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Abstract

In this paper we consider repeated first price auctions where two identical items are
sold sequentially to two bidders who are interested in both items. In this framework
information transmission is of great importance. In the course of an auction, informa-
tion about the bidders’ values become available as identity of the winner and/or bids
are revealed. The aim of the paper is to study how different bid revelation policies
affect equlibrium behavior.

Fevrier (2003) shows there exists a unique pure strategy equilibrium when no
information is revealed after the first round. We show that if the bid revelation policy
is changed so that only winning bid is revealed after the first round, no equilibrium
with a pure non-decreasing bidding rule on first period exists. Furthermore if all bids
are revealed after first round, no weakly monotonic mixed equilibrium exists.

JEL classification: D44
Key words: Repeated auctions, information transmission, asymmetric auctions

1 Introduction

In many real life auction markets, bidders often face the same competitors at several points
in time. For example, a few large firms compete for government defense contracts, while
local construction firms frequently compete for jobs in public and private sector. In all
of these situations bidders desire multiple units and have serial persistence of bidder’s
attributes, e.g., valuations. However Ortega Reichert’s pathbreaking work was as early
as 1968, until recently only small amount of attention devoted to cases where bidders
have multi-unit demand and values for all the items are correlated. The typical model of a
multi-period auction has either a series of single item auctions in which participants receive
new independent draws from the distribution of types at each period or each participant
desires only one of the items (Weber 1983; Engelbrecht-Wiggans 1994; Jeitschko 1998).
While some recent research addresses multi-unit demand and correlated value, very often
attention is restricted to second price auctions (Katzman 1999; Monmartquette and Robert
1999; Menezes and Monteiro 2003). However correlated multi-unit demand is not rare
and first price sealed bid auction framework are quite popular in practice as we have seen,
therefore, certainly deserve more attention.

In this paper I study a model of two period repeated first-price repeated (sequential)
auctions with two bidders. The model has 2 main properties.

1. Bidders would like to acquire both of the items.
∗Graduate School of Economics, The University of Tokyo e-mail:ee36031@mail.ecc.u-tokyo.ac.jp
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2. A bidder’s values for the items are identical.

In repeated auctions, dynamic interaction results strategical information transmission and
the equilibrium behavior significantly differs from that in one shot auction. Informational
transmission and learning are of great importance in such environment. Each interaction
provides information about privately known attributes of the participators, the form and
precision of which depends on the auction framework used. This paper examines trans-
mission of private information via outcome in auctions in which bidders desire multiple
items and values of those items to a bidder are same, and shows how equilibrium behavior
is affected by bid revelation rule (or market structure). Here 3 types of bid revelation
policies are considered. The first one consists in revealing only the name of the winner but
not the bids after first round. Such situations are realistic and could arise because of con-
fidentiality. In many private sector auctions, for example, bids are considered proprietary
information. The second one is the classical one where only winning bid is revealed. In
the third one, all bids are revealed. For example, in municipal construction contracting,
firms’ bids are publicly revealed after the contract is awarded.

The primary obstacle faced when introducing multi-unit demands into a model of
sequential auctions is assymmetry of bidder belief, even if beliefs are ex ante symmetric.
Consider a situation in which bidders have symmetric belief prior to bidding in first period.
The bidders update their beliefs prior to bidding in second period, thus, creating an
assymmetry between the winner’s and loser’s belief. Fortunately some recent research
such as Maskin and Riley(2000b and 2003), Lebrun(1999) and Landsberger et al.(2001)
allow us to analyze asymmetric auctions.

Note if second-price auctions is used instead of first-price auctions in this model, the
equilibrium of this new game is easy to find. It consists in playing his valuation in the
two round. Indeed, bidding his valuation is dominant strategy in the second auction, so
the revealed information has no impact on the second auction and the players bid their
valuations in the first auction.

The rest of this paper is organized as follows. Section 2 introduces and analyzes general
asymmetric auctions. Section 3 discusses equilibrium behavior in various revelations rules,
while Section 4 briefly concludes.

2 Asymmetric One Shot Auction

An asymmetricity arises naturally in the second period, because some information about
bidders’ types is exchanged at first period. For that reason, it is necessary to examine
asymmetric first frice auctions in order to analyze the model of repeated auctions. General
asymmetric one shot auctions is modeled in the following way. Two risk neutral bidders,A
and B, have private value for the item. Bidder i’s valuation is drawn from a distribution
function F i with support1 in Xi. Bidder i has utility xi−b if he wins with a bid of b and is
of valuation of xi. Ties are resolved at random, where each of the bidders has equal chance
of winning. I will consider two cases: (i) Xi is a set of three points ( the discrete value case)
and (ii) Xi is a compact interval ( the continious value case). A bidding function βi(·)
(possibly mixed rule) is a best response to β−i(·) if, for all xi and all bi ∈ real βi(xi)(the set

1The support of F is the smallest closed set of F -measure equal to one.
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of realizations of βi(xi)) maximizes
2 buyer i’s expected payoff given that the other players

are using bid functions β−i(·). An equilibrium is a vector (βA(·),βB(·)) such that, for all
i, βi(·) is a best response to β−i(·). I am particularly interested in monotonic equilibria
which is defined as follows.

Definition 1. An equilibrium is monotonic if for all i ∈ A,B and xi, x
0
i ∈ Xi, if xi > x0i,

b ∈ real βi(xi) and b ∈ real βi(x0i) then b ≥ b0.
Throughout this paper, we require following assumptions.

Assumption 1. Bidder i never bids more than his valuation xi in equilibrium.
3 Also

if bidder i with valuation x never wins in equilibrium, then his bid is his valuation x in
equilibrium.

Assumption 2. Bidder with valuation of minXi do not submit bid in equilibrium.

From Maskin and Riley (2000b) we have the following results.

Lemma 1. Any equilibrium is monotonic. Furthermore in equilibrium, the distribution
of winning bids of any bidder in equilibrium has a support consisting of an interval [b∗, b∗],
and is continuous on it. (see Maskin and Riley, 2000b, Proposition 1 and Proposition 3,
and Maskin and Riley, 2003, Lemma 4).

Note that this result is derived for any tie-breaking rule for which an equilibrium exists
not just random tie-breaking rule. Moreover it holds for both the cases of discrete and
continuous values.

2.1 The Continuous Value Case

Independent value
Firstly I consider a continuous value case, in which XA and XB are compact intervals.
Bidder i’s valuation is independently drawn from distribution F i(·) on [αi, ᾱi], 0 ≤ αi < ᾱi,
that is twice continuosly differentiable and has no mass point in its domain. FA(·) and
FB(·) are independent. I assume also density fi(·) is positive on (αi, ᾱi]. Assume, without
loss of generality, that αA ≤ αB. From Maskin and Riley (2003), we have following results.

Lemma 2. Under Assumption 1, the auction has a pure strategy unique equilibrium where
bidding functions are strictly increasing and twice differentiable. Also

b∗ = max argmax
b
FA(b)(αB − b)

where b∗ is defined in Lemma 1.

Then I consider a case in which bidder A’s valuation a is common knowledge and
bidder B’s valuation is drawn from a distribution F (·) on [α,β], 0 ≤ α < a and α < β.
F (·) is twice continuosly differentiable and has no mass point in its domain. This case
is limit case of previous case as α2 and β2 converge to a. However there exist no pure
strategy equilibrium. Instead the auction has a mixed strategy equilibrium. Vickrey
(1961), a seminal paper, studied a special case in which F (·) is uniform distribution. Here
I examine general case and characterize equilibrium behavior.

2Reference to measure, as well as to the fact that equalities hold almost surely, are suppressed in the
text. A more formal approach can be found in Lebrun 1996

3Clearly it is weakly dominated strategy for a bidder to bid more than one’s valuation at any period
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Lemma 3. There exists a unique equilibrium where bidder A’s bid ditribution H(b) has
support in [b∗, b∗] with positive density, and bidder B bids

β(x) =

(
x x ≤ b∗
a− a−b∗

F (x)F (b∗) b∗ < x ≤ 1
(1)

where b∗ = max argmaxb F (b)(a− b) and b∗ = β(1).
Proof: Suppose there exists an equilibrium. From Lemma 2, it is known that the distri-
bution of winning bids of any bidder in equilibrium has a support consisting of an interval
[b∗, b∗] and continuous on it. Given Assumption 1, bidder B with valuation b > b∗ has
positive payoff from bidding just above b∗. Let pi be the probability that bidder i bids b∗.
If, for all i ∈ {A,B}, pi > 0, then bidding b∗ results in tie with positive probability. Thus,
bidders are strictly better off bidding slightly above b∗, since this increases his probability
of winning discontinuously. Hence, for some i, pi = 0. If i 6= B, then bidder B’s proba-
bility of winning, hence his expected payoff, is zero from bidding b∗. But I have already
argued that bidder B with valuation b > b∗ has positive equilibrium expected payoff, a
contradiction. Hence, pB = 0.

From Assumption 1, if bidder A bids b 6= b∗, his expected payoff is at least F (b)(a− b)
and if bidder A bids b∗, his expected payoff is F (b∗)(a − b∗). It follows that for b∗ to be
an equilibrium bid for him

F (b)(a− b) ≤ F (b∗)(a− b∗) for all b.

Hence b∗ ∈ argmaxF (b)(a − b). Suppose that b0 solves this mazimization problem and
b∗ < b0. Since a distribution of winning bids of bidder B has no mass point, it follows
bidder A’s winning probability from bidding β(b0) is F (b0). Bidding b∗ and β(b0) must
be indifferent to bidder A, hence β(b0) = b0. However bidder B with valuation b0 can get
positive payoff by deviating to b∗, a contradiction. Hence4

b∗ = max argmax
b
F (b)(a− b)

Given Assumption 1, β(x) = x for x ≤ b∗. Further for x such that b∗ < x ≤ 1, the
bidding function β(x) should make bidder A indifferent about bidding any quantity in
[b∗, b∗]. Therefore it must satisfy the following equation

F
¡
β−1(b)

¢
(a− b) = F (b∗)(a− b∗) for all b ∈ [b∗, b∗]

Then I get (1).
Now let me show there exists H(b) such that H(b) and β(x) constitutes an equilibrium.

Obviously bidder A has no incentive to bid outside of [b∗, b∗]. Now it is sufficient to show
that there exists a distribution function H(b) such that

β(x) = argmax
b
H(b)(x− b) for all x ∈ [b∗, 1] . (2)

It can be easily seen that a function H(b) defined by following differential equation satisfies
(2)

H 0(b) =
H(b)

β−1(b)− b given the initial condition H(β(1)) = 1

4Existence of b∗ can be proved by appealing to the Maximum Theorem.
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From the fundamental theorem of ordinary differential equations this differential equation
has unique solution. Q.E.D.

Ranking of valuations is common knowledge.
Further consider another case in which bidders do not only know their own valuation,
but also know the ranking of valuations. Assume FA(·) = FB(·) and XA = XB =
[0, 1]. Although the model is started as one where valuations are independent, and the
distribution of valuations is common knowledge among bidders, after having incorporated
the information of ranking, resulting conditional distributions are not common knowledge.
Seemingly this poses a complication. Yet, the environment can be analyzed as a game
with common knowledge of the distribution on types. One can assume that valuations are
drawn from a commonly known joint distribution wiht triangular support and where the
higher valuation is assigned to one particular bidder.

Landsberger et al. (2001) has studied this model and obtained following result.

Lemma 4. The auction in which ranking of valuations is common knowledge has a unique
pure strategy equilibrium.

2.2 The Discrete Value Case

Consider a discrete value case in which XA = XB = {x1, x2, x3} with x1 < x2 < x3.
For simplicity, assume x1 = 0. I assume independent private value. Bidder A is type xj
with probability qj , while bidder B is type xj with probability rj , j ∈ {1, 2, 3}. Denote
q = (q1, q2, q3) and r = (r1, r2, r3). Assume 0 < q1 < 1, q1 < 1, r2 > 0 and r1 ≤ q1.
Let F i(b|xj) be equilibrium bid distribution used by player i with type xj . Let π(xj ; q, r)
denote expected payoff of bidder i.

Proposition 1. An equilibrium in the asymmetric discrete value auction is in mixed
strategies and has the following properties.

1) F i(b|x2) and F
i(b|x3) have supports [0, b̂

i] and [b̂i, b∗] respectively and continuous on
its support.

2) b̂A, b̂B and b∗ are determined by following equaitons in equilibrium.
a) If x2(q1 + q2 − r1 − r2)r1 ≤ x3q2r1 < x2(q1 + q2 − r1)r1 + r2q1(x3 − x2) and
q1 + q2 ≥ r1 + r2 then

b̂A = x3 − q1x2(x3 − b̂B)
(q1 + q2)(x2 − b̂B)

b̂A = x2 − r1 + r2

q1 + q2
(x2 − b̂B)

b∗ = x3 − (x3 − b̂A)(q1 + q2)

(3)

b) If q1 + q2 ≥ r1 + r2 and x3q2r1 ≥ x2(q1 + q2 − r1)r1 + r2q1(x3 − x2) then

b̂B =
r2x2

(r1 + r2)

b̂A = x2 − r1x2

q1 + q2

b∗ = x3 − (x3 − b̂A)(q1 + q2)

(4)

5



c) If x2(q1 + q2 − r1 − r2) > x3q2 and q1 + q2 ≥ r1 + r2 then

b̂B = 0

b̂A =
q2x3

q1 + q2

b∗ = (1− q1)x3

(5)

d) If q1 + q2 < r1 + r2 then

b̂A =
q2x2

q1 + q2

b̂B = x3 − q1 + q2

r1 + r2
(x3 − b̂A)

b∗ = x3 − (q1 + q2)(x3 − b̂A)

(6)

Proof 1) From Lemma 1, the winning bid distributions in equilibrium have common
support of an interval [b∗, b∗] and are continuous on it. Suppose b∗ = b∗. Then βB(xj) =
b∗ where j = 2 or 3. Suppose xj > b∗. If bidder B deviates to bidding b∗ + ² > 0
from bidding b∗, then his probability of winning is discontinuously increases, while his
payment when he wins goes up by ². That is πB(b∗ + ²|xj) > πB(b∗|xj) for small enough
². Now suppose xj ≤ b∗. Since q1 > 0 and bidder with valuation of x1 stays out, it
follows πB(xj − ²|xj) > 0 ≥ πB(b∗|xj) for small enough ². Thus there is no pure strategy
equilibrium.

Suppose both FA(b∗) > q1 and F
B(b∗) > r1. Since r1 < 1, there exists j ∈ {2, 3}, such

that rj > 0. So it must be b∗ < xj for such j. If a bidder deviates to bidding b∗ + ² > 0
from bidding b∗, then his probability of winning is discontinuously increases, while his
payment when he wins goes up by ². This is a profitable deviation for small enough ².
Thus FA(b∗) = q1 or F

B(b∗) = r1.
Further suppose b∗ > 0. If FA(b∗) = q1 (F

B(b∗) = r1), then taking arbitriraly small
² > 0 ensures that bidding b∗− ² yields a higher expected payoff than bidding b∗ to bidder
B(A) with valuation x2 and x3. Therefore it must be b∗ = 0. Then any bid realizes
is winning bid, that is ex ante bid distribution F (b) has a support consisting of [b∗, b∗].
And by Lemma 1, it is continuous. Also by Lemma 1, any equilibrium is monotonic. So
F i(b|x2) and F

i(b|x3) have at most one common point of support. Then it is proved.
2) I employ typical mixed strategy approach: Use indifference conditions. The indifference
conditions are

FA(b)(x2 − b) = (x2 − b̂B)FA(bB) if 0 ≤ b ≤ b̂B
FB(b)(x2 − b) = (x2 − b̂A)FB(bA) if 0 ≤ b ≤ b̂A

(7)

FA(b)(x3 − b) = x3 − b∗ if b̂B ≤ b ≤ b∗
FB(b)(x3 − b) = x3 − b∗ if b̂A ≤ b ≤ b∗

(8)

Suppose q1 + q2 ≥ r1 + r2 and b̂
A < b̂B. Then FA(b̂A) < FA(b̂B). Substituting b = b̂B in

(6), I get FA(b̂B) = r1+r2 ≤ q1+ q2 = F
A(b̂A). This is contradiction. So q1+ q2 ≥ r1+ r2

is equivalent to b̂A ≥ b̂B.
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a) Suppose b̂B > 0 and FA(0) = q1. Since b̂A ≥ b̂B , it follows b̂A > 0. Since bid
distributions are continuous, FA(b̂A) = q1 + q2 and F

B(b̂B) = r1 + r2. Substituting b = 0
and b̂i, i = A,B in (7) and (8), I get

b̂A = x3 − q1x2(x3 − b̂B)
(q1 + q2)(x2 − b̂B)

(9)

b̂A = x2 − r1 + r2

q1 + q2
(x2 − b̂B) (10)

FB(0) =
(q1 + q2)(x2 − b̂A)

x2
(11)

RHS of (9) is decreasing in b̂B, and RHS of (10) increasing in b̂B and goes to negative
infinity as b̂B goes to x2. So if RHS of (9) greater than RHS of (10) at b̂

B = 0, then
0 < b̂i < x2. Then it follows if x2(q1 + q2 − r1 − r2) ≤ x3q2, then 0 < b̂

i < x2. Also it can
be easily calculated that if x3q2r1 < x2(q1 + q2 − r1)r1 + r2q1(x3 − x2), then F

B(0) > r1.
Therefore if and only if conditions of a) are satisfied, then b̂i and b∗ determined by (3)
constitute an equilibrium. So we have proved part a). The remaining parts can be proved
using same logic. Q.E.D.

3 Repeated Auctions

The main objective of this paper is to analyze following model of repeated auctions. Two
identical items are auctioned sequentially through first-price sealed-bid auctions to two risk
neutral bidders. Both bidders have symmetric, independent private value xi, i ∈ {A,B} for
the items. Let xi, i = A,B be independently drawn from a common distribution function
F with support in X. After having observed his valuation xi, bidder i submits his bid
b ∈ R+ for first round. Once the first item is sold, the seller announces some information
about outcome of the first auction. Assume both bidders is told if he wins the first round
or not. Then after having learned outcome of first round, bidder i submits his bid c ∈ R+

for second round. Assume time additive utility function with unit time discount ratio 5 .
For example if a bidder with valuation x acquires both items bidding b and c respectively,
then his utility equals to 2x−b−c. Ties are resolved at random, where each of the bidders
has equal chance of winning. Auctioneer’s reserve price is zero. Further I assume that the
”no bid” is revealed as a zero bid when revelation policy requires bid revelation.

I analyze this auction in the framework of dynamic game of incomplete information.
The bidders update beliefs about their opponent’s valuation for the object after learning
the outcome of first round. I examine the symmetric perfect Bayesian equillibria (PBE).
The fact that both bidders are ex-ante symmetric and restriction to symmetric equilibria
allow me to analyze the auction from bidder A’s point of view without loss of generality.
Therefore I will not use subindex to identify players, unless it is necessary.

Outcome of first round for bidder i consists from publicly announced information
and the bidder’s own bid. Denote it by zi. The bidding behavior of bidder of type xi
can be described by the pair of random variable (βi(xi), γi(xi, zi)) where each realization

5Introducing non-unitary time discocunt ratio doesn’t singificantly change the results obtained in this
paper.
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is nonnegative number or the null bid corresponding to the choice not to participate.
Formally a symmetric PBE consists of a first period bidding rule contingent on the bidder’s
valuation, denoted β(x) and a second period bidding rule contingent on his valuation and
the oucome of first period auction, denoted γ(x, z), and belief system µ, such that

1) For each x ∈ X and each possible outcome of first round zi, if c ∈ real γ(x, zi) (set of
realizations of βi(xi)), then c maximizes his expected payoff under his belief system
µ given that the outcome of first round for him is zi and the other bidder bids at
second period according to γ(·).

2) For each x ∈ A, if b ∈ real β(·|x), then β(x) maximizes his payoff given the other
bidder bids according to (β(·), γ(·)), and he himself bids according to γ(·) at second
period.

3) Belief µ is determined by Bayes’ rule and equilbrium strategy (βi(xi), γi(xi, zi)).

Define weakly monotonic PBE as follows.

Definition 2. A symmetric PBE
¡
β(x), γ(x, zi), µ

¢
is weakly monotonic if following con-

ditions are satisfied.

1) b ≥ inf real β(x0) and sup real β(x) ≥ sup real β(x0) for all x, x0 ∈ X, b such that
x > x0 and b ∈ real β(x).

2) Equilibrium of any subgame on equilibrium path is monotonic.

3.1 The Continuous Values

Without loss of generality, let X be a compact interval [0, 1]. F (·) is twice continuously
differentiable and has no mass point in its domain. I assume also density f(·) is positive
on X.

Revealing No Bids
In this section I will examine the equilibria in the third rule in which no bid is revealed
after first round, that is, players do not see other player’s bid. The outcome of first period
auction from bidder i’s point of view, z, is pair of his bid bi and the name of the winner
w ∈ {A,B}. That is z = (b, w). Let

¡
β(·), γ(·)¢ be an equilibrium strategy. Assume

β(·) is strictly increasing pure action rule. First examine second period auction. Since
strictly increasing pure bidding rule is assumed for first round, at the beginning of second
period auction, players know ranking of their valuations. Then it is possible to analyze the
second period auction using results obtained in Landsberger at al. (2001) which discussed
in Section 2.

Fevrier (2001) has studied this model of repeated auctions and obtained following
result. He characterizes an equilibrium in pure and monotonic strategies. Denote ζ(·) =
β−1

1 (·), σ(·) = γ−1(·,β(x), A) and φ(·) = γ−1(·,β(x), B).
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Lemma 5. Strategy
¡
β(x), γ(x, zi)) defined by

ζ 0(b) =
F (ζ(b))

f(ζ(b))(γ(ζ(b), b, B)− b)
σ(b) =

F (σ(b))− F (φ(x))
f(σ(b))(φ(b)− b)

φ0(b) =
F (φ(b))

f(φ(b))(φ(b)− b)

(12)

and the two limit conditions ζ(0) = σ(0) = 0 and such that sigma(kσφ) = ψ(kσφ) = 1 is
a PBE of the game. (see Fevrier, 2003 Proposition 1)

Revealing Winning Bid
If bid revelation rule is changed so that winning bid is revealed, mechanism of information
transmission changes. The outcome of the first round from a bidder’s point of view, z, is
triple of his bid b, the winning bid b̄, and the identity of the winner w ∈ {A,B}. That is
z = (b, b̄, w). It is necessary to define PBE precisely for further analysis.

30) First define

G(b) =

Z
β(x)<b

f(x)dx+
1

2

Z
β(x)=b

f(x)dx

If b̄ ∈ B and the bidder wins the first auction, then bidder A’s belief µ(·|b̄, w) is
defined by following equation

µ(y|b̄, w) =


f(y)/G(b̄) if w = A & β(y) < b̄

f(y)/{2G(b̄)} if w = A & β(y) = b̄

f(y)/
R
β(z)=b̄ f(z)dz if w = B & β(y) = b̄

0 otherwise

(13)

Define F̃ (b) as probability of winning by bidding b in equilibrium. Let
¡
β(·), γ(·)¢ be an

equilibrium strategy. Assume β(·) is non-decreasing, pure bidding rule. When bidder B
bids according to the equilibrium strategy, bidder A’s maximized expected payoff function
is

π(b|x) = F̃ (b)(x− b) + sup
c
F̃ (b)

©
Pr(c > c−) +

1

2
Pr(c = c−)

ª
(x− c) +

sup
c0
[1 − F̃ (b)]©Pr(c0 > c0−) + 1

2
Pr(c0 = c0−)

ª
(x − c0) (14)

where c− and c0− are bids of bidder b at second auction and distribute according to γ(·) .
Lemma 6. Assume only winning bid is revealed after first round. If (β(·), γ(·)) is a
symmetric PBE with pure, non- decreasing strategy on first period, there exists no 0 <
x < 1 such that β(·) is strictly increasing to the right and continuous at x. Similarly, there
exists no 0 < x ≤ 1 such that β(·) is striclty increasing to the left and continuous at x.
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Proof : I give proof of first part of the lemma here. Suppose to the contrary there exists
such x. Denote b = β(x). Take a strictly decreasing sequence {bn} → b in B(≡ β(A).
Since β(·) is strictly increasing to right and continuous at x, we can take such sequence.
Define xn = min β

−1(bn). Obviously xn > x and {xn} → x. And take one more strictly
decreasing sequence {b0n}→ 0 in B, such that b0n < bn and

bn − b0n
bn − b) → 1.

Also define x0n = minβ−1(b0n)6. Then x0n < x and {x0n}→ x. If a player with valuation of
xn bids b

0
n, the other bidder believes that his valuation lies in β

−1(b0n). Since the attention
is resticted to non-decreasing pure bidding rule for the first round, the support of bidder
i’s belief is an compact interval or a single point. Therefore second period auctions can be
analyzed as asymmetric auctions discussed in Section 2. From Requirement 30) of PBE,
bidder i has belief with support of [0, supβ−1(b̄)] in the second round if he loses the first
one and has belief with support of β−1(b̄) in the second round if he wins the first one . Thus
given Lemma 2 and Lemma 3, the winner bids in an interval in the second round . Define
zn and tn as lower end point and upper end point of that interval conditioning on that the
winner bids bn in the first period in equilibrium. From Lemma 3, zn = maxb F (b)(xn− b).
Then the winner’s expected payoff at second round is

F (zn)

F̃ (bn)
(xn − zn)

Further define ψ(x, y) as loser’s expected payoff at second round when winner’s valu-
ation is y. Then I get

π(bn|xn) = F̃ (bn)(xn − bn) + F (zn)(xn − zn) +
1

2

Z
β(y)=bn

f(y)ψ(xn, y)dy +

Z
β(y)>bn

f(y)ψ(xn, y)dy (15)

π(b0n|x0n) = F̃ (b0n)(x0n − b0n) + F (z0n)(x0n − z0n) +
1

2

Z
β(y)=b0n

f(y)ψ(x0n, y)dy +
Z
β(y)>b0n

f(y)ψ(x0n, y)dy (16)

Suppose a bidder with valuation xn deviate by bidding b
0
n. It can be easily seen that,

in case he wins at first round, it is optimal to bid t0n. Define t(y) as upper end point of
the support of first round bid distribution of the winner who bids β(y) at the first round
in equilibrium. Then I get

π(b0n|xn) = F̃ (b0n)(xn − b0n) + F̃ (b0n)(xn − t0n) +
1

2

Z
β(y)=b0n

f(y)(xn − t0n)dy

+

Z
bn≥β(y)>b0n

f(y)(xn − t(y))dy +
Z
β(y)>bn

f(y)ψ(xn, y)dy (17)

6The existence of x0n and xn can be proved.
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Suppose a bidder with valuation x0n deviate by bidding bn. Clearly in case he wins at
first round, it is optimal to bid z0n. Then I get

π(bn|x0n) = F̃ (bn)(x0n − bn) + F (z0n)(x0n − z0n) +
1

2

Z
β(y)=bn

f(y)ψ(x0n, y)dy +
Z
β(y)>bn

f(y)ψ(x0n, y)dy (18)

From the requirements of PBE, it follows

π(b0n|xn) ≤ π(bn|xn) (19)

π(bn|x0n) ≤ π(b0n|x0n) (20)

Adding equations (19) and (20), subsituting (15)-(18) into it and rearranging it, I obtain

[F̃ (bn)− F̃ (b0n)](xn − x0n) ≥
1

2

Z
β(y)=bn

f(y)[ψ(x0n, y)− ψ(xn, y)]dy +
1

2

Z
β(y)=b0n

f(y)[(xn − t0n)− ψ(x0n, y)]dy +
Z
bn≥β(y)>b0n

f(y)
£
xn − t(y)− ψ(x0n, y)

¤
dy

+ F̃ (b0n)(x
0
n − t0n) − F (zn)(xn − zn) + F̃ (b0n)(xn − x0n)

I divide both sides by xn − x0n and take n → ∞. Since ψ(x0n, y) is maximized payoff, it
follows ψ(x0n, y) ≤ xn − t(y). Then second and third term of RHS become greater than
zero. From Lemma 3, ψ(x, y) is differentiable in x. So first term of RHS becomes zero.
Fourth and fifth terms of RHS are

lim
n→∞

F̃ (b0n)(x0n − t0n)− F (zn)(xn − zn)
xn − x0n

= lim
n→∞

F (z0n)(x0n − z0n)− F (zn)(xn − zn)
xn − x0n

Then I get

0 ≥ − d
dx
[F (z(x))(x− z(x))] + F (x) (21)

From Lemma 3, I have z(x) ∈ argmaxb F (b)(x− b). Hence
d

dz
F (z)(x− z) = 0

Substituting it in (21), I get

0 ≥ −F (z) + F (x)

But it must be F (z) < F (x) for x > 0, a contradiction. Q.E.D.

Proposition 2. Assume only winning bid is revealed after first round. Then there exists
no symmetric PBE with non-decreasing pure strategy on first period.

Proof : From Lemma 2, it follows β−1(β(1)) is not singleton. Denote b1 = β(1) and
a1 = min β

−1(b1). Obviously a1 < 1. Suppose a bidder with valuation of a1 deviates by
bidding b1 + ². Since deviating in that way produces subgame off the equilibrium path,
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the opponent’s belief at second period has not defined. But from Lemma 3, it can be
easily seen that even if the opponent bids most aggresively, the payoff of the bidder who
deviates does not change. (Note under Assumption 1, to bid most aggresively is to bid
equally to his valuation.) Then bidder with valuation of a1 does not reduce his payoff at
second round by deviating to b1 + ². Then I get

π(b1 + ²|a1)− π(b1|a1) ≥ F (1)− F (a1)

2
(a1 − b1 − ²)

For small enough positive ², RHS is positive. This means a player with valuation close
enough to a1 has incentive to deviate. Q.E.D.

Revealing All Bids
Ortega Reichert (1968) analyzes a model of sequential procurement auction, which differs
from this model only in the values are not identical but stochastically correlated across
time periods. In his model, each bidder’s privetaly known cost ci, i = 1, 2 is constant
across periods and independently drawn an exponential distribution with unknown state
parameter W , which is assumed to have a gamma distribution, at each period. Ortega
Reichert shows that there exists a pure seperating equilibrium and each bidder has in-
centive to bid less aggressively at first periond than in a one-shot auction. Thus it seems
both bidders are trying to deceive their opponent about their type. Though since the
equilibrium is seperating, there really is no deception, paradoxically.

Here rather different result is obtained. In this model there exists no weakly monotonic
PBE. Assume both bidders’ first round bids are revealed after first round. The outcome
of first period auction from bidder A’s point of view, z, is pair of A’s bid b and B’s
bid b−. That is z = (b, b−). Let x and x− be bidder A and B’s valuation respectively.
Let

¡
β(·).γ(·)¢ be an equilibrium strategy. When the other bidder bids according to the

equilibrium strategy, bidder A’s expected payoff function is

π(b|x) = π1(b|x) + π2(b|x)
π1(b|x) = F̃ (b)¡x− b¢
π2(b|x) = sup

c∈A

©
Pr(c > c−) +

1

2
Pr(c = c−)

ª
(x− c)

(22)

(where c− is bid of bidder B at second period and distributes according to γ(·))
Lemma 7. Assume both bidders’ first round bids are revealed after first round. Suppose
there exists a weakly monotonic and symmetric PBE (β(·), γ(·)). Define

p(b) = {x ∈ X|b ∈ realβ(x)}

Then p(0) is neither a singleton nor empty set.

Proof : Since I assume bidders dont bid above their valuation, bidder with valuation 0
bids 0. Therefore p(0) is not empty set. Suppose it is a singleton. Then if bidder A with
valuation x > 0 bids 0 instead of β(x), then from (22) his first period payoff π1(0|x) is
0. From the requirements of PBE, if bidder A bids 0, bidder B would believe bidder 1’s
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valuation is 0. Given Assumption 2, any bidder with valuation 0 stay out. Then it is
optimal to bid 0 for bidder B, under the belief. Using (22), I obtain

π(0|x) = sup
c
(x− c) = x

While π(0|x) converges to 0 as x goes to 0, limx→0
π(0|x)
x = 1. On the other hand, if bidder

A bids according to equilibrium strategy, his equilibrium payoff is expressed by

π(x) = F̃ (b)(x− b) + sup
c

©
Pr(c > c−) +

1

2
Pr(c = c−)

ª
(x− c)

where b ∈ realβ(x) and c− is bid of bidder B at second period and distributes according to
γ(x−,β(x−),β(x)). It is easily seen that limx→0

π1(β(x)|x)
x = 0. and limx→0

π2(β(x)|x)
x < 1.

Hence limx→0
π(x)
x < 1. As we have seen limx→0

π(0|x)
x = 1. That means, if x is small

enough, it is strictly better to bid 0 than to bid β(x). That is contradiction to that β(·)
is an equilibrium strategy. Q.E.D.

Proposition 3. Assume all bids are revealed after first round. Then there exists no weakly
monotonic PBE.

Proof : Suppose there exists a weakly monotonic PBE. Suppose x ∈ p(0). By definition
of weakly monotonic PBE, if 0 < x0 < x, then x0 ∈ p(0). This means p(0) is an interval
or a point. Denote a0 = sup p(0). From Lemma 8, β−1(0) must be an interval, that is,
a0 > 0. Therefore F̃ (0), probability of winning from bidding 0, is positive. In equilibrium,
for all x < a0

π(0|x) = 1

2
F̃ (0)x+ π2(0|x)

From Section 2, clearly

lim
x→0

π2(0|x)
x

= 0

Hence,

lim
x→0

π(0|x)
x

= F̃ (0)

On the other hand, if that bidder deviates by bidding positive bid in the first period, his
winning probability would increase to 2F̃ (0) discountinuously. That is

π1(b|x) = 2F̃ (0)(x− b)
Thus

lim
x→0,b→0

π(b|x)
x

≥ 2F̃ (0) > F̃ (0) = lim
x→0

π(0|x)
x

This means bidders with valuation near 0 have incentive to deviate. Q.E.D.
Remark: It can be shown that Proposition 1 holds in more general cases, e.g. in which
players’ valuations are not exactly same, but stochastically correlated across time periods
and if the valuation is zero at first period then it is also zero at second period.
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3.2 The Discrete Case

As we have seen in previous section, there exists no weakly monotonic equilibrium in a
continuous value case where all bids are revealed after first auction. Now I introduce
discrete value while preserving the revelation policy and examine existence of a weakly
monotonic equilibrium. The general discrete value case is much complicated to solve. And
an equilibrium exists trivially in the case of two values. Therefore I consider a case where
bidders’ valuation can take three discrete values, that is X = {x1, x2, x3}. Bidder i is type
xj with probability pj ∈ (0, 1), j ∈ {1, 2, 3}. For simplicity, assume x1 = 0 and x3 = 1.
Then a repeated auction of this kind is completely defined by x2 and p = (p1, p2, p3).

I show there exists no seperating equilibrium in this repeated auction. Suppose to the
contrary, there exists a seperating equilibrium. By Assumption 2, bidder with valuation x1

do not submit bid. Remember that I assume ”no bid” is revealed as zero bid. So if bidder
with valuation x2 bids 0, the opponent would believe he has valuation x1(= 0). Then
bidder with valuation x2 has expected payoff p1x2+x2 from bidding 0. On the other hand,
if he bids according to seperating equilibrium strategy, his payoff is G(b)(x2 − b) + p1x2

where b belongs to set of realizations of his bid distribution in the equilibrium. Obviously
G(b)(x2 − b) < x2. Then

G(b)(x2 − b) + p1x2 < p1x2 + x2

So bidder with valuation x2 has incentive to deviate, a contradiction.
Then consider a concrete example of repeated auctions where x2 = 13/14 and p =

(1/7, 3/7, 3/7). Then G(b) defined by equations is a first period bid distribution of a
(weakly monotonic) PBE.

(G(0)− p1)
2

2(G(0) + p1)
x2 = (x2 − q2x3)(1−G(0)) (23)

G(b) =

(
G(0)x2

x2−b if b ∈ (0, b̂]
G(0)x3+[1−G(0−g(0)(1−G(0))]

x3−b if b ∈ [b̂, b∗] (24)

g(b|x3) =
1−G(0)− p3 + g0(1−G(b))

1−G(b) g(b) for b ∈ (0, b̂] (25)

with initial condition G(0|x3) = 0

G(b̂) =
1− p3 −G(0)

1− g0
(26)

where b∗ = supSupp G(b), b̂ = supSupp G(b|x2), g0 = 10/13 and g(b) = dG(b)/db. I
prove this claim below. Clearly g(b|x3)/g(b) is strictly increasing for b ∈ [0, b̂]. Denote
q1 = p1/G(0) and q2 = 1− q1. Define q = (q1, q2, 0) and

h(b) =

µ
0,
g(b|x2)

g(b)
,
g3(b)

g(b)

¶
Using Proposition 1, I get that expected payoff to a bidder with valuation x2 from bidding
0 is

π(0|x2) =
G(0) + p1

2
x2 +

p1(G(0)− p1)

G(0) + p1
x2 + p1x2 +

Z b∗

0
π2(x2;h(b), q)dG(b)
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where π2(x2; p, q) is expected payoff to bidder valuation x in one shot auction. Since

x2
g3(b)

g(b)
> x2

g3(0)

g(0)
> x3q2

applying part c) of Proposition (1) I then obtain

π2(x2, f̃(b), q) = x2 − q2x3

Hence

π(0|x2) =
G(0) + p1

2
x2 +

2p1(G(0)− p1)

G(0) + p1
x2 + p1x2 + (1−G(0))(x2 − q2x3) (27)

On the other hand

π(b|x2) = G(b)(x2 − b) + p1x2 for b ∈ (0, b∗] (28)

Subsituting the numerical values of x2 and p into (27) and (28), I then get

π(b|x2) = π(0|x2) for b ∈ (0, b∗]
That means bidder with valuation x2 is indifferent between any b ∈ [0, b̂]. From (25) and
(26), g3(b̂)/g(b̂) = 1. Therefore deviating to b such that b

∗ > b > b̂ from b̂ does not increase
his second period payoff since the opponent’s belief concerning his valuation would not be
changed. Also

G2(b)(x2 − b) = const for b∗ > b > b̂

Thus deviating to b > b̂ from b̂ indeed decrease his first period payoff. Hence bidder with
valuation x2 has no incentive to deviate. Now I prove that bidder with valuation x3 has
no incentive to deviate. The expected payoff to bidder with valuation x3 is

π(b|x3) = G(b)(x3 − b) + +
Z b∗

0
π2(x2;h(b), h(b̃))dG(b̃) (29)

Applying Proposition 1, I then get

π2(x2;h(b), h(b̃)) =


G(0)q1x3 if b = 0

(1− h(b̃))(x3 − x2) if h(b) > h(b̃)

(1− h(b))(x3 − x2) if h(b) ≤ h(b̃)
(30)

Substituting this expression into (29) and integrating it gives

π(b|x3) = G(b)(x3 − b) +G(0)x3q1 + [1−G3(b)−G(0)− h(b)
¡
1−G(0)¢](x3 − x2)

Substituting using (25), it then can be seen that bidder with valuation x3 is indifferent
between any b ∈ [0, b̂]. On the other hand

π(0|x3) =
G(0) + p1

2
x2 +G(0)(x3 − G(0)− p1

G(0) + p1
x2) + (1−G(0))q1x3

Numerical calculation yields π(b|x3) > π(0|x3) for b ∈ (0, b∗]. Also learly bidder with
valuation x3 has no incentive to bid more than b

∗. Hence is bidder with valuation x3 has
no incentive to deviate. Therefore the function G(b) defined by (23)-(26) is a first period
bid distribution of a symmetric, weakly monotonic PBE.
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4 Conclusion

The present paper studies first price repeated auctions where two identical items are sold
sequentially to 2 bidders who are interested in both items. By assuming bidders desire
multiple objects, and that the valuations of those items to each bidder are fully correlated,
I address strategical problems that do not arise in traditional models of sequential auctions.
In this framework, the information revealed between the two stages of the game is of great
importance.

In Section 2, I summarize some results of recent research in general asymmetric auc-
tions, which are necessary to examine repeated auctions. Also I analyze equilibrium be-
havior of some specific asymmetric auctions which is not covered in existing literature. In
Section 3, I examine how bid revelation policies affect equilibrium behavior of repeated
auctions. In cases of continuous value, Fevrier (2003) shows unique pure monotonic equi-
librium exists when no information is revealed after first round. If the bid revelation policy
is changed so as only winning bid is revealedi after the first period, no equilibrium with
pure non-decreasing bidding rule on first period exists. However it turns out if all bids are
revealed after first round, no weakly monotonic mixed equilibrium exists. Furthermore, I
consider a case in which a bidder’s valuation can be one of the three values and all bids
are revealed after first round. A weakly monotonic mixed equilibrium is calculated in a
concrete case.
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