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Abstract

This paper studies how communication amongst agents influences
the equilibria of a financial economy. We set up a standard overlap-
ping generations (OLG) model with assets, while allowing for hetero-
geneous beliefs. The paper explicitly describes how communication
causes the beliefs of the agents to be correlated. In particular, it is
shown that communication may generate large fluctuations even if the
unconditional probability beliefs themselves are uncorrelated. Because
of the complex nature of the problem, we use simulations to examine
the characteristics of the equilibria.

1 Introduction

This paper studies how communication amongst agents influences the equi-
libria of a financial economy while allowing for heterogeneous beliefs. More
specifically, we introduce communication in a standard overlapping genera-
tions (OLG) model with heterogeneous beliefs.

As in the companion paper (Nakata (2004)), we postulate that commu-
nication amongst different economic agents is a mechanism that causes the
beliefs of the agents to be correlated with each other. Note that it is essential
that heterogeneity of beliefs is present in order for communication to have
an impact on the equilibrium (through correlation of beliefs), because the
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only role communication can play is to possibly remove (the impacts of ini-
tial) asymmetric information when rational expectations or a common prior
is assumed.1

However, once correlation of beliefs is present in a general equilibrium
model of a financial economy, it is obvious that the equilibria will be influ-
enced by such correlation. Amongst the studies on heterogeneous beliefs,
some studies of rational beliefs examine the effects of correlation of beliefs
numerically — e.g. Kurz and Schneider (1996), Kurz and Beltratti (1997),
and Kurz and Motolese (2001). In fact, their results indicate that correla-
tion of beliefs amplifies the volatility of the economy. They, however, do not
describe the mechanism that generates correlation of beliefs. The compan-
ion paper (Nakata (2004)) incorporates communication to these model, and
provides an alternative interpretations to them, while restricting the class of
communication.

This paper generalizes the companion paper (Nakata (2004)) so that com-
munication may expand the state space of the economy, which was not the
case there. With this generalization, we are able to study if communication
alone may generate correlation of beliefs and consequently large fluctuations
of the economy by restricting the class of beliefs to be uncorrelated a priori
(in the absence of communication). To provide better insights, we construct
a simulation model, in which the beliefs of the agents can be interpreted and
classified in an intuitive way.

Such an intuitive classification of beliefs is helpful, because it is not clear
in what ways communication generates correlation of beliefs, and thus, how it
influences the equilibrium otherwise. Hence, it is hoped that such an intuitive
classification of beliefs provide better answers to the following questions:

• Does communication have a tendency to stabilize or destabilize the mar-
ket?

• Under what conditions will the market be destabilized, versus being sta-
bilized?

• How do the results depend on the nature of the market (with public
information)?

• What are the implications of these results for public policy in financial
markets?

The rest of the paper proceeds as follows. In Section 2, the structure of
the economy and the beliefs of the agents are explained first, and then the
equilibrium of the economy is defined. Then, the definition of rational beliefs

1Blackwell and Dubins (1962) show that the conditional probabilities merge in the limit
as agents accumulate the same information when mutual absolute continuity of measures
is assumed. Also, Geanakoplos and Polemarchakis (1982) show that a merging of opin-
ions occurs within finite steps when two agents communicate back and forth when the
information structure is characterized by information partitions under the common prior
assumption. However, a merging of opinions is a degenerate case when the mutual abso-
lute continuity of measures and/or the common prior assumption is absent. See Freedman
(1965) and Nakata (2003).
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is given so as to define the rational belief equilibrium, which is central to our
analysis. In Section 3, we examine a simulation model, and illustrate the
effects of communication on the equilibrium to answer the above questions.
Section 4 concludes the paper.

2 The Model

In this section, we introduce a standard OLG model with assets, albeit with
communication. The main objective is to set up a model that elucidates the
effects of communication on the equilibrium fluctuations of the economy. In
particular, we regard communication as a mechanism that causes the beliefs
of different agents to be correlated with each other.

In the remainder of this section, we first set up the model. To make
the analyses tractable, we confine our attention to the Markovian economy.
In so doing, we define the competitive equilibria of the economy, and also
discuss the structure of the beliefs of the agents and that of the state space
of the economy. Finally, we introduce the rationality conditions to define the
rational belief equilibria (RBE) of the economy.

2.1 The Structure of the Model

2.1.1 The Structure of the Economy

The structure of the model is essentially the same as that of Kurz and Bel-
tratti (1997), except that our model involves communication. Consider a
standard OLG economy with H young agents in each generation which we
denote by h = 1, 2, ..., H (H is some finite positive integer). Also, there
are H old agents in each period. There is a single perishable consumption
good, whose price is normalized to unity in every period t. We assume that
only young agents receive an endowment W h

t (t = 1, 2, ...) of this consump-
tion good, except that in the initial period (t = 0) old agents (in period 1;
born in period 0) receive endowments of the stock specified below (θh

0 with∑H
h=1 θh

0 = 1). Furthermore, each young agent is a replica of the old agent
who preceded him, where a replica refers to the preferences and beliefs (more
precisely, the set of possible effective beliefs as will be explained below). This
makes us interpret the streams of agents as ‘dynasties’ or ‘types’. Also, there
is a single infinitely lived firm owned by the agents. Let Pt denote the stock
price of the firm in period t and θh

t the shareholding of young agent h pur-
chased in period t. We assume without loss of generality that the aggregate
supply of shares is fixed to unity in every period. The firm’s technology
generates an exogenous random stream of returns {Dt}∞t=0, and we call it the
dividend stream. We assume that Dt > 0 for all t. For the agents, share-
holding yields income from the dividend. In addition, there is a market for
a zero net supply, short term riskless debt instrument which we call a ‘bill’.

To summarize, the economy has three markets: (a) a market for the
consumption good with an aggregate supply equaling the total endowment
and the total dividends, (b) a stock market with a total supply of unity, and
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(c) a market for a zero net supply, short term riskless debt instrument which
we call a ‘bill’. We list our notation as follows: for each agent h,

C1h
t : consumption of agent h when young in period t;

C2h
t+1: consumption of h when old in t + 1 (the agent was born in t);

dt+1 := Dt+1/Dt: the random growth rate of dividends;
θh

t : amount of stock purchases by young agent h in period t;
Bh

t : amount of one-period bill purchased by young agent h in period t;
W h

t : endowment of young agent h in period t;
Pt: the price of the stock in period t;
pt := Pt/Dt: the price/dividend ratio in period t;
qt: the price of the one-period bill in period t. This is a discount price.

Next, we specify the structure of the dividend process. Our specification
follows that of Mehra and Prescott (1985), which is standard in the literature.
Namely,

Dt+1 = dt+1Dt, (1)

where the stochastic process {dt}∞t=1 is a stationary and ergodic Markov pro-
cess. Following Kurz and Beltratti (1997), the state space of the process is
D := {dH , dL} with dH = 1.054 and dL = 0.982, and the stochastic process
{dt}∞t=1 is driven by a transition probability matrix[

.43 .57

.57 .43

]
. (2)

With this specification, the dividends tend to rise over time; thus it is more
convenient to focus on the growth rates of the economic variables. To this
end, we define the following variables:

wh
t := W h

t /Dt: the endowment/dividend ratio of young agent h;
bh
t := Bh

t /Dt: the bill/dividend ratio of young agent h in t;
c1h
t := C1h

t /Dt: the consumption/dividend ratio when young;
c2h
t+1 := C2h

t+1/Dt+1: the consumption/dividend ratio when old.

In order to elucidate the sources of randomness of the economy, we assume
that wh

t = wh are constant for all h, t. Hence, the aggregate endowment of
the consumption

∑H
h=1 W h

t is proportional to the total dividend Dt in each
period t.

2.1.2 The Structure of Beliefs

Now we specify the structure of beliefs, which is the same as the one in the
companion paper (Nakata (2004)). Instead of fixing a belief over generations
within each dynasty h, we assume that the effective belief Qh

t is random over
time, and is governed by a probability measure µh. More specifically, the
sequence of beliefs of dynasty h, i.e. {Qh

t }∞t=1 is an i.i.d. sequence, and µh is a
probability measure on (Qh,B(Qh)), where Qh is the set of possible effective
beliefs, which is assumed to be (at most) countable.2 Hence, probability

2We assume Qh to be finite to simplify the analysis later. However, our construction
of beliefs is valid as long as Qh is countable, and so is the analytical model.
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µh(Qh
t = k) is constant over time for all k ∈ Qh since {Qh

t }∞t=1 is an i.i.d.
sequence. While we can introduce a more complex structure here, for example
{Qh

t }∞t=1 may be an AR(1) process, we do not complicate the matter here so
as to keep the analysis simple.

Although there is a probability distribution µh over Qh the set of possible
effective beliefs, which also define probability distributions, we stress that µh

is not part of young agent h’s belief. Namely, young agent h does not form a
belief such that Qh(·) =

∫
k∈Qh k(·)µh(dk).3 Rather, {Qh

t = k} is a probability
event with respect to measure µh, which is irrelevant for young agent h in
period t, since his belief is completely represented by Qh

t itself.
We note that the effective belief Qh

t is really the theory with which young
agent h in period t views the economy. Hence, when the set Qh is not a
singleton, there are multiple theories that might be adopted by young agent
h. In fact, the randomness of Qh

t means that the actual theory in use is chosen
randomly in each period. This is possible when an agent is ambiguous about
the choice of theory.

Now, we explain why it is reasonable to assume such an ambiguity. To
begin with, it is reasonable to say that no agent actually knows the truth, and
that, every ‘intelligent’ agent knows that he does not know the truth. Hence,
with the knowledge that he does not know the truth, each agent relies on
a theory, which always employs some assumption(s) by definition. Because
each agent knows that it is impossible for an assumption to be always correct
(otherwise it is the truth itself, which is not an assumption by definition),
he is uncertain or ambiguous about the choice of theory as long as there are
multiple theories available. Namely, each agent is ambiguous in the sense
that he is not very sure which theory is the most relevant amongst others,
yet he ultimately relies on a theory at the time when he is making decisions.
This observation motivates us to randomize Qh

t rather than to fix it as a
particular measure over time, while assuming that the set of theories Qh is
inherited over generations within the dynasty h.

In addition, it is common that institutional investors including financial
institutions adopt some sort of quantitative/statistical model to determine
their portfolio choices in practice, and has become increasingly so recently.
This means that they adopt a particular probabilistic model to make a port-
folio choice, although they do alter the models from time to time. Alterations
of models may simply be changes in the parameters of the models, or they
may even involve changes in the structure of the model itself. Although such
changes are common, there hardly exists a fixed rule/model for model selec-
tions. This observation is therefore clearly consistent with our construction
of beliefs because each institution uses a probabilistic model out of several
possible models in every period, whilst there remains ambiguity in the model
selection process.

Moreover, we assume that the ambiguity concerning the choice of theories
does not necessarily lead the agents to ‘mix’ different theories, e.g. put a
weight of .3 on theory A and a weight of .7 on theory B, unlike a mixed

3The object Qh is called the barycenter of µ, and there exists a unique barycenter if
the underlying probability space is a standard space. See Gray (1988) for details.
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strategy in game theory, because we do not allow for an agent to form a
belief such that Qh(·) =

∫
k∈Qh k(·)µh(dk) as we noted above. Of course, it is

possible that an agent forms a belief about beliefs. However, as long as the
belief about beliefs changes over time, our construction remains valid. This
is so, even if we consider beliefs about beliefs about beliefs ad infinitum, i.e.
the infinite regress of hierarchical beliefs, unless the hierarchical structure
of beliefs is time-invariant, in which case there is no ambiguity concerning
the choice of theory or beliefs ultimately, because the hierarchy of beliefs as
a whole defines a probability belief.4 We come back to this point when we
discuss the implications of the simulation results in the light of the Expert
Problem, which is a literature in Bayesian theory (for example, Genest and
Schervish (1985), Bayarri and DeGroot (1991), West (1992), and West and
Crosse (1992)).

Our construction of beliefs is capable of describing a common situation
in which the same investor sometimes becomes optimistic and sometimes
becomes pessimistic even though the data at hand are the same. We stress
that it is the belief of the agent that determines if he is optimistic or not, not
the data. We do not adopt the view that a particular investor/institution
always believes in a particular theory over the periods, and that a change in
behaviour only occurs when the data changes. Rather, we allow for an agent
to change his view (or mind) even though there is no change in data.

Note however that our construction of beliefs does not capture the con-
cept of ambiguity found in the Ellsberg Paradox, because at any point of
time, each agent forms a particular probability belief anyway, although we
introduce a notion of ‘set of probability beliefs’. Hence, we do not follow
the literature that focuses on modelling this sort of ambiguity (or Knightian
uncertainty), e.g. Gilboa and Schmeidler (1989), Epstein and Wang (1994,
1996).

Although as long as the set Qh is countable, the analytical model remains
the same, we assume for simplicity that for every agent h,

Qh := {Qh
H , Qh

L},

and for every h, t,
µh{Qh

t = Qh
H} = αh. (3)

Namely, the effective belief of young agent h in period t is Qh
H with a

frequency of αh and Qh
L with a frequency of 1 − αh. Moreover, we may say

optimistic when Qh
t = Qh

H , and pessimistic when Qh
t = Qh

L. Furthermore, we
assume that Qh

H and Qh
L are stationary measures.

2.1.3 Announcements

We assume that in every period t each young agent makes an announce-
ment concerning the price/dividend ratio in the next period pt+1, with the
announcements becoming public information thereafter. Let Y h

t denote the

4See Brandenburger and Dekel (1993) for the discussion on hierarchical beliefs.
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announcement of agent h, which is a measurable function of all available
information. Agent h’s information set (σ-field) then is defined as

Gh
t \Yt := σ((p1, q1, d1,Y1), ..., (pt−1, qt−1, dt−1,Yt−1), (pt, qt, dt)),

with
Gh

t := σ((p1, q1, d1,Y1), ..., (pt, qt, dt,Yt−1)),

which is the σ-field generated by the state space of ((p1, q1, d1,Y1), ..., (pt, qt, dt,Yt)),
and the announcements of other agents (from agent h’s perspective)

Yt := (Y 1
t , Y 2

t , ..., Y H
t ) ∈ RH .

Formally, we can define agent h’s announcement as follows:

Y h
t = vh

t ((p1, q1, d1,Y1), ..., (pt, qt, dt,Yt−1)),

which depends on the effective belief Qh
t implicitly.

One of the most natural examples of Y h
t is agent h’ s conditional expec-

tation of pt+1. However, to make computations tractable, we assume that
each agent announces whether the price/dividend ratio is expected to go up
or down in the next period. Namely, Y h

t is defined as

Y h
t =

{
1 if EQh

t
{pt+1|Gh

t \Yt} ≥ pt

0 if EQh
t
{pt+1|Gh

t \Yt} < pt.
(4)

Hence, Y h
t = 1 means that agent h believes that the price/dividend ratio will

not drop in the next period on average, and Y h
t = 0 means that he believes

that it will fall on average.
To simplify the analyses, we make the following assumption on the an-

nouncements. Namely,

Assumption 1: Each young agent h announces his opinion truthfully.

This assumption will be maintained throughout the paper. By Assump-
tion 1, we put strategic concerns about the announcement to one side, avoid-
ing complications that would involve game theoretic considerations, which
are not essential to our current focus. Because we are examining a general
equilibrium model, we are interested in situations in which each single agent
believes that he cannot affect the whole system as well as other agents’ deci-
sions, i.e. the competitive assumption. Hence, this assumption is compatible
with the setting of a general equilibrium model.5

By computing the conditional expectation based upon the information
set (sub σ-field) Gh

t , each young agent determines his optimal portfolio —
i.e. how many shares and bills to purchase. Then, the economy moves on to
the next period, and the process will be iterated infinitely many times. We
assume that trades occur at discrete times. The following activities occur
within each period:

5Even without this assumption, i.e. even there are strategic concerns about announce-
ments, the essential qualitative results of the paper do not change.
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1. Each young agent forms an effective probability belief Qh
t .

2. Each young agent observes the intrinsic data (pt, qt, dt).

3. Each young agent makes an announcement Y h
t publicly.

4. Transactions take place.

All activities but the first occur simultaneously. In what follows, we explicitly
describe each young agent’s problem, and then, describe the equilibrium of
the economy.

2.1.4 Young Agent’s Problem

The optimization problem of a young agent h in period t after observing the
announcements of others is given by

max(C1h
t ,θh

t ,C2h
t+1) EQh

t
{uh(C

1h
t , C2h

t+1) |Gh
t }

s.t. C1h
t + Ptθ

h
t + qtB

h
t = W h

t

C2h
t+1 = θh

t · (Pt+1 + Dt+1) + Bh
t ,

where C1h
t denotes the consumption of h when young in period t, and C2h

t+1

denotes the consumption of h when old in period t + 1 ( bearing in mind h
was born in period t).6 To enable us to compute equilibria, we assume agent
h’s utility function to be of the CES form

uh(C1h
t , C2h

t+1) =
1

1 − νh
(C1h

t )1−νh

+
βh

1 − νh
(C2h

t+1)
1−νh

, νh > 0,

where βh ∈ (0, 1) is the discount factor and νh is the parameter that indicates
the degree of relative risk aversion of agent h. Then, the first-order conditions
(the Euler equations) for the optimization problem of a young agent h in
period t will be

−Pt · (C1h
t )−νh

+ βhEQh
t
{(C2h

t+1)
−νh · (Pt+1 + Dt+1) |Gh

t } = 0,

−qt · (C1h
t )−νh

+ βhEQh
t
{(C2h

t+1)
−νh |Gh

t } = 0.

We can describe these conditions by using ratios (pt, dt, c
1h
t , c2h

t+1, b
h
t ) instead

of absolute values (Pt, Dt, C
1h
t , C2h

t+1, B
h
t ) as follows:

pt · (c1h
t )−νh

= βhEQh
t
{(c2h

t+1dt+1)
−νh

(pt+1 + 1)dt+1 |Gh
t },

qt · (c1h
t )−νh

= βhEQh
t
{(c2h

t+1dt+1)
−νh |Gh

t },
c1h
t = −ptθ

h
t − qtb

h
t + wh,

c2h
t+1 = θh

t · (pt+1 + 1) +
bh
t

dt+1

.

6We assume that each agent’s preference is represented by a von Neumann-Morgenstern
utility function.
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From now on, we assume that each agent believes that the economy is
Markovian. To be more specific, we assume that each agent believes that
the joint process (pt, qt, dt,Yt, t = 1, 2, ...) is Markov. It follows that the
conditions above will be rewritten as

pt · (c1h
t )−νh

= βhEQh
t
{(c2h

t+1dt+1)
−νh · (pt+1 + 1)dt+1 | pt, qt, dt,Yt}, (5)

qt · (c1h
t )−νh

= βhEQh
t
{(c2h

t+1dt+1)
−νh | pt, qt, dt,Yt}, (6)

c1h
t = −ptθ

h
t − qtb

h
t + wh,

c2h
t+1 = θh

t · (pt+1 + 1) +
bh
t

dt+1

.

The conditional expectations in equations (5) and (6) are based only upon
(pt, qt, dt,Yt), because of the Markov assumption. It follows that the demand
correspondences of the young will be time-invariant: for every h, t,

θh
t = θh(pt, qt, dt,Yt; Q

h
t ), (7)

bh
t = bh(pt, qt, dt,Yt; Q

h
t ). (8)

Observe however that the effective belief Qh
t represents the non-stationarity

in the sequence of effective beliefs of each dynasty h, and consequently, the
demand is effectively non-stationary.

Moreover, the announcement can be defined on the true probability space
as a time invariant mapping as follows:

Y h
t = vh(pt, qt, dt; Q

h
t ). (9)

However, the map (9) is not understood by the young agent h himself in
period t, because he does not form a belief about the effective beliefs. Instead,
he only understands the following mapping:

Y h
t = vh

t (pt, qt, dt), (10)

which is not time invariant. Nevertheless, each young agent h in period
t understands that the mapping (10) is determined randomly, although he
does not form a belief about the determination of the mapping itself. In other
words, he understands that the mapping (10) can be potentially different
reflecting the ambiguity concerning the determination of the effective beliefs,
and consequently, treats his own announcement Y h

t as an intrinsic random
variable. The companion paper (Nakata (2004)) examines a special case
where (9) is a one-to-one mapping between Y h

t and Qh
t , and thus, (10) is not

depending on (pt, qt, dt).

2.2 The Equilibrium

In what follows, we provide the definition of the economy. In addition to the
optimality conditions above, the equilibria of the economy are characterized
by the market clearing conditions:

H∑
h=1

θh(pt, qt, dt,Yt; Q
h
t ) = 1, (11)
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H∑
h=1

bh(pt, qt, dt,Yt; Q
h
t ) = 0. (12)

We by now are ready to state the definition of a stable Markov competi-
tive equilibrium of our economy:

Definition: Sequences of effective beliefs {Qh
t }∞t=1 (h = 1, 2, ..., H) and a

joint stochastic process {(pt, qt, dt, θ
h
t , bh

t , Y
h
t ), h = 1, 2, ..., H}∞t=1 with initial

portfolios {(θ1
0, b

1
0), h = 1, 2, ..., H} associated with the true probability mea-

sure Π constitute a stable Markov competitive equilibrium if

1. (pt, qt, dt, θ
h
t , bh

t , Y
h
t ; h = 1, 2, ..., H) satisfy conditions (4) and (7)-(12)

for all t;

2. Π is a stable measure, and every sequence of effective beliefs {Qh
t }∞t=1

constitutes a stable measure for all h.

By construction, the equilibrium prices will be a sequence generated by
a time-invariant map as follows:

[
pt

qt

]
= Φ(dt,Yt, Q

1
t , Q

2
t , ..., Q

H
t ) for all t. (13)

Note that the time-invariant map Φ(·) is effectively time dependent due
to the effective beliefs (Q1

t , Q
2
t , ..., Q

H
t ), which are the very sources of non-

stationarity of the economy.
To see that heterogeneity of beliefs is crucial for communication ever to

have an impact on equilibria, we shall examine the special case of rational
expectations equilibria (REE). In a stationary REE, Qh

t = Π for all h, t where
the true probability measure Π is induced by (2) and by the equilibrium map
(13).7 By construction,

Y h
t := vh(pt, qt, dt; Π) = Yt,

Π-almost surely holds for all h, t. Hence, Y h
t is a time-invariant function of

(pt, qt, dt). It follows that

θh
t = θh(pt, qt, dt,Yt; Π) = θ̄h(pt, qt, dt; Π),

bh
t = bh(pt, qt, dt,Yt; Π) = b̄h(pt, qt, dt; Π).

Hence, given Π the equilibrium map will be reduced to

[
pt

qt

]
= Φ(dt). (14)

7In our set-up, rational expectations do not really make sense unless Π is a stationary
measure. The basic principle behind rational expectations is compatibility between the
empirical data and the probability law, which is the same as that of rational beliefs.
However, rational expectations do not allow for heterogeneous beliefs. Hence, whenever
the empirical data induces a stationary measure, each agent adopts it as its probability
belief, and it is the true probability law as well.
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This leads us to conclude the following:

Proposition 1: Communication (or exchange of opinions) has no impact
on a REE.

As we can see from the above explanations, communication has no im-
pact on a REE, because each agent can pinpoint the announcements of other
agents correctly with probability one with respect to the true probability
measure Π. Therefore, announcements are not really intrinsic random vari-
ables on the subjective probability spaces of agents in this case. In other
words, announcements do not expand the state spaces of the agents. Note
however that this particular result rests crucially on the assumption that
Qh

t = Π for all h, t.

2.3 Rationality of Beliefs

Now, we allow for heterogeneous beliefs unlike the REE. Nevertheless, we
require every sequence of effective beliefs {Qh

t }∞t=1 to constitute a rational
belief. The generic condition/definition is the following:

Definition: A sequence of effective beliefs {Qh
t }∞t=1 constitutes a rational

belief if it induces a stationary measure that is equivalent to the one induced
by the true probability measure Π.

In what follows, we show that there exists a sequence of effective beliefs
{Qh

t }∞t=1 that constitutes a rational belief. The argument here is essentially
the same as in the companion paper (Nakata(2004)), although the state
space is larger in the current paper than the one there. Let X denote the
state space of (pt, qt, dt,Yt) for all t, and X∞ the state space for the entire
sequence. Let B(X∞) denote the Borel σ field generated by X∞. Then, the
true stochastic process of the economy is described by a stochastic dynamical
system (X∞,B(X∞), T, Π). However, we can expand the probability space
to incorporate the sequences of effective beliefs {Qh

t }∞t=1.
To do so, we Π̂h denote the true probability measure on the space ((X ×

Qh)∞,B((X × Qh)∞)), whose ‘marginal measure’ for X∞ is Π and that for
(Qh)∞ is µ̄h, while µh is the marginal measure for for Qh.8 Then, the ex-
panded true stochastic process is described as a dynamical system such that
(Ωh,Bh, T, Π̂h), where Ωh := (X × Qh)∞ and Bh := B((X × Qh)∞). This
construction is similar to the rational belief structure in Nielsen (1996), al-
though the set of beliefs consist of measures on (X,B(X)) rather than on
(X∞,B(X∞)) there. Also, any interdependence between those measures and
X is not allowed there, while it is allowed here. Hence, we follow Kurz
and Schneider (1996) with respect to such an interdependence, whilst the
structure that incorporates measures on measures follow Nielsen (1996).

8We can define a measure on measures as long as the underlying space is a standard
space. See Gray (1988) for details.
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With this in mind, we prove a theorem that is analogous to the conditional
stability theorem (Theorem 2) in Kurz and Schneider (1996), although they
introduce random variables that represent the effective beliefs as conditional
measures, which they call the generating variables. Namely, while they study
the stability properties of the joint system of X and the generating variables,
we study the stability properties of the joint system of X and Qh

t .
Before stating the theorem, we introduce some notation to be more precise

concerning the construction of the probability space(s). Let Π̂h
k denote the

conditional probability of Π̂h given a particular sequence of effective beliefs
k ∈ (Qh)∞:

Π̂h
k(·) : (Qh)∞ × B(X∞) �→ [0, 1].

For each A ∈ B(X∞), Π̂h
k is a measurable function of k and for each k, Π̂h

k(·)
is a probability on (X∞,B(X∞)). For A ∈ B(X∞) and B ∈ B((Qh)∞), we
have

Π̂h(A × B) =
∫
k∈B

Π̂h
k(A)µ̄h(dk),

where µ̄h is a probability measure on ((Qh)∞,B((Qh)∞)). Also, as we noted
above,

Π(A) = Π̂h(A × (Qh)∞), ∀A ∈ B(X∞),

µ̄h(B) = Π̂h(X∞ × B), ∀B ∈ B((Qh)∞).

When (Ωh,Bh, T, Π̂h) is a stable dynamical system with a stationary mea-

sure mΠ̂h
, we define the two marginal measures of mΠ̂h

as follows:

m(A) := mΠ̂h

(A × (Qh)∞), ∀A ∈ B(X∞),

mQh(B) := mΠ̂h

(X∞ × B), ∀B ∈ B((Qh)∞).

Also let m̂k denote the stationary measure of Π̂h
k, which is a measure on

(X∞,B(X∞)).
When the dynamical system (Ωh,Bh, T, Π̂h) has the above construction,

we have the following theorem:

Theorem 1: Let (Ωh,Bh, T, Π̂h) be a stable and ergodic dynamical system.
Then,

(a) (X∞,B(X∞), T, Π̂h
k) is stable and ergodic for Π̂h a.a. k.

(b) m̂h
k is independent of k, and m̂h

k = m.
(c) If (X∞,B(X∞), T, Π̂h

k) is stationary then the stationary measure of Π̂h
k is

Π. That is
m̂h

k = m = Π.

(Proof) The proof essentially follows that of Theorem 2 in Kurz and Schnei-
der (1996). First X is clearly a Polish space, since it is a set of countable
isolated points.9 Also, Qh is a Polish space, because it is assumed that Qh is
at most a countable set, and thus, it is a set of countable isolated points. It

9It is a finite set in our model. However, we keep the theorem as generic as possible.
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follows that (X ×Qh)∞ is also a set of countable isolated points; thus, it is
a Polish space, too. Because Qh, whose role is essentially the same as that
of the generating variable in Kurz and Schneider, is countable at most, it is
straightforward that the dynamical system in this paper possesses the same
properties as the one in Kurz and Schneider; thus, the proof of Theorem 2
of Kurz and Schneider applies. Q.E.D.

Suppose Qh is a probability measure on (Ωh,Bh), and that, (Ωh,Bh, T, Qh)
is a stable and ergodic dynamical system. Then Theorem 1 states that any
stable measure Qh on (Ωh,Bh) implies a stationary measure mh

k = mh for
all k ∈ (Qh)∞, where mh is the marginal measure of mQh

on (X∞,B(X∞)),
which is the stationary measure induced by Qh.10

Recall that the definition of rational belief restricts the class of stable
measures Qh to satisfy the property such that mh = m. Hence, Theorem 1
ensures that every sequence of effective beliefs {Qh

t }∞t=1 constitutes a rational
belief as long as the stable measure Qh satisfy the condition (on the stationary
measure mh).

In what follows, we explicitly show how to describe rational beliefs in our
Markovian economy. Recall that the equilibrium map (13) is[

pt

qt

]
= Φ̂(dt,Yt, Q

1
t , Q

2
t , ..., Q

H
t ), ∀t.

Hence, the equilibrium is driven by a stable Markov process of {dt,Yt, Q
1
t , Q

2
t , ..., Q

H
t }∞t=1

as we noted above. Namely, we need to define a dynamical system on
(V ∞,B(V ∞)), where V is the state space of (dt,Yt, Q

1
t , Q

2
t , ..., Q

H
t ), as a

stable Markov process.
For the computation of the long-term frequencies or long-term averages of

the economic variables, it is sufficient to specify a stationary transition ma-
trix Γ that specifies the transition probabilities from (dt,Yt, Q

1
t , Q

2
t , ..., Q

H
t )

to (dt+1,Yt+1, Q
1
t+1, Q

2
t+1, ..., Q

H
t+1), i.e. Γ is on V × V , which induces a sta-

tionary measure, and that, the stationary measure is the one that is induced
by the true probability measure. Note that, the true process may not be
stationary, but it is enough for us to specify its induced stationary measure
that is fully characterized by the transition probability matrix Γ to compute
the long-term frequencies.

On the other hand, we specified that the effective beliefs are determined
randomly, either Qh

H or Qh
L. Hence, we define pairs of transition probability

matrices that correspond to the pair of effective beliefs (Qh
H , Qh

L) as follows:
young agent h in period t adopts a transition matrix F̄ h

t by the following
rule:

F̄ h
t =

{
F̄ h

H if Qh
t = Qh

H ;
F̄ h

L if Qh
t = Qh

L.
(15)

With this specification, we require the sequence of effective beliefs to sat-
isfy the rationality condition, which is analogous to the one found in papers

10We need the superscript h for mh here while there is none in Theorem 1 (b), because
the marginal measure of Qh on (X∞,B(X∞)) is subjective, while that of Π̂h is the true
probability.
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on rational beliefs (e.g. Kurz and Schneider [1996], Kurz and Beltratti [1997],
Kurz and Motolese [2001], etc.):

Rationality Condition: The transition matrices F̄ h
H and F̄ h

L of each agent
h must satisfy the following condition for the sequence of effective beliefs
{Qh

t }∞t=1 to constitute a rational belief:

αh · F̄ h
H + (1 − αh) · F̄ h

L = Γ, ∀h. (16)

Because the frequency of the event {Qh
t = Qh

H} is αh with respect to the
true probability µ, agent h uses the transition probability matrix F̄ h

H with
frequency αh. Hence, the rationality condition (16) requires the sequence
of beliefs {Qh

t }∞t=1 to be compatible with the data that is generated by the
stationary transition probability matrix Γ. In other words, there is no way
for the agents to reject the set of theories Qh for being invalid by observing
the data.

With this in mind, we define a Markov Rational Belief Equilibrium as
follows:

Definition: A Markov Rational Belief Equilibrium (RBE) is a stable
Markov Competitive Equilibrium in which the sequences of effective beliefs
{Qh

t }∞t=1 (h = 1, 2, ..., H) satisfy (3), (15) and the rationality condition (16).

The definition of a Markov Rational Belief Equilibrium allows for hetero-
geneous beliefs. However, it requires the sequence of beliefs to constitute a
rational belief. Hence, it is required that both the true equilibrium process
of the economic variables and the subjective process of them must be stable,
but not necessarily stationary. However, it is not obvious at all how commu-
nication and/or the non-stationarity of beliefs impact the equilibrium of the
economy. We therefore develop a simulation model to examine the impacts
of communication and/or the non-stationarity of the beliefs. However, before
examining the simulation model, we look into the structure of the state space
of the economy.

2.4 Endogenous Expansion of the State Space

As we explained above, the state space of the observables (pt, qt, dt,Yt) in
each period is X. Consequently, the subjective probability space of each
young agent h in period t is (X∞,B(X∞), Qh

t ). On the other hand, effec-
tive beliefs Qh

t are measurable with respect to the true probability measure
Π. Hence, the state space with respect to the true probability measure in
each period is Z := X × Q1 × · · · × QH , and the true probability space is
(Z∞,B(Z∞), Π).

It is important to recognize that the fundamentals (or the primitives)
of the economy involve the effective beliefs (Q1

t , Q
2
t , ..., Q

H
t ) as well as the

announcements Yt. Furthermore, notice that the introduction of announce-
ments expands the state space of the true probability space. Nevertheless,
announcements are indeed endogenous, because they are functions defined by
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(4). Therefore, we claim that announcements create endogenous uncertainty.
In particular, we emphasize that announcements are by no means sunspot
variables, because they are given endogenously, not given arbitrarily.

Recall that each effective belief Qh
t represents the ‘state of belief’. This

is corresponding to an assessment variable, which is a random variable that
represents the state of belief in the existing papers on rational belief models,
e.g., Kurz and Beltratti (1997), Kurz and Motolese (2001). Moreover, in
those papers, correlation between assessment variables are assumed a priori,
and their simulation results exhibit sufficiently large volatilities of the finan-
cial economy with such correlation. They claim that such correlation is due
to social interactions, which are not modelled explicitly in their papers.

Although one may claim that assessment variables are sunspot variables,
and thus, rational belief equilibria and sunspot equilibria are equivalent, we
can see a crucial difference between them in the light of our model. Recall
that the conventional sunspot models assume rational expectations; thus,
there is no room for endogenous expansion of the state space. Hence, the
state space then is limited to a product of exogenous random variables (dt

in our model) and the sunspot variables.11 Therefore, the RBE models are
compatible with an endogenous expansion of the state space, while the con-
ventional sunspot models are not. In fact, it is important to recognize that
heterogeneity of beliefs is crucial to have some form of endogenous expansion
of the state space.

Reverting our attention to the equilibrium map (13), the map implies that
there is a range at most 2× (2× 2)H distinct equilibrium price states (pt, qt).
Observe that the state space of (pt, qt) is expanded by the introduction of
communication and heterogeneity of beliefs. Now instead of describing the
state space of the prices by that of {dt,Yt, Q

1
t , ..., Q

H
t }∞t=1, we may also con-

sider a space S∞ where S is an index set such that S := {1, 2, ..., 22H+1}. In
fact, we can define a one-to-one mapping φs between S and the state space
of (dt,Yt, Q

1
t , ..., Q

H
t ) such that

s = φs(dt,Yt, Q
1
t , ..., Q

H
t ) ∈ S. (17)

Because of the Markov assumption, the true equilibrium transition prob-
abilities are defined as those from state s in period t to state s+ in period
t + 1. Note that although the true process may not be stationary, it is suffi-
cient to specify a stationary transition probability matrix Γ to compute the
long-run frequencies of the economic variables.

3 Simulations

3.1 The Simulation Model

The simulation model here follows to some extent that of Kurz and Bel-
tratti (1997) and/or Kurz and Motolese (2001), although our model involves
communication. By following them, we assume H = 2 so as to make the

11In the conventional sunspot models, the private sunspots represent the Harsanyi types.
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simulation tractable. To begin with, we specify the stationary transition
probability matrix Γ. The matrix Γ must satisfy the following conditions:

(a) the marginal distribution for Qh
t is i.i.d. with Pr{Qh

t = Qh
H} = αh;

(b) the marginal distribution for dt is Markov as specified by matrix (2).

The family of matrices that satisfy the above conditions is limited, yet there
are quite a few of them. We choose the following matrix for simplicity and
flexibility in parameterization:

Γ =

[
0.43AH 0.57BH

0.57AL 0.43BL

]
, (18)

where AH , AL, BH and BL are 16 × 16 matrices that have the following
structure:

AH =




η1AH11 (α1 − η1)AH12 (α2 − η1)AH13 (1 + η1 − α1 − α2)AH14

η2AH21 (α1 − η2)AH22 (α2 − η2)AH23 (1 + η2 − α1 − α2)AH24

η3AH31 (α1 − η3)AH32 (α2 − η3)AH33 (1 + η3 − α1 − α2)AH34

η4AH41 (α1 − η4)AH42 (α2 − η4)AH43 (1 + η4 − α1 − α2)AH44


 ,

(19)
where AHij are 4 × 4 matrices for i, j = 1, 2, 3, 4 whose row coordinates sum
up to one. Also, AL, BH , and BL have the same structure.

Note that the upper half coordinates of Γ (the first 16 rows) are the
transition probabilities from the current states being dt = dH , which we call
the ‘high dividend states’, and the lower half coordinates are those from
the ‘low dividend states’. Also, the coordinates that contain AH1j are the
transition probabilities when the current state satisfies (Q1

t = Q1
H , Q2

t =
Q2

H , dt = dH), those containing AH2j correspond to (Q1
t = Q1

H , Q2
t = Q2

L, dt =
dH), those containing AH3j correspond to (Q1

t = Q1
L, Q2

t = Q2
H , dt = dH)

and those containing AH4j correspond to (Q1
t = Q1

L, Q2
t = Q2

L, dt = dH).
Furthermore, the first row of AHij corresponds to (Y 1

t = 1, Y 2
t = 1), the

second corresponds to (Y 1
t = 1, Y 2

t = 0), the third corresponds to (Y 1
t =

0, Y 2
t = 1) and the fourth corresponds to (Y 1

t = 0, Y 2
t = 0).

It is worthwhile to mention that the structure of Γ is slightly different
from that of Kurz and Beltratti (1997) or Kurz and Motolese (2001). In their
models, matrices AH , AL, BH and BL are assumed to be the same, but we
eliminate this assumption. This is because the announcements of the agents
depend upon pt, the current price/dividend ratio, and that, pt is positively
correlated with dt. In particular, we can expect that the price/dividend ratios
in the high dividend states (i.e. dt = dH) are higher than those in the low
dividend states (i.e. dt = dL) ceteris paribus, i.e. when other variables are
the same. Hence, it is more likely for the agents to announce Y h

t = 1 when
the economy is in a low dividend state. Therefore, other things being equal,
we can expect that dt and (Y 1

t , Y 2
t ) are correlated. This implies that AH ,

AL, BH and BL are different in general.
Next, we specify the pairs of transition probability matrices (F̄ h

H , F̄ h
L)

that satisfy the rationality condition (16) for the sake of computation. How-
ever, these transition probability matrices are 32 × 32 matrices, and that,
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it is not straightforward at all to interpret. To this end, we introduce some
more structure to the transition probability matrices, instead of specifying
(F̄ h

H , F̄ h
L) directly.

We assume that each pair of transition probability matrices (F̄ h
H , F̄ h

L) has
the following structure for every h:

F̄ h
H =

Kh∑
k=1

fh(k, y) · F h
H(k),

F̄ h
L =

Kh∑
k=1

fh(k, y) · F h
L(k),

where
fh(k, y) = fh(k) + λh

k · (y − Zh), (20)

where fh(k) is the ‘prior’ weight (or ‘prior probability’) assigned to pair
k of transition probability matrices (F h

H(k), F h
L(k)) by agent h, and thus,∑Kh

k=1 fh(k) = 1 (Kh is some integer) and fh(k) ≥ 0 for all h, k, while fh(k, y)
is the ‘posterior’ weight (or ‘posterior probability’) assigned to pair k by agent
h, and λh

k is a parameter, which is restricted so that fh(k, y) satisfies the law
of probability. Also, y is the realization of the announcement of the other
agent Y

(h)
t and Zh = EmY

(h)
t is the expected value of the announcement

of the other agent with respect to the stationary measure. Moreover, each
pair of transition probability matrices (F h

H(k), F h
L(k)) satisfies the following

condition for every h:

αhF h
H(k) + (1 − αh)F h

L(k) = Γ, for k = 1, 2, ..., Kh.

It follows that each pair of transition probability matrices (F̄ h
H , F̄ h

L) always
satisfies the rationality condition (16) under this construction.

Furthermore, we assume that F h
H(k) has the following structure:

F h
H(k) :=

[
0.43kγAH (1 − 0.43kγ) · BH

0.57kγAL (1 − 0.57kγ) · BL

]
, (21)

and F h
L(k) = (Γ−αhF h

H(k))/(1−αh). Note that γ must satisfy the conditions
such that kγ ≤ 1/0.57 and kγ ≤ 1/0.43 for all k. Amongst these conditions,
we only need to check (Kh)γ ≤ 1/0.57. Moreover, by summing up both sides
of equation (20) with respect to k, we obtain

1 =
Kh∑
k=1

fh(k; y) =
Kh∑
k=1

fh(k)+(
Kh∑
k=1

λh
k) ·(y−Zh) = 1+(

Kh∑
k=1

λh
k) ·(y−Zh), ∀y,

and it follows that
Kh∑
k=1

λh
k = 0. (22)

We adopt this construction, because it is very convenient to examine the
difference between the cases with and without communication very easily.
Namely, we can examine the cases without communication by selecting λh

k =
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0 for all h, k, while there must exist communication otherwise. Note however
that this does not necessarily mean that each agent’s belief itself has this
structure, although it is possible to introduce such an interpretation in a
casual way as we discuss later.

Observe that the parameter kγ is a proportional revision of the condi-
tional probabilities of the ‘high dividend states’ (s = 1, 2, ..., 16) and the
‘low dividend states’ (s = 17, 18, ..., 32) relative to Γ. Because kγ > 1 for
k ≥ 2, F h

H(k) for k ≥ 2 involves higher probabilities of the ‘high dividend
states’. Hence, the effective beliefs Qh

t have a simple interpretation: agent h
is optimistic (relative to Γ) when Qh

t = Qh
H at t about pt at t + 1.

Although there can be many possible set ups for λh
k, we specify λh

k as
follows:

λh
k =




−χh if k < k̄h,
0 if k = k̄h,
χh if k > k̄h,

(23)

where χh is some scalar and k̄h := (1 + Kh)/2. It is clear that this specifica-
tion satisfies condition (22). Note however that there are restrictions on χh,
because fh(k) and fh(k, y) must follow the law of probability, their ranges
are [0, 1]:

|χh| ≤ fh(k)

Zh
, |χh| ≤ fh(k)

1 − Zh
, (24)

|χh| ≤ 1 − fh(k)

Zh
, |χh| ≤ 1 − fh(k)

1 − Zh
. (25)

With this specification of λh
k, we can classify the beliefs of the agents in a

relatively simple way. When χh > 0, agent h’s optimism/pessimism will be
enhanced by observing an announcement by the other agent saying that the
price/dividend ratio is expected to rise in the next period (i.e. Y

(h)
t = 1), and

his optimism/pessimism will be diminished when the other agent expects the

price/dividend ratio to fall (i.e. Y
(h)
t = 0). Also, the converse holds when

χh < 0. Therefore, we can classify the beliefs as follows:

• Optimistic if Qh
t = Qh

H ;

• Pessimistic if Qh
t = Qh

L;

• If χh > 0, then conformist when optimistic and contrarian when pes-
simistic;

• If χh < 0, then contrarian when optimistic and conformist when pes-
simistic.

Note that the larger |χh| is, the larger the impact of communication on

the (conditional) beliefs Qh
t {·|Y

(h)
t } becomes. In other words, the degree of

conformism or contrarianism is larger when |χh| is larger.
However, it is a priori not trivial at all whether communication amplifies

or mitigates the equilibrium fluctuations of the economy. Hence, we compute
various equilibria by specifying various sets of parameters below to see the
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effects of communication on the equilibria explicitly. To evaluate the impact
of communication on the equilibria, we compute the following statistics in
the United States. The estimations are from Kurz and Motolese (2001)
unless noted. They use the updated version of the data base for 1889 - 1998
compiled by Shiller (1981), whilst Mehra and Prescott (1985) use the same
data base for 1889-1978.

• p̄: the long term (average of the) price/dividend ratio. The estimated
value is 22.84;

• σp: the standard deviation of the price/dividend ratio. The estimated
value is 6.48;

• R̄: the average risky rate of return on equities. The estimated value
is 8%, whilst Mehra and Prescott (1985) report an estimated value of
6.98% for 1889 - 1978;

• σR: the standard deviation of the risky rate of return. The estimated
value is 18.08%, whilst Mehra and Prescott (1985) report an estimated
value of 16.67% for 1889 - 1978;

• rF : the average riskless interest rate. Mehra and Prescott (1985) report
an estimated value of .8% for 1889 - 1978 based on the 90 day T-bill
rate for 1931 - 1978. For 1889 - 1931 one may use various alternative
securities. We accept an estimate of around 1%;

• σrF : the standard deviation of the riskless interest rate. Mehra and
Prescott (1985) report an estimate of 5.67% for 1889 - 1978;

• ρ: the premium of equity return over the riskless rate. With the esti-
mates of R̄ and rF above, it should be around 7%.

3.2 Computing the Rational Expectations Equilibria

First, we observe that we can compute a rational expectations equilibrium
(REE) by selecting γ = 0 (and χ1 = χ2 = 0). This is because the prior
fh(k) and/or the posterior fh(k; y) do not play any role in a REE. Namely,
F̄ h

H = F̄ h
L = Γ for all h must hold (Kh = 1 for all h). Also, because the

announcements do not have any impact on the REE, the same results hold
for any AHij, ALij, BHij and BLij (i, j = 1, 2, 3, 4). Moreover, the assessment
variables do not play any role; thus, it does not matter what αh’s and ηi’s
are.

Table 1 reports a couple of REE with different choices of parameter val-
ues: the first column of Table 1 reports an REE with β1 = β2 = 0.95,
ν1 = ν2 = 3.0, w1 = w2 = 26.0 (REE1), while the second column reports an
REE with β1 = β2 = 0.90, ν1 = ν2 = 3.25, w1 = w2 = 24.0 (REE2). The
results in Table 1 represent what Mehra and Prescott (1985) introduce as
‘the equity premium puzzle’. It is clear that the computation results yield
a rather small equity premium of less than 0.5%, while the empirical record
shows that of about 7%. Also, the discrepancy in the riskless rate is huge:
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Variable REE1 REE2 Empirical Record
p̄ 25.31 23.13 23
σp 0.07 0.07 6.48
R̄ 5.84% 6.21% 8.00%
σR 4.08% 4.12% 18.08%
rF 5.39% 5.72% 1.00%
σrF 0.85% 0.88% 5.67%
ρ 0.45% 0.49% 7.00%

Table 1: REE Results

more than 5% versus 1%. It is however very important to recognize that
all the volatility measures show that the REE predictions fail to reproduce
the empirical record. For example, the standard deviation of price/dividend
ratio is only about 0.07 according to the REE predictions, while the empir-
ical record shows 6.48, which is more than 90 times larger than the REE
predictions.

3.3 The Impact of Communication on RBE

To examine the effects of communication, we specify the unconditional joint
distribution of the effective beliefs (Q1

t , Q
2
t ). In Kurz and Beltratti (1997), the

assessment variables, which correspond to the effective beliefs in the current
paper, are correlated with each other a priori. Although they do not model
the mechanism that generates such correlation of beliefs, it is shown that
correlation of beliefs makes the economy more volatile, and as a result, the
equity premium puzzle is resolved. We, on the other hand, explicitly model
the mechanism that causes the beliefs to be correlated, i.e. communication.

Moreover, to elucidate the effects of communication alone, we specify the
unconditional joint distribution for the effective beliefs (Q1

t , Q
2
t ) to have the

following property:

Π{(Q1
t , Q

2
t ) | (Q1

t−1, Q
2
t−1)} = Π{(Q1

t , Q
2
t )} = Π{Q1

t} · Π{Q2
t}, ∀t. (26)

Namely, the unconditional joint distribution of the effective beliefs (Q1
t , Q

2
t )

has an i.i.d. as well as a mutual independence property. With this specifi-
cation, there is no correlation between the effective beliefs of the two agents,
and also, the effective beliefs are unaffected by the past effective beliefs a
priori. Therefore, if there exists any kind of correlation of beliefs (either
between agents or across time), it is caused by the observables, in particular
(dt, Y

1
t , Y 2

t ). Note that the above properties are satisfied when

ηi = α1 · α2 =: η (i = 1, 2, 3, 4).12 (27)

This is to highlight the effects of announcements rather than the correlation
between the effective beliefs (Q1

t , Q
2
t ) unlike the companion paper (Nakata

12However, it is not necessarily the case vice versa.
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(2004)). In other words, the current paper examines if communication gen-
erates correlation of beliefs that results in large fluctuations of the economic
variables even when the effective beliefs (or the subjective probability mea-
sures) themselves are independent.

As pointed out above, it does not mean that the conditional joint distri-
butions have a similar property, i.e.

Π{(Q1
t , Q

2
t ) | dt, Y

1
t , Y 2

t } �= Π{Q1
t | dt, Y

1
t , Y 2

t } · Π{Q2
t | dt, Y

1
t , Y 2

t }.

On the contrary, it is the observables (dt, Y
1
t , Y 2

t ) that generate correlation
between the effective beliefs (Q1

t , Q
2
t ). In particular, we shall show below

that the announcements (Y 1
t , Y 2

t ) play a dominant role in generating such
correlation of beliefs.

To examine explicitly how large is the role of communication in gen-
erating correlation of beliefs, we specify two distinct sets of prior weights
(f 1(k), f 2(k)).

Set 1
We assume that Kh = K. Also,
Agent 1 :

f 1(k) = 1/K for all k;

Agent 2 :

f 2(k) =




1/K − 0.01 if k = 1;
1/K + 0.01 if k = K;
1/K otherwise.

It is clear that both agents’ priors are uniform or nearly uniform. In this
case, the restrictions on χh are relatively loose. In fact, when K = 5,

|χ1| ≤ 0.2

Z1
, |χ1| ≤ 0.2

1 − Z1
, |χ1| ≤ 0.8

Z1
, |χ1| ≤ 0.8

1 − Z1
; (28)

|χ2| ≤ 0.19

Z2
, |χ2| ≤ 0.19

1 − Z2
, |χ2| ≤ 0.79

Z2
, |χ2| ≤ 0.79

1 − Z2
. (29)

Consequently, the posteriors may be quite different from the priors in this
case. In other words, the effects of communication on the beliefs are large.

Set 2
We assume that Kh = 5 for h = 1, 2. Also,
Agent 1 :

f 1(k) = 0.2 for all k;

Agent 2 :
f 2(k) = k/15 for all k.

Agent 1’s prior is again a uniform prior, while agent 2 assigns larger prior
weights on larger k’s. Recall that kγ is a proportional revision of the condi-
tional probabilities of the ‘high dividend states’ (s = 1, 2, ..., 16) and the ‘low
dividend states’ (s = 17, 18, ..., 32) relative to Γ, a larger k corresponds to a
more volatile stochastic process. Hence, agent 2 assigns larger prior weights
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on more volatile processes. However, the restrictions on χ2 are severer than
above:

|χ2| ≤ 1

15Z2
, |χ2| ≤ 1

15(1 − Z2)
, |χ2| ≤ 2

3Z2
, |χ2| ≤ 2

3(1 − Z2)
.

Hence, the effects of communication on the beliefs are more limited under
the proposed specification of λh

k above, i.e. equation (23).

3.3.1 RBE without Communication

First, we compute RBE without communication. To do so, we select χ1 =
χ2 = 0. Because, there is no communication, the same results hold no matter
what the matrices AHij, ALij, BHij and BLij are. For other parameters, we
select β1 = β2 = 0.90, ν1 = ν2 = 3.25, w1 = w2 = 24.0, γ = 0.346 and
α1 = α2 = 0.57. Table 2 reports the RBE for the two distinct sets of beliefs,
where RBE2.1 corresponds to Set 1 with K = 5 and RBE2.2 corresponds to
Set 2. It is clear from the table that Set 2 (RBE2.2) yields a slightly higher

Variable RBE2.1 RBE2.2
p̄ 22.97 22.91
σp 0.34 0.42
R̄ 6.28% 6.32%
σR 5.00% 5.40%
rF 5.70% 5.67%
σrF 2.81% 3.36%
ρ 0.59% 0.65%

Table 2: RBE without Communication

volatility in general. As mentioned above, Agent 2’s belief in Set 2 places
larger weights on more volatile stochastic processes a priori, and that, the
posterior has the exactly same property because there is no communication.
Note that both Set 1 (RBE2.1) and Set 2 (RBE2.2) yield somewhat higher
volatilities than the REE above. This is because the beliefs are correlated
through the observations of dt. However, the difference is quite limited. In
other words, the difference in priors has a very little impact on the equilibrium
fluctuations unless there is communication. Moreover, the results still do
not show large fluctuations that are comparable with the empirical record,
although they do show larger fluctuations than REE do.

It is worth noting that the computation results are again not actual sam-
ple statistics, but expected values that are based upon the invariant distribu-
tion derived from the stationary transition probability matrix Γ. Recall that
although the agents do not know the true probability measure Π, their beliefs
and the true measure have the same stationary measure, i.e. they agree on
average in the long run. Hence, we can calculate the long run statistics by
using the expected values based upon the stationary distribution. In fact,
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all agents know these long run statistics, and that sequence of their effec-
tive beliefs are compatible with these statistics as long as they satisfy the
rationality conditions.

3.3.2 RBE with Communication

In what follows, we compute RBE with communication. Although we can
expect that the results depend upon the prior weights of the agents, we
use only Set 1 of prior weights. Moreover, if the equilibrium involves larger
volatility than the previous results, that indicates communication plays a
dominant role in amplifying fluctuations.

Because the announcements Y h
t are determined endogenously by equation

(4), we need to impose restrictions on the transition probability matrix Γ.
Recall that F h

H(k) is a proportional revision relative to Γ. With the priors
specified above, it is clear that

K∑
k=1

f 1(k) · k <
K∑

k=1

f 2(k) · k

holds. Because pt is supposed to be positively correlated with dt, we should
expect that when (Q1

t , Q
2
t ) = (Q1

H , Q2
H),

EQ1
t
{pt+1 |G1

t \Yt} < EQ2
t
{pt+1 |G2

t \Yt}

holds, and consequently,

Pr{(Q1
t , Q

2
t , Y

1
t , Y 2

t ) = (Q1
H , Q2

H , 1, 0)} = 0

must hold. Similarly,

Pr{(Q1
t , Q

2
t , Y

1
t , Y 2

t ) = (Q1
L, Q2

L, 0, 1)} = 0

must hold. Note that Pr{·} here refers to the long-term frequencies; thus, all
agents observe and know these frequencies. Furthermore, when (Q1

t , Q
2
t ) =

(Q1
H , Q2

L), agent 1 is optimistic and agent 2 is pessimistic relative to the
stationary process represented by Γ; thus,

EQ1
t
{pt+1 |G1

t \Yt} > EQ2
t
{pt+1 |G2

t \Yt}.

Hence,
Pr{(Q1

t , Q
2
t , Y

1
t , Y 2

t ) = (Q1
H , Q2

L, 0, 1)} = 0

must hold. Similarly,

Pr{(Q1
t , Q

2
t , Y

1
t , Y 2

t ) = (Q1
L, Q2

H , 1, 0)} = 0

must hold.
These indicate that there are restrictions on (AH , AL, BH , BL). However,

it is not trivial at all to determine what/which matrices (AH , AL, BH , BL) in-
deed support an RBE. Note that by specifying some matrices (AH , AL, BH , BL)
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and hence Γ exogenously, we can compute the ‘equilibrium’, but it is pos-
sible that condition (4) is not satisfied. Namely, an arbitrary choice of Γ is
in fact an introduction of sunspot variables (Ŷ 1

t , Ŷ 2
t ), which may not satisfy

condition (4). In other words, the random variables (Ŷ 1
t , Ŷ 2

t ) will be indeed
the announcements (Y 1

t , Y 2
t ) only when condition (4) is satisfied. With this

observation, we propose the following algorithm to find the RBE.

An Algorithm to Find an RBE

• First, specify (AH , AL, BH , BL) arbitrarily.

• Compute the ‘equilibrium’ and also compute the endogenous announce-
ments (Y 1

t , Y 2
t ).

• Run a Monte Carlo simulation for (dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ).

• Compute the empirical distribution of (dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) that corre-
sponds to (AH , AL, BH , BL) by using the Monte Carlo samples.

• Use the empirical distribution as the entry of (AH , AL, BH , BL) in the
next round.

• Iterate the above procedure until the empirical distribution converges.

• Such a limit distribution supports an RBE.

To begin with, we assume that AHij = ALij = Aj and BHij = BLij =
Bj for all i, j. This means that given the dividend state, the transition
probabilities are independent of the current state. We select β1 = β2 = 0.90,
ν1 = ν2 = 3.25, w1 = w2 = 24.0, γ = 0.346 and α1 = α2 = 0.57. Note
that by selecting γ = 0.346, kγ < 1/0.57 ≈ 1.7544 for all k is satisfied, and
5γ ≈ 1.7542 in particular. By using the above algorithm, for a wide range
of (χ1, χ2), only the following specifications of (AH , AL, BH , BL) support an
RBE: for all k ∈ {1, 2, 3, 4},

a1 = (0, 0, 0, 1), a2 = (0, 0, 0, 1), a3 = (0, 0, 0, 1), a4 = (0, 0, 0, 1)

b1 = (1, 0, 0, 0), b2 = (1, 0, 0, 0), b3 = (1, 0, 0, 0), b4 = (0, 0, 0, 1),

where aj denotes coordinates of Aj. We omit the superscripts Hi and Li
because the coordinates are independent of them. This implies that the long
term frequencies are such that

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dH , Q1
H , Q2

H , 0, 0)} = 0.16245;

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dH , Q1
H , Q2

L, 0, 0)} = 0.12255;

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dH , Q1
L, Q2

H , 0, 0)} = 0.12255;

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dH , Q1
L, Q2

L, 0, 0)} = 0.09245;

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dL, Q1
H , Q2

H , 1, 1)} = 0.16245;

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dL, Q1
H , Q2

L, 1, 1)} = 0.12255;

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dL, Q1
L, Q2

H , 1, 1)} = 0.12255;

Pr{(dt, Q
1
t , Q

2
t , Y

1
t , Y 2

t ) = (dL, Q1
L, Q2

L, 0, 0)} = 0.09245.
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Thus, the introduction of announcements does not expand the state space
— i.e, there are only 8 price states. Namely, not only the announcements
are perfectly correlated with each other, but also the state of announcements
is a function of (dt, Q

1
t , Q

2
t ). However, it does not mean that the effect of

communication is absent. Table 3 reports the computation results for various
specifications of (χ1, χ2) when K = 5. The first column (χ1, χ2) = (0, 0) is a

Variable (χ1, χ2)
(0, 0) (.337, .32) (.05, .05) (.05, .3) (-.2, .3) (-.3, .3)

p̄ 22.97 22.81 22.95 22.89 22.91 22.92
σp 0.34 0.83 0.38 0.56 0.42 0.37
R̄ 6.28% 6.52% 6.30% 6.38% 6.33% 6.31%
σR 5.00% 8.27% 5.33% 6.51% 5.61% 5.32%
rF 5.70% 5.50% 5.69% 5.64% 5.69% 5.70%
σrF 2.81% 5.38% 3.07% 4.11% 3.59% 3.44%
ρ 0.59% 1.02% 0.61% 0.74% 0.63% 0.61%

Table 3: RBE with Communication 1

reproduction of the first column of Table 2. We note that we cannot interpret
this equilibrium as a situation where the agents do communicate but simply
believe that the announcements of other agents are not informative, because
condition (4) is not met.

It is clear from columns 2—4 of the table that the volatility is higher when
both χ1 and χ2 are large. Recall that χh > 0 indicates the following: when
agents believe that the volatility is higher when the other agent expects the
price/dividend ratio to rise, and vice versa. In particular, when χh is larger,
the agent believes that such correlation is stronger. When both agents believe
that such correlation is strong (i.e. both χ1 and χ2 are large), the volatility
becomes larger, because both agents always react in the same direction, for
the announcements are perfectly correlated with each other.

On the other hand, when the population is diverse in the sense that the
reactions to the announcement of the other agent are opposite (i.e. the signs
of χ1 and χ2 are different), the volatility is lower. Columns 1, 4—6 exhibit
results where χ2 is fixed to be 0.3 while χ1 changes. From these results, when
we fix χ2, we can see some kind of monotonicity and continuity of volatility
in the reaction parameter χ1, i.e. the larger χ1 is, the higher the volatility
is, and there is no jump in the volatility changes.

However, it is clear that the fluctuations in Table 3 are small compared
to the empirical record. Hence, we need to analyse further how a large
fluctuation can be brought into place by examining several different settings
of the simulation model.

Table 4 reports another two equilibria whose stationary transition prob-
ability matrices are more complex than the previous one. We again se-
lect β1 = β2 = 0.90, ν1 = ν2 = 3.25, w1 = w2 = 26.0, γ = 0.33 and
α1 = α2 = 0.57. Also, we select (χ1, χ2) = (0.33, 0.31) for RBE4.1 and
(χ1, χ2) = (0.30, 0.30) for RBE4.2. The transition probability matrices are
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reported in the appendix. While RBE4.1 has 10 price states, RBE4.2 has

Variable RBE4.1 RBE4.2
p̄ 24.81 24.86
σp 0.74 0.57
R̄ 6.09% 6.00%
σR 7.29% 6.06%
rF 5.20% 5.33%
σrF 4.61% 3.73%
ρ 0.89% 0.67%

Table 4: RBE with Communication 2

16 price states. Namely, the announcements expand the state space more in
RBE4.2. However, it is clear that RBE4.1 indicates a larger market volatil-
ity. This suggests that an expansion of the state space does not necessarily
imply a larger market volatility.

To understand why this may be the case and also how a large fluctuation
may arise, we refer to the results of Kurz and Motolese (2001). As they point
out, a correlation of the assessment variables is the driving force of large mar-
ket fluctuations. A close examination of their configurations suggests that
asymmetry in the transition probabilities is the key in such correlation. We
postulate that we should consider two kinds of asymmetry. First, we refer
to a well known fact that large fluctuations can occur in a macro model only
when the agents suffer severely in some states. In Kurz and Motolese (2001),
the ‘crash’ occurs when the assessment variables disagree and the economy
is in a recession dt = dL. In this state, the old agent who was an optimist
in one of the two states of disagreement (i.e. Q1

t−1 �= Q2
t−1) suffers a lot,

because he holds a large amount of shares whose price is much lower than
what he expected. Another type of asymmetry is the following. According
to the simulation results of Kurz and Motolese, a market experiences a large
fluctuation when it could crash from any state while it takes several steps
to reach the ‘bull’ market. Because the structure of the economy here is
essentially the same as that of Kurz and Motolese, we should expect that
asymmetry in the transition probabilities is the key to generating large fluc-
tuations. However, all of the configurations we have employed so far lack
these features.

To see indeed a large discrepancy between the expectations of the agents
in a ‘crash’ state is crucial for the economy to experience a large volatility,
we assume that K = 2. In this case, the priors are as follows:
Agent 1 :

f 1(k) = 0.5 (k = 1, 2);

Agent 2 :

f 2(k) =

{
0.49 if k = 1;
0.51 if k = 2.
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Moreover, equation (23) becomes:

λh
k =

{
−χh if k = 1,
χh if k = 2.

(30)

Table 5 reports equilibria with the same specifications of (AH , AL, BH , BL)
as in Table 3. This is the simplest class of equilibria in the sense that the
announcements do not expand the state space (there are only 8 price states).
We select β1 = β2 = 0.90, ν1 = ν2 = 3.25, w1 = w2 = 25.0, γ = 0.8108
and α1 = α2 = 0.57. We choose w1 = w2 = 25.0 so that the average
price/dividend ratio is close to 23 in the equilibrium with the largest fluctu-
ation. Note also that 2γ ≈ 1.7542 < 1.7544 ≈ 1/0.57 and 1γ = 1 (recall that
we need to satisfy kγ < 1/0.57 for all k). Hence, the process is either sta-
tionary (k = 1) or extremely divergent from the stationary process (k = 2).

Variable (χ1, χ2)
(0, 0) (.45, .45) (.80, .80) (.8439, .8270) (.8438, 0) (.8438, -.3)

p̄ 23.97 23.84 23.55 23.42 23.73 23.74
σp 0.30 0.70 1.55 2.01 0.96 0.85
R̄ 6.09% 6.26% 6.85% 7.33% 6.41% 6.08%
σR 4.77% 7.29% 12.83% 16.15% 8.95% 8.20%
rF 5.53% 5.44% 4.78% 4.46% 5.48% 5.58%
σrF 2.49% 4.48% 8.88% 11.89% 7.38% 7.10%
ρ 0.55% 0.82% 2.07% 2.86% 0.93% 0.76%

Table 5: RBE with Communication 3

It is clear from the table that the economy is more volatile when the
parameters (χ1, χ2) are larger, i.e. the degree of conformism is higher for
both agents, as we saw in Table 3. However, the level of volatility is much
higher now, and is reasonably comparable with the empirical record. Before
explaining why such a difference arises, we make two additional observations
about the table. As Kurz and Motolese (2001) point out, (a) the model pre-
diction of σp is downward biased (both in the REE and RBE with or without
communication) since the model assumes that dividends and GDP are pro-
portional. Under the realistic assumption that profits are more volatile than
GDP, the model predictions of σp would become larger. However, the extent
cannot be large enough so that the REE predictions match the empirical
record. Also, (b) the empirical record of σrF is downward biased relative
to the model assumptions since monetary policy during the second half of
the 20th century tended to stabilize short term rates. Indeed, there is some
evidence that σrF was substantially higher than 5.67% before the Great De-
pression. Therefore, with these observations, we can claim that the model
does have a prediction about volatility that closely matches the empirical
record, although the prediction about the risk-free rate is not very close to
the empirical record yet.
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Now we explain why the modified version matches the empirical record
far better than the previous one does. We observe that f 1(2; 1) ≈ 1 and
f 2(2; 1) ≈ 1 when (χ1, χ2) = (.8439, .8270). In other words, both agents
assign weights that are almost 1 on the non-stationary process when the
announcements are (Y 1

t , Y 2
t ) = (1, 1). Suppose the economy is in a recession

(dt = dL) and both agents expect the share price to rise (Y 1
t = Y 2

t = 1).
Then, the optimist is almost certain that the economy will be booming in
the next period (dt+1 = dH) while the pessimist is almost certain that the
economy will be in a recession (dt+1 = dL). We claim that this state is most
likely to be a ‘crash’ state if such a state ever exists. This is because the
price/dividend ratio pt must be the lowest or nearly lowest in a crash state;
thus, the announcements must be (Y 1

t , Y 2
t ) = (1, 1). Moreover, a crash state

should be a low dividend state because pt should be positively correlated
with dt. In particular, we claim that this state indeed becomes a crash state
when the discrepancy between the beliefs of the agents is extremely large.
This happens only when f 1(2; 1) ≈ 1 and f 2(2; 1) ≈ 1 with Q1

t �= Q2
t . Hence,

these observations imply that all agents must be conformists when optimistic
and contrarians when pessimistic (i.e. χh > 0 for all h) for an equilibrium to
involve a crash state.

We observe that the same argument does not hold when the economy
is booming currently (i.e. dt = dH). More specifically, the optimist is not
almost certain that the economy will continue to boom even if his posterior
weight is such that fh(2; 1) ≈ 1, while the pessimist is again almost certain
that the economy will be in a recession. Therefore, there is an asymmetry in
the transition probabilities, which is analogous to that in Kurz and Motolese
(2001).

Note that although we selected K = 2 instead of K = 5 here, the number
of K itself is not essential to obtain sharp results as in Table 5. If we modify
the previous specification of λh

k, i.e. equation (23), so that the posterior

weight for {k = K} with Kγ ≈ 1.7542 is close to 1 when Y
(h)
t = 1, a similar

result should hold. In fact, so long as the prior weight for {k = K} is not
substantially less than .5 as well as Zh is not substantially larger than .5, we
can retain this feature.13 This implies that the economy experiences a large
fluctuation only when agents a priori put large weights on a process that is
extremely divergent from the stationary one. Moreover, all agents must be
conformists when optimistic and contrarians when pessimistic (i.e. χh > 0
for all h) as we pointed out before. Thus, we can claim that the model has
a good prediction about the class of beliefs.

Recall that so long as χh > 0, an optimistic young agent becomes even
more optimistic by listening to the announcement of the other agent which
expects pt to rise, while a pessimistic young agent becomes even more pes-
simistic. This means that when both agents expect pt to rise, the opti-
mism/pessimism of the agents will be amplified. In this sense, the agents
believe that the economy is more volatile when both agents expect pt to rise.
As pointed out above, the discrepancy in the beliefs of the agents becomes

13If the prior weight is substantially less than .5, restrictions on λh
k prevent the posterior

from being near 1.
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largest in the crash states, where both agents expect pt to rise. The simu-
lation results indeed show that this is how communication makes the beliefs
of the agents become correlated, and consequently, amplifies the fluctuations
of the economy.

With such an observation concerning the beliefs of the agents in mind,
we emphasize that the ‘crash’ states are created endogenously. It is the
young agents who make ‘mistakes’ in terms of beliefs by themselves, and
consequently hold ‘wrong’ portfolios so that they suffer a lot when they get
old. Because the market as a whole cannot make an extreme mistake, it
must be that some but not all agents make huge mistakes. This implies that
a substantial discrepancy in the forecasts is the key to having a crash state.
Indeed, an optimistic young agent in a crash state believes that the economy
will be booming in the next period for sure, and thus, holds a portfolio
whose position is extremely long in the common stock and extremely short
in the ‘bill’. However, when the economy remains in a crash state in the next
period completely against his expectation, he suffers a lot (when he is old),
because he needs to pay back for the shorting on the ‘bill’ whilst he fails to
secure a capital gain from the common stock. This may well happen with
the specification we have in Table 5.

Variable Empirical Record (ν1, ν2)
(3.00, 3.00) (3.25, 3.25) (3.50, 3.50)

p̄ 23 23.39 23.42 23.44
σp 6.48 1.93 2.01 2.07
R̄ 8.00% 7.25% 7.33% 7.39%
σR 18.08% 15.60% 16.15% 16.62%
rF 1.00% 4.67% 4.46% 4.25%
σrF 5.67% 11.11% 11.89% 12.60%
ρ 7.00% 2.58% 2.86% 3.15%

Table 6: RBE with Communication 4

To complete the discussion, we report the equilibria with various degrees
of (relative) risk aversion in Table 6. Namely, we alter the values of ν1 and
ν2, while fixing (χ1, χ2) = (0.8439, 0.8270). Other than these parameters,
the set-up of the equilibrium remains the same as that of Table 5, including
the choice of Γ. Thus, there are only 8 price states.

It is clear that all simulation results in Table 6 are reasonably close to the
empirical record, although the predicted average risk free rate is somewhat
higher than the empirical record. Nevertheless, all volatility measures are
fairly large. Therefore, we can claim that communication amplifies fluctua-
tions in these equilibria.

3.4 Discussion

Now, we summarize the findings of the simulation results. By examining
various equilibria, we have indeed seen that communication causes a larger
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volatility provided for a class of prior weights. We stress in particular that
the prediction of the simulation model about volatility matches the empiri-
cal record well only by introducing communication. We can emphasize this
point because we do not introduce any correlation of the beliefs a priori. To
summarize, in a limited class of models and parameters we have shown the
following:

• Communication amplifies the fluctuations of the economy in general;

• Communication may play a dominant role in amplifying the fluctu-
ations, and may be powerful enough to create large fluctuations that
match the empirical record even if the effective beliefs themselves are
independent a priori.

• The model is capable of generating large fluctuations without relying
upon informational asymmetry.

• The economy experiences large fluctuations if the agents are conformists
when optimistic and contrarians when pessimistic.

The third point is particularly important when we are to analyse the
behaviour of the market participants. For example, the press frequently
makes statements such as ‘this piece of information is already reflected in the
market’s expectations’, or ‘the stock price does not reflect the fundamentals’
and so on. The idea behind such statements is that all participants interpret
the newly arrived information in an identical way as long as they had the same
information previously, which is exactly the idea of the rational expectations
or the common prior. In short, the prices change only when information
prevailing in the market changes according to this line of argument. This is
partly the reason why the SEC is keen to alleviate informational asymmetry
so as to eliminate unnecessary price fluctuations. However, the simulation
results of our model reveal that the prices do change even if information other
than the announcements remains unchanged.

Note that in our model, the dividend state corresponds to the market
fundamentals in the usual sense, but in fact the effective beliefs as well as
the announcements are also functioning as the market fundamentals. We
point out that it is much more realistic to include them among the market
fundamentals. For example, it is very common for the investors to refer to
the opinions of financial analysts: even major market participants do refer
to the opinions of the fellow market participants on a regular basis. Also,
it is widely acknowledged that the ‘atmosphere’ of the market influences the
market behaviour. We claim that the ‘atmosphere’ is represented by the
effective beliefs and the announcements in our model. Therefore, although
many statements seem to be based upon the idea of rational expectations,
the actual behaviour of the market participants is not. Rather, the actual
behaviour is more properly described by our model.

Moreover, we may interpret the results with respect to the public policy
issue. Under rational expectations, it is more beneficial for the society as
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a whole to alleviate asymmetric information so that all the unnecessary in-
stability of the market be eliminated. Our model, however, has shown that
asymmetric information may not play any role in causing a large fluctuation.
Hence, while we do not rule out the importance of eliminating insider deal-
ing, we claim and have indeed shown that such a regulation is not key to
stabilizing the market. Instead of focusing on informational asymmetry, we
claim that the policy should be focused on the state of the beliefs. Recall
that our model predicts that the economy experiences a large fluctuation
only when the agents assign sufficiently large weights on extremely divergent
processes a priori. Hence, we suspect that any public policy that encourages
the agents to assign smaller weights on such extremely divergent processes
would stabilize the market, although the formation of prior weights of the
agents itself is not modelled in the current paper.

To conclude the discussion, we introduce an alternative interpretation of
the structure of beliefs. When we interpret the prior weights fh(k) as prior
beliefs about the possible processes, the posterior weights fh(k, y) can be in-
terpreted as the posterior beliefs updated by listening to the announcements.
In other words, each agent forms a belief about the combinations k, while
he becomes optimistic of pessimistic randomly.14 The formula (20) then is
really the beliefs updating formula, and indeed, the formula can be justified
by applying the result of Genest and Schervish (1985) in the literature of the
Expert Problem. Their main result is the following. The reaction function
of an agent to the announcements is linear in n moments of the announce-
ments provided that the agent forms a belief up to the nth moment of the
announcements, but does not specify the full joint distribution.15 Of course,
it is not necessarily the case that the agents form a belief only about he first
moment of the announcements. Therefore, this interpretation is somewhat
informal, yet provides a different insight.

4 Conclusion

We have examined a standard OLG model with financial assets while allow-
ing for heterogeneous beliefs. The model is essentially the same as that of
several existing studies on rational beliefs — e.g. Kurz and Beltratti (1997),
and Kurz and Motolese (2001) except the introduction of communication.
To introduce communication, we incorporated a result of Bayesian theory
called the Expert Problem. To examine the impacts of communication on
the equilibria, we set up a simulation model, which is a modification of model
due to Kurz and Beltratti (1997) and/or Kurz and Motolese (2001). In gen-
eral, the model involves an endogenous expansion of the state space through
communication.

The simulation results reveal that communication alone is capable of am-
plifying the fluctuations of the economic variables. For a particular class of
effective beliefs, it is shown that communication is powerful enough to cause

14This interpretation is in line with Barberis, Shleifer and Vishny (1998).
15See Theorem 2.1 of Genest and Schervish (1985).
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strong correlation of beliefs so that the prediction of the model concerning
the volatility measures matches the empirical record at a reasonable level
even when there is no correlation of beliefs a priori (when communication is
absent). This result is particularly important because it shows that informa-
tional asymmetry is not essential in causing large fluctuations when we allow
for heterogeneous beliefs. This provides a sharp contrast with the fact that
communication has no impact unless there is asymmetric information under
rational expectations.

In the simulation model, the economy experiences a large fluctuation only
when some young agents make a severe mistake in predicting the state of the
economy in the next period (i.e. when they get old). Such a mistake arises
when the economy is in a ‘crash’ state, where the price/dividend ratio slumps
at a very low level. We emphasize that the agents are not forced to make
mistakes arbitrarily, but they do so by themselves through communication.
Hence, the crash states are not introduced exogenously, but are created en-
dogenously.

Moreover, large fluctuations of the economy arise only when the agents
are conformists when optimistic and contrarians when pessimistic. This is
consistent to the results of the companion paper (Nakata (2004)). Of course,
the simulation model is a very simple one, and thus, it is not too appropriate
to claim that this is the structure of the beliefs and/or the economy. Yet, the
model offers an intuitive way to classify the beliefs, i.e. optimism/pessimism
and conformism/contrarianism, which should be useful when we reflect the
empirical studies on the matter, including those of the psychology literature.
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A Transition Probabilities for RBE4.1

The stationary transition probability matrix Γ in RBE4.1 is constructed from
the transition probability matrices below. We choose AHij = AH for all i, j,
and thus, we represent them by AH .

AH =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 , BH11 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BH12 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.6782 .3218 .0000 .0000


 , BH13 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7416 .0000 .2584 .0000


 ,

BH14 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 , BH21 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BH22 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 , BH23 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BH24 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 , BH31 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BH32 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 , BH33 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BH34 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 , BH41 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BH42 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 , BH43 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BH44 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 , AL11 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 ,

AL12 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 , AL13 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 ,

AL14 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 , AL21 =




.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 ,

AL22 =




.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 , AL23 =




.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 ,
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AL24 =




.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 , AL31 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500


 ,

AL32 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500


 , AL33 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500


 ,

AL34 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500


 , AL41 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AL42 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 , AL43 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AL44 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 , BL11 =




1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500
.2500 .2500 .2500 .2500
.2500 .2500 .2500 .2500


 ,

BL12 =




.8409 .1591 .0000 .0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 , BL13 =




.7363 .0000 .2637 .0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 ,

BL14 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 , BL21 =




1.0000 .0000 .0000 .0000
1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500
.2500 .2500 .2500 .2500


 ,

BL22 =




1.0000 .0000 .0000 .0000
1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500
.2500 .2500 .2500 .2500


 , BL23 =




1.0000 .0000 .0000 .0000
1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500
.2500 .2500 .2500 .2500


 ,

BL24 =




.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500


 , BL31 =




1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500


 ,

BL32 =




1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500


 , BL33 =




1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000
.2500 .2500 .2500 .2500


 ,

BL34 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500


 , BL41 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BL42 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 , BL43 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 ,

BL44 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 .
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B Transition Probabilities for RBE4.2

The stationary transition probability matrix Γ in RBE4.2 is constructed from
the transition probability matrices below.

AH11 =




.2521 .0000 .0000 .7479

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7239 .0000 .0000 .2761


 , AH12 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.3146 .0000 .0000 .6854


 ,

AH13 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2439 .0000 .0000 .7561


 , AH14 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AH21 =




.1489 .0000 .0000 .8511

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.5000 .0000 .0000 .5000


 , AH22 =




.0357 .0000 .0000 .9643

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2273 .0000 .0000 .7727


 ,

AH23 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.1441 .0000 .0000 .8559


 , AH24 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AH31 =




.1714 .0000 .0000 .8286

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.5310 .0000 .0000 .4690


 , AH32 =




.1000 .0000 .0000 .9000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.1512 .0000 .0000 .8488


 ,

AH33 =




.0882 .0000 .0000 .9118

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.1895 .0000 .0000 .8105


 , AH34 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AH41 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.8712 .0000 .0000 .1288


 , AH42 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.1683 .0000 .0000 .8317


 ,

AH43 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2376 .0000 .0000 .7624


 , AH44 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

BH11 =




.5116 .0000 .0000 .4884

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.9412 .0000 .0000 .0588


 , BH12 =




.1712 .0450 .0000 .7838

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.6923 .2077 .0000 .1000


 ,

BH13 =




.2240 .0000 .0960 .6800

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.6500 .0000 .2167 .1333


 , BH14 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

BH21 =




.4918 .0000 .0000 .5082

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.9286 .0000 .0000 .0714


 , BH22 =




.2045 .3636 .0000 .4318

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7931 .1121 .0000 .0948


 ,

BH23 =




.3030 .0000 .3030 .3939

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7350 .0000 .1282 .1368


 , BH24 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,
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BH31 =




.6615 .0000 .0000 .3385

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.9313 .0000 .0000 .0688


 , BH32 =




.3077 .3846 .0000 .3077

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.8136 .1356 .0000 .0508


 ,

BH33 =




.1667 .0000 .4333 .4000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.8168 .0000 .1298 .0534


 , BH34 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

BH41 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.9314 .0000 .0000 .0686


 , BH42 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7955 .0606 .0000 .1439


 ,

BH43 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.8468 .0000 .0270 .1261


 , BH44 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AL11 =




.0714 .0000 .0000 .9286

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7500 .0000 .0000 .2500


 , AL12 =




.0194 .0000 .0000 .9806

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.9706 .0000 .0000 .0294


 ,

AL13 =




.0069 .0000 .0000 .9931

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.9265 .0000 .0000 .0735


 , AL14 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AL21 =




.1513 .0000 .0000 .8487

.7143 .0000 .0000 .2857

.2500 .2500 .2500 .2500

.9333 .0000 .0000 .0667


 , AL22 =




.3790 .0000 .0000 .6210

.1250 .0000 .0000 .8750

.2500 .2500 .2500 .2500

.6667 .0000 .0000 .3333


 ,

AL23 =




.3084 .0000 .0000 .6916

.0385 .0000 .0000 .9615

.2500 .2500 .2500 .2500

.6786 .0000 .0000 .3214


 , AL24 =




.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

AL31 =




.2102 .0000 .0000 .7898

.2500 .2500 .2500 .2500

.5172 .0000 .0000 .4828

.9792 .0000 .0000 .0208


 , AL32 =




.2692 .0000 .0000 .7308

.2500 .2500 .2500 .2500

.1333 .0000 .0000 .8667

.5610 .0000 .0000 .4390


 ,

AL33 =




.3391 .0000 .0000 .6609

.2500 .2500 .2500 .2500

.0952 .0000 .0000 .9048

.6829 .0000 .0000 .3171


 , AL34 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000


 ,

AL41 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.8855 .0000 .0000 .1145


 , AL42 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.3259 .0000 .0000 .6741


 ,

AL43 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2881 .0000 .0000 .7119


 , AL44 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

BL11 =




.3750 .0000 .0000 .6250

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 , BL12 =




.5280 .0880 .0000 .3840

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.5625 .2083 .0000 .2292


 ,
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BL13 =




.4467 .0000 .1333 .4200

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7069 .0000 .0690 .2241


 , BL14 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

BL21 =




.2672 .0000 .0000 .7328

.9048 .0000 .0000 .0952

.2500 .2500 .2500 .2500
1.0000 .0000 .0000 .0000


 , BL22 =




.8764 .0000 .0000 .1236

.8333 .1667 .0000 .0000

.2500 .2500 .2500 .2500

.9118 .0882 .0000 .0000


 ,

BL23 =




.9011 .0000 .0000 .0989

.9000 .0000 .1000 .0000

.2500 .2500 .2500 .2500

.9286 .0000 .0714 .0000


 , BL24 =




.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 ,

BL31 =




.3071 .0000 .0000 .6929

.2500 .2500 .2500 .2500

.9474 .0000 .0000 .0526
1.0000 .0000 .0000 .0000


 , BL32 =




.9072 .0000 .0000 .0928

.2500 .2500 .2500 .2500

.9000 .1000 .0000 .0000

.9333 .0667 .0000 .0000


 ,

BL33 =




.9205 .0000 .0000 .0795

.2500 .2500 .2500 .2500

.8500 .0000 .1500 .0000
1.0000 .0000 .0000 .0000


 , BL34 =




.0000 .0000 .0000 1.0000

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000

.0000 .0000 .0000 1.0000


 ,

BL41 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.9179 .0000 .0000 .0821


 , BL42 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7629 .1753 .0000 .0619


 ,

BL43 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.7767 .0000 .1456 .0777


 , BL44 =




.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.2500 .2500 .2500 .2500

.0000 .0000 .0000 1.0000


 .
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