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Abstract

This paper introduces a notion of p−best response set (p−BR). We
build on this notion in order to provide a new set-valued concept: the
minimal p−best response set (p−MBR). After proving general exis-
tence results of the p−MBR, we show that it characterizes set-valued
stability concepts in a dynamic with Poisson revision opportunities
borrowed to Matsui and Matsuyama (1995). Then, we study equilib-
rium selection. In particular, using our notion of p−BR, we generalize
Morris, Rob and Shin (1995) that aimed to provide sufficient condi-
tions under which an equilibrium "spreads" through a state space.

1 Introduction

In the field of non-cooperative game theory, Nash equilibrium has played a
central role as a solution concept. One reason for the widespread use of the
Nash equilibrium (in mixed strategies) is that it has the advantage of existing
in broad classes of games1. Many papers, some of which will be discussed
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1For instance, Nash (1950) has proved its existence in finite strategic-form games.
Glicksberg (1952) has proved existence for strategic-form games when strategy spaces are
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here, have stressed that in some games, none of the Nash equilibria could be
seen as a “reasonable” prediction. Then, two ways can be followed. The first
one consists in providing new equilibrium concepts avoiding some of Nash
equilibrium drawbacks. The second one aims to find sufficient conditions
under which a Nash equilibrium seems to be a good prediction. This paper
contributes to both directions.
In bold strokes, two kind of criticisms can be addressed to the Nash equi-

librium concept. The first is the “epistemic criticism”: it is now well-known
that Nash equilibrium arises from restrictions on agents’ expectations (see
Bernheim (1984), Pearce (1984) and Aumann and Brandenburger (1995)).
Nash hypothesis is far from being a consequence of rationality and it is a
very stringent concept in terms of consistency of beliefs. The second is the
“evolutionist criticism”. It has emerged when, being confronted with multi-
ple equilibria, game theorists tried to find which equilibria, if any, are robust
to some selection principle. While this research, some of which will be dis-
cussed here, has been extremely instructive, it remains inconclusive as far as
the foundation of the Nash equilibrium. Indeed, this approach also made it
clear that in many classes of games, selection processes could not lead to Nash
equilibrium. For instance, Kajii and Morris (1997) showed how some games
could have no Nash equilibrium that is robust to incomplete information.
It is also well-known that a best reply dynamics can converge towards cy-
cles2 and never reach a Nash equilibrium. Results from the perfect foresight
approach of Matsui and Matsuyama (1995) can be associated to the evolu-
tionist criticism (see also Oyama (2002)). Roughly speaking, these papers
show that in a model with a dynamics with Poisson revision opportunities,
the belief that at each opportunity, the other players will choose the action
of equilibrium, is not necessarily self-fulfilling.
Nevertheless, the evolutionist approach has provided conditions under

which one can give a foundation to the Nash equilibrium concept. Indeed,
many recent papers (see Morris, Rob and Shin (1995) and Kajii an Morris
(1997) for the incomplete information approach, and Young (1993), Maruta
(1997) and Ellison (2000) for the stochastic evolutionary dynamics approach,
and Oyama (2002), for the perfect foresight approach) underlined the strong
properties of the p−dominant equilibrium for p < 1

2
(a notion introduced by

Morris, Rob and Shin (1995)). Recall that an action profile a ≡ (a1, a2) (we
focus our attention on 2 player games), is a (strict) p−dominant equilibrium
nonempty and compact subset of a metric space and when payoff functions are contin-
uous. More recently, Reny (1999), introducing the notion of better-reply secure, showed
new results on the existence of mixed strategy Nash equilibria generalizing many existing
conditions allowing for discontinuities in payoff functions.

2The result of Hurkens (1995) can be interpreted in that sense.
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if for every player i, ai is a (unique) best response to any conjecture putting
probability at least p on other player choosing a−i. This concept implicitly
assumes that a player may have a lack of confidence about what the other
player will play which contrasts with the Nash equilibrium concept which
assumes that all players beliefs on opponents’ plays are correct and thus it
can be seen as a generalization of the pure Nash equilibrium (corresponding to
p = 1). Nonetheless, while it can be shown that a p−dominant equilibrium
with p < 1

2
is unique whenever it exists, many generic games lack such

equilibria.
Our first purpose in the present work consists in providing a set-valued

concept that aims to avoid some criticism addressed to the Nash equilib-
rium concept. In order to do so, we introduce notions of p−best response
set (hereafter p−BR) and minimal p−best response set (hereafter p−MBR).
The concept of p−MBR as to be seen as an attempt to provide a set-valued
concept that (1) generalizes the Nash consistency of beliefs on sets of action
profiles and that (2) allows a lack of confidence on the play of the other play-
ers. Thus, this concept is less stringent in terms of consistency of beliefs than
the Nash equilibrium concept. Its formal definition can be given as follows:
a set profile S ≡ (S1, S2) is a p−best response set if for every player i, for
any conjectures putting probability at least p on other players choosing an
action in S−i, all best responses are in Si. We will say that S is a minimal
p−best response set if it is a p−best response set and if it does not contain
any proper subset that is a p−best response set3. It is also interesting to
note that our notion is a generalization of the p−dominance concept (which
captures (2)) by passing from best reply related singletons of actions to best
reply related sets of actions. Our first theorem shows many important prop-
erties of these sets in general strategic-form games where strategy spaces are
nonempty and compact subset of a metric space and when payoff functions
are continuous. For instance, for p ∈ [0, 1], a p−MBR always exists and for
p ≤ 1

2
, the p−MBR set is unique.

As the 1
2
−dominant equilibrium has been proved to be stable in the dy-

namics with Poisson revision opportunities proposed by Matsui and Mat-
suyama (1995) (see for instance Oyama (2002)), we show that the p−MBR
for p = 1

2
characterizes set-valued stability concepts in this framework. In

order to do so, we introduce two set-valued stability concepts : the linearly
stable set (hereafter LSS) and the absorbing set that encompass respectively
a global and a local stability property. These notions are the natural set-

3To the best of my knowledge, the only related concept can be found in Kalai and
Samet (1984) and Basu and Weibull (1991). Notice that S is a 1−best response set if and
only if S is a Curb set in the terminology of Basu and Weibull (1991).
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valued extensions of the one proposed by Matsui and Matsuyama (1995) and
Oyama (2002). The model has a single large population of identical rational
players who are repeatedly and randomly matched to play a symmetric 2
player I actions game. The dynamics process is characterized by frictions in
the following sense. Each player must make a commitment to a particular
action for a random time interval.
On the one hand, a LSS is a set of actions S such that, whatever the

current action distribution is, if all players share a common belief that any
player, given an opportunity, necessarily chooses an action in S, then they
actually choose an action in S at every opportunity; moreover S does not
contain any proper subset that satisfies this property. We show that our
dynamic game has a unique LSS. Then whatever the current state (i.e. action
distribution) of the society is, there must exist a “self-fulfilling” belief that
leads us (linearly) to the LSS. Indeed, this allows to weaken the notion of
self-fulfilling belief since instead of the “beliefs” of each player i that other
players are playing a precise action, player i believes only that the other
players will play in the LSS. One can see the LSS as the unique set that is
globally stable in a strong sense.
On the other hand, an absorbing set S is a set of actions such that for

any feasible path that starts from states involving only actions in S, the best
replies to that path belong to S; moreover there does not exist any proper
subset of S that satisfies this property. This set is absorbing in a very strong
sense since there is no restriction on the path that an agent thinks possible,
which contrasts with Matsui and Matsuyama (1995)’s approach (followed by
Oyama (2002)) where agents are endowed with perfect foresight. Then, once
the society reaches the absorbing set, it will never leave it. We prove that
when the friction is sufficiently small, the LSS, the absorbing set, coincides
with the 1

2
−MBR.

The second purpose of that work consists in providing sufficient con-
ditions under which the event that some action profiles can be played with
low ex-ante probability can affect the behavior at equilibrium. Using our
notion of p−best response, we show how it allows for generalizations of exist-
ing results in the incomplete information framework of Morris, Rob and Shin
(1995). First, we claim that although the game is not common knowledge,
the fact that players will play in a non-trivial subset of the set of available
action profiles can be common knowledge for a large class of games. This
relies on a contagion4 argument over sets of actions, and extends previous

4Roughtly speaking, contagion exists if the fact that a different behavior occurs in a
state of the world (that can have a low probability ex-ante) implies that this behavior will
be adopted in many other states of the world.
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results that were based on contagion over actions. The logic behind is as
follows. Suppose that players are known to play in a p−best response set S
with low p at some information set (which may itself have a very small prob-
ability), then this knowledge implies best responses in S at information sets
where the first information set is thought possible. This in turn determines
how players respond to that knowledge, at a yet larger information set, and
so on. Under some clear-cut conditions on the property of p−best response,
this chain of reasoning results in playing in S at every state of the world5.
Indeed, we show that we can go further in iterating this result. More

precisely, there might exist a p−best response set with low p in the modi-
fied game where the set of available actions is restricted to S. Call this set
S1. Once we have established that it is common knowledge among players
that they will play in S; and if players are assumed to play in S1 at some
information set, then by the same reasoning, we get that the set of ratio-
nalizable equilibria consists in playing in S1 at each state. Now it is clear
that in some case, this iteration will converge toward a Nash equilibrium.
Since a p−dominant equilibrium is a p−best response set, our results admit
Morris, Rob and Shin (1995)’s main theorem as a particular case. Therefore,
our result shows that a more general condition applies to the selection of a
unique equilibrium.
The organization of this paper is as follows. Section 2 introduces the

notions of p−BR and of p−MBR, we state and prove the existence of a
p−MBR for all p ∈ [0, 1] and its uniqueness for p ≤ 1

2
, relates this notion

to the concept of p−dominance and provides an extension to this definition.
Finally, we present examples. Section 3 is divided into two parts. Part 3− 1
sets up our dynamic model and introduces the set-valued stability concepts
of LSS and absorbing set. Part 3− 2 shows that the 1

2
−MBR coincides with

the LSS and the absorbing set when frictions are sufficiently small. Section
4 shows how our set-valued concept allows for generalizations of the previous
results on contagion under incomplete information. In section 5, we discuss
some related works. We conclude in section 6.

5Notice that this allows to weaken the commonly used assumption in this literature
of dominant regions (i.e. an underlying complete information game where there exists a
strictly dominant equilibrium).
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2 p−Best Response set and Minimal p−Best
Response set

2.1 Definitions

We introduce here our main concepts. Attention in this section is focused on
2 players normal-form games G = [N, {Ai}i∈N , {ui}i∈N ], where N = {1, 2} is
the set of players, Ai is player i’s set of actions, and ui is a mapping from A
(the Cartesian product of Ai) into R such that ui(a) is player i’s utility level
when strategy profile a is played. We also assume that each strategy set Ai is
a compact set in some Euclidean space and each payoff function ui : A→ R
is continuous. Let P be the collection of all products of non-empty and
compact subsets of the players strategy sets, i.e. X ∈ P if and only if X
is the Cartesian product of nonempty compact sets Xi ⊆ Ai [i = 1, 2] (in
particular A ∈ P ). Note that P is closed under intersection provided that
intersection is non-empty. (Notice that we will use ⊆ for the weak inclusion
and Ã for the strict one.)
In the sequel, for S ∈ P , we will note G[S] as the game G where i’s set of

actions is restricted to Si, i.e. [N, {Si}i∈N , {ui}i∈N ] (therefore, we implicitly
note G for G[A]). Let S−i ⊆ A−i and denote ∆[S−i] be the set of Borel
probability measures over S−i. For a given p ∈ [0, 1], we will note :

Πp(S−i) = {π ∈ ∆[A−i] |
Z
a−i∈S−i

π(a−i)da−i ≥ p}.

Let Λi[S−i, p] be the set of i’s actions which are best responses with respect
to some beliefs according to which the other player will play in S−i with
probability at least p. Formally:

Λi[S−i, p] = {ai ∈ Ai | ∃π ∈ Πp(S−i) such thatZ
a−i∈A−i

π(a−i)ui(ai, a−i)da−i ≥
Z
a−i∈A−i

π(a−i)ui(a0i, a−i)da−i ∀a0i ∈ Ai}.

In the sequel, we denote Λ[S, p] = ×i∈NΛi[S−i, p] where S = ×i∈NSi.
Let us now introduce our concepts of p−best response set (hereafter

p−BR) and of minimal p−best response set (hereafter p−MBR). S = S1×S2
will be said to be a p−best response set if when a player i believes with prob-
ability at least p that player −i plays in S−i all his best replies are in Si.
Formally :
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Definition 1 Let S ⊆ A. S is a p−best response set if S ∈ P and Λ[S, p] ⊆
S. S is a minimal p−best response set if S does not contain any proper subset
that is a p−best response set6.

Remark 1 Since A ∈ P and for every p ∈ [0, 1], Λ[A, p] ⊆ A, the set A is a
(trivial) p−best response set for every p ∈ [0, 1]. Hence there always exists a
p−best response set.

Remark 2 Notice that S0−i ⊆ S−i ⇒ Λ[S0−i, p] ⊆ Λ[S−i, p] and p0 ≥ p ⇒
Λ[S−i, p0] ⊆ Λ[S−i, p].

It follows from definition 1 that for all π ∈ Πp(S−i), there exists ai ∈ Si
such thatZ

a−i∈A−i
π(a−i)ui(ai, a−i)da−i >

Z
a−i∈A−i

π(a−i)ui(a0i, a−i)da−i ∀a0i /∈ Si.

Remark 3 Note that Tercieux (2003) defines p−best response set in a weak
sense in replacing the strict inequality by the weak one in the above equation.
So we implicitely refer to the notion of strict p−best response set in Ter-
cieux (2003). But since, for a generic choice of payoffs, these two defintions
coincide, we will not distinguish them.

Remark 4 The notion of p−MBR unifies a number of standard concepts:
an action profile a = (a1, a2) is a strict Nash equilibrium if and only if
({a1}, {a2}) is a 1−MBR set. In Basu and Weibull (1991)’s terminology,
for a set S ⊆ A; S is a curb set if S ∈ P and Λ[S, 1] ⊆ S. S is minimal
Curb set if S does not contain any proper subset that is a curb set. Thus
S is a minimal Curb set if and only if S is a minimal 1−best response set.
Also notice that the p−MBR generalizes Harsanyi and Selten (1988) notion
of risk-dominance, since it is easy to observe that in a symmetric 2×2 game,
an action profile is a minimal 1

2
−best response set if and only if it is risk-

dominant7.

For the sake of convenience, we will note in what follows S = (S1, S2)
instead of S = S1 × S2.

6We could have defined a p−BR (or p−MBR) where p = (p1, p2) defining a pi for each
player i ∈ {1, 2}. Our results would be unchanged.

7Recall that in a 2× 2 game, (a1, a2) risk-dominates (b1, b2) equilibrium iff,
(g1(a1, a2)− g1(a2, a2))× (g2(a1, a2)− g2(a1, a2)) >
(g1(b1, b2)−g1(b2, b2))×(g2(b1, b2)−g2(b1, b2)). We say that (a1, a2) is the risk-dominant

equilibrium.
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2.2 Properties of the Minimal p−Best Response Set
Now we move to the main result of this section that proves several properties
for our set-valued concept of p−MBR. Among others, we state that for any
p ∈ [0, 1], a game always admits a p−MBR. And we obtain a uniqueness
result for p less than 1

2
.

Theorem 1 Fix p ∈ [0, 1].
(1) Every game has at least one p−MBR.
(2) Every minimal p−MBR contains the support of at least one (mixed)

Nash equilibrium.
(3) Two distinct p−MBR are disjoint.
(4) If p ≤ 1

2
, there exists a unique p−MBR.

(5) If (S1, S2) is the p−MBR with p ≤ 1
2
of a symmetric game, then

S1 = S2.
(6) If S is a p−MBR, then Λ[S, p] = S.

Proof. (1) Fix p ∈ [0, 1]. Let Q be the (non-empty, see Remark 1)
collection of p−best response set in A, partially ordered by (weak) set in-
clusion. By Hausdorff’s Maximality Principle, Q contains a maximal nested
sub-collection. Let Q0 ⊆ Q be such a sub-collection, and, for each i ∈ N , let
S̃i be the intersection of all sets S0i for which S0 ∈ Q0 (i.e. S̃i = ∩S0∈Q0S0i)
Since S0i is non-empty and compact, so is S̃i, by the Cantor Intersection The-
orem. Hence, S̃ ∈ P . Suppose si ∈ Λi[S̃−i, p]. Since Λi[S̃−i, p] ⊆ Λi[S

0
−i, p]

for all S0−i such that S
0 ∈ Q0, we have si ∈ Λi[S

0
−i, p] for all S

0 in Q0, and
thus si ∈ S0i for all S

0 ∈ Q0 (since every S0 is a p−best response set). Hence
si ∈ S̃i, so Λi[S̃−i, p] ⊆ S̃i for each i ∈ N , i.e. S̃ is a p−best response set
(necessarily minimal by construction).
(2) Since Λ[S, p] ⊆ S implies Λ[S, 1] ⊆ Λ[S, p] ⊆ S, every minimal

p−best response set is a 1−best response set. Now consider the game
G0 = [N, {Si}i∈N , {ui}i∈N ] obtained when players are restricted to the (non-
empty and compact) strategy subset Si. G0 meets the conditions of Glicks-
berg (1952)’s Theorem concerning existence of Nash equilibrium in mixed
strategies. Let us call such an equilibrium σ∗: it is clear that Supp(σ∗) ⊆ S.
σ∗ is also an equilibrium of the original game G, since by hypothesis each
restricted action set Si contains all the best replies to strategies in S−i.
(3) Assume that S and S0 are minimal p−best response set and S∩S0 6= ∅.

Note that S∩S0 ∈ P . By definition for each i ∈ N , for all π ∈ Πp(S−i∩S0−i),
every best response must be simultaneously in Si and S0i (both are p−best
response sets) and so in Si ∩ S0i. Therefore S ∩ S0 is a p−best response set
contradicting the fact that S and S0 are minimal p−best response sets.
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(4) First note that since p ≤ 1
2
, Λ[S, 1

2
] ⊆ Λ[S, p] ⊆ S. Now let us pro-

ceed by contradiction in assuming that S and S0 are two minimal p−best
response sets. By definition, for each i ∈ N , for π ∈ ∆(A−i) such thatR
a−i∈S−i π(a−i)da−i =

1
2
, and

R
a0−i∈S0−i π(a

0
−i)da

0
−i =

1
2
, (since p ≤ 1

2
, π ∈

Πp(S−i) and π ∈ Πp(S0−i)) every best responses are in Si (since S is a
1
2
−best

response set) and in S0i (since S
0 is a 1

2
−best response set). But this contra-

dicts the fact that S ∩ S0 = ∅ (by point (3)).
(5) It is clear that if (S1, S2) is a minimal p−best response set then by

the symmetry of payoffs, (S2, S1) is a minimal p−best response set. Then
together with our uniqueness result (point (4)), for p ≤ 1

2
, we necessarily

have S1 = S2.
(6) Suppose that it is not true. Then there exists some player j ∈ N

for which Λj[S−j, p] Ã Sj. Let S0j = Λj[S−j , p] and S0i = Si for i 6= j.
Thus S0 Ã S, Λj[S

0
−j, p] = S0j and Λi[S

0
−i, p] ⊆ Λi[S−i, p] ⊆ Si = S0i. Hence

Λ[S0, p] ⊆ S0. The payoff function uj being continuous, the correspondence
Λj is non-empty and upper hemi-continuous. Then S0j = Λj[S−j, p] is non-
empty. As S−j is compact, it is well-known that S0j = Λj[S−j, p] (by the
upper semi-continuity of Λj) is compact, i.e. S0 ∈ P . Thus, S0 is a p−best
response set, contradicting the minimality of S.
Let us briefly discuss how our set-valued concept varies with p. Note that

for p = 0, the p−MBR eliminates actions if and only if these actions are never
best replies8 (in particular it eliminates all strictly dominated strategies).
Moreover, for two sets S and S0, one p−MBR and the other p0−MBR, where
p ≤ p0 ≤ 1

2
, we have that S ⊇ S0. Therefore our sets are nested when p is

increasing and shrinks toward the 1
2
−MBR. When p is greater than 1

2
, our

sets need not be nested any more when p increases. We will provide examples
in section 2− 4 illustrating these points.

2.3 Relationship with p−dominance
We now relate our solution concept to the concept of p−dominance as stated
by Morris, Rob and Shin (1995). As specified earlier, our concept can be
seen as a generalization of the strict p−dominant equilibrium concept.

Definition 2 Action profile (a∗1, a∗2) is a strict9 p−dominant equilibrium of
G if for all i ∈ N and all π ∈ Πp({a∗−i}),

8Otherwise stated this corresponds to the first round in the rationalizability process of
Bernheim (84) and Pearce (84).

9Without loss of generality, we will focus on strict p−dominant equilibrium since for
generic choice of payoffs, p−dominant equilibria are strict.
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Z
a−i∈A−i

π(a−i)ui(a∗i , a−i)da−i >
Z
a−i∈A−i

π(a−i)ui(a0i, a−i)da−i ∀a0i ∈ Ai\{a∗i }

First, we note that it follows from our definition that (a∗1, a
∗
2) is a (strict)

p−dominant equilibrium if and only if ({a∗1}, {a∗2}) is a p−MBR set.

2.4 Alternative Construction Generalizing p−dominance
In this part, we propose a construction that aims to generalize the idea of
p−dominance using the notion of p−best response set. In order to present
this new notion, assume that players coordinate on a given p−best response
set S of G. Then in the modified game where the set of available actions is
restricted to S (G[S]), we might find a smaller p−best response set S0. Again
in G[S0], we could find a smaller p−best response set... Thus we can iterate
this process. If a set is the issue of such a process, it is called an iterated
p−best response set. Formally, this can be stated as follows :

Definition 3 Let S ⊆ A. S is an iterated p−best response set if there exists
a (decreasing) sequence (S0, S1, ..., Sn) where Sh is a p−best response set in
G[Sh−1] for any h ∈ {1, ..., n} where S0 = A and Sn = S. If S = {a∗} then
a∗ is called an iterated p−dominant equilibrium.

Remark 5 Note that a p−best response set S, is an iterated p−best response
set where (S0, S1) = (A, S). Thus, a strict p−dominant equilibrium is an
iterated p−dominant equilibrium. But as will be proved by the following ex-
ample, the converse is not true.

2.5 Examples

As the p−dominance concept seems to be particularly interesting for p =
1
2
(see Morris, Rob and Shin (1995), Kajii and Morris (1997) and Maruta

(1997)), we will focus in the following examples on its set-valued extension
the 1

2
−MBR.

2.5.1 Example 1:

Unlike p−dominant equilibrium, minimal p−best response sets always exist.
For instance, the following (finite) symmetric two person, three actions game
borrowed from Young (1993) does not have any p−dominant equilibrium for
p ≤ 3

5
.
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Player 2

Player 1

1 2 3
1 6,6 0,5 0,0
2 5,0 7,7 5,5
3 0,0 5,5 8,8

More precisely, this game has three strict Nash equilibria : (1, 1), (2, 2)
and (3, 3). (1, 1) is p−dominant for p > 7

8
; (2, 2) is p−dominant for p >

3
5
; (3, 3) is p−dominant for p > 5

8
. Thus, none of these equilibria is a

1
2
−dominant equilibrium. Nonetheless, let us explore what are the payoffs
when a player believes with probability at least p that the other players
will play in the set {2, 3}. Subject to this (set of) beliefs, playing the ac-
tion “1” implies a payoff of at most 6 − 6p. Moreover, subject to these
beliefs, playing the action “2” or “3” implies, respectively, a payoff of at
least 5 and 5p. Therefore, it is easy to show that for any belief of a player
that assigns a probability strictly superior to 1

6
to the other player playing

in {2, 3}, all his best replies are in {2, 3}. Otherwise stated, for any p > 1
6
,

Λ[{M,R}×{M,R}, p] ⊆ {2, 3}×{2, 3}, and so, {2, 3}×{2, 3} is the 1
2
−MBR.

To be more precise, one can show that for p ∈ [0, 1
6
], the unique p−MBR is

{1, 2, 3}×{1, 2, 3}. And for p ∈ (1
6
, 3
5
], the unique p−MBR is {2, 3}×{2, 3}.

For p ∈ (3
5
, 5
8
], we obtain that {2} × {2} is the unique p−MBR. Then for

p ∈ (5
8
, 7
8
], {2} × {2} is still a p−MBR but {3} × {3} is also a p−MBR.

Finally, for p > 7
8
the three strict Nash equilibria coincide with the three

p−MBR.

Remark 6 Note also that in that game (3, 3) is an iterated p−dominant
equilibrium for p > 2

5
.

2.5.2 Example 2:

Consider the following (finite) symmetric two person 4× 4 game.
Player 2

Player 1

1 2 3 4
1 2,2 1,4 3,3 3,-9
2 4,1 2,2 1,3 3,0
3 3,3 3,1 0,0 3,0
4 -9,3 0,3 0,3 4,4

The unique strict Nash equilibrium is (4, 4); it is a 3
4
−dominant equi-

librium. Interestingly, the unique strict Nash equilibrium is not included
in {1, 2, 3} × {1, 2, 3} which is the 1

2
−MBR set. Note nonetheless that by

point (2) of Theorem 1, the 1
2
−MBR set contains the support of at least one

(mixed) Nash equilibrium.

11



Let us now move to a characterization of the p−MBR using the dynamic
framework of Matsui and Matsuyama (1995).

3 Stability of the p−MBR set

We now prove that the p−MBR set for low p is stable in Matsui and Mat-
suyama (1995) framework in a sense that is closely related to Oyama (2002).

3.1 Framework

We study a dynamic model with Poisson revision opportunities originally
proposed by Matsui and Matsuyama (1995). More precisely, we consider a
symmetric two-player game with I ≥ 2 actions. The set of actions and the
payoff matrix, which are common to both players, are given by A = {1, ..., I}
and u(i, j) (i, j = 1, ..., I) (when no confusion arises and for the sake of
lightness, we will note this function by uij): the payoff received by a player
taking action i against an opponent playing action j. Note that in this
section, since the game considered is assumed to be symmetric, we will omit
the subscripts (for instance, Ai will be noted A).
We denote by RI the I−dimensional real space with the sup norm | . |.

The set of mixed strategies is identified with the (I−1)−dimensional simplex,
denoted by ∆I−1, which is a subset of the I−dimensional real space. For
F ⊆ ∆I−1 and ε > 0, Bε(F ) denotes the relative ε−neighborhoods of F in
∆I−1, i.e. Bε(F ) = {y ∈ ∆I−1 |there exists x ∈ F such that | y − x |< ε}.
For S ⊆ A, we also note ∆̃(S) = {π ∈ ∆(A) | π(k) > 0 ⇒ k ∈ S}. We
say that x∗ = (x∗1, ..., x

∗
I) ∈ ∆I−1 is an equilibrium state if (x∗, x∗) is a Nash

equilibrium, i.e. for all x = (x1, ..., xI) ∈ ∆I−1,X
ij

x∗iuijx
∗
j ≥

X
ij

xiuijx
∗
j .

We denote by [i] the element of ∆I−1 that assigns probability one to the ith
coordinate (and zero to the others).
The above game, called the static game, is played repeatedly in a society

with a continuum of identical anonymous agents. At each point in time,
agents are matched randomly to form pairs and play the static game. We as-
sume that players cannot switch actions at every point in time. Instead, every
player must make a commitment to a particular pure action for a random
time interval. Time instants at which each player can switch actions follow a
Poisson process with the mean arrival rate λ. The processes are independent

12



across the agents. Thus, during a time interval [t, t + h), approximately a
fraction λh of the agents can switch action.
A path of action distribution, or simply a path, is a function φ : [0,∞)→

∆I−1, where φ(t) = (φ1(t), ..., φI(t)) is the action distribution of the society
(or the state of the society) at time t, with φi(t) denoting the fraction of
the agents playing action i. Due to the assumption that the switching times
follow independent Poisson processes with arrival rate λ, φi(t) is Lipschitz
continuous with Lipschitz constant λ, which implies that it is differentiable
at almost all t ∈ [0,∞).

Definition 4 A path of action distribution φ : [0,∞)→ ∆I−1 is feasible if it
is Lipschitz continuous with Lipschitz constant λ, and satisfies the condition
that for almost all t, for all i = 1, ..., I,

φ̇i(t) ≥ −λφi(t) a.e. (1)

Note that φ̇i(t) ≥ −λφi(t) together with φ(t) ∈ ∆I−1 implies φ̇i(t) ≤
λ(1 − φi(t)). Since time instants at which it is possible to switch between
actions form a Poisson process with arrival rate λ, the period of commitment
to a fixed action has an exponential distribution. Denoting the common
discount rate of the players by θ > 0, it follows that the expected payoff of
committing to action i at time t for a given anticipated path φ is calculated
as:

Vi(φ)(t) = (λ+ θ)

Z ∞

0

λe−λz(
Z z

0

e−θs
IX

k=1

φk(t+ s)uikds)dz

which can be simplified as:

Vi(φ)(t) = (λ+ θ)

Z ∞

0

e−(λ+θ)s
IX

k=1

φk(t+ s)uikds

thus, payoffs can be written in the following way:

Vi(φ)(t) =
X
k∈A

π(k)uik where π(ak) = (λ+ θ)

Z ∞

0

e−(λ+θ)sφk(t+ s)ds (2)

where θ > 0 is the common rate of time preference. Note that this
expression is well-defined since φk(.) is bounded for each k. Given a feasible
path φ, let BR(φ)(t) = {i ∈ A | Vi(φ)(t) ≥ Vj(φ)(t) for all j} be the set
of best responses in pure strategies to φ at time t. Let Φ0 be the set of
all feasible paths, i.e., the set of Lipschitz continuous paths satisfying (1).

13



Finally, following Matsui and Matsuyama (1995), we denote the degree of
friction by δ = θ

λ
> 0. In the sequel, the game described above will be called

the dynamic game.
We propose a concept of linear path in the following way10. Let S ⊆ A.

Denote ΦLi(S) = {φ ∈ Φ0 | φ(0) ∈ ∆I−1 and φk(t) = e−λtφk(0) for all
k /∈ S}. ΦLi(S) is the set of feasible paths that converge linearly towards S.
The action distribution moves along a linear path when all players choose an
action in S at revision opportunities. Formally :

Definition 5 φ(.) is a linear path from x ∈ ∆I−1 toward S ⊆ A if, φ(0) = x
and φ ∈ ΦLi(S).

Let Φ ⊆ Φ0. Denote

Ψ[Φ] = {φ ∈ Φ0 | [φ̇i(t) > −λφi(t)⇒
there exists ψ ∈ Φ such that ψ(t) = φ(t) and i ∈ BR(ψ)(t)] a.e.}.

Ψ[Φ] is the set of the paths in Φ0 along which every agent takes a best
response to some path in Φ.
Next, we provide a definition of linear stability. A linearly stable equilib-

rium (a∗, a∗) is such that, whatever the current action distribution is, if all
players share a common belief that any player, given an opportunity, neces-
sarily chooses action a∗, then their best response consists in choosing uniquely
action a∗ at every opportunity. This is slightly different from the notion in
Oyama (2002) since we impose that playing action a∗ at every opportunity
is the unique best response. We will see later that this is without loss of
generality since if there exists a linearly stable equilibrium then (generically)
it verifies this latter property.

Definition 6 [i] ∈ ∆I−1 is linearly stable if ΦLi({i}) = Ψ[ΦLi({i})]. A
symmetric pure Nash equilibrium11 of the static game (i, i) is linearly stable
if the corresponding state [i] is linearly stable.

A natural extension of Oyama (2002)’s linear stability consists in the
following set-valued stability concept called the linearly stable set (LSS) that
can be viewed as a set-theoretic coarsening of linear stability. This LSS is such
that whatever the current action distribution is, if all players share a common

10This concept is an extension of the concept of linear path in Oyama (2002).
11This restriction to symmetric pure Nash equilibrium is made without loss of generality.

Indeed, Oyama (2002) does not do this restriction. But then he shows that a Nash
equilibrium is linearly stable in his sense, only if it is pure and symmetric [Theorem 2,
p.296].
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belief that any player, given an opportunity, necessarily chooses an action in
S, then they actually choose an action in S at every opportunity. Moreover
for every proper subset S0 of the LSS, there exists a current action distribution
such that the common belief that any player given an opportunity, necessarily
chooses an action in S0 is not a self-fulfilling belief. Then whatever the current
state of the society is, there must exists a “self-fulfilling” belief that leads
us (linearly) to the LSS. Indeed, this allows to weaken the notion of self-
fulfilling beliefs that is present in the concept of linear stability of Oyama
(2002) since beliefs are self-fulfilling in a weak sense. Instead of the “beliefs”
of each player i that other players are playing a precise action, our player i
believes only that the other players will play in the LSS. We will show that
this set always exists and is unique, therefore, one can see the LSS as the
unique set that is globally stable in a strong sense.

Definition 7 A non-empty subset S of A is a linearly stable set (LSS) if (1)
Ψ[ΦLi(S)] ⊆ ΦLi(S); and (2) there does not exist a proper subset of S that
satisfies (1).

We also state the following important property:

Proposition 1 The dynamic game has a unique LSS.

Proof. See Appendix A.
The following remark links linear stability with our concept of LSS.

Remark 7 {i} is a LSS if and only if (i, i) is linearly stable.

We now move to the definition of the concept of absorbing set. S ⊆ A is
an absorbing set, if when the society has reached a distribution of action that
only involves actions in S, the best responses to any feasible path must be
in S. Moreover for every proper subset S0 of the absorbing set, there exists
a feasible path such that if a player believes that the society will follow this
path, then best responses involves actions that are not in S0, i.e. the society
may leave S0. This set is absorbing in a very strong sense since there is no
restriction on the path that an agent thinks possible. Then, once the society
reaches the absorbing set, it will never leave it. We can also interpret this
concept in the following way, an agent will play in the absorbing set if he
plays actions that are best responses to at least one feasible path12.

12This is less demanding than many other set-valued stability concepts such as the
Globally Accessible Set of Oyama (2002) or Stable Sets under Rationalizable Foresight of
Matsui and Oyama (2003).
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Definition 8 Let S ⊆ A. We say that S is an absorbing set if (1) for every
φ ∈ Φ0 with φ(0) ∈ ∆̃(S), BR(φ)(0) ⊆ S; (2) there does not exist a proper
subset of S that satisfies (1).

In order to prove our next proposition, we need to restrict the attention
to games that are generic in the 1

2
−MBR, a property that is stated as follows:

Definition 9 G is said to be generic in the 1
2
−MBR if S, the 1

2
−MBR of

G, is such that for all S0 Ã S, there exists ρ̄ > 0 such that for all ρ < ρ̄,
Λ[S0, 1

2
+ ρ] * S0.

The following proposition claims that, assuming that the static game is
generic in the 1

2
−MBR, and provided that friction is sufficiently low, the

absorbing set must be unique.

Proposition 2 Assume that the static game is generic in the 1
2
−MBR.

There exists δ̄ > 0 such that for all δ < δ̄, the dynamic game has a unique
absorbing set.

Proof. See Appendix B.

3.2 Main Results

In this part we state our main results. Since we consider a symmetric 2 person
game, by a slight abuse of notation, we will note Λ[S, p] ≡ Λ1[S, p] = Λ2[S, p].
Theorem 2 states that for a sufficiently small degree of friction, the unique

1
2
−MBR is the unique LSS. As discussed above, this implies that from any
initial distribution of action, the 1

2
−MBR is the smallest set such that if

all players share a common belief that any player, given an opportunity,
necessarily chooses an action in S, then they actually choose an action in S
at every opportunity. Formally :

Theorem 2 There exists δ̄ > 0 such that for all δ < δ̄ the LSS coincide with
the 1

2
−MBR set of the game.
Proof. See Appendix A.
This result allows us to generalize Oyama (2002)’s main theorem in the

following sense. One can check that generically, a p−dominant equilibrium
for p < 1

2
is a strict 1

2
−dominant equilibrium. Then restricting our attention

to singletons, and together with Remark 7, we find Oyama (2002)’s main
result13 for generic games.
13This Corollary implies that our slightly modified definition of linear stability (com-

pared with the one of Oyama (2002)) is without loss of generality.
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Our next theorem relates our concept of 1
2
−MBR to the absorbing set. To

be more precise, it states that for games that are generic in the 1
2
−MBR and

for a sufficiently small degree of friction, the unique 1
2
−MBR set is exactly

the unique absorbing set. Thus, the 1
2
−MBR is the smallest set such that

once the society reaches that set, the best responses to any feasible path are
in this set.

Theorem 3 Assume that the static game is generic in the 1
2
−MBR. There

exists δ̄ > 0 such that for all δ < δ̄ the absorbing set coincides with the
1
2
−MBR set.

Proof. See Appendix B.
Then the 1

2
−MBR is endowed with the strong stability properties (dis-

cussed above) of the LSS and of the absorbing set. The following example
shows why we need the assumption of genericity in the 1

2
−MBR in our latter

Theorem.
Player 2

Player 1
1 2

1 1,1 0,0
2 0,0 1,1

This game is non-generic in the 1
2
−MBR since {1, 2} × {1, 2} is the

1
2
−MBR and {1} × {1} and {2} × {2} are p−MBR for any p > 1

2
. One

can easily show that {1} and {2} are two absorbing sets for all δ > 0. Then
in this non-generic game, the 1

2
−MBR does not coincide with any of the ab-

sorbing sets. (Note that Proposition 2 that establishes the uniqueness of the
absorbing set does not hold when removing the assumption of genericity on
G).

4 "Contagion" under Incomplete Information

A recent literature studies how a low probability event can dramatically
affect the behavior at equilibrium (see Rubinstein (1989), Morris, Rob and
Shin (1995) and Kajii and Morris (1997)). We propose to use our notion
of p−BR in order to generalize these results of "contagion". In particular,
we will focus on conditions under which an incomplete information structure
can lead to the emergence of a unique equilibrium generalizing Morris, Rob
and Shin (1995)’s main Theorem.
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4.1 A leading example

Many recent papers (see Morris, Rob and Shin (1995), Kajii and Morris
(1997)) have shown that by introducing a "slight" incomplete information,
the p−dominant equilibrium for p ≤ 1

2
is selected when it exists. In this part,

we prove through a simple example that this argument can be pushed one
step further. In order to do so, we use a selection device in the flavour of
Rubinstein (1989).
Consider the following incomplete information game. The state space is fi-

nite, with each state equally likely, we noteΩ = {1, 2, 3, ..., N}. There are two
players: 1 observes information partition14: Q1 = ({1, 2}, {3, 4}, {5, 6}, ...{N−
2, N−1}, {N}), while 2 observes partition, Q2 = ({1}, {2, 3}, {4, 5}, ..., {N−
1, N}). Now suppose that at each information set, each player has a choice
of three actions, M , D, and R. If the true state is ω 6= 1, then the payoffs
are given by :

Player 2

Player 1

M D R
M 5, 5 1, 4 1, 0
D 4, 1 3, 3 3, 3.5
R 0, 1 3.5, 3 4, 4

Notice that in this game, there exist two strict Nash equilibria. More pre-
cisely, (M,M) is p−dominant for p > 2/3 and (R,R) is p−dominant for p >
4/5, yet there is no 1

2
−dominant equilibrium. (1, 1) is the Pareto-dominant

equilibrium and has the “smallest” level of p−dominance. Nonetheless, the
complete information game played at ω 6= 1 possesses an interesting property,
since {D,R}×{D,R} is a p−best response set for p > 1

3
. As our subsequent

argument will show, this is a key feature in our contagion process.
In state 1, payoffs are different. Payoffs of the complete information

game associated to world 1 are such that R is a dominant strategy for player
2 (whereas payoffs do not change for player 1). (Note that, although we are
in the framework proposed by Morris, Rob and Shin (1995), their main result
does not apply since it applies only if there exists a p−dominant equilibrium
with p ≤ 1

2
).

We first show that, the set of rationalizable equilibria in the sense of
Bernheim (1984) and Pearce (1984) (i.e. action profiles that survive the iter-
ative deletion of strategies that are not best response to some belief over the
strategies of the other player) consists in playing in {D,R}×{D,R} at each
14We suppose that the state space has an odd number of states. But we could

give the same example with an even number of states. With the partition, Q1 =
({1, 2}, {3, 4}, {5, 6}, ...{N − 2,N − 1}, {N,N + 1}), Q2 = ({1}, {2, 3}, {4, 5}, ..., {N −
1, N}, {N + 1}), we would obtain the same results.
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state of the world. At ω = 1, player 2 plays R since it is a dominant strategy
for him (note that each player knows his own payoffs). At information set
{1, 2}, player 1 believes that with probability 1

2
the real world is 1. Therefore

player 1 believes with probability at least 1
2
that player 2 plays R. Then, by

definition of a 1
2
−best response set, player 1’s best replies are in {D,R}.

Then at information set {2, 3}, player 2 believes with probability at least 1
2

that player 1 plays {D,R} and so he plays in {D,R}. Thus, this chain of
reasoning implies that the set of rationalizable equilibria consists in playing
in {D,R} × {D,R} at each state of the world. Now the event “players play
in {D,R} × {D,R}” is common knowledge (in other words, we can restrict
attention to the game G[{D,R} × {D,R}]). Note that conditionally to this
event and at each state of the world, both players have a dominant strategy
to play R. Thus, the unique (rationalizable) equilibrium is (a Bayesian Nash
Equilibrium) such that (R,R) is played at every state. We will show that
the important concept to understand uniqueness in these frameworks, relies
on the notion of p−best response set.
Remark 8 As discussed above, in our leading example, at any state of the
world, {D,R} × {D,R} is a p−best response set if p > 1

3
(note that this

includes state 1 where payoffs change). In addition, in G[{D,R} × {D,R}],
{R}×{R} is a p−best response set for any p ∈ [0, 1] (since R is strictly dom-
inant in G[{D,R} × {D,R}]). Therefore (R,R) is an iterated p−dominant
equilibrium if p > 1

3
. More precisely, we have a decreasing sequence (S0, S1, S2)

where S0 = A, S1 = {D,R} × {D,R} and S2 = {R} × {R} at any state of
the world.

In the next section we will state and prove our main results in an incom-
plete information framework.

4.2 Incomplete Information Framework

First, we introduce notation. An information system is a structure I =
{Ω, {1, 2}, {Qi}i=1,2,Π} where Ω is a finite set of states of the world; {1, 2}
is the set of players, Qi is the partition of states of the world representing
the information of player i; and Π is a strictly positive prior probability
distribution on Ω. Each player is assumed to share the same prior Π on Ω.
We will write ω for a typical element of Ω. Then Π(ω) is the probability
of state ω. We will also write Qi(ω) for the element of i’s partition, Qi,
containing state ω. Thus if the true state is ω, Qi(ω) is the set of states
which player i thinks possible. We write Fi for the field generated by i’s
partition, i.e. the set of unions and intersections of events in Qi. We assume
that there is some nontrivial information so that for some i, Qi 6= {Ω}.
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In the following, we use the idea of belief operators (introduced by Mon-
derer and Samet (1989)) on the state space. We write the conditional prob-
ability of event E, given event F , as Π[E | F ] =

P
ω∈E∩F Π[ω]P
ω∈F Π[ω]

. Now we define

player i’s p-belief operator, Bp
i : 2

Ω → 2Ω, by Bp
iE = {w ∈ Ω : Π[E |

Qi(w)] ≥ p} where p ∈ [0, 1]. Thus, Bp
i is the set of states where i assigns a

probability at least p to the event E.
Then, we introduce the concept of belief potential developed by Morris,

Rob and Shin (1995). Bp
iB

p
jE is the set of states where player i believes

with probability at least p that player j believes with probability at least
p that event E will occur. Then Bp

iB
p
jE ∪ E is the set of states where

either player i believes with probability at least p that player j believes with
probability at least p event E or E is true. Define the operator Hp

i (.) as
Hp

i (E) ≡ Bp
iB

p
jE ∪ E. In the sequel, [Hp

i ]
1(E) = Hp

i (E) and, for k ≥ 2,
[Hp

i ]
k(E) = Hp

i ([H
p
i ]
k−1(E)).

Definition 10 The belief potential σi(E) of an event E is the largest number
p such that for some k ≥ 1, [Hp

i ]
k(E) = Ω.

Morris, Rob and Shin (1995) showed that every event has a well defined
belief potential.

Definition 11 The belief potential σ of an information system is the mini-
mum belief potential of any nonempty measurable event in the system:

σ ≡ min
i∈{1,2},E∈Fi\∅

σi(E).

Remark 9 In our leading example, it is easy to show that σ = 1
2
. Note that

Morris, Rob and Shin (1995) have proved that for any information system
σ ≤ 1

2
. (See [Theorem 3− 3, p.151]).

Having set-out properties of the information system, we now turn to pay-
offs. An incomplete-information game consists in U = [I, {Ai}i={1,2}, {ui}i={1,2}],
where I is the information system as described previously; Ai is the set of
actions available to player i; and ui : A×Ω→ R is player i’s payoff function,
where A = A1 ×A2.
As in Morris, Rob and Shin (1995), we assume that players know their

own payoff, i.e. ui(a; .) is measurable with respect to Qi for every a ∈ A. A
pure strategy for player i in the incomplete-information game is a function
si : Ω → Ai, measurable with respect to his partition. Symmetrically, a
(mixed) strategy for player i is a Qi−measurable function µi : Ω → ∆(Ai).
A mixed-strategy profile is a function µ = (µi)i∈{1,2} where µi is a strategy

20



for player i. We denote by µi(ai | ω) the probability that action ai is chosen
given ω under µi; µ(a | ω) is the probability that action profile a is chosen
given ω under µ; when no confusion arises, we extend the domain of each ui
to mixed strategies and thus write ui(µ(ω), ω) for

P
a∈A ui(a, ω)µ(a | ω). We

will also note Supp(µi(ω)) = {ai ∈ Ai | µi(ai | ω) > 0} the support of µi(ω).

Definition 12 A mixed-strategy profile µ = (µ1, µ2) is a Bayesian Nash
equilibrium of U if, for each i ∈ {1, 2}, ai ∈ Ai, and ω ∈ Ω,X
ω0∈Qi(ω)

ui(µ(ω
0), ω0)Π[ω0 | Qi(ω)] ≥

X
ω0∈Qi(ω)

ui({ai, µ−i(ω0)}, ω0)Π[ω0 | Qi(ω)].

To each world ω ∈ Ω is associated a game of complete information with
payoff function given by ui(.;ω) : A→ R for each i and where those payoffs
are common knowledge. We will refer to such a game as the complete infor-
mation game associated to ω and denoteG[A,ω] for [{1, 2}, {Ai}i∈{1,2}, {ui(.;ω)}i∈{1,2}].

4.3 Results

In this section, we present our results that can be seen as two different ways of
extending previous results on “contagion” arguments. Firstly they extend the
“contagion” to sets of action profiles. Secondly, they provide a generalization
of existing arguments on uniqueness. In addition, it proves that the class
of games to which uniqueness arguments applies is much wider than the
one proposed by Morris, Rob and Shin (1995). The two following theorems
provide conditions under which it is possible to achieve common knowledge
that a subset of the action profiles will be played.

Theorem 4 Let S = ×i∈{1,2}Si ⊆ A be such that :
(1) the information system has belief potential of σ,
(2) S is a σ−best response set at each G[A,ω],
(3) there exists ω∗ ∈ Ω, there exists i ∈ {1, 2} such that for player i,

every action outside Si is strictly dominated at the complete information
game G[A,ω∗].
Then rationalizable equilibria of the incomplete information game consist

in playing in S at each ω.

Proof. See Appendix C.
In the same spirit, we can provide further conditions to achieve common

knowledge that players play in the iterated p−best response set with low p.
In order to do so, we will use the following important assumption.
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Definition 13 Let S be an iterated p−best response set at each state of the
world. It is said to satisfy the Common Sequence Assumption (CSA) if there
exists a (decreasing) sequence (S0, S1, ..., Sn) such that at every ω ∈ Ω, Sh

is a p−best response set in G[Sh−1, ω] for any h ∈ {1, ..., n} where S0 = A
and Sn = S. If S is a singleton set, the associated iterated p−dominant
equilibrium will be said to satisfy the CSA.

In our leading example, the iterated p−dominant equilibrium with p > 1
3

(R,R) satisfies the CSA. This is due to the fact that we have the sequence
(S0, S1, S2) = (A, {D,R}×{D,R}, {R}×{R}) such that at any state ω ∈ Ω,
Sh is a p−best response set with p > 1

3
in G[Sh−1, ω] for any h ∈ {1, 2}. With

this additional assumption, we are now able to use the notion of iterated
p−best response set :
Theorem 5 Let S = ×i∈{1,2}Si ⊆ A be such that :
(1) the information system has belief potential of σ,
(2) S is an iterated σ−best response set at each G[A,ω] that satisfies the

CSA,
(3) there exists ω∗ ∈ Ω, there exists i ∈ {1, 2} such that for player i,

every action outside Si is strictly dominated at the complete information
game G[A,ω∗].
Then rationalizable equilibria of the incomplete information game consist

in playing in S at each ω.

Proof. See Appendix C.
At this point it is interesting to note that under (1), (2) and (3) in our

two previous theorems, any Bayesian Nash equilibrium involves actions that
are in S. Otherwise stated, any Nash equilibrium of an associated complete
information game, that does not have its support included in S is “elimi-
nated”. Thus, by perturbing slightly payoffs (as in the leading example), we
eliminate a lot of possible equilibria.
The following result shows how our argument can select a unique equilib-

rium at each state of the world by using our notion of iterated p−dominance.
It generalizes Morris, Rob and Shin (1995)’s main result15.

Corollary 1 Suppose that (1) the information system has belief potential
of σ, (2) (a∗1, a

∗
2) is an iterated σ-dominant equilibrium at each G[A,ω] that

satisfies the CSA, (3) there exists ω∗ ∈ Ω, there exists i ∈ {1, 2} such that
player i plays a∗i at a complete information game G[A,ω

∗].
Then playing (a∗1, a

∗
2) at each ω is the unique rationalizable strategy profile

of the incomplete information game.
15More precisely, this result extends Morris, Rob and Shin (1995) (Theorem 5− 1).
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Proof. This is a straightforward implication of Theorem 5.

5 Discussion on Related Works

It is now clear that our notion of p−BR joint with iterated p−BR can gen-
eralized "contagion" results obtained with p−dominance. This paper joins
a growing literature on equilibrium selection in noncooperative game the-
ory. Indeed, some results using p−dominance have been generalized by the
"potential maximizers" approach developed in the work of Morris and Ui
(2002). One result of Morris and Ui (2002) links p−dominance with Gener-
alized Potential Maximizer. For instance, in a 2 player finite game, if there
exists a p−dominant equilibrium with p < 1

2
then this equilibrium is a Gen-

eralized Potential Maximizer. A companion paper, Tercieux (2003) shows
that the notion of p−best response set can be related to the notion of Gen-
eralized Potential Maximizer. In particular, in a 2 player finite game, when
there exists a p−best response set with p < 1

2
, this set is a Generalized Po-

tential Maximizer. Nonetheless, we note that the link between the iterated
p−dominant equilibrium and the Potential Approach remains an interesting
open question.
However, the potential maximizers approach is sometimes too strong.

Firstly, our Theorem 3 and 4 together with Oyama (2002) main result shows
that stability concepts using linear stability are fully characterized by the
notion of p−MBR (at least in 2 players finite symmetric games). More im-
portantly, in a stochastic evolutionary model à la Young (1993) one can show
that the potential approach is not relevant. In the example 1 in our section
2-5-1, Young (1993) has shown that (2, 2) is selected by his dynamics while
Oyama, Takahashi, and Hofbauer (2003) have shown that (3, 3) is a Gen-
eralized Potential Maximizer16. Therefore taking a (minimal) Generalized
Potential Maximizer would lead to a prediction that is not in accordance
with a stochastic evolutionary process (at least for Young’s process). In ad-
dition, one can easily show that our Theorem 5 implies that any equilibrium
excepted (3, 3) is not robust to incomplete information in the sense of Kajii
and Morris (2002) and thus is not a GP-maximizer. As will be discussed in
the conclusion, this drawback is not present in our concept of p−MBR.
16Note that we can address the same criticism to the iterated p−dominant equilibrium

since (3, 3) in Example 1 is the iterated p−dominant equilibrium for some p < 1
2 .
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6 Concluding Remarks

In this paper we proposed a set-valued concept that extends the notion of
p−dominance. We defined minimal p−best response set that are shown to
exist in broad classes of games. In addition, we show that this concept char-
acterizes set-valued extension of stability concepts proposed by Matsui and
Matsuyama (1995) and Oyama (2002) in 2 player finite symmetric games.
Note that the extension to a many players framework of our existence and
uniqueness results of the p−MBR does not involve any difficulties (and more
generally the extension of Theorem 1). Nonetheless, our results of stability
properties are still a first step. Enlarging our results (and also the one of
Oyama (2002)) to many players asymmetric games is an interesting perspec-
tive17.
Moreover, as specified earlier, a characterization using stochastic best-

replies dynamics is an interesting way to follow. It is now well known that
minimal Curb set can easily provide a characterization of best-replies dynam-
ics18. As discussed in the paper, the p−MBR encompasses ideas of minimal
Curb set. In particular, one can show that the p−MBR always contains at
least one minimal Curb set. Thus the p−MBR seems to be an appropriate
tool to characterize stochastic best-replies dynamics. Indeed, Maruta (1997)
has shown that a p−dominant equilibrium with p < 1

2
is selected by this dy-

namics when it exists. It is possible to show19 that more generally, Young’s
process necessarily converges toward actions included in the 1

2
−MBR. This

seems to be a fruitful approach also left for further research.

A Appendix A

In this part, we prove Theorem 2. Then, we show that Proposition 1 holds.
First let us prove the following :

Lemma 1 Fix p > 0. There exists η̄ > 0 such that for all 0 < η < η̄, if
S ⊆ A is a p−MBR, then it is also the (p− η)−MBR.

Proof. Since there exists a finite number of p−MBR, showing the fol-
lowing statement is sufficient to prove our lemma: “Fix p > 0. If S ⊆ A is a

17See for instance the recent work of Kojima (2003).
18See for instance Hurkens (1995).
19While focusing on minimal 12−best response sets that are also Curb sets (or 1−best

response sets), our result in Durieu, Solal and Tercieux (2003) can easily be generalized
in that sense.
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p−MBR , then there exists η̄ > 0 such that for all 0 < η < η̄ it is also the
(p− η)−MBR.”
Let us prove that there exists η̄ > 0 such that for all 0 < η < η̄, Λ[S, p−η] ⊆
S.
For all π ∈ Πp(S), as noted previously, there exists i ∈ S such thatX

k∈A
π(k)u(i, k) >

X
k∈A

π(k)u(j, k) ∀j /∈ S. (3)

Because the inequality is strict in the above equation, one can prove that for
all π ∈ Πp(S) there exists η̄π > 0, such that for all π0 ∈ Bη̄π(π), there exists
i ∈ S, such that X

k∈A
π0(k)u(i, k) >

X
k∈A

π0(k)u(j, k) ∀j /∈ S. (4)

Let us prove that η̄ = Inf{η̄π | π ∈ Πp(S)} > 0. Suppose that it is not
the case i.e. η̄ = 0. Then there exist a sequence {η̄nπ}n≥1 that converges to
0. Hence, we can build an associated sequence {πn}n≥1 in Πp(S). As Πp(S)
is compact we must find a subsequence {πα(n)}n≥1 (where α : N → N is
increasing) that converges toward π∗ ∈ Πp(S). Then we have :

lim(n→+∞) | πα(n) − π∗ |= 0 and lim(n→+∞) | η̄α(n)π |= 0.

Thus, one can show that to π∗ is associated a unique η̄π∗ = 0. Thus π∗ /∈
Πp(S), which contradicts the fact that Πp(S) is compact. Then we can write
that there exists η̄ > 0 such that for all η < η̄, for all π ∈ Πp−η(S), there
exists i ∈ S such thatX

k∈A
π(k)u(i, k) >

X
k∈A

π(k)u(j, k) ∀j /∈ S. (5)

This proves that there exists η̄ such that for all 0 < η < η̄, Λ[S, p− η] ⊆ S.
Now we need to show that S is minimal among the (p − η)−best response
set. Since S is a p−MBR, we know that for any S0 Ã S, Λ[S0, p] * S0. Then
as Λ[S0, p] ⊆ Λ[S0, p − η] (see remark 2), it is clear that for any S0 Ã S,
Λ[S0, p− η] * S0. Then S is a (p− η)−MBR set.
Now, the following lemma is sufficient to prove Theorem 2:

Lemma 2 For S ⊆ A. S satisfies Ψ[ΦLi(S)] ⊆ ΦLi(S) if and only if
Λ[S, 1

2+δ
] ⊆ S.
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Proof. (i) We prove the “if” part. For any initial condition x0 ∈ ∆n−1,
the expected discounted payoff to action j at t along the path φ(.) that is
linear toward S is given by

Vj(φ)(t) =
X
k∈A

π(k)ujk

where π ∈ ∆(A) is such that for all k /∈ S, (recall that φk(t) = x0ke
−λt for all

k /∈ S)

π(k) = (λ+ θ)

Z +∞

0

e−(λ+θ)sx0ke
−λ(t+s)ds

= (λ+ θ)e−λtx0k

Z +∞

0

e−(2λ+θ)sds = x0ke
−λt1 + δ

2 + δ
.

Then for almost all t ≥ 0,X
i∈S

π(i) = 1−
X
k/∈S

π(k)

= 1−
X
k/∈S

x0ke
−λt1 + δ

2 + δ
≥ 1− 1 + δ

2 + δ
≥ 1

2 + δ
,

(since e−λt ≤ 1 and 0 ≤Pk/∈S x
0
k ≤ 1).

Since Λ[S, 1
2+δ
] ⊆ S, we have that for all t ≥ 0, there exists l ∈ S such that

Vl(φ)(t) > Vk(φ)(t) for all k /∈ S i.e. for all t ≥ 0, BR(φ)(t) ⊆ S. So we go
through a linear path toward S.
(ii) The “only if” part is proved by contradiction.
We know that Λ[S, 1

2+δ
] * S. There then exists a probability distribution

π̄ ∈ ∆(A) with
P

k∈S π̄(k) =
1
2+δ

such that for some j /∈ S,X
k∈A

π̄(k)uik ≤
X
k∈A

π̄(k)ujk for all i.

Take the linear path φ ∈ ΦLi(S) such that φ(t) = x1 − (x1 − x0)e−λt where
x0k = 0 and x1k = (2 + δ)π̄(k) for all k ∈ S and for all k0 /∈ S, x0k0 =

2+δ
1+δ

π̄(k)
and x1k0 = 0. It follows that at t = 0:
−for k ∈ S, π(k) = (λ+ θ)

R∞
0

e−(λ+θ)sx1k(1− e−λs)ds = x1k
1
2+δ

= π̄(k),

−for k0 /∈ S, π(k0) = (λ+ θ)
R∞
0

e−(λ+θ)sx0k0e
−λsds = x0k0

1+δ
2+δ

= π̄(k0).
Then, the set of best responses to the linear path from x0 to x1 does not

belong to S, i.e. for the linear path φ(t) = x1−(x1−x0)e−λt, BR(φ)(0) * S.
Then clearly, Ψ[ΦLi(S)] * ΦLi(S). This proves lemma 2.
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As noted previously, the proof of Theorem 2 can be completed very easily.
Since by the previous lemma, for δ > 0, the 1

2+δ
−MBR coincide with the LSS.

And since by lemma 1 there exists η̄ > 0 such that for all 0 < η < η̄ the
1
2
−MBR set is also the (1

2
− η)−MBR set. Then one can check that for

δ < 4η̄
1−2η̄ , the

1
2
−MBR set coincide with the LSS.

Then we obtain Proposition 1 as a corollary of this latest result. To see
why it is so, note that with the previous lemma, we know that for any degree
of friction δ, the LSS coincides with the 1

2+δ
−MBR. Since 1

2+δ
≤ 1

2
, we know

by Theorem 1 that the 1
2+δ
−MBR exists and is unique. Therefore, this proves

existence and the uniqueness of the LSS.

B Appendix B

In this part, we prove Theorem 3. Then, we note that Proposition 2 is a
straightforward corollary of Theorem 3. Let us prove a useful lemma:

Lemma 3 There exists γ̄ > 0 such that if S is the 1
2
−MBR, then for all

γ < γ̄, S is the unique (1
2
+ γ)−MBR.

Proof. We know that for every γ > 0, Λ[S, 1
2
+ γ] ⊆ S. Since we

have assumed that the game is generic in the 1
2
−MBR, we have that for γ

sufficiently small, S is still a (1
2
+ γ)−MBR. Now, let us prove that S is still

the unique (1
2
+γ)−MBR for γ sufficiently small. Assume that it is not true,

then for every γ > 0, there exists S0 6= S such that S0 is a (1
2
+ γ)−MBR

set. Then by Lemma 1, there must exist S0 6= S that is a 1
2
−MBR set

contradicting our uniqueness result of Theorem 1.
Now, in order to prove Theorem 3, it is sufficient to prove the following

lemma.

Lemma 4 For S ⊆ A. For every ψ ∈ Φ0 with ψ(0) ∈ ∆̃(S), BR(ψ)(0) ⊆ S
if and only if Λ[S, 1+δ

2+δ
] ⊆ S.

Proof. (i) We first prove the “if part”. Take any feasible path ψ with
ψ(0) ∈ ∆̃(S). We want to show that BR(ψ)(0) ⊆ S. We know that the
expected discounted payoff to action j at time 0 along a path ψ is written as

Vj(ψ)(0) =
X
k∈A

π(k)ujk,

where π ∈ ∆(A) is given by

π(k) = (λ+ θ)

Z ∞

0

e−(λ+θ)sψk(s)ds.
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Since ψ(0) ∈ ∆̃(S) holds, we have
P

i∈S ψi(s) ≥ e−λs, and therefore,X
i∈S

π(i) ≥ (λ+ θ)

Z ∞

0

e−(λ+θ)se−λsds =
1 + δ

2 + δ
.

Since Λ[S, 1+δ
2+δ
] ⊆ S, it follows that there exists j ∈ S such that Vj(ψ)(0) >

Vl(ψ)(0) for all l /∈ S.
(ii) Let us prove by contradiction the “only if” part. Assume thatΛ[S, 1+δ

2+δ
] *

S. It is clear that there exists a probability distribution π̄ ∈ ∆(A) withP
i∈S π̄(i) =

1+δ
2+δ

such that for some j /∈ S,X
k∈A

π̄(k)uik ≤
X
k∈A

π̄(k)ujk for all i.

Take the linear path ψ(t) = x1 − (x1 − x0)e−λt where x0k =
2+δ
1+δ

π̄(k) and
x1k = 0 for all k ∈ S. x0k0 = 0 and x1k0 = (2 + δ)π̄(k0) for all k0 /∈ S. Note that
x0 = (x01, ..., x

0
I) ∈ ∆̃(S). We must prove that BR(ψ)(0) * S. We know that

Vj(ψ)(0) =
X
k∈A

π(k)ujk,

where,
−for k ∈ S, π(k) = (λ+ θ)

R∞
0

e−(λ+θ)sx0ke
−λsds = x0k

1+δ
2+δ

= π̄(k);

−for k0 /∈ S, π(k0) = (λ+ θ)
R∞
0

e−(λ+θ)sx1k0(1− e−λs)ds = x1k0
1
2+δ

= π̄(k0).
Then there exists j /∈ S such that Vj(ψ)(0) ≥ Vi(ψ)(0) for all i ∈ A. This

completes the proof.
As noted previously, the proof of Theorem 3 can be completed very easily.

Since, by the previous lemma, for δ > 0, a 1+δ
2+δ
−MBR coincides with an

absorbing set. And since by Lemma 3, there exists γ̄ > 0 such that if S is
the 1

2
−MBR, then for all γ < γ̄, S is the unique (1

2
+ γ)−MBR. It is clear

that for δ < 4γ̄
1−2γ̄ , the

1
2
−MBR coincides with the absorbing set.

Since the 1
2
−MBR set exists and is unique (Theorem 1), it is straightfor-

ward that we obtain Proposition 2 as a corollary of Theorem 3.

C Appendix C

In this part, we first prove Theorem 5. Then Theorem 4 is easily obtained.
Let us first recall that (S0, S1, ..., Sn) is the sequence such that at every

ω ∈ Ω, Sh is a p−best response set in G[Sh−1, ω] for any h ∈ {1, ..., n} where
S0 = A and Sn = S. In order to prove this part, we build a sequence of
modified incomplete information game {Uh}n−1h=0 in the following way.
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Uh = [I, {Sh
i }i={1,2}, {uhi }i={1,2}], where I is U 0s information system; and

uhi : S
h×Ω→ R is player i’s payoff function given by the restriction of ui to

Sh = Sh
1 ×Sh

2 ⊆ A. Therefore in this modified incomplete information game,
only the set of available actions change. In the sequel, we note Rh

i (ω) for the
set of rationalizable actions of i in the incomplete information game Uh at
state ω. Now we provide two simple lemmas:

Lemma 5 Let h, h0 ∈ {0, ..., n − 1} where h0 ≥ h. If Rh
i (ω) ⊆ Sh0

i for all
i ∈ {1, 2}, ω ∈ Ω, then Rh

i (ω) ⊆ Rh0
i (ω) for all i ∈ {1, 2}, ω ∈ Ω.

Proof. It is well-known20 that for all ai ∈ Rh
i (ω), there exists µ−i : Ω→

∆(Sh
−i) such that (1) for all a

0
i ∈ Sh

i ,X
ω0∈Qi(ω)

Π[ω0 | Qi(ω)]u
h
i ({ai, µ−i(ω0)}, ω0) ≥

X
ω0∈Qi(ω)

Π[ω0 | Qi(ω)]u
h
i ({a0i, µ−i(ω0)}, ω0).

(2) Supp(µ−i(ω
0)) ⊆ Rh

−i(ω
0)(⊆ Sh0

−i) for all ω
0 ∈ Ω. Then since from Uh to

Uh0 only the set of available actions change, we have that for all ai ∈ Rh
i (ω),

there exists µ−i : Ω→ ∆(Sh0
−i) such that (1) for all a

0
i ∈ Sh0

i ,X
ω0∈Qi(ω)

Π[ω0 | Qi(ω)]u
h0
i ({ai, µ−i(ω0)}, ω0) ≥

X
ω0∈Qi(ω)

Π[ω0 | Qi(ω)]u
h0
i ({a0i, µ−i(ω0)}, ω0).

(2) Supp(µ−i(ω
0)) ⊆ Rh

−i(ω
0)(⊆ Sh0

−i) for all ω
0 ∈ Ω. Then this implies that

Rh
i (ω) ⊆ Rh0

i (ω) and completes the proof.

Lemma 6 For any h ∈ {0, ..., n − 1}, for each i ∈ {1, 2}, for each ω ∈
Ω, Rh

i (ω) ⊆ Sh+1
i .

Proof. Fix h ∈ {0, ..., n − 1}, and consider the incomplete information
game Uh. Let us define Ωh+1

i = {ω ∈ Ω : Rh
i (ω) ⊆ Sh+1

i } and Ωh+1
j =

{ω ∈ Ω : Rh
j (ω) ⊆ Sh+1

j }, Ωh+1
j is the event where player j plays in Sh+1

j .
Let E = Qi(ω

∗), we know that, since the payoff function is measurable with
respect to the partition, player i knows his payoffs at E and by (3), he will
play in Si, then E ⊆ Ωh+1

i . Moreover by (2), we know that Sh+1 is a σ−best
response set in G[Sh, ω] at any ω ∈ Ω. Then it must be that Bσ

j Ω
h+1
i ⊆ Ωh+1

j

and Bσ
i Ω

h+1
j ⊆ Ωh+1

i . Since E ⊆ Ωh+1
i , Bσ

j (E) ⊆ Bσ
j (Ω

h+1
i ) ⊆ Ωh+1

j . Then,
Bσ
i B

σ
j (E) ⊆ Bσ

i B
σ
j (Ω

h+1
i ) ⊆ Bσ

i (Ω
h+1
j ) ⊆ Ωh+1

i . Thus, Bσ
i B

σ
j (E)∪E ⊆ Ωh+1

i .
Then by induction, ∀k ≥ 1, [Hσ

i ]
k(E) ⊆ Ωh+1

i . But by (1), ∃k ≥ 0, such that
[Hσ

i ]
k(E) = Ω. Therefore, Ωh+1

1 = Ωh+1
2 = Ω.

20The proof uses standard arguments relying on rationalizability (see for details Pearce
(1984) or Battigalli and Siniscalchi (2003)).
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Now the proof of the Theorem can be completed. By Lemma 6, we know
that for each i ∈ {1, 2}, for each ω ∈ Ω, R0i (ω) ⊆ S1i . Then, by Lemma 5,
R0i (ω) ⊆ R1i (ω) for all i ∈ {1, 2}, ω ∈ Ω. Then again by Lemma 6, for each
i ∈ {1, 2}, for each ω ∈ Ω, R0i (ω) ⊆ (R1i (ω) ⊆)S2i . Then again, by Lemma
5, R0i (ω) ⊆ R2i (ω) for all i ∈ {1, 2}, ω ∈ Ω and so, for each i ∈ {1, 2}, for
each ω ∈ Ω, R0i (ω) ⊆ (R2i (ω) ⊆)S3i . The proof of Theorem 5 is completed in
iterating this reasoning.
Now note that if S is a σ−best response set at each G[A,ω], then by

definition, S is an iterated σ−best response set that trivially satisfies the
CSA (with the sequence (S0, S1) = (A,S)). Thus, Theorem 4 is obtained as
a corollary of Theorem 5.
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