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Abstract

This paper studies the roles of tax-subsidy schemes in money search models with divisible
money. Recently, real indeterminacy of stationary equilibria has been found both in specific and
general search models with divisible money. In the literature, the welfare effect of monetary
policy has often been discussed in search models with money. In most of these models, money
is indivisible and the stationary equilibria are determinate. Thus the effects of the policies
are determinate as well. However, if we assume the divisibility of money in these models, the
stationary equilibria become indeterminate. Thus it is quite difficult to make accurate predictions
of the effects of simple monetary policies in such models. Instead, in this paper we show that
some tax-subsidy scheme selects a determinate efficient equilibrium. In other words, for a
given efficient equilibrium, there exists a tax-subsidy scheme that makes the equilibrium locally
determinate.
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1 Introduction

This paper studies the roles of tax-subsidy schemes in money search models. Recently,

real indeterminacy of stationary equilibria has been found both in specific and general

search models with divisible money. (See, for example, Green and Zhou [3] [4], Kamiya

and Shimizu [6], Matsui and Shimizu [7], and Zhou [9].) In the literature, the welfare

effect of monetary policy has often been discussed in search models with money. In

most of these models, money is indivisible and the stationary equilibria are determinate.

Thus the effects of the policies are determinate as well. However, if we assume the

divisibility of money in these models, the stationary equilibria become indeterminate.
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Thus it is quite difficult to make accurate predictions of the effects of simple monetary

policies in such models. Instead, we show that some tax-subsidy systems select a

determinate efficient equilibrium. In other words, for a given efficient equilibrium,

there exist a tax-subsidy scheme that make the equilibrium (locally) determinate.

Suppose money is perfectly divisible. We confine our attention to stationary equi-

libria in which, for some positive number p, all trades occur with its integer multiples

of fiat money and the support of stationary distributions of money holdings has the

form {0, p, . . . , Np}. Kamiya and Shimizu [6] shows that there is a continuum of money

holdings distributions which satisfies the stationary condition, which leads to the con-

clusion that under some regularity condition, there is also a continuum of stationary

equilibria. These results are reviewed in Subsection 3.1.

Here we introduce government agents to this economy. Following Aiyagari et. al.

[1], we describe them as those who are “programmed” in such a way that, following a

rule, they collect tax from or give subsidy to the agents they are matched with. Then

we show that, for any given stationary equilibrium, there exists tax-subsidy systems

that almost lead the economy to the equilibrium and, moreover the government can

select an efficient one.

The plan of this paper is as follows. In Section 2, we investigate a special model

which can be considered as Zhou’s model with government agents. In Section 3, we

present general results by analyzing a wider class of models.

2 A Model with Government Agents

2.1 Model and Definitions

We first present a simple model with government agents. This model can be considered

as Zhou [9]’s model with government agents in the sense of Aiyagari et. al. [1].

Time is continuous, and pairwise random matchings take place according to Poisson

process with a parameter µ > 0. Let the measure of private agents be normalized to

one. There are k ≥ 3 types of agents with equal fractions and the same number of

types of goods. Let κ be the reciprocal of k. Only one unit of good i can be produced

and held by a type i − 1 agent. The production cost is c > 0. A type i agent obtains

utility u > 0 only when she consumes one unit of good i. We assume u > c. For every

matched pair, the seller posts a take-it-or-leave-it price offer, ignorant of the buyer’s

money holdings. Let M > 0 be the nominal stock of fiat money, and γ > 0 be the
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discount rate.

We introduce government agents to this economy. They are “programmed” to follow

a rule. That is, following the given rule, they collect tax from or give subsidy to the

agents they are matched with. We assume that government agents can observe current

money holdings of agents they are matched with. Let G > 0 be the measure of the

government agents. Thus the total measure of agents is 1 + G.

In what follows, we focus on a stationary distribution of money holdings of the

private agents such that its support is the set {0, p, . . . } for some p > 0. Thus the

money holdings distribution can be expressed by hn, n = 0, 1, . . . , the measure of the

set of private agents with money holding np. Of course, h satisfies
∑

n hn = 1 and

hn ≥ 0 for all n.

We describe government’s policy by (t0, t1, . . . ). Each government agent gives sub-

sidy p to the matched agent with n with probability |tn| when tn > 0, while she collects

tax p with probability |tn| when tn < 0.

Let η ∈ R+ denote a private agent’s money holding. A strategy of type i private

agent is defined as a pair of an offer strategy ω(η) : R+ → R+ and a reservation price

strategy ρ(η) : R+ → R+. The former is a price that a type i agent with money holding

η offers when she meets a potential buyer. A seller with money holding η offers ω(η).

In case that a value function is continuous from the right, it will be shown that by the

perfectness condition ρ gives the maximum price that a buyer is willing to defray for

the consumption good, and so it becomes a function rather than a correspondence. Of

course, since the reservation price cannot exceed the buyer’s money holdings, ρ should

satisfy the following feasibility condition:

ρ(η) ≤ η. (1)

From h, the stationary distribution of offer prices, Ω, and the stationary distribution

of reservation prices, R, are defined as follows.

Ω(x) =
∑

n∈{n′∈�|ω(n′p)≤x}
hn, (2)

R(x) =
∑

n∈{n′∈�|ρ(n′p)<x}
hn, (3)

where �y� is the integer part of y. Let V : R+ → R+ be a value function. That is V(η)

is the maximum value of discounted utility achievable by the agent’s current money

holding η. At every moment, a type i agent with money holding η meets a type i − 1
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agent with probability µκ/(1+G). Transaction does not occur and money holding does

not change if the partner’s offer x exceeds the type i’s reservation price r. If partner’s

offer price x is not more than reservation price r, then transaction occurs and the type

i agent derives utility u from consumption and enters in the next trading opportunity

with money holding η − x. The probability that type i with money holding η meets

a type i + 1 agent is also µκ/(1 + G). Transaction does not occur if the type i’s offer

o is greater than the partner’s reservation price. If type i’s offer o does not exceed

the partner’s reservation price, then transaction occurs and faces the next matching

opportunity with money holding η + o. The probability that an agent with money

holding η meets a government agent is µG/(1 + G). If η = np for some integer n, she

obtain p from the government agent with probability |tn| if tn > 0 and she pays p to the

government agent with probability |tn| if tn < 0. Then, using γ, µ, and h, the Bellman

equation for V(η) is given by

γV(η) =
µκ

1 + G
max
r∈[0,η]

∫ r

0

[u + V(η − x) − V(η)]dΩ(x) +

µκ

1 + G
max
o∈�+

[1 − R(o)][V(η + o) − c −V(η)] +
µGt� η

p
�

1 + G
(V(η + sign(t� η

p
�)p) − V(η)), (4)

where t� η
p
� = 0 if �η

p
� is not an integer.

In terms of V(η), it is optimal to accept offer o if u + V(η − o) ≥ V(η). The same

condition in terms of reservation price ρ is ρ(η) ≥ o. Then, in case that a value function

is continuous from the right, the perfectness condition with respect to reservation price

is as follows:

ρ(η) = max
{
r ∈ [0, η]

∣∣u + V(η − r) ≥ V(η)
}
. (5)

That is, type i’s reservation price is her full value for good i+1, and thus it is a function

of η. In order to assure that (5) is actually defined, we confine our attention to the

case that a value function is continuous from the right hereafter.

The economy is stationary if h is an initial stationary distribution of the process

induced by the optimal trading strategy (ω, ρ). Now we define the stationary equilib-

rium grounded on the above. We adopt stationary perfect Bayesian Nash equilibrium

as our equilibrium concept.

Definition 1 < h, ω, ρ,V >, where V is a step function with step p > 0, is said to be

a stationary equilibrium if
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1. h is stationary under trading strategies ω and ρ, and the distribution of offer prices

Ω and that of reservation prices R are derived from h by (2) and (3),

2.
∑N

n=0 pnhn = M , and

3. given the distributions h, R and Ω, the reservation price strategy ρ and the offer

strategy ω satisfy the feasibility condition (1) and the perfectness condition (5),

respectively, and the value function V , together with ρ and ω, solves the Bellman

equation (4). Therefore,

V(η) =
1

φ + 2

[� ρ(η)
p

�∑
n=0

{u + V(η − np)} (Ω(np) −Ω((n − 1)p))

+ {1 − Ω(ρ(η))}V(η) + R(ω(η))V(η) + {1 −R(ω(η))} {V(η + ω(η)) − c}

+
G

κ
t� η

p
�V(η + sign(t� η

p
�)p) +

G

κ
(1 − tη)V(η)

]

holds, where φ = (1+G)γ
µκ

+ G
κ
.

We define the concept of a single-price equilibrium.

Definition 2 < h, ω, ρ,V > is said to be a single-price equilibrium (SPE) with some

price p > 0 if

1. it is a stationary equilibrium, and

2. with probability one, for a meeting between a buyer and a seller, either trade

occurs with price p or trade does not occur.

We restrict our attention to single price equilibria (SPE) in which all trades occur

with some price p > 0. In particular, we call our attention to SPE with the following

features:

• the support of stationary distribution of money holdings is {0, p, 2p, . . . , Np} for

some integer N ≥ 1,

• on the equilibrium path, a seller with η, 0 ≤ η < Np, offers p,

• on the equilibrium path, a seller with η, n ≥ Np, offers ∞ (i.e., she offer not to

trade), and

• the reservation price of a buyer with η, η ≥ p, is more than or equal to p.

Note that N is endogenously determined. Define the welfare as W =
∑N

n=0 hnVn.
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2.2 SPE without Tax-Subsidy

In this subsection, we consider the case that tn = 0 for all n. We first investigate SPEs

with N = 1. The stationarity condition for h = (h0, h1) is expressed as

0 =ḣ0 =
µκ

1 + G
[h0(1 − h0) − h1(1 − h1)] , (6)

0 =ḣ1 =
µκ

1 + G
[h1(1 − h1) − h0(1 − h0)] . (7)

For example, in (6), ḣ0 is the difference between the measure of agents whose money

holdings change from 0 to other ones as results of trades and that of agents whose money

holdings become 0 as results of trades at any moment. The former is the probabilities

of an agent with p purchases her consumption good, µκ
1+G

h1(1−h1). A similar argument

applies to ḣ1. The latter is the probability of an agent with 0 sells her product at p,
µκ

1+G
h0(1 − h0). Substituting h1 = 1 − h0, it is clearly seen that both of the above

equations are in fact identities. Thus any h0 ∈ [0, 1], h = (h0, 1 − h0) satisfies the

stationarity condition. p is determined by M and h as follows:

M

p
= h1.

First, we obtain the values at {0, p, . . . }. Vn, n = 0, 1, . . . , the values at np, satisfy

V0 =
1

φ + 2
[(1 − h0)(−c + V1) + h0V0 + V0], (8)

Vn =
1

φ + 2
[(1 − h1)(u + Vn−1) + h1Vn + Vn], n ≥ 1. (9)

Note that Vn, n ≥ 2, are the values in the off-equilibrium path. In case of (8), the

strategy of an agent is to offer p. Suppose she meets a partner. If the partner is a

buyer, she offers p and so the transaction results in a sale with probability (1 − h0)

and in no trade with probability h0. Her money holding becomes p. Similar arguments

apply to (9). Then we obtain

Vn =
1

φ

[
h0u−

(
h0

φ + h0

)n
φ + h0

φ + 1
{h0u + (1 − h0)c}

]
, n ≥ 1, (10)

and let

V(η) = V (�η/p�). (11)

By (10), it is seen that h and V satisfying (6), (7), (8), (9), and (11) are parametrized

by h0, since any h0 satisfies (6) and (7). They are single-price equilibria if agents have
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incentive to take the specified strategy, and then there is a continuum of single-price

equilibria.

The conditions for taking the strategy at η = np for some integer n are

− c + V1 ≥ V0,

Vn ≥ −c + Vn+1, n ≥ 1,

u + V0 ≥ V1.

The first condition is one for an agent with no money to try to sell her production good.

The second condition is one for an agent with np not to sell her production good. The

third condition is one for an agent with p to accept an offer price p. Note that the

conditions at the other η follow from the above condition. (See Zhou [9].) Using (10),

they can be expressed by h0 as follows1:

1 +
φ

h0
≤ u

c
≤ 1 +

φ(φ + 1 + h0)

(h0)2
.

On the other hand, the welfare is expressed as

W =
h0(1 − h0)

φ
(u− c).

It is easily seen that W has a single peak at (h0, h1) = (1/2,1/2) with W = u−c
4φ

.

Next, we investigate the case N ≥ 2. We can apply almost the same argument as

in the case of N = 1, though it is not very straightforward. As in the case of N = 1,

the stationarity condition is expressed as:

0 = ḣn =

⎧⎪⎨
⎪⎩

µκ
1+G

[hn(1 − h0) − hn+1(1 − hN )] , n = 0,
µκ

1+G
[hn ((1 − h0) + (1 − hN )) − (hn−1(1 − h0) + hn+1(1 − hN ))] , 1 ≤ n ≤ N − 1,

µκ
1+G

[hn(1 − hN ) − hn−1(1 − h0)] , n = N.

Let the nth equation in the above be Dn(h) = 0. It can be easily checked that∑N
n=0 Dn(h) = 0 and

∑N
n=0 nDn(h) = 0 always hold, i.e., they are identities. Thus

if Dn(h) = 0, n = 2, . . . , N , hold, then D0(h) = 0 and D1(h) = 0 automatically satis-

fied. In other words, two of the above equations are redundant. Thus the above system

of equations has one degree of freedom.

Concretely, we obtain the following stationary distribution:

hn = h0

(
1 − h0

1 − hN

)n

, n = 1, . . . , N.

1The following condition is slightly different from one obtained in Zhou [9], since she adopts a different equilibrium
concept.
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Note that

hN(1 − hN )N = h0(1 − h0)
N

holds. It is verified that for any h0 ∈ (0, 1) there are the corresponding stationary

distribution h and real stock m = M/p.

As in the case of N = 1, the values at np, n = 0, 1, . . . , are expressed as:

Vn =

⎧⎪⎨
⎪⎩

1
φ+2

[(1 − h0)(−c + Vn+1) + h0Vn + Vn] , n = 0,
1

φ+2
[(1 − h0)(−c + Vn+1) + h0Vn + (1 − hN )(u + Vn−1) + hNVn] , 1 ≤ n ≤ N − 1,

1
φ+2

[Vn + (1 − hN )(u + Vn−1) + hNVn] , n = N.

Then let V(η) = V� η
p
�. Kamiya et al. [5] show that there exists a SPE with N ≥ 2 in

which h0 is sufficiently close to 1 if

(φ + 1)N <
u

c
<

φ(φ + 1)2N

(φ + 1)N − 1
.

That is if the parameters satisfy this condition, there exists a continuum of single-price

equilibria, where h0 ∈ (1, 1 − ε) for some ε > 0. We also obtain

W =
(1 − h0)(1 − hN)

φ
(u − c).

It is verified that W takes a value in
(
0,

(
N

N+1

)2 u−c
φ

]
, and that the maximum value is

attained at h =
(

1
N+1

, . . . , 1
N+1

)
.

2.3 SPE with Tax-Subsidy

Consider first SPEs with N = 1. Now consider the policy (t0, t1) for t1 < 0 < t0. Denote

by h̃ a money holdings distribution with policy. Then the stationarity condition is

0 =
˙̃

h0 =
µκ

1 + G

[
h̃0(h̃1 + kGt0) − h̃1(h̃0 − kGt1)

]
0 = ˙̃h1 =

µκ

1 + G

[
h̃1(h̃0 − kGt1) − h̃0(h̃1 + kGt0)

]
.

Besides trades between buyers and seller, an agent meets a government agent and pays

(obtains) tax (subsidy). For example, with probability µGt1
(1+G)

, an agent with p meets a

government agent and pays p. Let D̃0(h̃; G, t) = 0 and D̃1(h̃; G, t) = 0 be the first and

the second equations, respectively. Then D̃0(h̃; G, t)+D̃1(h̃; G, t) = 0 always holds, i.e.,

it is an identity. Thus it is easily seen that one of the above equations is independent
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and, together with h̃0 + h̃1 = 1, the above equations determines h. In other words, the

number of equations is equal to the number of variables. Indeed, we obtain the unique

stationary distribution

(h̃0, h̃1) =

( −t1
t0 − t1

,
t0

t0 − t1

)
.

Note that, for almost all parameters, the incentive conditions are satisfied with

strict inequalities in almost all the SPEs. (See Kamiya and Shimizu [6].) Therefore the

introduction of government agents only slightly changes the incentive conditions as long

as Gtns are sufficiently small. Thus if h∗ constitute a stationary equilibrium without

government agents, the policy satisfying h∗
0 = −t1

t0−t1
makes h∗ locally determinate almost

always by setting Gtns sufficiently small. In particular, by setting Gt0 = ε > 0 and

Gt1 = −ε for small enough ε > 0, we can make the most efficient SPE, (h̃0, h̃1) = (1
2
, 1

2
),

determinate.

Remark 1 The government uses t as a policy and, for a given G > 0, sets Gt0 = ε

and Gt1 = −ε. If possible, the government may choose G, though it is not necessary.

Consider next the SPE with N ≥ 2. Now consider the policy (t0, 0, . . . , 0, tN ), where

tN < 0 < t0. Then the stationary condition is

0 = ˙̃hn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µκ
1+G

[
h̃n(1 − h̃0 + kGt0) − h̃n+1(1 − h̃N )

]
, n = 0,

µκ
1+G

[
h̃n(1 − h̃0 + 1 − h̃N ) −

(
h̃n−1(1 − h̃0 + kGt0) + h̃n+1(1 − h̃N )

)]
, n = 1,

µκ
1+G

[
h̃n(1 − h̃0 + 1 − h̃N ) −

(
h̃n−1(1 − h̃0) + h̃n+1(1 − h̃N )

)]
,

2 ≤ n ≤ N − 2,
µκ

1+G

[
h̃n(1 − h̃0 + 1 − h̃N ) −

(
h̃n−1(1 − h̃0) + h̃n+1(1 − h̃N − kGtN)

)]
,

n = N − 1,
µκ

1+G

[
h̃n(1 − h̃N − kGtN ) − h̃n−1(1 − h̃0)

]
, n = N.

Let the nth equation be denoted by D̃n(h̃; G, t) = 0. As in the case of N = 1, by∑N
n=0 D̃n(h̃; G, t) = 0 only one of the above equations is redundant.

Combining the condition
∑N

n=0 h̃n = 1, we obtain the following result. Suppose

(t0, tN) satisfies t0 + tN = 0. Then

h̃n =

{
h̃0 if n = 0 or n = N,
h̃0(1−h̃0+kGt0)

1−h̃0
if 1 ≤ n ≤ N − 1,
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where h̃0 is a solution of the equation

(N + 1)(h̃0)
2 − (3 + (N − 1)(1 + kGt0)) h̃0 + 1 = 0,

with h̃0 ∈ (0, 1). It is verified that such h̃0 is uniquely determined. In other words,

the stationary distribution h̃ is uniquely determined. Moreover, as Gt0 → 0, h̃ →(
1

N+1
, . . . , 1

N+1

)
.

When t0 + tN 	= 0,

h̃n =
1 − h̃0 + kGt0

1 − h̃N

(
1 − h̃0

1 − h̃N

)n−1

h̃0 if 1 ≤ n ≤ N − 1,

where h̃0, h̃N satisfy

h̃N = bh̃0,

b(1 − bh̃0 − kGtN )(1 − bh̃0)
N−1 = (1 − h̃0 + kGt0)(1 − h̃0)

N−1,

and b = − t0
tN

> 0. Then it is verified that the stationary distribution h̃ is uniquely

determined. Moreover, as Gt0 → 0 and GtN → 0, h̃ converges to

h̃n =
1 − b

1
N

1 − b
N+1

N

b
n
N .

As in the case of N = 1, the incentive conditions are satisfied with strict inequal-

ities in almost all the SPEs, see Kamiya and Shimizu [6], and therefore the policy

approximates the target SPE and makes it locally determinate by setting Gt0 and GtN

sufficiently small.

To sum up, for any N , the policy above makes a stationary equilibrium locally de-

terminate. Moreover, note that as Gtn, n = 0, . . . , N go to 0, the unique stationary

distribution converges to the one perpendicular to t, i.e., h∗ · t = 0, since in equilibria

0 =
∑N

n=0 nD̃n(h; G, t) = h∗ ·t holds. Roughly speaking, if Gt is small enough, then the

tax-subsidy scheme selects an equilibrium close to the single-price equilibrium without

policy satisfying h∗ · t = 0. The reason is as follows. Introducing the policy, the sta-

tionarity condition without policy is slightly perturbed and the stationary distribution

with the policy should be orthogonal to t. Note also that h∗ · t can be considered as

the budget deficit. Thus it is zero in equilibria on the stationary distribution while it

can be nonzero out of stationary distributions.
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2.4 Budget Balancing Rule

It is interesting to see that any policy with budget balancing cannot make equilibria

determinate. For example, consider stationary equilibria with N = 2 and the policy

(h̃2/h̃0, 0,−1). Note that the budget balancing, t0h̃0 + t2h̃2 = 0, always holds even out

of stationary equilibria. Then h̃ and t0 must satisfy

0 =
˙̃

h0 =
µκ

1 + G

[
h̃0

(
1 − h̃0 + t0kG

)
− h̃1(1 − h̃2)

]
,

0 = ˙̃h1 =
µκ

1 + G

[
h̃1

(
1 − h̃0 + 1 − h̃2

)
−

(
h̃0

(
1 − h̃0 + t0kG

)
+ h̃2

(
1 − h̃2 + kG

))]
,

0 =
˙̃

h2 =
µκ

1 + G

[
h̃2

(
1 − h̃2 + kG

)
− h̃1(1 − h̃0)

]
,

t0 = h̃2/h̃0.

Then for any h̃0 ∈
[

4+kG−
√

(4+kG)2−12

6
, 1

)
and

h̃1 =
−h0 − kG +

√
(4 − 3h0 + kG)(h0 + kG)

2
,

h̃2 =
2 − h0 + kG−√

(4 − 3h0 + kG)(h0 + kG)

2
,

the stationary condition is always satisfied, and thus stationary equilibria remain inde-

terminate.2

3 General Model

In this section, we investigate a general model which includes the above model as a

special case. Note that the private sector in our model is a slightly special version of

the general model presented by Kamiya and Shimizu [6] (hereafter, we call KS simply).

Time is continuous, and pairwise random matchings take place according to Poisson

process with a parameter µ > 0. Let the measure of private agents be normalized to

one. There are k ≥ 3 types of agents with equal fractions and the same number of

types of goods. Let κ be the reciprocal of k. A good i can be produced and held by a

type i− 1 agent. A type i agent obtains some positive utility only when she consumes

a good i. We make no assumption on the divisibility of goods. We assume that fiat

money is durable and perfectly divisible.

2The condition that h0 ≥ 4+kG−
√

(4+kG)2−12
6

is necessary for t0 ≤ 1.
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We confine our attention to the case that, for some positive number p, all trades

occur with its integer multiple amounts of money. In what follows, we focus on a

stationary distribution of economy-wide money holdings on {0, . . . , N} expressed by

h = (h0, . . . , hN ), where hn is a measure of the set of agents with np amount of money,

and N < ∞ is the upper bound of the distribution. Our model includes the case of

exogenously determined N as well as the case of endogenously determined N . Note

that N is endogenously determined in the model in Section 2 and in Zhou [9]’s model.

Of course, hn ≥ 0 and
∑N

n=0 hn = 1 hold. Let M > 0 be a given nominal stock of money

circulating in the private sector. Since p is uniquely determined by
∑N

n=0 pnhn = M

for a given h, unless h0 = 1, then, deleting p from {0, p, 2p, . . . , Np}, the set {0, . . . , N}
can be considered as the state space.

An agent with n chooses an action in An = {a1, . . . , akn}. For example, an

action may include an offer price and/or a reservation price. Let βnj ≥ 0 be

the proportion of the agents choosing an action aj among the agents with n, and

β = (β01, . . . , βnj, . . . , βNkN
). Thus

∑kn

j=1 βnj = 1 holds.

The monetary transition resulted from transaction among a matched pair is de-

scribed as a function f . When an agent with (n, j) meets an agent with (n′, j′), the

former’s and the latter’s states, i.e., current money holdings will be n+f((n, j), (n′, j′))
and n′ − f((n, j), (n′, j′)), respectively. That is f maps an ordered pair ((n, j), (n′, j′))
to a non-negative integer f((n, j), (n′, j′)). Here “ordered” means, for example, that

the former is a seller and the latter is a buyer. When N is exogenously determined, we

assume

N ≥ n + f((n, j), (n′, j′)) and n′ − f((n, j), (n′, j′)) ≥ 0.

When N is endogenously determined, we assume the latter condition while the former

one should be satisfied on the equilibrium path.

Next, we introduce government agents. They are programmed to follow a rule which

prescribes them how to collect tax from or give subsidy to the agents they are matched

with. We assume that government agents can observe current money holdings of agents

they are matched with. Let G > 0 be the measure of the government agents. Thus the

total measure of agents is 1 + G.

Then we describe government’s policy by (t0, t1, . . . , tN), where tn ∈ [−1, 1]. Each

government agent gives subsidy p to the matched agent with n with probability |tn|
when tn > 0, while she collects tax p with probability |tn| when tn < 0.

Let θ ∈ RL be the parameter of the model and the policy. Of course, θ includes k,
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µ, and G as well as t. We adopt a Bellman equation approach. Let Vn be the value of

state n, n = 0, . . . , N . The variables in the model are denoted by x = (V, h, β). Let

Wnj(x; θ) be the value of action j at state n. Thus, in equilibria, Wnj(x; θ) = Vn holds

for j such that βnj > 0. Note that Wnj(x; θ) includes the utility and/or the production

cost of perishable goods.

3.1 Stationary Equilibria without Tax-Subsidy

First, we present the results in the case that tn = 0 for all n, which have been proved

in KS.

Let h(n, j) = βnjh(n). By the random matching assumption and the definition of f ,

the outflow On from state n and the inflow In into state n are defined as follows:

On(h, β; θ) =
µκ

1 + G

[∑
j,i′,j′

h(n, j)h(i′, j′) +
∑
i,j,j′

h(i, j)h(n, j′)

]
,

In(h, β; θ) =
µκ

1 + G

⎡
⎣ ∑

(i,j,i′,j′)∈Bn

h(i, j)h(i′, j′) +
∑

(i,j,i′,j′)∈B ′
n

h(i, j)h(i′, j′)

⎤
⎦ ,

where

Bn = {(i, j, i′, j′) | i + f((i, j), (i′, j′)) = n},
B ′

n = {(i, j, i′, j′) | i′ − f((i, j), (i′, j′)) = n}.
We denote On − In by Dn. Then the condition for stationarity is Dn = 0, n = 0, . . . , N

and
∑N

n=0 hn = 1. Clearly,
∑N

n=0 Dn = 0 holds as an identity, and thus at least one

equation is redundant. The following theorem shows that, moreover, one more equation

is always redundant.

Theorem 1 Given β, then

N∑
n=0

nDn(h, β; θ) = 0, (12)

is an identity.

This implies that h is a stationary distribution if and only if Dn = 0, n = 2, . . . , N,

and
∑N

n=0 hn = 1 hold. Namely, the condition for stationarity has at least one degree

of freedom. This is the main cause of the indeterminacy.
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Let B be the power set of {(n, j) | j = 1, . . . , kn, n = 0, . . . , N} and B̂ be {b ∈
B |∀n, ∃j, (n, j) ∈ b}. b ∈ B̂ can be considered as a set of actions used in an equilibrium.

For a given b ∈ B̂, let

Ωb = {(βnj)(n,j)∈b | βnj > 0 for (n, j) ∈ b}. (13)

Let xb = (V, h, βb), where βb ∈ Ωb. For a given b ∈ B̂ and all (n, j) ∈ b, W b
nj(x

b; θ)

is defined from Wnj(x; θ) by setting βn′j′ = 0 for all (n′, j′) /∈ b. In parallel with this,

Db
n(h, βb; θ) is defined for n = 2, . . . , N . Let K =

∑N
n=0 kn.

Definition 3 For a given b ∈ B̂, xb = (V, h, βb) ∈ RN+1 × RN+1
+ × R

�N
n=0 kn

+ is a

stationary equilibrium with b if it satisfies the following:

Db
n(h, βb; θ) = 0, n = 2, . . . , N
N∑

n=0

hn − 1 = 0,

Vn − W b
nj(x

b; θ) = 0, (n, j) ∈ b∑
j∈{j′|(j′,n)∈b}

βnj − 1 = 0, n = 0, . . . , N

Vn − W b
nj(x

b; θ) ≥ 0, (n, j) /∈ b. (14)

Let Eb
θ be the set of such an xb, and f b : RN+1×RN+1

++ ×Ωb ×RL → RN−1×R×R#b ×
RN+1 ×RK−#b be the LHS of the above condition.

Remark 2 In addition to the above equilibrium conditions, the following conditions

are typically required to be an “equilibrium” in most of matching models with money:

(i) the existence of p > 0 satisfying
∑N

n=0 pnhn = M , (ii) the incentive not to choose

an action out of our action space,3 and (iii) the incentive to take the equilibrium

strategy at state η /∈ {0, p, . . . , Np}. However, they are not very restrictive. As for

(i), it immediately follows from h0 	= 1. As for (ii) and (iii), KS presents a sufficient

condition to assure that (ii) and (iii) hold, and it is satisfied in all of the matching

models with divisible money known so far, such as Zhou [9]’s model, a divisible money

version of Camera and Corbae [2]’s model, and a divisible money version of Trejos and

Wright [8]’s model.
3For example in Section 2, a seller may offer a price which is not an integer multiple of p.
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Let

Cb = {0} × · · · × {0}︸ ︷︷ ︸
2N+#b+1

×R++ × · · · × R++︸ ︷︷ ︸
K−#b

,

and, for (n, j) /∈ b,

Cb(n,j) = {0} × · · · × {0}︸ ︷︷ ︸
2N+#b+1

×R++ × · · · × R++ × {0} × R++ × · · · × R++︸ ︷︷ ︸
K−#b

,

where the last {0} corresponds to Vn − W b
nj(x

b; θ), (n, j) /∈ b. Moreover, for

(n, j), (n′, j′) /∈ b such that (n, j) 	= (n′, j′),

Cb(n,j)(n′,j′) = {0} × · · · × {0}︸ ︷︷ ︸
2N+#b+1

×R × · · · × R × {0} × R × · · · × R × {0} × R × · · · ×R︸ ︷︷ ︸
K−#b

,

where the last two {0}s correspond to Vn − W b
nj(x

b; θ), (n, j) /∈ b, and Vn −
W b

n′j′(x
b; θ), (n′, j′) /∈ b, respectively. The it is verified that there is the indeterminacy

of the stationary equilibrium under some regularity conditions.

Theorem 2 Let Θ ⊂ RL be a C2 manifold without boundary. For a given b∗, suppose

that Eb∗
θ 	= ∅ holds for all θ ∈ Θ, and that f b∗ is C2 and is transversal to Cb∗ , Cb∗(n,j),

and Cb∗(n,j)(n′,j′) for all (n, j), (n′, j′) /∈ b∗. Then, for almost every θ ∈ Θ, Eb∗
θ is a

one-dimensional manifold with boundary. Moreover, at any endpoint of the manifold,

only one V ∗(n)−Wnj(x
∗; θ) ≥ 0, (n, j) /∈ b∗, can be binding, and at the other point of

the manifold, no inequality is binding.4

KS also shows that this indeterminacy is indeed a real one; i.e., the welfare are typically

not the same in a connected component of the equilibrium manifold.

3.2 Stationary Equilibria with Tax-Subsidy

In this section, we investigate the case that t = (t0, . . . , tN) 	= (0, . . . , 0). In what

follows, variables and functions with “tilde” denote the ones with nonzero t. The

outflow at n, Õn, and the inflow at n Ĩn are defined as follows:

Õn = On +
µG

1 + G
|tn|h̃n,

Ĩn = In +
µG

1 + G

(
t+n−1h̃n−1 + t−n+1h̃n+1

)
,

4These assumptions imply that that h(n) > 0, n = 0, . . . , N , hold and Db
n = 0, n = 2, . . . , N , can be independent.

See KS for indeterminacy results of the other cases.
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where t+n = max{0, tn}, t−n = −min{0, tn}, and t−1 = tN+1 = 0.

Theorem 3 For a given β, consider the following system of the stationary condition:

(D̃1, . . . , D̃N ,

N∑
n=0

h̃n − 1)T = (0, . . . , 0)T ,

where T denotes transpose. If the Jacobian matrix with respect to h̃ of the LHS of the

above system is of full rank at a stationary distribution, then the stationary distribution

is locally determinate. Moreover, the budget is balanced on this stationary distribution.

Proof:

The first statement is directly derived by the inverse function theorem. As for the

second statement, it is verified that the budget deficit is equal to

µG

1 + G
h̃ · t =

N∑
n=0

n(Ĩn − Õn),

where the equation is derived from Theorem 1. Thus it is equal to 0 on the stationary

equilibrium.

For a sufficient condition for the assumption in the theorem, see the discussion

following Assumption 1 below. For an example, see the discussions in Section 2.

Next, we show that, for a given stationary equilibrium, there exists a tax-subsidy

scheme that almost leads the economy to the equilibrium. More precisely, for almost

every stationary equilibrium without tax-subsidy, we can find a locally determinate

stationary equilibrium with some tax-subsidy system in any neighborhood of the sta-

tionary equilibrium without tax-subsidy.

In what follows, we assume that the assumptions in Theorem 2 hold. We choose

an arbitrary stationary equilibrium without tax-subsidy, denoted by x∗, which is in

the relative interior of the equilibrium manifold. Thus (14) is satisfied with strict

inequalities.

Lemma 1 Under the assumptions in Theorem 2, there exists an (N + 1)-dimensional

vector τ satisfying

(a) τ 	= (0, . . . , 0),

(b)
(

∂Dn(h∗,β∗;θ)
∂hi

)
i=0,...,N

· τ = 0 for n = 2, . . . , N ,

(c) h∗ · τ = 0.
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The above lemma clearly holds, since (b) and (c) have one degree of freedom.

We set t = ετ . Here ε > 0 is the “size” of the policy. In order for such a t to be a

tax-subsidy scheme, we need to put the following assumption on tau:

Assumption 1 Under the assumptions in Theorem 2, there exists an (N + 1)-

dimensional vector τ satisfying

(d) τN ≤ 0, and

(e) τ0 ≥ 0

in addition to (a), (b), and (c).

Recall that

N∑
n=0

n(Ĩn − Õn) =
εµG

1 + G
h̃ · τ (15)

holds. Since the LHS is equal to zero in the stationary distribution, (c) assures that h̃

approaches h∗ as ε approaches zero if the stationary distribution is locally unique. (b)

is a condition that τ is orthogonal to the gradient of D̃n w.r.t. h̃ for n = 2, . . . , N . We

will later show that under the assumptions in Theorem 2, this implies that a stationary

distribution is locally unique for a sufficiently small ε.

Given b∗, the condition for a stationary equilibrium with a tax-subsidy scheme is as

follows:

D̃n(h̃, β∗; θ) = 0, n = 1, . . . , N
N∑

n=0

h̃n − 1 = 0,

Ṽn − W̃nj(x̃; θ) = 0, (n, j) ∈ b∗∑
j∈{j′|(j′,n)∈b∗}

β∗
nj − 1 = 0, n = 0, . . . , N

Ṽn − W̃nj(x̃; θ) ≥ 0, (n, j) /∈ b∗,

where x̃ = (Ṽ , h̃, β∗). Let f̃ b∗
ε (x) be the LHS of the above equations except the ones

in the last line. By replacing D̃1 by h̃ · τ in f̃ b∗
ε , we define f̂ b∗

ε . We make the following

assumption:

Assumption 2 Dxb∗ f̂ b∗
0 is of full rank at x∗b∗, where xb∗ = (V, h, βb∗), βb∗ ∈ Ωb∗ .

This is a weak condition, since it is veirfied that the first N +1 rows are independent for

a sufficiently small ε. Recall that τ , which is the gredient of h̃ · τ w.r.t h̃, is orthogonal
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to the gradient of Dn w.r.t. h for n = 2, . . . , N . Moreover, tau is independent of the

gradient of
∑N

n=0 h̃ − 1 w.r.t. h because of (a), (d), and (e). On the other hand, the

assumptions in Theorem 2 implies that the gradient of D̃n for n = 2, . . . , N , w.r.t. h̃,

and the gradient of
∑N

n=0 h̃ − 1 w.r.t. h are independent. Thus we conclude that the

first N + 1 rows are independent for a sufficiently small ε.

Thus x∗b∗ is a locally determinate solution to f̂ b∗
0 = (0, . . . , 0)T , since h∗ · τ = 0.

Note that, for any ε > 0, the solution sets of f̂ b∗
ε = (0, . . . , 0)T and of f̃ b∗

ε = (0, . . . , 0)T

are clearly the same.5

Then applying the implicit function theorem to f̂ b∗
ε = (0, . . . , 0)T at (xb∗, ε) =

(x∗b∗ , 0), it can be clearly shown that, for all ε > 0, there exist ε > 0 and xb∗
ε such

that xb∗
ε is a solution to f̃ b∗

ε = (0, . . . , 0)T and is in the ε-neighborhood of x∗b∗ . Finally,

since xb∗ is in the relative interior of the equilibrium manifold, the agents have incentive

to use the strategies for sufficiently small ε. Thus the following theorem holds.

Theorem 4 Suppose that Assumption 1, Assumption 2 and the assumptions in The-

orem 2 hold. Then for any ε-neighborhood of x∗b∗ ∈ Eb∗
θ , there exists a tax-subsidy

system such that a stationary equilibrium with the policy is in the neighborhood and

is locally determinate.

In general, using some tax-subsidy systems, the government may obtain a more

efficient equilibrium than any element in the set of stationary equilibrium without

policy. Thus it will be the most important future research to seek for the best tax-

subsidy systems.
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