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Abstract. We present a noncooperative foundation of the asymmetric Nash bar-
gaining solution for a general n-person cooperative game in strategic form with
coalition formation. In this setup, the Nash bargaining solution should be immune
to any coalitional deviations. Unlike the classic approach of von Neumann and Mor-
genstern, our noncooperative approach shows that a threat by the complementary
coalition should be consistent with the Nash bargaining solution. This result leads to
a new concept of the core, called the Nash core, for a cooperative game in which any
deviating coalition anticipates the Nash bargaining solution behavior of the comple-
mentary coalition. The main theorem shows that, in the limit that the probability
of negotiation failure goes to zero, a (totally) efficient stationary subgame perfect
equilibrium payoff of the bargaining model is equal to the Nash bargaining solution
of the cooperative game, provided that it belongs to the Nash core. The weights
of players in the asymmetric Nash bargaining solution are endogenously determined
by a probability distribution to select a proposer.



1 Introduction

We consider a general cooperative situation among n individuals where they can
communicate and form coalitions, which are enforceable, and cooperation within a
coalition may have external effects on the utility of individuals outside the coali-
tion. It covers a wide range of multilateral cooperation problems: exchange markets
with externality, cartels among oligopolistic firms and international alliance among
countries, and so on. These cooperative situations can be described by an n-person
game in strategic form.

In game theory, there have been two different approaches to the general n-person
cooperative situation described above. One is the cooperative game approach initi-
ated by the classic work of von Neumann and Morgenstern (1944). von Neumann
and Morgenstern reduce the n-person game in strategic form to its coalitional form
(also called the characteristic function form), by assuming that individuals’ utilities
are transferable, that is, what is achievable for a coalition depends only on the sum
of members’ utilities, and moreover that the members of the coalition jointly choose
their actions with expectation that the complementary coalition reacts by damaging
them in the worst way. The first assumption of transferable utility is not critical
to the von Neumann-Morgenstern theory. In fact, their theory has been extended
to the case of non-transferable utility by Aumann (1961 and 1967), Aumann and
Peleg (1960) and others. The second assumption on coalitional behavior, however,
has been criticised on the grounds that it allows incredible threats by the comple-
mentary coalition (Scarf 1971, for example). The von Neumann-Morgenstern theory
of a general cooperative game is regarded as a two-stage procedure. First, by using
the minimax solution of a zero-sum two-person game between a coalition and its
complementary coalition, one defines the value of the coalition. The function as-
signing to every coalition its value is called the characteristic function. Secondly, one
investigates players’ behavior only based on the characteristic function by applying
a certain cooperative solution such as the stable set, core, Shapley value and oth-
ers. The characteristic function has been used as a very convenient tool to analyse
cooperative games. However, at the same time, a difficulty in the cooperative game
approach is in the two-stage procedure itself of using the characteristic function.
It is not clear how coalitional behavior assumed in two stages can be justified in a
consistent manner by rational behavior of individual players. The approach lacks a
unified framework of analysis.

The other is the noncooperative game approach initiated by Nash (1951 and
1953). In his approach (called the Nash program), Nash proposed to study cooper-
ative games based on reduction to noncooperative games by modelling pre-play ne-

lyon Neumann and Morgenstern themselves point out this difficulty. They write, “Now it would
seem that the weakness of our present theory lies in the necessity to proceed in two stages: To
produce a solution of the zero-sum two-person game first and then, by using this solution, to define
a characteristic function in order to be able to produce a solution of the general n-person game,
based on the characteristic function (von Neumann and Morgenstern 1947, p. 608).



gotiations as moves in a noncooperative bargaining game. Analysing an equilibrium
point of the noncooperative bargaining game, one can explain coalitional behavior
as the result of individual players’ payoff maximization. Nash (1953) presented a
noncooperative foundation of his bargaining solution of a two-person cooperative
game obtained by a set of axioms in his initial work (Nash 1950). An obvious re-
striction of Nash’s work is that it covers only two-person general cooperative games.
Recently, the noncooperative game approach to n-person cooperative games has re-
ceived widespread research interests: Selten (1981), Chatterjee et al. (1993), Perry
and Reny (1994), Moldovanu and Winter (1995), Okada (1996) among others. Most
works, however, are based on an n-person coalitional form game and exclude the
externality of coalitional behavior.?

In this paper, we attempt to extend a noncooperative foundation of the (asym-
metric) Nash bargaining solution to an n-person general cooperative game in strate-
gic form. Our bargaining game is based on the random-proposer model (Okada 1996)
which is a generalization of the Rubinstein’s (1982) alternating-offers model. In the
model, a proposer is selected according to some probability distribution among ac-
tive players. A proposal is a pair of a coalition and a jointly mixed action for
members. The proposal is agreed by the unanimous consent among the members.
When a coalition is formed, all remaining players continue their negotiations. The
agreement by the coalition has an external effect on other players’ negotiations. If a
proposal is rejected, then negotiations may end with a small probability. When ne-
gotiations end, all players, except those who have already bound to some coalitional
strategies, select their actions independently.

The purpose of our analysis is to characterize a stationary subgame perfect equi-
librium (SSPE)? when the probability of negotiation failure is sufficiently small. Tn
particular, since we are mainly interested in the noncooperative foundation of the
Nash bargaining solution in a general n-person cooperative game, our analysis fo-
cuses an SSPE with the efficiency property that all active players cooperate both
on and off equilibrium path. Such an equilibrium is called totally efficient.

The main results of the paper are summarized as follows. First, we will prove
that if all players form the largest coalition in an SSPE, their agreement should be
equal to the asymmetric Nash bargaining solution where the weights of players are
determined by the probability distribution selecting proposers and the disagreement
point of the bargaining solution is given by a Nash equilibrium of the game. Sec-
ondly, we will prove that, when one subcoalition is formed (off equilibrium path)
in a totally efficient SSPE, the complementary coalition reacts by the Nash bar-

2Exceptions are Bloch (1996) and Montero (2000) whose bargaining models are based on an
n-person game in partition function form where the value of a coalition depends on what coalitions
are formed among other players.

3The stationarity here means that every player’s equilibrium strategy depends only on payoff-
relevant state variables in the model. More precisely, this is a subgame perfect equilibrium satis-
fying subgame consistency proposed by Harsanyi and Selten (1988). Our equilibrium concept is
equivalent to that of Markov-perfect equilibrim defined by Maskin and Tirole(?).



gaining solution for its own negotiation problem. This means that, unlike the von
Neumann-Morgenstern theory, players outside the coalition do not react to damage
it by employing the minimax strategy. With this result, we will prove that in order
for the Nash bargaining solution to be sustained as a totally efficient SSPE in our
noncooperative bargaining model, it should be immune to any coalitional deviation
anticipating that the complementary coalition will react according to the Nash bar-
gaining solution theory. In other words, the Nash bargaining solution must be in a
form of the core of the underlying cooperative game in the sense that no coalitional
deviation can improve upon it with the expectation of the Nash bargaining solution
behavior of the complementary coalition. We will call this new type of the core for
a cooperative game in strategic form the Nash core. Finally, we will prove that, in
the limit that the probability of negotiation failure goes to zero, a totally efficient
SSPE (uniquely) exists if and only if the Nash bargaining solution is in the Nash
core of the game.?

The notion of the Nash core can be supported by an argument of the consistency
of a cooperative solution (the Nash bargaining solution) as follows. Suppose that a
cooperative solution is accepted as the standard of behavior in a game. Since any
coalition of players can be freely formed, the cooperative solution should be stable
against any coalitional deviation. When some coalition deviates from the solution,
the behavior of the complementary coalition should be governed by the same stan-
dard of behavior. This consistency argument naturally leads to the condition that
the Nash bargaining solution should belong to the Nash core.

The paper is organised as follows. Section 2 provides definitions and notations.
Section 3 presents a noncooperative bargaining model for an n-person cooperative
game in strategic-form. Section 4 states the main theorems. Section 5 proves the
results. Section 6 concludes the paper.

2 Definitions and Notations

We start with several notations. For a finite set N with n elements, let R denote
the n-dimensional Euclidean space with coordinates indexed by the elements of V.
Any point in R" is denoted by x = (;)icn, and also by = (z1, %o, -, T,) when
N is indexed as {1,2,---,n}. Fori € N and x = (x;);ey € R™, _; denotes the
(n — 1)-dimensional vector constructed from x by deleting the i-th coordinate x;
in . The point x is sometimes written as (z;,7_;). For S C N, R® denotes the
subspace of RY spanned by the axes corresponding to elements in S. For a finite
set T', the notation A(T") denotes the set of all probability distributions on 7.

An n-person cooperative game in strategic form is defined by a triplet G =
(N, {A;}ien, {uitien) where N = {1,2,---,n} is the set of players and each A;

4The if-part is proved under a technical condition.
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(i € N) is a finite set of player ’s actions.” The Cartesian product A = [I;ey A; is
the set of all action profiles a = (ay, - - -, a,,) for n players. Player i’s payoff function
u; is a real-valued function on A. A probability distribution on A; is called a mixed
action for player 7. A subset S of N is called a coalition of players. For a coalition
S, let Ag = IT;csA; be the set of action profiles ag = (a;);cs for all members in S. A
correlated action pg of the coalition S is a probability distribution on Ag. The set of
all correlated actions for the coalition S is given by A(Ag). The idea of a correlated
action is that all members in a coalition choose their actions jointly according to the
corresponding probability distribution. In the cooperative game G, it is assumed
that any coalition S can make an enforceable agreement to employ any correlated
action if all members agree to it.

A coalition structure m =[Sy, -+, Sy, on N is defined by a partition of N, a class
of subsets of N satisfying that NV = S;U---US,, and every two S; and \S; are disjoint.
For a coalition structure 7 = [Sy,---,S,,] on N, an element p™ = (pg,,---,ps,,) in

7" A(As;) is called a correlated action profile for the coalition structure 7. When
a correlated action profile p™ for m = (S, -+, Sp) is employed, each player i € N
obtains the expected payoff

ui(pﬂ) = Z T Z H;'nzlij (a‘Sj) ’ ui(asl7 T aSm) (2'1)

as, GASI asmGAsm

where ps;(as;) (j = 1,---,m) is the probability that the correlated action pg; of
coalition S; assigns to an action profile as, € Ag;. Given a coalition structure
m=(S1,...,Sm) on N, we define

F(G,m) = {(u(p"), - ua(p™)) € RY | p™ € I A(As;) }- (2:2)

F (G, ) represents the set of all expected payoff vectors for n players attained by
correlated action profiles for 7. When 7 consists only of the grand coalition NV, that
is, m = [N], F(G,[N]) is simply denoted by F(G). We call F(G) the feasible set of
the cooperative game G. The feasible set F/(G) represents the set of all expected
payoff vectors of n players when they form the grand coalition N. The set F(G) is
a polyhedral compact convex subset of RV and F(G) D F(G,n) for every coalition
structure 7 on N. We remark that the set F/(G,7) is not necessarily convex.

The upper-right boundary H of the feasible set F/(G) is defined as the set of
points in F(G) undominated (in a weak sense of Pareto) by any point in F(G).
With abuse of notation, we denote the equation of H as [

H(xla"'axn):()

where H is a function on the feasible set F'(G). With no loss of generality, we assume
that H(z) > 0 for all z € F(G). Also, for simplicity of the analysis, we assume:

Assumption 2.1

5In this paper, we will distinguish “action” and “strategy” since we consider a sequential bar-
gaining game in extensive form based on the game G in strategic form.



(i) H is a concave and differentiable function and the first derivatives of H with
respect to xy, - -, x, satisfy

o0H 0H
— <0,---

<0
al‘l

7axn_

(the equality may hold at most at the end points of the upper-right boundary
H).

(ii) F(G) has the full dimension n.

(iii) The strategic-form game G has a Nash equilibrium (in mixed strategies) whose
payoff vector d = (dy,---,d,) € F(G) has the property that the boundary of
the set Fy(G) = {z € F(G) | x; > d; for all i € N}, other than n hyperplanes
z; =d; (i € N), is a subset of H.

The differentiability assumption (i) causes no loss of generality to our results. We
can easily extend our results to the non-differentiable case since the piecewise linear
function of the upper-right boundary H can be made to be the limit of differentiable
functions. The same sign of all the first derivatives g—g implies that the variables x;
and z; are mutually strictly decreasing functions of each other on the upper-right
boundary H. For each i € N, let F_;(G) denote the projection of F(G) over RN~}
For every z_; € F_;(G), we define h;(z_;) = max{z; | (z;,2_;) € F(G)}. By the
assumption (i) and the convexity of F(G), h; is a differential concave function over
F_i(GQ). hi(x_;) is the maximum payoff that player i can receive in the feasible set
F(G) while all other players’ payoffs are fixed at x_;. Assumptions (ii) and (iii)
are technical. The assumption (iii) guarantees that for all + € Fy(G) the point
(hi(x_;), z—;) is located on the upper-right boundary H of F(G).

In the rest of this section, we introduce several notions in cooperative game
theory. Since the classic work of von Neumann and Morgenstern (1944), the charac-
teristic function approach has been employed in cooperative game theory to consider
the problem of coalition formation and payoff distributions. The characteristic func-
tion of a cooperative game assigns to each coalition the set of payoff vectors that the
coalition can “assure” its members. Regarding a strategic-form game, the following
two kinds of characteristic functions have been primarily studied in the literature
(see Aumann 1961 and 1967). A coalition S is said to be a-effective for a payoff
vector z € RV if there is a ps € A(Ag) such that for any py_ 5 € A(Ayx_g), we
have wu;(ps,py—s) > x; for all i € S. Let v*(S) be the set of all payoff vectors for
which S is a-effective. A coalition S is said to be S-effective for x € RY if for any
pv_s € A(Ay_g) there exists a ps € A(Ag) such that w;(ps,pn_s) > x; for all
i € S. Similarly to v*(S), let v°(S) be the set of all payoff vectors for which S is
B-effective. It is easily shown that v®(S) C v?(S) for every S C N. The functions
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v® and v? are called the a-characteristic function and the -characteristic function,
respectively.

Intuitively, v®(S) is the set of all payoff vectors x € R® such that coaltion S can
guarantee all members at least the payoff x, independently of what the members of
the complementary coalition N — S choose to do. On the other hand, v#(S) is the
set of all payoff vectors z € R¥ such that N — S cannot prevent S from getting at
least x. In general, these two sets are different, but for a two-person game and for
an n-person game with transferable utility where side-payments are allowed, they
coincide by the minimax theorem.

The noncooperative approach in this paper yields a payoff distribution closely
related to two standard cooperative solution concepts, the core and the Nash bar-
gaining solution.

Definition 2.1.

1) Let v = v® or v?. A payoff vector z € R" is said to dominate a payoff vector
y y
y € RY with respect to v if there exists some coalition S of N such that
x €v(S)and x; > y; foralli € S

(2) The a-core of a cooperative game G is the set of payoff vectors x € F'(G) which
are not dominated by any other payoff vector in F'(G) with respect to v®. The
[-core of G is the set of payoff vectors x € F(G) which are not dominated by
any other payoff vector in F/(G) with respect to v”.

Definition 2.2. Let Y = (0)ieny € A(N), and dV = (dN)ieny € F(G). A
correlated action b* € A(Ay) of N is called the (asymmetric) Nash bargaining
solution of G if b* is an optimal solution of the maximization problem

max > 0 -loglus(p) — d)]
i=1

subject to (1) p € A(An)
(2) ui(p) > d¥ forall i=1,---,n.

Here, 0V is called the weight vector of players, and dV the disagreement point. The
Nash bargaining solution b* of G with the weight vector ¥ and the disagreement
point dV is denoted by b*(G, 6", dY) whenever the dependency on G, 8~ and d~
should be emphasized. The payoff u(b*) = (u;(b*));en of players generated by the
Nash bargaining solution b* is called the Nash bargaining solution payolff.

In negotiations, the grand coalition N is not always formed. If the members of
a coalition S C N agree to choose a correlated action ps € A(Ag), all remaining
players may continue their negotiations, given the agreement of the correlated action
ps by S. The following game describes negotiations after some coalition is formed.



Definition 2.3. Let GG be an n-person cooperative game in strategic form. For
every coalition S and every correlated action ps € A(Ag) of S, a subgame G(pgs) of
GG is defined to be the same game as GG except that all players in S are bound to
follow the correlated action pg.°

The feasible set F'(G(ps)) of a subgame G(pg) can be defined in the same manner
as the feasible set F'(G) of G. Note that the set of “active” players is N — S in the
subgame G(pg). The model of a subgame G(ps) of G can describe a general situa-
tion where more than one coalitions form. Suppose that several disjoint coalitions
Sti,+++, Sk have been formed and that members in each coalition S; have agreed
to employ some correlated action p’ € A(Ag;). Negotiations among the remaining
players in N — S can be described by the subgame G(ps) where S = S;U---U Sk
and pg is the correlated action of S generated by p', - - -, pF.

Our cooperative solution for a strategic-form game G does not simply specify
a feasible payoff (or a correlated action) for the grand coalition N. Rather, it is
a payoff configuration, which specifies for every coalition S of N a feasible payoff
of S.” Since the feasible payoff for the coalition S depends on a correlated action
of the complementary coalition N — S in our set-up of a strategic-form game G, a
payoff configuration specifies for every coalition S and every correlated action pV—*
of the complementary coalition N — S a feasible payoff of S. Formally, a payoff
configuration of GG is defined as a function ¢ which assigns for every coalition 7" and
every correlated action pr of T an element ¢(pr) in the feasible set F(G(pr)) of
the subgame G(pr) (Put S = N — T in the discussion above). In the next section,
we will see that a payoff configuration of G' can be naturally derived by a strategy
profile for a noncooperative bargaining model in G.

We extend the Nash bargaining solution of GG to a solution configuration of G.
Let 6 be a function assigning to each S C N a weight vector #° € A(S) of members
in S. We call 0 the weight configuration of N. Let d be a function assigning to every
correlated action pg € A(Ag) of every coalition S a point d(pg) in the feasible set
F(G(ps)) of the subgame G(ps). The point d(ps) is interpreted as a diagreement
point for negotiations among members in the complementary coalition N — S, given
that the coalition S employs the correlated action pg. We call d the disagreement
configuration of G.

Definition 2.4. The Nash bargaining solution configuration b* of G with a weight
configuration € of N and a disagreement configuration d is a function which assigns

6Here we should not confuse a subgame of G with the standard notion of a subgame in an
extensive-form game, although it turns out that every subgame of G naturally corresponds to a
subgame of a noncooperative bargaining model in extensive form introduced in Section 3.

"The formulation of a cooperative solution as a payoff configuration is employed in the ax-
iomatization of the Harsanyi value for a cooperative game with non-transferable utility by Hart
(1985).



to every correlated action pg of every coalition S the Nash bargaining solution
b*(ps) = b*(G(ps), 0N, dN~5) of the subgame G(ps).2 The payoff configuration of
G generated by b* is called the Nash bargaining solution payoff configuration.

The characteristic function, which prescribes what a coalition can achieve by
itself, has played a central role in cooperative game theory since von Neumann and
Morgenstern (1944). A characteristic function of a strategic-form game assumes a
certain behavior of a coalition S and the complementary coalition N — S. In the
a-characteristic function, a coalition S, in attempting to improve its position, must
take into account all strategic possibility open to the complemetary coalition N —S.
In the literature (Scarf 1971, for example), it has been critisized that a coalition S
excessively considers threats by the members in N — S which may be harmful to
themselves. Alternatively, one can argue that a counter-action of the complementary
coalition N — S should be consistent with the members’ utility maximizing behavior.
From this point of view, by using the Nash bargaining solution configuration, we
define a new notion of effectiveness for a cooperative game in strategic form, which
is weaker than the a-effectiveness.

Definition 2.5. Let b* be the Nash bargaining solution configuration of a cooper-
ative game G with a weight configuration 6 and a disagreement configuration d.

(i) A coalition S C N is said to be Nash-effective for a payoff vector z € R™ if
there exists some pg € A(A%) such that

Ui(ps,b*(ps)) >qx; forall i€ S (23)

where b*(ps) = b*(G(ps), 0V =°,dV~9) is the Nash bargaining solution of the
subgame G(pg) of G assigned by b* under 6 and d.

(ii) The Nash characteristic function v*" of G is a function that assigns to each

coalition S C N the set, denoted by vV2"(S), of all payoff vectors in R™ for
which S is Nash-effective.

(iii) The Nash core of G is the core of G with respect to the Nash characteristic
function vNesh,

The Nash-effectiveness is based on the following idea. When a coalition S chooses
a correlated action pg, it should consider a counter-action of the complementary
coalition NV — S which is consistent with its members’ payoff maximization. In other
words, the coalition S should consider only credible threats by the complementary
coalition NV — S. A question remains: what is the outcome of the payoff-maximizing

8For notational simplicity, we use the same symbol b* for the Nash bargaining solution configu-
lation as the Nash bargaining solution of a subgame G(pS).



behavior of N — S?7 Since the members in N — S can negotiate about their cor-
related action, it is reasonable to assume that the members in the complementary
coalition N — S agree to choose the Nash bargaining solution of their own negoti-
ation problem described by the subgame G(pg), given that the coalition S chooses
the correlated action pg. It is easily seen that the Nash-effectiveness is weaker than
the a-effectiveness. The [-effectiveness assumes coalitional behavior different from
those in the a-effectiveness and the Nash-effectiveness. It is as if the coalition S
forces the complementary coalition N — S to move first, and then responds (Scarf
1971).

Without specifying a noncooperative bargaining model, it is hard to decide which
notion of effectiveness is appropriate for the analysis of cooperation in a strategic-
form game. In the next section, we will present a noncooperative sequential bargain-
ing model and will show that the Nash-effectiveness can be justified by a subgame
perfect equilibrium of the bargaining model.

3 A Noncooperative Bargaining Model

The bargaining model of an n-person cooperative game G in strategic form is divided
into two phases, (i) negotiations for coalition formation and (ii) choosing actions.
The negotiation phase consists of a (possibly) infinite sequence of bargaining rounds.
After the negotiation phase, the model has the phase of choosing actions in which
all members in coalitions are bound to follow their agreed-upon correlated actions
and the remaining players outside coalitions choose their individual (mixed) strate-
gies independently. Let # be a weight configuration of N. The precise rule of the
bargaining model is given below.

(I) negotiation phase:

The negotiation phase has a (possibly) infinite bargaining rounds ¢ (= 1,2, - - ).
Let N; be the set of all “active” players who do not belong to any coalitions in round
t. In the initial round, we put N; = N. The sequence of moves is as follows.

(1) In the beginning of each round ¢, every player i € NN, is randomly selected as
a proposer according to the probability distribution §(NV;) € A(N;) which the
weight configuration # assigns to NV;.

(2) The selected player i proposes a coalition S with i € S C IV; and a correlated
action pg € A(Ag) of S.

(3) All other members in S either accept or reject the proposal sequentially ac-
cording to a predetermined order over N;. The order of responders do not
affect the result in any critical way.
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(4) If all responders accept the proposal (S, pg), then it is agreed upon and be-
comes binding. Then, negotiation goes to the next round ¢ + 1 with N'*! =
N' — S. The same process as above is repeated in round ¢ 4+ 1 with the prob-
ability distribution M+t € A(Nyy ).

(5) If any one responder rejects the proposal, then two events may happen. With
probability 1 — & (¢ > 0), negotiations continue in the next round ¢ + 1 with
Nt = N' under the same rule as in round ¢. With probability &, negotitations
break down and the game goes to the next phase of choosing actions.

(6) The negotiation process ends when every player in N joins some coalition, and
the game goes to the phase of choosing actions.

(IT) choosing action phase:
In this phase, all players in NV choose their own actions, depending on the outcome
of the negotiation phase. There are three possible cases.

(1) When agreements (S1,ps,), -, (Sm,Ps,,) with S;U---US,,, = N and pg, €
A(S;) (i = 1,---,m) are reached, the agreed-upon correlated actions pg,, - - -, ps,,
are played.

(2) When negotiations do not stop, all players ¢ who do not join any coalitions
choose their individual (mixed) strategies p; € A(A4;) independently.® The
other players, who join some coalitions, play their agreed-upon correlated ac-
tions.

(3) When negotiations break down in some round after a proposal is rejected, the
same rule as (2) is applied.

The bargaining model above is denoted by I'*Y. Formally, I'*? is represented as an
infinite-length extensive game with perfect information, that is, all players know all
past actions of the game when they make their choices. We also use a notation
I'? to describe the bargaining model where the probability € of negotiation failure
converges to zero.

A (behavior) strategy for player i in I'*? is defined according to the standard
theory of extensive games. Let h! be a history of the game ' when player i has a
turn to move in round ¢ of the negotiation phase. The history h! is represented by
a sequence of all past actions in I'*Y before playre i’s move in round ¢. Specifically,
it describes who were proposers in all past rounds and how players responded to all
past proposals.’® Similarly, let h be a whole history of the negotiation phase when
the action phase starts. Roughly, a strategy s; of player i in ['*? is a function which

9Note that the probability of this event is zero as long as the probability € that negotiations
break down after a proposal is rejected is positive.

1When player i is a responder in round ¢, the proposer and all responses before player i in round
t are included in ht.
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assigns her action s;(h) to every possible history h = h! or h. Specifically, player i’s
action s;(h), h = ht or h, is given as follows.

(i) When player i is a proposer in round ¢, s;(hf) is a probability distribution (with
a finite support'') on the set of all possible proposals (S, ps) with : € S C N; and
ps € A(As),

(ii) When player i is a responder in round ¢, s;(hf) is a probability distribution over
{accept, reject},

(iii) When the action phase starts and player i does not belong to any coalition in the
negotiation phase, s;(h) is player i’s mixed action in A(A;). When player i belongs
to some coalition, she follows the agreed-upon correlated action in the action phase.

Let P denote the set of all correlated action profiles p™ for all coalition structures
7 of N. For a strategy profile s = (s,---,s,) of players in ', a probability
distribution g on P (with a finite support) is determined. Then, player i’s expected
payoff for a strategy profile s is given by

Bui(s) = [ (o) (3.4)

where u;(p™) is the expected payoff of player i for a correlated action profile p™
defined by (2.1). In what follows, the expected payoff Eu;(s) is denoted by wu;(s)
with abuse of notations, and expected payoff is simply called payoff, whenever no
confusion arises. We remark that the expected payoff vector (ui(s),---,un(s)) for
every strategy profile s in =Y belongs to the feasible set F'(G) of G.

For every correlated action pg of every coalition S, let I'*?(pg) be the subgame of
the extensive game I'*? which starts after the agreement (S, ps) has been reached.
For notational convenience, we set ['*Y(ps) = I'*Y when S is an empty set (). In
the same way as (3.4), a strategy profile s = (s, -, s,) of players in T*? generates
the expected payoff vector for players in the subgame I'*?(pg), which is an element
of the feasible set F'(G(ps)) of the game G(pg). In this way, a strategy profile
s = (s1,-++,5,) in I'*? naturally generates a payoff configuration of the cooperative
game G.

The solution concept that we apply to the bargaining model I'*Y is a stationary
subgame perfect equilibrium.

Definition 3.1. A strategy combination s* = (s¥,-- -, s*) of the game I'*? is called a

’ n
stationary subgame perfect equilibrium (SSPE) if s* is a subgame perfect equilibrium
of =% where every player 4’s strategy s! is stationary to satisfy the property that
the action sf(h) prescribed by s to any history h depends only on the collection

of agreements, (Si,ps, ), -, (Sm,Ps,, ) which have been reached on h.'> The payoff

HThe assumption of the finite support does not affect the result at all since any probability
mixture, with finite or infinite support, of correlated actions pg of S can be reduced to a single
correlated action of S.

12Precisely speaking, when player ¢ is a responder, his response surely depends on a current
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(configuration) generated by an SSPE is called an SSPE payoff (configuration).

Agreements by coalitions compose a payoff-relevant history of negotiations in
the sense that they determine the payoff structure in the future negotiations among
the players outside coalitions. The SSPE requires that every player’s action should
depend only on such a payoff-relevant history. It, however, should be emphasized
that deviations from the equilibrium are allowed to be non-stationary. In the context
of negotiations, it implies forgiveness - “let bygones be bygones.” Players do not treat
one another unfavorably even if they were treated so in past rounds of negotiations.

It is well-known that in a broad class of Rubinstein-type sequential multilateral
bargaining games including our model I'**Y, there is a large multiplicity of subgame
perfect equilibria when the discount rate of future payoffs or the probability of break-
down in negotiations is very small (see Sutton 1986 and Osborne and Rubinstein
1990 for this result). The multiplicity of subgame perfect equilibria holds even in
the n-person pure bargaining game where no subcoalitions are allowed. Mainly, by
this reason, the concept of an SSPE is employed in almost every literature of non-
cooperative multilateral bargaining model (see Baron and Ferejohn 1989, Perry and
Reny 1994, Chatterjee et al. 1993, Okada 1996 and 2000, Okada and Winter 2002,
Winter 1996 among others). One possible justification for an SSPE is a focal-point
argument. It is the simplest type of subgame perfect equilibrium and thus it may
be easier for players to coordinate their mutual expectations on it (see Baron and
Kalai 1993 and Chatterjee and Sabourian 2000 on this line of research). The SSPE
is a natural reference point of the analysis in multilateral bargaining models.

In the literature of the equilibrium selection in noncooperative games, the SSPE
is equivalent to the subgame perfect equilibrium satisfying subgame consistency in-
troduced by Harsanyi and Selten (1989). The subgame consistency in general exten-
sive games requires that every player should behave in the same way across “isomor-
phic” subgames. In the context of our bargaining game I'*?, all subgames starting
from the beginning of all rounds can be considered isomorphic as long as the same
collections of agreements have been reached before, since they have identical game
trees in such a case. Also, an SSPE can be reformulated as a Markov-perfect equi-
librium (Fudenberg and Tirole 1991) of I'*? by taking the collection of agreements
reached in past negotiations as a payoff-relevant state variable at each round.

The bargaining game 'Y may suffer from two kinds of inefficiency. The first
kind of inefficiency is that a proposal is rejected and negotiations break down with
a positive probability. The breakdown of negotiations typically results in an ineffi-
cient outcome. The second kind of inefficiency is the failure of the grand coalition
N. It is known that the first kind of inefficiency may occur in the noncooperative
multilateral bargaining game where an initial proposer is determined according to a
fixed order over the player set and the first rejector becomes the next proposer just
like the Rubinstein’s two-person alternating-offers model (Chatterjee et al. 1993).

proposal and may depend on who a proposer is and on how responders preceding to him have
behaved in the same round.
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When utility is transferable, Okada (1996) proves that this is not the case in the non-
cooperative bargaining game where proposers are chosen randomly in every round.
In the next section, it will be shown that this result can be extended to the case of
non-transferable utility. Specifically, we will prove that in every SSPE of I'*?, every
player’s proposal is accepted in the first round. This enables us to focus the problem
of inefficiency caused by the formation of subcoalitions.

Definition 3.2.

(i) An SSPE s of I'*? is called efficient if the grand coalition N is formed in the
initial round of the negotiation phase, independent of a proposer.

(i) An SSPE s of I'*? is called totally efficient if the coalition of all active players
(if any) are formed in every round of the negotiation phase, independent of
history.

(iii) A limit efficient SSPE of I'? is defined to be a limit of efficient SSPEs of '+
as € goes to zero. A limit totally efficient SSPE of 'Y is defined to be a limit
of totally efficient SSPEs of T'*? as ¢ goes to zero.

In an efficient SSPE, the grand coalition N is formed in the initial round of nego-
tiations on equilibrium path. A totally efficient SSPE has a stronger property that
the coalition of all active players is formed not only on equilibrium path but also
off equilibrium path. In other words, the totally efficient SSPE of I'* induces an
efficient SSPE on a subgame I'*?(pg) of I'>Y for every correlated action pg of every
coalition S, independent of whether it is reached by the equilibrium path or not.
Obviously, a totally efficient SSPE of I'*? is an efficient SSPE.

4 Theorems

The aim of our analysis is to characterize a limit totally efficient SSPE in the bar-
gaining game I'Y. In this section, we will state the main theorems. All proofs are
given in the next section. The following proposition is useful to our analysis.

Proposition 4.1. (No delay) Let s* be an SSPE of T'®. Then, for every i € N,
player i’s proposal is accepted in the initial round of the negotiation phase in s*.

The proposition shows that there is no delay of agreement in the bargaining game
=Y. That is, some agreement of coalition is reached immediately on equilibrium
path. The bargaining rule of I'®? that a proposer is selected randomly in every
round is critical to this result. Under the other rule that the first rejector becomes
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the next proposer, the proposition does not hold (see Chatterjee et al. 1993 and
Okada 1996). We, however, remark that the agreed-upon coalition is not necessarily
efficient.

We are now ready to state the main theorems in the paper.

Theorem 4.1. Let v = (v1,---,v,) be a limit efficient SSPE payoff of I'’. Let OV
be the weight vector for N assigned by the weight configuration #. Then, v is the
Nash bargaining solution payoff of the cooperative game G with the weight vector
0" and a disagreement point d = (dy, - - -, d,) which is a Nash equilibrium payoff of
G.

The theoorem shows that when the probability ¢ of negotiation failure is suffi-
ciently small, players agree to the Nash bargaining solution in an efficient SSPE of
I'*?. Two remarks are in order. First, the disagreement point of the Nash bargaining
solution is given by a Nash equilibrium in the strategic-form game GG. Unlike Nash’s
(1953) optimal threat model, our bargaining model I'* (and I'’) does not allow
players to commit themselves to incredible threats which will be implemented when
negotiations fail. The SSPE of I'* prescribes that players should play a Nash equi-
librium of G when negotiations break down. Secondly, the theorem shows that the
weights of players for the Nash bargaining solution is endogenously determined by
the probability distribution to select a proposer in the bargaining game. The more
likely a player is selected as a proposer, the greater bargaining power she obtains.

With help of Theorem 4.1, we are going to characterize a limit totally efficient
SSPE of I'?. By definition, a totally efficient SSPE of I'? induces a totally efficient
SSPE of every subgame T'(pg) of it which starts after a coalition S agree to play
a correlated action pg. In other words, the members of the coalition S should
anticipate the totally efficient SSPE behavior of the complementary coalition. This
observation naturally leads to the notions of the Nash effectiveness and thus of the
Nash core (Definition 2.5). A limit totally efficient SSPE payoff of I'? is in the Nash
core. If not, there exists some coalition S of which members can improve upon
their SSPE payoffs by employing some correlated action. Every member of S has an
incentive to propose such a coalitional deviation (when selected as a proposer) since
all other members of S accept it. This contradicts the SSPE property. The Nash
bargaining solution configuration which defines the Nash core has the disagreement
configuration d satisfying the following property:

(A) For every correlated action pg € A(Ag) of every coalition S, the disagreement
configuration d of G assigns a Nash equilibrium payoff of the subgame G(ps)
of G.

Theorem 4.2. Let ¢* be the payoff configuration generated by a limit totally
efficient SSPE s* of I'Y. Then
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(i) ¢* is the Nash bargaining solution payoff configuration which has the weight
configuration # and a disgareement point configuration d satisfyng (A), and

(ii) for every S C N and every ps € A(Ag), the payoff ¢*(ps) € F(G(ps)) assigned
by ¢* belongs to the Nash core of the subgame G/(pgs) defined by the Nash bargaining
solution configuration with # and d.

It follows from Theorem 4.2 that when the breakdown probability ¢ of negotiation
is very small, a totally efficient SSPE payoff is the Nash bargaining solution payoff
with the weight vector # and moreover that it belongs to the Nash core of G. Since
the totally efficient SSPE of I'®Y has the subgame property that it induces a totally
efficient SSPE on every subgame I'*?(pg) of I'®?, the property above of the totally
efficient SSPE payoff should be true on every subgame I'*?(pg).

To understand the condition (ii) of Theorem 4.2, we discuss what the condi-
tion means in the special case of a transferable utility game (V,v) in characteristic
function form where the characteristic function v assigns a real value v(S) to ev-
ery coalition S of N. For a coalition S, a restriction of v on S is denoted by vg.
Our notion of a subgame G(py_s) of G corresponds to a transferable utility game
(S,vg) with player set S. The (symmetric) Nash bargaining solution of (S, vg) with
the disagreement point v({i}) = 0 for all i € S is given by the equal payoff vector
(1/|S],---,1/|S|) where |S| denotes the number of members in S. Since the value
v(S) of coalition S is independent of the action by the complementary coalition
N — S, the Nash core of the game (S,vg) is equal to the usual core. Therefore,
the Nash bargaining solution (1/]S/|,---,1/|S]|) belongs to the core of (S, vg) if and
only if v(S)/|S| > v(T')/|T| for all subcoalitions T" of S. For the equal weights, the
condition (ii) of Theorem 4.2 is reduced to a simple condition in the transferable
utility game (N, v): v(S)/|S| > v(T)/|T| for all two coalitions S and T of N with
T C S. We proved in Okada (1996, Theorem 3) that the two conditions in Theo-
rem 4.2 are equivalent to the existence of a limit totally efficient SSPE of I'? for a
transferable utility game in characteristic function form. The last theorem shows
that the converse of Theorem 4.2 also holds true for a general cooperative game G
in strategic form (under some technical condition).

Theorem 4.3. Let b* be the Nash bargaining solution payoff configuration of a
cooperative game G with a weight configuration 6 and a disgareement configuration
d satisfying (A). If b* satisfies

(B) for every S C N and every ps € A(Ag), the payoff b*(ps) € F(G(ps) assigned
by b* belongs to the interior of the strict Nash core!? of subgame G (pg) relative
to the upper-right boundary of the feasible set F'(G(ps)),

then b* is a payoff configuration generated by a limit totally efficient SSPE of TY.

3 The strict core is defined by the same manner as the core except that the domination requires
that any member of a coalition is never worse-off with at least one member being better-off. When
utility is transferable, the core and the strict core conincide.
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Before we prove the theorems in the next section, we discuss an example of a
three-person game to illustrate our results.

Example 4.1 (a three-person prisoner’s dilemma)

Consider a three-person game G in strategic form given in Figure 4.1. The game
can be interpreted as the prisoner’s dilemma. Every player i (=1, 2, 3) has two
actions, C; (cooperate) and D; (defect). If all players cooperate, all receive payoff
2. If any one of them unilaterally deviate, she receives the highest payoff 6, while
the two other players receive zero payoffs. If any two players jointly deviate, then
they receive payof 3 and the other player receives payoft -2. If all players defect,
they receive payoff 1. Every player ¢ has the dominant action D;, and thus the game
has a unique Nash equilibrium (Dy, Dy, D3). It can be seen that the action profile
(C4, Cy, C3) is the (symmetric) Nash bargaining solution of the cooperative game G
with the disagreement point (Dy, Dy, D3).

Cy D, Cs D,
2 0 0 -2
Cy 2 6 Cy 0 3
0
1
D, 0 3 Dy -2 1
-2
Cs Ds
Figure 4.1 A three-person prisoner’s dilemma game

We will show that the Nash bargaining solution (C}, Cy, C3) is in the Nash core
of the cooperative game (G. Before we construct the Nash characteristic function,
we explain the basic idea behind the Nash core. Suppose that a single player 7, say
© = 3, deviates from the Nash bargaining solution to defect. Then, players 1 and 2
negotiate about how to react to player 3’s deviation. Their strategic possibility is
described by the two-person game G'(; 9} in Figure 4.2. In the game Gy 93, (D1, D3)
is the dominant equilibrium, and thus is a unique disgreement point. Since (D;, D,)
is Pareto efficient in the game Gy 9y, it is trivially the Nash bargaining solution of
G{12y- That is, players 1 and 2 agree to react to player 3’s deviation by (D, Ds).
Then, player 3’s payoff decreases from 3 to 1. Player 3 is worse-off by deviation.
Next, suppose that any two players, say 1 and 2, defect jointly. Then, player 3 reacts
to this coalitional deviation by defecting herself since D3 is her optimal action to
(D1, D). Then, the payoff of both players 1 and 2 decrease from 2 to 1. Players
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1 and 2 are worse-off by the joint deviation. Since no coalition can improve upon
the Nash bargaining solution (C7, Cs, C3), it belongs to the Nash core. In this case,
our result shows that the Nash bargaining solution (C}, Cy, C3) can be supported
by a totally efficient SSPE of the bargaining model I'*? when the probability ¢ of
negotiation failure is sufficiently small.

The Nash characteristic function of the cooperative game G is constructed as
follows. Suppose that player 3 employs any mixed action p3 = (p,1 — p) where p
(0 < p < 1) is the probability to select Cs. Then, by the same argument as above,
players 2 and 3 react to player 1 by employing the Nash bargaining solution (Ds, D3)
of their own bargaining problem. Therefore, the set of the Nash characteristic
function VNe"({3}) for player 3 is given by

yNash(£31) = {wy € R| w3 < 1—3p forsomep, 0 <p<1}.

Since 2 > 1 — 3p for any p (0 < p < 1), player 3 can not improve upon the Nash
bargaining solution (Cy, Cy, C3). The same result holds for i = 1, 2.

Cy Dy
c,[0,0[-23
D [3, 21,1

Figure 4.2 A two-person game G oy between players 1 and 2
when player 3 defects.

Next, suppose that players 1 and 2 jointly employ any correlated action p'? =
(p,q,r,1—p—q—r) where p is the probability assigned to an action profile (C, C5), ¢
the probability assigned to an action profile (Cy, D5), and r the probability assigned
to an action profile (D;,C3). Since player 3 chooses the dominant action Ds, the
set of the Nash characteristic function VN"({1,2}) for players 1 and 2 is given by

VNesk({1,2}) = {(wi,ws) € R*| w1 <1—p+2¢—3r,w,<1—p—3q+2r
for some p,q,r with 0 < p,q,r <1, 0<p+qg+r <1}

It is impossible that both inequalities 1 —p+2¢—3r >2and 1 —p — 3q + 2r > 2
simultaneously hold for some p, ¢ and r with 0 < p+ ¢+ r < 1. Therefore, coalition
{1, 2} can not improve upon the Nash bargaining solution (Ci,C5, C3). The same
result holds for any other two-person coalition.

Finally, we remark that the Nash bargaining solution (C7, Cs, C3) does not belong
to the Nash core if the payoff vector for the action profile (D;.Dy, D3) is changed
from (1, 1, 1) to (-1, -1, -1) in the game G. In the new game, if player 3 defects,
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then players 1 and 2 agree to react by the action profile (C;, Cs), which is the Nash
bargaining solution of their own negotiation problem with the disagreement point
(-1, -1). Then, player 3 obtains the higher payoff 6. This means that player 3 can
improve upon the Nash bargaining solution (Cy,Cs, C5) of G. In the new game,
the Nash bargaining solution (Cy, Cy, C3) can not be supported by a limit totally
efficient SSPE of the bargaining model.

5 Proofs

In this section, we will prove the results with help of several lemmas.

Lemma 5.1. Let s* = (s,---,5) be an SSPE of I'*Y, and let ¢* = (¢},---, ") be
a mixed action profile of G which is played by s* in the choosing action phase when
no agreements have been reached in the negotiation phase. Then ¢* must be a Nash

equilibrium of G.

Proof. When no agreements have been reached in the negotiation phase, all n play-
ers select their actions independently in the choosing action phase, and thereafter
the whole bargaining process of I'*? ends. This rule of I'** implies that the subgame
perfect equilibrium s* of I'>? must prescribe a Nash equilibrium of G in the choosing
action phase when no agreements have been reached. Q.E.D.

In what follows, we fix the Nash equilibrium ¢* = (¢f,---,¢}) of G given by an
SSPE s* in case of no agreements, and assume that ¢* satisfies Assumption 2.1.(iii).
We denote the expected payoffs of players for ¢* by d = (dy,---,d,). It will be
shown that d = (dy,---,d,) becomes the disagreement point of the Nash bargaining
solution when all players are active in negotiations. When the grand coalition N is
formed in s*, it holds that the SSPE payoff v = (vy,---,v,) of s* satisfies v; > d;
for all i € N (if v; < d; for some i, i will obtain the expected payoff (1 — &)v; + £d;
higher than v; by rejecting the proposal). If d is a Pareto-efficient point of F(G),
then v = d must hold. In this case, the efficient SSPE of I'**? is characterised trivially
such that every player obtains the disagreement payoff d on the equilibrium play of
s*, independent of whether or not an agreement is reached. Therefore, without loss
of generality, we can assume:

Assumption 5.1. The disagreement payoff d in an SSPE s* of I'*? is Pareto-
inefficient in the feasible set F'(G) of G.

The following lemma proves Proposition 4.1 which shows no delay of agreement
in every SSPE of '’
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Lemma 5.2. In every SSPE s* = (s%,---,s%) of ['*?, every player’s proposal is

accepted in the initial round of the negotiation phase.

Proof. Let v = (vq,---,v,) be the expected payoffs of players for s*, and let F(G)
be the feasible set of G. We note that v € F(G) since F(G) is convex and v is a
convex combination of a finite number of points in F(G). By Assumption 5.1, there
exists some y = (y1,- -+, ¥y,) in F(G) such that y; > d; for all i € N. Since y and v
are in the convex set F'(G), it holds (1 — e)v +ey € F(G) for any € with 0 < e < 1.
Then, select p" € A(AN) such that u;(p") = (1 — ¢)v; + ey; for all j € N. Since
y; > d; for any j, we have

uj(p") > (1 —e)v; +ed; forall j € N. (5.5)

Suppose that every player i proposes (N,p"). Since s* is an SSPE of 'Y the
right-hand side of (5.5) is the expected payoff that player j(## i) can obtain by
rejecting the proposal (IV,p"). (5.5) implies that every player i’s proposal (NN, p")
is accepted by all other players. This fact implies that player i’s equilibrium proposal
(not necessarily equal to (N, p")) must be accepted on equilibrium play of the SSPE
s*. Q.E.D.

Lemma 5.3. Let s* = (s},---,5") be an efficient SSPE of I'*? v = (vy,--+,v,) the

’en

expected payoffs of players for s*, and d = (dy,---,d,) the disagreement payoff of
s*. In s*, every player ¢ € N initially proposes a pair (N, p;) where p' € A(AV) is
the optimal solution of the maximization problem

max  u;(p) (5.6)
subject to (1) p € A(AY)
(2) uj(p) > (1 —e)vj+ed; forallje N, j#i.

Moreover, the proposal (N, p') is accepted.

Proof. Let ¢; = (1 —¢)v; +ed; denote the RHS of the second constraint in (5.6). If
responder j is offered more than ¢, then it is optimal for her to accept the proposal.
(5.6) can be reformulated as

max  h;(x_;)
subject to (1) x_; € F_;(Q)
(2) zj>¢; foralljeN, j#i
Recall that h;(x_;) = max{z; | (z;,z_;) € F(G)}. The function h; is continuous
from Assumption 2.1(i). Let z*, € RVN~{i} be the optimal solution of the problem

above. Tt must hold from Assumptions 2.1.(ii) and (iii) that z} = ¢; for all j # .
For any £ > 0, (¢f)jen is an interior point of the feasible set F'(G) (note that v; > d;
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for all j € N). Then, it holds from the continuity of h; that for any sufficiently small
§; > 0, there exists §; > 0 for all j # i such that h;(z*; +d_;) > h;(z*;) — §; where
d_; = (0;) ;- This inequality means that if player i proposes the grand coalition N
and the correlated action attaining payoffs (z*, + 0 ;, hy(z*; + ¢_;)), this proposal
is accepted and thus player i can obtain more than h;(z*;) — 6;. Since §; > 0 can
be chosen arbitrarily small, we can show that player ¢ proposes the optimal solution
p' of (4.6) in the efficient SSPE s* of I'*?. Lemma 5.1 shows that the proposal is
accepted. Q.E.D.

Lemmata 5.2 and 5.3 characterize the equilibrium proposal of every player in an
efficient SSPE of I'*?. We note that the optimal solution of the maximization prob-
lem in Lemma 5.3 gives only a necessary condition for the efficient SSPE proposal
for every player ¢ since the optimality of proposing the grand coalition N is not
examined. Since player ¢ can propose any subcoalition S of N, we must guarantee
that the grand coalition N is actually the optimal proposal. This will be done in
Theorem 4.2 where the Nash core plays an important role. Before going to the
proof of Theorem 4.2, we will prove that the maximization problem in Lemma 5.3
characterizes the asymmetric Nash bargaining solution of G' as the probability ¢ of
negotiation failure goes to zero.

Lemma 5.4. Let v = (vy,---,v,) be a limit of efficient SSPE payoffs v* =

(v%, -+, v5) of I as e goes to zero. Then,
v — d1 oOH Up — dn oOH
() = — . 2.7
FRE v (v) 0 o (v) (5.7)
H(v)=0 (5.8)
where # = (y,---,6,) is the probability distribution which selects a proposer from

the player set N, and d = (dy, - - -, d,) is the disagreement payoff of an efficient SSPE
in =Y (independent of ¢).

Proof. Let 7 denote the payoff that every player : € N demands for herself in the
initial round of the negotiation phase when the efficient SSPE of I'*? is played. By
Lemma 5.3, we can show that for every 1 € N

H((1—e)v] +edy, -, a5,-+-, (1 —e)v; +&d,) = 0. (5.9)
Also, by Lemma 5.3 and the definition of v¢, we can obtain

vi =027 + (1 —6,)[(1 —e)v; +ed;], forall i=1,---,n. (5.10)
For each 7 € N, define 25* € F(G) as

20 = (1= )0+ 2dyy o2, o, (1 — )05 + 2dy). (5.11)

79
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25" is the payoff vector proposed by player i in the initial round of the negotiation
phase in the efficient SSPE s° of I'**Y. For any 4, j € N(i # j), we have from (5.9)

H(z%") — H(z%7) = 0.
By Taylor’s theorem, there exsits some A, 0 < A < 1, such that

0 = H(z") — H(*)

= [z —(1—¢e)v; —edy]- gf()\z“ + (1 — N\)z")
OH , .
+[(1 = e)vj +ed; — 5] - 87()\2” + (1 —X)z™). (5.12)
J

(5.10) yields

1
75— (1= )0 —di = o-[of — (1 =€)} —ed] = —(v] = dy). (5.13)
By substituting (5.13) into (5.12), we can prove
v; —d; OH - . vi—d; OH , ,
L (A 4 (1= A)2) = L2 — (A2 + (1 — \)2*). 5.14
g (=) = BB ).

By assumption, we have lim._,o v® = v, which implies from (5.10) that lim. o 25 = v;
for all 7 . Thus, it follows from (5.11) that

limv® = lim 2! = - - = lim ™" = v. (5.15)
e—0 e—0 e—0

We can prove (5.7) from (5.14) and (5.15), and can prove (5.8) from (5.9) and (5.15).
Q.E.D.

In view of (5.9) and (5.10), the efficient SSPE payoffs v® = (v5, -, v) of T is
characterized as a solution of

v = 91 . hz((]- — S)Uii + n‘:d_i) + (]. — 91) : {(]_ — 8)1);-3 + Sdz} for all z € N(516)

2

(5.16) is called the equilibrium equation of the efficient SSPE payoffs of I'**Y.
We are now ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. The maximization problem in Definition 2.2 is reformu-
lated as

max, E?:l Hl . IOg(l’l — dz)
subject to (1) H(z1, -, 2,) >0
(2) Z; Z dz for all 7€ N.
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By Assumption 5.1, the optimal solution z* = (27, - -, 2%) € RY satisfies H(z},---,

’'n

0 and zj > d; for all « € N. Therefore, the Kuhn-Tucker condition gives

0; oH
= )=0, i=1,---
.’I/';k _ dl axz (.'L' ) Y ? Y 7n
H(z*)=0
where A is the Lagrange multiplier. From the concavity of H(zy,---,x,) and As-

sumption 5.1, x* is the optimal solution of the maximization problem if and only if
x* satisfies the Kuhn-Tucker condition. Together with this fact, Lemma 5.4 proves
the theorem. Q.E.D.

Proof of Theorem 4.2. Let ¢* be the payoff configuration of I'’ generated by a
limit totally efficient SSPE s* = (s7,---,s%). Let s* = (s5, - -, s5) be totally efficient
SSPEs of I'*Y which converges to s* = (s%,---,5") as € goes to zero. By the same
proof as Lemma 5.1, we can show that for every correlated action pg € A(AS) of
every coalition S, s induces a Nash equilibrium of the subgame G(pg) of G when
negotiations break down among all players in N — S. Let d(ps) denote the payoffs
of such a Nash equilibrium, and let d denote the disagreement configuration of G
which assigns d(ps) to every subgame G(ps) of G. Let '*?(pg) denote a subgame
of T'=Y which starts after agreement (S, ps) is reached. By applying Theorem 4.1 to
every subgame I'*?(pg), we can show that the payoff configuration 1* satisfies (i).

*

We will next prove (ii). Let z* = (z%,---,2%) € RN be the payoff vector which
the payoff configuration ¢* assignes to the game (G. For notational simplicity, we
will prove only that z* belongs to the Nash core of G defined by the Nash bargaining
solution configuration b* with # and d. The same proof can be easily applied to the
payoff vector ¢*(ps) which the payoff configuration ¢* assignes to every correlated
action pg of every S. Suppose that z* does not belong to the Nash core of G. By
the definition of the Nash core, there exists some coalition T C N and some payoff

vector y € vVN%"(T) such that

y; >x; forall ieT, (5.17)

where vV%" is the Nash characteristic function (see Definition 2.5). By the definition

of vNVash | the fact that y € vV"(T') means that there exists some correlated action
pr € A(AT) of T such that

uz-(pT,b*(pT)) > Y forall i€T (518)

where b*(pr) is the Nash bargaining solution of the subgame G(pr). Let ¢°(pr) be
the correlated action employed by the complementary coalition N — 7T in the totally
efficient SSPE s° of I'*Y after py is agreed by the coalition T. By Theorem 4.1, we
can show that

lim 6% (ps) = b" (ps)- (5.19)
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Let 2° = (af,- -+, %) be the payoff vector of the totally efficient SSPE s°. Then,

’'n

limz® = ™. (5.20)

e—0

In view of (5.17), (5.18), (5.19) and (5.20), it holds that for sufficiently small £ > 0
wi(pr, ¢°(pr)) > x; forall ¢e€T. (5.21)

Now, suppose that player i € T deviates from s° and proposes (T, pr). If it is agreed
upon, then all responders j in T receive the payoff u;(ps, ¢°(pr)) since thereafter
the complementay coalition N — S reacts to S by choosing ¢°(pr). If the proposal
(S,ps) is rejected, they receive the continuation payoff (1 — €)a5 + ed;, which is
smaller than x5 (note that x5 > d;). From (5.21), it is optimal for all responders in
T to accept (T, pr). Therefore, on the equilibrium play of s°, the proposal (T, pr) is
agreed and the proposer i is better-off. This contradicts that s° is an SSPE of I'**’.
Q.ED.

To prove Theorem 4.3, we first establish that there exists a solution for the
equilibrium equation (5.16) of the efficient SSPE of I'*Y by the Brouwer’s fixed
point theorem.

Lemma 5.5 Let v = (vy,---,v,) be the Nash bargaining solution payoffs of G with
the weight vector 6 = (0y,---,0,) and the disagreement point d = (dy,---,d,). For
any sufficiently small ¢ > 0, there exists a solution v* = (v$);eny € F(G) of (5.16)
such that v® converges to v as € goes to zero.

Proof. Let F* = {x € F(G) | x; > d; for all i € N}. For every x € F* and every
1 € N, define

g (x)=0;-h(1—e)x_;+ed )+ (1—0;)-{(1 —e)x; +ed;}. (5.22)

It can be proved that ¢°(z) = (¢5(x), -+, g5(x)) is a continuous function from the
compact convex subset F* of R™ to itself. Then, by Brouwer’s fixed point theorem,
there exists a fixed point v® € F* of ¢° satisfying (5.16). Since F* is a compact
set, there exists some converging subsequence of {v°}. Take any such subsequence
of {v°}. Let v denote its limit. By the same proof as in Theorem 4.1 (and Lemma

5.4), we can prove o = v. This implies that the sequence {v°} itself has the limit o.
Q.E.D.

Let b* be the Nash bargaining solution payoff configulation of G. By applying
the same proof as Lemma 5.5 to every subgame G(ps) of G, we can show that there
exists a solution for the equilibrium equation of an efficient SSPE of the subgame
I'=%(ps) of T=Y. Let v*(ps) denote the solution. Lemma 5.5 also shows that v¢(ps)
converges to the Nash bargaining solution payoff b*(pg) of G(ps).
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Proof of Theorem 4.3 Let d be a disagreement configuration of G satisfying (A).
For every correlated action ps € A(A®) of every coalition S, let d(ps) € F(G(ps))
denote the disagreement point which the configuration d assigns to the subgame
G(ps) of G. With abuse of notation, we also denote by d = (dy,---,d,) the dis-
agreement point in G assigned by the disagreement configuration d.

Define every player i’s strategy s¢ in ['*? as follows.

(1) When no coalition forms,

(i) propose the grand coalition N and the correlated action yielding the payoff
vector in (5.11)

ZE’i = (hz((]_ — €)Uii + 6d—i)a (]_ — S)Ua_i + Sd_i),

where v* = (v§);ey € F(G) is a solution of the equilibrium equation
(4.16) (of which existence is proved in Lemma 5.5).

(ii) accept any proposal yielding a payoff not less than (1 — e)vf + 2d;,

(iii) employ the Nash equilibrium of G given by the disagreement configura-
tion d when negotiations break down.

(2) When some coalition S forms and some correlated action ps € A(A®) of S is
agreed, the strategy s: is defined by the same way as above except that N
and v° are replaced with N — S and v°(pg), respectively. When more than
one coalition form, s} is defined in a similar way by taking S as the union of
coalitions.

€

Let ¢° be the payoff configuration generated by the strategy profile s* = (s5,-- -, s%)
constructed above. Since v®(pg) is a solution for the equilibrium equation of an
efficient SSPE of I'*?(pg) for every ps € A(Ag), we can show that ¢°(ps) = v°(ps),
and that ¢°(ps) converges to the Nash bargaining solution payoff v*(ps) of G(ps)
with 6 and d when € goes to zero.

What remains to be proved is that the strategy profile s = (s7,---,s%) is an
SSPE of I'*?(ps). For this purpose, it is sufficient to prove that player i’s proposal
25" is optimal given s°. For each j € N, let z]“ denote the j-th vector of player ’s
proposal z%*, that is,

20 = hi((1 — &), +ed_y), z;s = (1 —e)vj +edj, j#1.
Since the disagreement point d = (dy, - - -, d,) of G is an interior point of F'(G) from
Assumption 5.1, (1 — €)v® + &d is also an interior point of F/(G) (note that F(G) is
a convex set of RV). This implies that h;((1 —&)v®, +ed_;) > (1 — &)vf + &d; for
every i € N. Then, it follows from (5.16) that 2/ < v < 2 for any j # i. Also,
we can see from Lemma 5.5 that v® and every 2z converge to the Nash bargaining
solution payoffs v of G with the weights # = (6,,---,0,) and the disagreement point

25



d = (dy,---,d,) as € goes to zero. Since v belongs to the interior (relative to the
upper-right boundary H of the feasible set F'(G)) of the strict Nash core of G and
25" belongs to the boundary H, we can see that 2*' also belongs to the (relative)
interior of the strict Nash core for any sufficiently small €. Take any coalition S and
any correlated action pg of S. By definition, the payoff vector u = (u;(ps, b*(ps)) jen
is Nash-effective for S, that is, u € v™*"(S). The fact that 2 is in the strict Nash
core implies that if u;(ps, b*(ps)) > z]“ forall j € S,j # i, then 25" > uy(pg, b* (ps)).
Otherwise, u dominates 2 via S in the strict sense with respect to v’V*". Therefore,

z" is the optimal value (attained by S = N) of the maximization problem

max u;(ps, b*(ps))
subject to (1) S C N, ps € A(A)

(2) uj(ps,b*(ps)) > Z]“ forall j€S, j#i.

This means that the strategy s; prescribes the optimal proposal of player i. It is
clear that s; prescribes the optimal action for responders. By applying the same
proof to all subgames of I'*? starting after some agreement has been reached, we
can prove that s° = (s5,--+,5%) is a totally efficient SSPE of I'*Y, and for every

correlated action pg € A(A%) of S, the expected payoff v°(ps) converges to the
Nash bargaining solution payoffs b*(ps) of G(ps) as € goes to zero. Q.E.D.

6 Concluding Remarks

We have presented a noncooperative foundation of the asymmetric Nash bargaining
solution for a general cooperative game where players can form coalitions and their
payoffs depend on what other players do outside coalitions. In this general cooper-
ative situation, a strategic interaction between one coalition and its complementary
coalition plays a critical role in determining a final outcome of the game. Unlike
the classic theory of von Neumann and Morgenstern, our noncooperative approach
requires that any coalitional behavior be consistent with members’ payoff maximiza-
tion. Our analysis has focused an efficient equilibrium where all active players in
negotiations form the largest (efficient) coalition, independent of history. The main
theorem shows that the Nash bargaining solution can be supported by the efficient
equilibrium of the bargaining model where the probability of negotiation failure is
very small, if and only if the Nash bargaining solution belongs to the Nash core of
the game. The Nash core is defined by the standard core concept under the suppo-
sition that a threat by the complementary coalition should be consistent with the
Nash bargaining solution theory.

We conclude the paper with a few remarks. First, in our result, the disagree-
ment point of the Nash bargaining solution is determined by a Nash equilibrium of
a strategic-form game which is the primitive model of our cooperative situations.
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Obviously, in order to derive a unique outcome of rational behavior in a general
cooperative game, we need an equilibrium selection theory of a game. Secondly,
the weights of the asymmetric Nash bargaining solution is given by the probabil-
ity distribution to select a proposer. A natural question is how such a probability
distribution is determined in a real situation. In our view, this question is truly
empirical, beyond the scope of this paper. Some social and political factors may
determine the probability distribution. For example, in local communities, a se-
niority rule (older persons propose more often than younger ones) tends to prevail.
In international negotiations, countries with larger populations (or GDPs) may be
given more opportunities to make proposals. Thirdly, our result shows that a to-
tally efficient equilibrium does not necessarily exist. In a game without the totally
efficient equilibrium, more than one coalition form. Then, an issue of renegotiations
should be studied. Players may want to renegotiate their on-going agreements to
attain a Pareto-improving payoff allocation. In Okada (2000), we considered the
problem of renegotiations in coalitional bargaining in a transferable utility game in
characteristic function form. It is shown that the possibility of successive renego-
tiations necessarily leads to an efficient allocation when the prevailing agreement
is considered as the threat point of renegotiation. The possibility of renegotiation,
however, has a negative effect in distorting the equity of a final allocation by in-
ducing the first-mover rent. Finally, we remark that our bargaining model has a
sequential structure of moves where a coalition and its strategy are simultaneously
agreed. The model can capture one of essential aspects in coalitional bargaining
that a coalition is reacted by the complementary coalition. An alternative model
has a different structure of moves that a coalition structure is determined in the first
stage and an action profile of coalitions is determined in the second stage. It is an
interesting project to compare different models of coalitional bargaining.
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