1− β); for β = 0 goods are independent, and

for β = 1 they are perfect substitutes. We have thatH = S (βθ)1/(1−βθ) p−1/(1−βθ)n−(1−θ)/(1−βθ)

and that ∂H
∂p < 0, sign ∂H

∂n = sign (θ − 1), and ∂H
∂β > 0. Restrict attention to the case

θ − 1 < 0 in order to ensure a limited market for the differentiated varieties: ∂H
∂n < 0.

We have that η = 1
1−β

³
1− β

n
1−θ
1−βθ

´
, which is strictly increasing in n and β (and therefore

the Lerner index L will be decreasing in n and β). For a given symmetric profile z, there

is a unique and symmetric Bertrand equilibrium with price p and output per firm x (the

price game is log-supermodular and there is a unique symmetric equilibrium, hence the

symmetric equilibrium is the unique one). In equilibrium, ∂h
∂n > 0, ∂η

∂n > 0 (for n > 1),

and p = (n (1− βθ) + β (θ − 1)) c/ (βn (1− βθ) + β (θ − 1)), and it is easily checked that
sign ∂p

∂n = sign (θ − 1) < 0 and ∂x
∂n < 0. Furthermore, ∂p

∂β < 0 and ∂x
∂β > 0 because

∂x
∂β =

∂H
∂β +

∂H
∂p

∂p
∂β ,

∂H
∂β > 0,

∂H
∂p < 0, and

∂p
∂β < 0. In summary,

∂x
∂n < 0 and

∂x
∂σ > 0.

Assuming that c (z) = αz−γ with α > and γ > 0, we can obtain a closed—form solution.

It can be shown that, evaluating at a symmetric equilibrium, B < 0 if and only if βθ < 1
γ+1 .

Some computations then yield

z∗ =
µ
αβθ (γS)βθ−1 n1−θ (βθ)−1

n (1− βθ) + β (θ − 1)
βn (1− βθ) + β (θ − 1)

¶ 1
γβθ+βθ−1

,

and

p∗ =

(Sαγ)βθ−1 (βθ)−1 n1−θ µα n (1− βθ) + β (θ − 1)
βn (1− βθ) + β (θ − 1)

¶ (γ+1)(1−βθ)
γ


γ

1−βθ−βθγ

.

By Proposition 4 it follows that if βθ < 1
γ+1 then

dz
dn < 0 and dz

dβ > 0. Indeed, for

βθ < 1
γ+1 we have sign

dz
dn = sign (γβθ + βθ − 1) < 0 and dp

dn < 0 because sign dp
dn =

−sign γβθ+βθ−1
γβθ+βθ−1−γ < 0. Furthermore, π

∗
n = z

∗ 1−β−βγ
³
1− 1

n
1−θ
1−βθ

´
γβ
³
1− 1

n
1−θ
1−βθ

´ = z∗
µ

1

(η − 1) γ − 1
¶
and
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sign bB = −sign 1
1−β

n
1− β − βγ

³
1− 1

n
1−θ
1−βθ

´o
. As a result, π∗n > 0 if and only if bB < 0.

This means that π∗n is strictly decreasing in n whenever positive. Note also that β ≤ 1
γ+1

guarantees that bB < 0 for all n.
Constant expenditure model. Let Di (p) = S

pi

g(pi)
nP
j=1

g(pj)
, i = 1, ..., n, with g > 0, g0 < 0,

and S > 0. We have that H = S/np and therefore ∂H
∂n < 0 and

∂H
∂σ = 0. We have also that

dη
dn > 0 because

∂H
∂n + (p− c) ∂h∂n = − S

pn2

h
c
p − g0(p)

g(p)

i
< 0.

Let g (p) ≡ e−βp with β > 0. Observe that goods are independent for β = 0 yet are

perfect substitutes for β →∞. Let S = 1. For a given symmetric profile z, there is a unique
and symmetric Bertrand equilibrium with price p and output per firm x (the price game is

log-supermodular and symmetric and there is a unique symmetric equilibrium, so the sym-

metric equilibrium is the unique one). We have p =
³
c+

¡
c2 + (4cn/ (β (n− 1)))¢1/2´ /2,

x = S/np, ∂p
∂n < 0,

∂x
∂n < 0,

∂p
∂β < 0,

∂H
∂β = 0, and

∂x
∂β > 0.

Another example is of the constant elasticity variety: g (p) ≡ p−r where r > 0 (see

Anderson, de Palma and Thisse (1992, Chap. 7)).39 Goods are perfect substitutes when r→
∞ but are independent when r→ 0. We can take σ = 1+r. (The demand system may arise

from W (x0, x) =
³P

i x
r

1+r

i

´ 1+r
r
xα0 for α > 0, yielding S = I/(1+α), where I is the income

of the representative consumer.) We have that h = −S n(r+1)−r
(np)2

, ∂h
∂p = −S 2(n(r+1)−r)n2p3

< 0,

and η = n(r+1)−r
n (which increases with n and r). For a given symmetric profile z, there

is a unique and symmetric Bertrand equilibrium with price p and output per firm x (the

price game is log-supermodular and symmetric and there is a unique symmetric equilibrium,

hence the symmetric equilibrium is the unique one). We have that p = cn(r+1)−rr(n−1) ,
∂p
∂n =

− c
r(n−1)2 < 0,

∂x
∂n < 0,

∂p
∂r = − cn

r2(n−1) < 0, and
∂x
∂r > 0 because

∂H
∂p < 0 and

∂H
∂r = 0.

Assuming that c (z) = αz−γ with α > and γ > 0, we can obtain a closed—form solution.

It can be shown that B < 0 if and only if γ+1
γ > r(n−1)

r(n−1)+4n . This is always true. The

equilibrium solution is z∗ = Sγr(n−1)
n(n(r+1)−r) and p

∗ = α

·
Sγ
n

³
r(n−1)
n(r+1)−r

´γ+1
γ

¸−γ
. Indeed, we have

that sign dz
dn =

sign
n
d
dn

³
r(n−1)
n(r+1)−r

´
< 0

o
and sign dp

dn =

−sign
·
− 1
n2

³
r(n−1)
n(r+1)−r

´1/γ
r

n(r+1)−r
³
1− γ+1

γ
n

n(r+1)−r
´¸
. We have also that dxdn < 0.

39This is also the specification in Aghion et al. (2002).
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Profits are given by πn = S
h
n−γr(n−1)
n(r(n−1)+n)

i
; they are strictly decreasing in n, and πn > 0

if and only if n > γr (n− 1). This holds for all n if γr < 1. Positive profits imply thatbB < 0 ³ bB < 0 if and only γ+1
γ

n
r(n−1)+n >

r(n−1)
r(n−1)+4n

´
and dp

dn < 0.

We have that L = n
n(r+1)−r , which is decreasing in n and r. The R&D expenditure/sales

ratio z∗n
p∗x∗n =

z∗n
S = γr(n−1)

n(r+1)−r is increasing in r and n.

Logit. Let Di (p) = e−pi/µP
j
e−pj/µ

S, i = 1, ..., n, µ > 0. We have that goods are perfect

substitutes for µ = 0 and are independent for µ = ∞, and the elasticity of substitution is
pn/µ. Furthermore, H(p) = S/n and h(p) = −(S/n)(1− 1/n)/µ, ∂H

∂n < 0, and
∂h
∂n > 0. We

have that η = p(n−1)
µn , which is increasing in n and σ ≡ 1/µ. For a given symmetric profile z,

there is a unique and symmetric Bertrand equilibrium with price p and output per firm x (the

price game is log-supermodular and symmetric and there is a unique symmetric equilibrium,

so the symmetric equilibrium is the unique one). We have that p = c+ nµ/ (n− 1) , ∂p
∂n < 0,

and ∂x
∂n < 0. There is no price—pressure effect because

∂H
∂p = 0, but there is a demand effect

∂Hn
∂n < 0. Furthermore, ∂H

∂σ = 0 and therefore there is no demand effect. Neither there is

a price—pressure effect, (because ∂H
∂p = 0) and hence, despite that ∂p∗

∂σ < 0, we have that

∂x∗
∂σ = 0. (In this case B < 0 always because

∂H
∂p = 0.)

As before, assuming that c (z) = αz−γ with α > and γ > 0 yields a closed—form solution:

p = nµ
n−1+α

h
Sαγ
n

i− γ
γ+1
and z =

h
Sαγ
n

i 1
γ+1
. We have that L =

·
1 + n−1

µγS

³
Sαγ
n

´ 1
γ+1

¸−1
, which

is decreasing in n and σ ≡ 1/µ and that z∗
p∗x∗ =

·
1
Sγ +

µ
n−1

³
n
Sαγ

´ 1
γ+1

¸−1
, which is increasing

in n and σ.

6.2.2 Endogenous market structure (free entry)

Constant elasticity. It can be shown that, evaluating at a symmetric equilibrium, B < 0 if

and only if βθ < 1
γ+1 and sign

bB =
−sign

n
1
1−β1− β − βγ

³
1− 1

n
1−θ
1−βθ

´o
. We have, that for given n,

zn =

µ
αβθ (γS)βθ−1 n1−θ

n (1− βθ) + β (θ − 1)
βn (1− βθ) + β (θ − 1)

¶ 1
γβθ+βθ−1
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and

pn =

(Sαγ)βθ−1 (βθ)−1 n1−θ µα (n (1− βθ)) + β (θ − 1)
β [n (1− βθ) + (θ − 1)]

¶ (γ+1)(1−βθ)
γ


γ

1−βθ−βθγ

.

The free—entry number of firms is [ne], where ne is the solution to

πn = zn
1− β − βγ

³
1− 1

n
1−θ
1−βθ

´
γβ
³
1− 1

n
1−θ
1−βθ

´ − F = 0

given that variable profits (whenever positive) are strictly decreasing with n. It is straight-

forward to check that profits are strictly increasing in S because ∂z/∂S > 0. It follows then

that dn
e

dS > 0.

The following expression implicitly defines ne:

µ
(γSα)βθ−1 n1−θ (βθ)−1 α

n (1− βθ) + β (θ − 1)
βn (1− βθ) + β (θ − 1)

¶ 1
γβθ+βθ−1

=
Fγβ (n (1− βθ)− (1− θ))

(1− β − βγ)n (1− βθ) + (1− θ)βγ
.

In equilibrium it should hold that ze = Fγβ([ne](1−βθ)−(1−θ))
(1−β−βγ)[ne](1−βθ)+(1−θ)βγ or z

e = Fγ(η−1)
1−γ(η−1) ,

where η = 1
1−β

³
1− β

n
1−θ
1−βθ

´
. From this expression, knowing that dne

dS > 0 it follows that

dze

dS > 0. (This holds even if [ne] stays constant for increasing S; in this case, the direct

impact of S increases z.)

With constant elasticity demand and γ constant, the Lerner index is decreasing in z.

Therefore, increasing S increases z, decreases L, and increases η. The result is that n must

increase.

We know also that increasing F increases z (because sign dze

dF = −sign dzndn > 0) and

increases p (because sign dp
e

dF = sign dpndn > 0). If F = 0 and β ≤ 1
γ+1 , then profits are

strictly positive for all n and ne =∞.
If F = 0, β > 1

γ+1 , and βθ < 1
γ+1 , then we still know that profits (whenever positive)

are strictly decreasing with n . Then the free—entry number of firms is
h

βγ(1−θ)
(1−βθ)(βγ+β−1)

i
because, at this n, adding one more firm would result in negative profits. In this case the

free—entry number of firms is independent of S, and ne ≥ 1 as long as β > 1
γ+1 ; as before,
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under our assumptions
³
βθ < 1

γ+1

´
, dzdS > 0 and

dp
dS < 0. (Note that for n =

βγ(1−θ)
(1−βθ(βγ+β−1))

we have bB = 0.) Furthermore, dnedβ < 0 (using the assumption βθ < 1
γ+1).

Constant expenditure (and constant elasticity). Given n, zn =
Sγr(n−1)
n(n(r+1)−r) and profits

are given by πn = S
h
n−γr(n−1)
n(r(n−1)+n)

i
. They are strictly decreasing in n, and πn > 0 if and only

if n > γr (n− 1). This holds for all n if γr < 1. Positive profits imply that bB < 0 ( bB < 0
if and only if γ+1

γ
n

r(n−1)+n >
r(n−1)

r(n−1)+4n).

Using the zero profit—entry condition we obtain

ne =
(F − Sγ) r + S +

q
(Fr + S − Sγr)2 + 4γrSF (r + 1)
2F (r + 1)

,

which is strictly increasing in S provided that γr < 1. Furthermore, as expected, dz
e

dS > 0,

dze

dr > 0, and sign
dn
dr = sign

dπ
dr < 0 (recall that ∂H/∂r = 0). We know also that increasing

F increases z (because sign dze

dF = −sign dzndn > 0) and increases p (because sign dp
e

dF =

−sign dpndn > 0). The Lerner index is given by L = n
r(n−1)+n , and it can be checked that

(a)dLdr < 0 whenever n > rγ (n− 1) and (b) L is increasing in F because n is decreasing in
F .

Logit. Given n, we have pn = c (z) + µn
n−1 and zn =

h
Sαγ
n

i 1
γ+1 . Profits (gross of fixed

costs) are given by πn =
Sµ
n−1 −

h
Sαγ
n

i 1
γ+1 . For profits to be decreasing in n we need

Sµ(γ+1)
n−1 − n−1

n

h
Sαγ
n

i 1
γ+1

> 0 (which is equivalent to bB < 0 and is implied by positive profits
πn > 0).40 We conclude that if πn is positive then it is strictly decreasing in n. The free—

entry number of firms is implicitly defined by [ne] where ne solves Sµ
n−1 −

h
Sαγ
n

i 1
γ+1

= F .

Consistent with our other results, we have dn
e

dS > 0 and
dze

dS > 0;
dx
dµ < 0 or

dx
dσ > 0;

dz
dµ < 0 or

dz
dσ > 0; and

dne

dµ > 0 or
dne

dσ < 0. Increasing F increases z (because sign dz
e

dF = −sign dzn
dn >

0) and the impact on p is ambiguous (because sign dpe

dF = −sign dpn
dn ). We have that L =·

1 +
³

µ
n−1

´−1 ³
Sαγ
n

´ 1
γ+1 1

Sγ

¸−1
and dL/dσ < 0 (taking into account the impact of σ on L),

and dL/dF > 0 because L decreases in n and n decreases with F .

40 It can be checked that B∗ < 0 at n = n∗ : observe that B∗ < 0 if and only if γ + 1 + 1−n
µn

γαz−γ > 0,

and this holds at equilibrium if and only if Sµ
n−1 − F =

£
Sαγ
n

¤ 1
γ+1 < µS(γ+1)

n−1 .
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