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Abstract 
 

 We show that simple majority rule satisfies four standard 
and attractive properties—the Pareto property, anonymity, 
neutrality, and (generic) transitivity—on a bigger class of 
preference domains than (essentially) any other voting rule.  
Hence, in this sense, it is the most robust voting rule.   
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1. Introduction 
 
 A voting rule is a method for choosing from a set of social alternatives 

on the basis of voters’ stated preferences.  Many different voting rules have 

been studied in theory and used in practice.  But far and away the most 

popular method has been simple majority rule, the rule that chooses 

alternative x over alternative y if more people prefer x to y than vice versa. 

There are, of course, good reasons for majority rule’s 1 popularity.  It 

not only is attractively straightforward to use in practice, but satisfies some 

compelling theoretical properties, among them the Pareto property (the 

principle that if all voters prefer x to y and x is available, then y should not 

be chosen), anonymity (the principle that choices should not depend on 

voters’ labels), and neutrality (the principle that the choice between a pair if 

alternatives should depend only on the pattern of voters’ preferences over 

that pair, not on the alternatives’ labels).  In fact, May (1952) establishes that 

majority rule is the unique voting rule satisfying the Pareto property, 

anonymity, and neutrality, and a fourth property called positive 

responsiveness.2.  We shall come back to May’s characterization below. 

                                            
1 For convenience, we will omit the modifier “simple” when it is clear that we are referring to simple 
majority rule rather to any of the many variants, such as the supermajority rules. 
2 A voting rule is positively responsive if whenever alternative x is chosen (perhaps not uniquely) for a 
given specification of voter’s preferences and the only change that is then made to these preferences is to 
move x up in some voter’s preference ordering, then x becomes uniquely chosen. 
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But majority rule has a well-known flaw, discovered by the Marquis 

de Condorcet (1785) and illustrated by the Paradox of Voting (or Condorcet 

Paradox): it can generate intransitive choices.  Specifically, suppose that 

there are three voters 1, 2, 3, three alternatives x, y, z, and that the profile of 

voters’ preferences is as follows: 

 1 2 3
x y z
y z x
z x y

 

(i.e., voter 1 prefers x to y to z, voter 2 prefers y to z to x, and voter 3 prefers 

z to x to y).  Then, as Condorcet noted, a two-thirds majority prefers x to y, y 

to z, and z to x, so that majority rule fails to select any alternative. 

 Despite the theoretical importance of the Condorcet Paradox, there are 

important cases in which majority rule avoids intransitivity.  Most famously, 

when alternatives can be arranged linearly and each voter’s preferences are 

single-peaked in the sense that his utility declines monotonically as one 

moves away from his favorite alternative, then, following Black (1948), 

majority rule is transitive for (almost) all 3 profiles of voters’ preferences.  

Alternatively, suppose that, for every three alternatives, there is one that no 

voter ranks in the middle.  This property, which is a special case of value 

restriction (see Sen 1966, Inada 1969, and Sen and Pattanaik 1969), seems 

                                            
3 We clarify what we mean by “almost all” in section 2. 
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to have held in recent French presidential elections, where the Gaullist and 

Socialist candidates have not engendered much passion, but the National 

Front candidate, Jean-Marie Le Pen, has inspired either revulsion or 

admiration, i.e., the vast majority of voters rank him either last or first, but 

not in between.  Whether or not this pattern of preferences has been good for 

France is open to debate, but it is certainly “good” for majority rule: value 

restriction, like single-peakedness, ensures transitivity (almost always). 

 So, majority rule “works well”—in the sense of satisfying the Pareto 

property, anonymity, neutrality and generic transitivity—for some domains 

of voters’ preferences but not for others.  A natural question to ask is how its 

performance compares with that of other voting rules.  Clearly, no voting 

rule can work well for all domains; this conclusion follows immediately 

from the Arrow impossibility theorem 4 (Arrow, 1951).  But we might 

inquire whether there is a voting rule that works well for a bigger class of 

domains than does majority rule.5 

                                            
4 Our formulation of neutrality (see section 3)—which is, in fact, the standard formulation (see Sen, 1970 
or Campbell and Kelly, 2002)—incorporates (i) Arrow’s independence of irrelevant alternatives, the 
principle that the choice between two alternatives should depend only on voters’ preferences for those two 
alternatives and not on their preferences for other alternatives and (ii) symmetry with respect to 
alternatives, the principle that permuting the alternatives in voters’ preferences should permute social 
choices in the same way. 
5 It is easy to find voting rules that satisfy three out of our four properties on all domains of preferences.  
For example, majority rule and many of its variants, e.g., two-thirds majority rule (which deems two 
alternatives as socially indifferent unless one garners at least a two-thirds majority against the other), 
satisfy Pareto, anonymity, and neutrality on any domain.  Similarly, rank-order voting (see below) satisfies 
Pareto, anonymity, and transitivity on any domain. 
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 We show that the answer to this question is no.  Specifically, we 

establish (see our Theorem) that if a given voting rule F works well on a 

domain of preferences, then majority rule works well on that domain too.  

Conversely, if F differs from majority rule6, there exists some other domain 

on which majority rule works well but F does not. 

 Thus majority rule is essentially uniquely the voting rule that works 

well on the most domains; it is, in this sense, the most robust voting rule.7  

Indeed, this gives us a characterization of majority rule different from the 

one provided by May (1952) (see the corollary to the Theorem).  Notice that, 

unlike May, we appeal to no monotonicity condition (May requires positive 

responsiveness), but instead invoke maximal robustness. 

 Our Theorem is closely related to a result obtained in Maskin (1995), 

but greatly improves on that earlier result.  Maskin’s proposition requires 

two strong assumptions, one of which is particularly unpalatable. 

 The first assumption is that the number of voters be odd.  This is 

needed because Maskin (1995) demands transitivity for all preference 

profiles drawn from a given domain (oddness is also needed for much of the 

early work on majority rule, e.g., Inada, 1969).  And, as we will see below, 

                                            
6 More accurately, the hypothesis is that F differs from majority rule for a “regular” preference profile 
belonging to a domain on which majority rule works well. 
7 More precisely, any other maximally robust voting rule can differ from majority rule only for “irregular” 
profiles on any domain on which it works well (see the corollary to our Theorem). 
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even when preferences are single-peaked, intransitivity is possible if the 

population splits exactly 50-50 between two alternatives; an odd number of 

voters prevents this from happening.  To capture the idea that such a split is 

unlikely, we will work with a large number of voters and ask only for 

generic transitivity.  (Formally, we shall work with a continuum of voters, 

but it will become clear that we could alternatively deal with a finite number 

by defining generic transitivity to mean transitive with “sufficiently high 

probability.”  In that case, we would not need to impose “oddness” (a strong 

assumption, since it presumably holds only half the time). 

 Second, Maskin (1995) invokes the restrictive assumption that the 

voting rule F being compared with majority rule satisfies Pareto, anonymity, 

and neutrality on any domain.  This is quite undesirable because, although it 

accommodates certain methods (such as the supermajority rules and the 

Pareto extension rules), it rules out such voting rules as the Borda count, 

plurality voting, approval voting, and runoff voting.  These are the most 

common alternatives in practice to simple majority rule, yet fail to satisfy 

neutrality on the unrestricted domain.  We show that this assumption can be 

eliminated altogether.   

 We proceed as follows.  In section 2, we set up the model.  In section 

3, we define our five properties, Pareto, anonymity, neutrality, independence 
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of irrelevant alternatives, and generic transitivity formally.  We also 

characterize when rank-order voting—a major “competitor” of majority 

rule—satisfies all these properties.  In section 4, we establish a lemma, 

closely related to a result of Inada (1969), that characterizes when majority 

rule is generically transitive.  We use this lemma in section 5 to establish our 

main Theorem on majority rule.  We obtain our alternative to May’s (1950) 

characterization as a corollary.  Finally, in section 6 we discuss a few 

extensions. 

2. The Model 

 Our model is in most respects a standard social-choice framework.  

Let X be the set of social alternatives (including alternatives that may turn 

out to be infeasible).  For technical convenience, we take X to be finite with 

cardinality ( )3m ≥ .  The possibility of individual indifference often makes 

technical arguments in the social-choice literature a great deal messier (see 

for example, Sen and Pattanaik, 1969).  We shall simply rule it out by 

assuming that individual voters’ preferences can be represented by strict 

orderings (of course, with only a finite number of alternatives, the 

assumption that a voter is not exactly indifferent between any two 

alternatives does not seem very strong).  If R is a strict ordering, then, for 

any alternatives ,x y X∈  with x y≠ , the notation " "xRy  denotes “x is strictly 
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preferred to y in ordering R.”8  Let Xℜ  be the set of all logically possible 

strict orderings of X.  We shall typically suppose that voters’ preferences are 

drawn from some subset Xℜ ⊆ ℜ .  For example, for some ordering 

1 2( , , , )mx x x… of the social alternatives, ℜ  consists of single-peaked 

preferences (relative to this ordering) if, for all R∈ℜ , whenever 1i ixRx +  for 

some i, then 1j jx Rx +  for all j i> , and whenever 1i ix Rx+  for some i, then 1j jx Rx+  

for all j i< . 

 For the reason mentioned in the Introduction (and elaborated on 

below), we shall suppose that there is a continuum of voters indexed by 

points in the unit interval [ ]0,1 .  A profile  on ℜR  is a mapping 

 [ ]: 0,1 →ℜR , 

where ( )iR  is voter i’s preference ordering.  Hence, profile R is a 

specification of the preferences of all voters. 

 We shall use Lebesgue measure µ  as our measure of the size of 

voting blocs.9  Given alternatives x and y and profile R, let 

 ( ) ( ){ },q x y i x i yµ=R R| . 

                                            
8 Formally, a strict ordering is a binary relation that is reflexive, complete, transitive, and antisymmetric 
(antisymmetry means that if  and xRy x y≠ , then it is not the case that yRx ). 
9 Because Lebesgue measure is not defined for all subsets of [ ]0,1 , we will restrict attention to profiles R 

such that, for all ( ){ } and ,x y i x i y| R  is a Borel set.  Call these Borel profiles. 
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Then ( ),q x yR  is the fraction of the population preferring x to y in profile R. 

 Let C  be the set of reflexive, complete, binary relations (not 

necessarily transitive or strict) on X.  A voting rule F is a mapping that, for 

each profile X on ℜR  (strictly speaking, we must limit attention to Borel 

profiles—see footnote 9—but henceforth we will not explicitly state this 

qualification), assigns a relation ( )F ∈CR .  F(R) can be interpreted as the 

“social preference relation” corresponding to R under F.  More specifically, 

for any profile R and any alternatives ,x y X∈ , the notation “ ( )xF yR ” 

denotes that x is socially weakly preferred to y under ( )F R .  If both ( )xF yR  

and ( )yF xR , we shall say that x is socially indifferent to y and denote this by  

( )F
x y−

R . 

Finally, the notation ( )" "xF y∼ R  denotes that x is not socially weakly 

preferred to y, given F and R.  Hence, if ( )xF yR  and ( )yF x∼ R , we shall say 

that x is socially strictly preferred to y under ( )F R , which we will usually 

denote by 

( )F
x
y

R  . 

 For example, suppose that mF  is simple majority rule.  Then, for all x, 

y, and R 
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 ( ) ( ) ( )    if and only if   , ,mxF y q x y q y x≥R RR , 

i.e., x is socially weakly preferred to y provided that the proportion of voters 

preferring x to y is no less than the proportion preferring y to x. 

 As another example, consider rank-order voting.  Given XR ∈ℜ , let 

( )Rv x  be m if x is the top-ranked alternative of R, 1m −  if x is second-ranked, 

and so on.  That is, a voter with preference ordering R assigns m points to 

her favorite alternative, 1m −  points to her next favorite, etc.  Thus, given 

profile ( ) ( ) ( )
1

0
,  iv x d iµ∫ RR  is alternative x’s rank-order score (the total number 

of points assigned to x) or Borda count.  If ROF  is rank-order voting, then, 

for all x, y, and R,  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0
 if and only if ,RO

i ixF y v x d i v y d iµ µ≥∫ ∫R RR  

i.e., x is socially weakly preferred to y if x’s Borda count exceeds that of y. 

Speaking in terms of social preferences may seem somewhat indirect 

because the Introduction depicted a voting rule as a way of making social 

choices.  Because, as noted at the beginning of the section, the set of feasible 

alternatives may not be known in advance, we cannot simply make a voting 

rule a mapping from profiles to outcomes; the designated outcome might 

turn out to be infeasible.  However, we could define a voting rule as a 

mapping that to each profile X on ℜR  assigns a choice function ( )C ⋅ , which, 
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for each subset Y X⊆  (where Y is the “available” or “feasible” set), selects a 

subset ( )C Y Y⊆  ( ( )C Y  consists of the “optimal” alternatives in Y).10  

However, partly because it is less cumbersome working with preference 

relations than choice functions, there is a tradition going back to Arrow 

(1951) of taking the former route.  Furthermore, it is well known that there is 

a close connection between the two approaches.11  In our setting, we shall 

take the statement “x and y are socially indifferent” to mean “if y is chosen 

and x is also available, then x must be chosen too.”  Similarly, “x is socially 

strictly preferred to y” should be interpreted as “if x is available, then y is not 

chosen.” 

3. The Properties 

 We are interested in four standard properties that one may wish a 

voting rule to satisfy. 

Pareto Property on ℜ : For all R on ℜ  and all ,x y X∈  with x y≠ , if, for all 

( ),  i x i yR , then ( )xF yR  and ( )yF x∼ R , i.e., 

( )F
x
y

R . 

 In words, the Pareto property requires that if all voters prefer x to y, 

then society should also (strictly) prefer x to y.  Virtually all voting rules 
                                            
10 Indeed, we took this approach in an earlier version of the paper 
11 See, for example, Arrow (1959). 
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used in practice satisfy this property.  In particular, majority rule and rank-

order voting satisfy it on the unrestricted domain Xℜ . 

Anonymity on ℜ :  Suppose that [ ] [ ]: 0,1 0,1π →  is a measure-preserving 

permutation of [ ]0,1  (by “measure-preserving” we mean that, for all Borel 

sets [ ] ( ) ( )( )0,1 ,  T T Tµ µ π⊂ = ).  If, for all  on ℜR , πR  is the profile such that 

( ) ( )( )i iπ π=R R  for all i, then ( ) ( )F Fπ =R R . 

In words, anonymity says that social preferences should depend only 

on the distribution of voters’ preferences and not on who has those 

preferences.  Thus if we permute the assignment of voters’ preferences by 

π , social preferences should remain the same. The reason for requiring that 

π  be measure-preserving is to ensure that the fraction of voters preferring x 

to y be the same for πR  as it is for R. 

Anonymity embodies the principle that everybody’s vote should count 

equally.12  It is obviously satisfied on Xℜ  by both majority rule and rank-

order voting. 

Neutrality on ℜ : For all profiles  and on ′ ℜR R   and all alternatives x, y, w, z, 

if 

 ( ) ( ) if and only if  for all x i y w i z i′R R  

                                            
12 Indeed, it is sometimes called “voter equality” (see Dahl, 1989). 
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then 
 ( ) ( ) if and only if xF y wF z′R R  

and 
 ( ) ( ) if and only if yF x zF w′R R . 

In words, neutrality requires that the social preference between x and y 

should depend only on the set of voters preferring x and on that preferring y, 

and not on what the alternatives x and y actually are. 

 As noted in the Introduction, this (standard) version of neutrality 

embodies independence of irrelevant alternatives, the principle that the 

social preference between x and y should depend only on voters’ preferences 

between x and y, and not on preferences entailing any other alternative: 

Independence of Irrelevant Alternatives (IIA) on ℜ : For all profiles 

 and on ′ ℜR R  and all alternatives x and y, if  

 ( ) ( ) if and only if y for all x i y x i i′R R , 

then 
 ( ) ( ) if and only if xF y xF y′R R , 

and 

( ) ( ) if and only if yF x yF x′R R . 

 Clearly, majority rule satisfies neutrality on the unrestricted domain 

Xℜ .  Rank-order voting violates neutrality on Xℜ  because, as is well known, 
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it violates IIA on that domain.  However, it satisfies neutrality on any 

domain ℜ  on which “quasi-agreement” holds. 

Quasi-agreement on ℜ : Within each triple { }, ,   x y z X⊆ , there exists 

an alternative, say x , such that either (a) for all ,  and R xRy xRz∈ℜ ; or (b) for 

all ,  and R yRx zRx∈ℜ ; or (c) for all R∈ℜ , either  or yRxRz zRxRy . 

In other words, quasi-agreement holds on domain ℜ  if, for any triple 

of alternatives, all voters with preferences in ℜ  agree on the relative ranking 

of one of these alternatives: either it is best within the triple, or it is worst, or 

it is in the middle. 

Lemma 1:  ROF  satisfies neutrality on ℜ  if and only if quasi-agreement 

holds on ℜ . 

Proof:  See appendix. 

 A binary relation C ∈C  is transitive if for all , , ,  x y z X xCy∈  and yCz  

imply that xCz . Transitivity demands that if x is weakly preferred to y and y 

is weakly preferred to z, then x should be weakly preferred to z.  We shall 

define transitivity of a voting rule F as follows: 

Transitivity on ℜ :  ( )F R  is transitive for all profiles R on ℜ . 

 For our results on majority rule, we will, in fact, not require 

transitivity for all profiles in ℜ  but only for almost all.  To motivate this 

weaker requirement, let us first observe that, as mentioned in the 
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Introduction, single-peaked preferences do not guarantee that majority rule 

is transitive for all profiles.  Specifically, suppose that x y z< <  and consider 

the profile  

 [ ) [ ]1 1
2 20, ,1

       
x y
y z
z x

 

That is, we are supposing that half the voters (those from 0 to 12 ) prefer x to 

y to z and that the other half (those from 1
2  to 1) prefer y to z to x.  Note that 

these preferences are certainly single-peaked relative to the linear 

arrangement, x y z< < .  However, the social preference relation under 

majority rule for this profile is not transitive: x is socially indifferent to y, y 

is socially strictly preferred to z, yet z is socially indifferent to x.  We can 

denote the relation by: 

       
x y

z x
−

−  . 

 Nevertheless, this intransitivity is a knife-edge phenomenon - - it 

requires that exactly as many voters prefer x to y as y to x, and exactly as 

many prefer x to z as prefer z to x.  Thus, there is good reason for us to 

“overlook” it as pathological or irregular.  And, because we are working 

with a continuum of voters, there is a formal way in which we can do so, as 

follows. 
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 Let S be a subset of (0, 1).  A profile R on ℜ  is regular with respect to 

S (which we call an exceptional set) if, for all alternatives x and y, 

 ( ), .q x y S∉R  

That is, a regular profile is one for which the proportions of voters preferring 

one alternative to another all fall outside the specified exceptional set. 

Generic Transitivity on ℜ :  There exists a finite exceptional set S such that, 

for all profiles R on ℜ  that are regular with respect to S, ( )F R is transitive. 

 In other words, generic transitivity requires that social preferences be 

transitive only for regular profiles, ones where the preference proportions do 

not fall into some finite exceptional set.  For example, as Lemma 2 below 

implies, majority rule is generically transitive on a domain of single-peaked 

preferences because if the exceptional set consists of the single point 1
2 —

i.e., { }1
2S = —social preferences are then transitive for all regular profiles. 

 In view of the Condorcet paradox, majority rule is not generically 

transitive on domain Xℜ .  By contrast, rank-order voting is not only 

generically transitive on Xℜ  but fully transitive (i.e., generically transitive 

with exceptional set S φ= ). 

 We shall say that a voting rule works well on a domain ℜ  if it satisfies 

the Pareto property, anonymity, neutrality, and generic transitivity on that 
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domain.  Thus, in view of our previous discussion, majority rule works well, 

for example, on a domain of single-peaked preferences, whereas rank-order 

voting works well on a domain with quasi-agreement. 

 Although we are considering only generic transitivity, we could easily 

accommodate generic versions of the other conditions too without changing 

any of the conclusions (indeed, we did exactly that in an earlier draft of this 

paper).  The reason for concentrating only on transitivity is that, to our 

knowledge, no commonly-used voting rule has nongeneric failures except 

with respect that property. 

 

4. Generic Transitivity and Majority Rule 

 We will show below (see the Theorem) that majority rule works well 

on more domains than (essentially) any other voting rule.  To establish this 

result, it will be useful to have a characterization of precisely when majority 

rule works well, which amounts to asking when majority rule is generically 

transitive.  We already suggested in the previous section that a single-peaked 

domain ensures generic transitivity.  And we noted in the Introduction that 

the same is true when the domain satisfies the property that, for every triple 

of alternatives, there is one that is never “in the middle.”  But these are only 
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sufficient conditions for generic transitivity; what we want is a condition that 

is both sufficient and necessary. 

 To obtain that condition, note that, for any three alternatives x, y, z, 

there are six logically possible strict orderings, which can be sorted into two 

Condorcet “cycles”13: 

   cycle 1        cycle 2

x y z x z y
y z x z y x
z x y y x z

|
|
|  

We shall say that a domain ℜ  satisfies the no-Condorcet-cycle property 14 if 

it contains no Condorcet cycles.  That is, for every triple of alternatives, at 

least one ordering is missing from each of cycles 1 and 2 (more precisely for 

each triple { }, ,x y z , there do not exist orderings R, R,R′ ′′ in ℜ  that, when 

restricted to { }, ,x y z , generate cycle 1 or cycle 2). 

Lemma 2:  Majority rule is generically transitive on domain ℜ  if and only if 

ℜ  satisfies the no-Condorcet-cycle property.15 

Proof:  If there existed a Condorcet cycle in ℜ , then we could reproduce the 

Condorcet paradox.  Hence, the no-Condorcet-cycle property is clearly 

necessary. 

                                            
13 We call these Condorcet cycles because they constitute preferences that give rise to the Condorcet 
paradox 
14 Sen (1966) introduces this condition and calls it value restriction. 
15 For the case of an odd and finite number of voters, Inada (1969) establishes that the no-Condorcet-cycle 
property is necessary and sufficient for majority rule to be transitive. 
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 To show that it is sufficient, we must demonstrate, in effect, that the 

Condorcet paradox is the only thing that can interfere with majority rule’s 

generic transitivity.  To do this, let us suppose that mF  is not generically 

transitive on domain ℜ .  Then, in particular, if we let { }1
2S =  there must 

exist a profile R on ℜ  that is regular with respect to { }1
2  but for which 

( )mF R  is intransitive.  That is, there exist , ,x y z X∈  such that 

( ) ( ) ( )m m mxF yF zF xR R R , with at least one strict preference.  But because R 

is regular with respect to { }1
2 , ( )mxF yR  implies that 

(1)  ( ) 1
2,q x y >R , 

that is, over half the voters prefer x to y.  Similarly, ( )myF zR  implies that 

(2)  ( ) 1
2,q y z >R , 

meaning that over half the voters prefer y to z.  Combining (1) and (2), we 

conclude that there must be some voters in R who prefer x to y to z, i.e., 

(3)  
x
y
z

∈ℜ .16 

By similar argument, it follows that 

 
   
 ,  
   

y z
z x
x y

∈ℜ . 

Hence, ℜ contains a Condorcet cycle, as was to be shown. 

                                            
16 To be precise, formula (3) says that there exists an ordering in ℜ  in which x is preferred to y and y is 
preferred to z.  However, because mF  satisfies IIA we can ignore the alternatives other than , ,x y z .  
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 Q.E.D. 
 It is easy to check that a domain of single-peaked preferences satisfies 

the no-Condorcet-cycle property.  Hence, Lemma 2 implies that majority 

rule is generically transitive on such a domain.  The same is true of the 

domain we considered in the Introduction in connection with French 

elections. 

5. The Robustness of Majority Rule 

We can now state our main finding: 

Theorem:  Suppose that voting rule F works well on domain ℜ .  Then, 

majority rule mF  works well on ℜ  too.  Conversely, suppose that mF  works 

well on domain mℜ .  Then, if there exists profile  on mR ℜo , regular with 

respect to F’s exceptional set, such that 

(4) ( ) ( )mF F≠o oR R , 

there exists a domain ′ℜ  on which mF  works well, but F does not. 

Remark:  Without the requirement that the profile oR  for which  and mF F  

differ belongs to a domain on which majority rule works well, the converse 

assertion above would be false.  In particular, consider a voting rule that 

coincides with majority rule except for profiles that contain a Condorcet 

cycle.  It is easy to see that such a rule works well on any domain for which 

majority rule does because it coincides with majority rule on such a domain. 
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Proof:  Suppose first that F works well on ℜ .  If, contrary to the theorem, 

mF  does not work well on ℜ , then, from Lemma 2, there exists a Condorcet 

cycle in ℜ : 

(5)  
         
 ,    ,   
         

x y z
y z x
z x y

∈ ℜ    , 

for some , ,x y z X∈ .  Let S be the exceptional set for F on ℜ .  Because S is 

finite (by definition of generic transitivity), we can find an integer n such 

that, if we divide the population into n equal groups, any profile for which 

all the voters in each particular group have the same ordering inℜ  must be 

regular with respect to S. 

 Let 10, n    be group 1, ( 1 2,n n   be group 2, …, and ( 1 ,1n
n
−   be group n.  

Consider a profile 1R on ℜ  such that all voters in group 1 prefer y to x and all 

voters in the other groups prefer x to y.  That is, the profile is 

(7)   1 2 n
y x x
x y y

L   . 

From (5), such a profile exists on ℜ .  From neutrality (implying IIA), the 

social preference between x and y under ( )1F R  does not depend on voters’ 

preferences over other alternatives. 
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 There are three cases: either (i) x is socially strictly preferred to y 

under ( )1 ; ( )F ii xR  is socially indifferent to y under ( )1 ; or ( )F iii yR  is socially 

strictly preferred to x under ( )1F R . 

Case (i): ( )1F
x
y

R  

 Consider a profile 1
∗R  on ℜ  in which all voters in group 1 prefer x to y 

to z; all voters in group 2 prefer y to z to x; and all voters in the remaining 

groups prefer z to x to y.  That is, 

                17 

(8)   1
1 2 3

   
n

x y z z
y z x x
z x y y

∗ = LR    . 

Notice that, in profile 1
∗R , voters in group 1 prefer x to z and that all other 

voters prefer z to x.  Hence, neutrality and the case (i) hypothesis imply that 

z must be socially strictly preferred to x under ( )1F ∗R , i.e., 

(9)   ( )1F

z
x

∗R
   . 

 Observe also that, in 1
∗R , voters in group 2 prefer y to x and all other 

voters prefer x to y.  Hence from anonymity and neutrality and the case (i) 

                                            
17 This is not quite right because we are not specifying how voters rank alternatives other than x, y, and z.  
But from IIA, these other alternatives do not matter for the argument. 
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hypothesis, we conclude that x must be socially strictly preferred to y under 

( )1F ∗R , i.e., 

(10)    ( )1F

x
y

∗R
   . 

Now (9), (10), and generic transitivity imply that z is socially strictly 

preferred to y under ( )1F ∗R , i.e., 

(11)    ( )1F

z
y

∗R
   . 

But (8), (11), and neutrality imply for any profile such that  

 1 2 3 n
y y z z
z z y y

L , 

z must be socially strictly preferred to y.  Hence, from neutrality, for any 

profile 2R  on ℜ such that  

(12) 1 2 3 n
y y x x
x x y y

L    , 

x must be socially strictly preferred to y, i.e., 

(13) ( )2F
x
y

R    . 
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That is, we have shown that if x is socially strictly preferred to y when just 

one out of n groups prefers y to x (as in (7)), then x is again socially strictly 

preferred to y when two groups out of n prefer y to x (as in (12)). 

 Now choose 2
∗R  on ℜ  so that 

(14)   2
1 2 3 4 n
x y y z z
y z z x x
z x x y y

∗ = LR    . 

Arguing as above, we can use (12) – (14) to show that x is socially strictly 

preferred to y if three groups out of n prefer y to x.  Continuing iteratively, 

we conclude that x is strictly socially preferred to y even if 1n −  groups out 

of n prefer y to x, which, in view of neutrality, violates the case (i) 

hypothesis.  Hence case (i) is impossible. 

Case (ii): ( )1F
y
x

R  

But from the case (i) argument, case (ii) leads to the same contradiction as 

before.  Hence we are left with 

Case (iii): ( )1F
x y−

R  

 Consider a profile R̂  on ℜ  such that 

1 1ˆ n n
x x y
y y z
z z x

−LR =   . 
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From anonymity, neutrality and the case (iii) hypothesis, we conclude that x 

is socially indifferent to y and x is socially indifferent to z under ( )ˆF R , i.e., 

(15) 
( )ˆF

x y−

R
    . 

and 

(16) 
( )ˆF

x z−

R
    . 

But the Pareto property implies that y is socially strictly preferred to z under 

( )ˆF R , which together with (15) and (16) contradicts generic transitivity.  We 

conclude that case (iii) is impossible too, and so mF  must work well on ℜ  

after all, as claimed. 

 Turning to the converse, suppose that there exists domain mℜ  on 

which mF  works well.  If F does not work well on mℜ too, we can take 

m′ℜ ℜ=  to complete the proof.  Hence, assume that F works well on mℜ  with 

exceptional set S and that there exists regular profile oR  on mℜ  such that 

( ) ( )mF F≠o oR R .  Because ( )F oR  and ( )mF oR  differ, there exist ( )0,1α ∈  

with 

(17)   1 α α− >  , 

and alternatives ,x y X∈  such that ( ), 1q x y α= −oR  and ( )F oR  ranks x and y 

differently from ( )mF oR .  From (17), we have  
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( )mF

x
y

oR
   . 

We thus infer that  

(18)   ( )y F xoR    . 

Because F  is neutral on mℜ , we can assume that oR  consists of just two 

orderings  ,R R′ ′′∈ℜ  such that 

(19)    and y R x x R y′ ′′    . 

Furthermore, because F  is anonymous on mℜ , we can write oR  as 

(20)   [ ) [ ]0, ,1
R R

α α
=

′ ′′
oR    , 

so that voters between 0 and α  have preferences R′ , and those between α  

and 1 have R′′ . 

Let us assume for the time being that F satisfies the Pareto property, 

anonymity, and neutrality on the unrestricted domain Xℜ .  Consider 

{ },z x y∉  and profile ooR  such that 

(21)  [ ) [ ) [ ]0, ,1 1 ,1
.

z z x
y x z
x y y

α α α α− −
=    ooR

18 

Then from (18)-(21), anonymity, and neutrality, we have 

                                            
18 We have again left out the alternatives other than , ,x y z , which we are entitled to do by IIA.  To make 

matters simple, assume that the orderings of ooR  are all the same for these other alternatives.  Suppose 

furthermore that, in these orderings, , ,x y z  are each preferred to any alternative not in { }, ,x y z . 
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(22)  ( ) ( ) and .yF x xF zoo ooR R  

From the Pareto property, we have 

(23)  ( )
.

F

z
y

ooR
 

But, by construction, ooR is regular with respect to F’s exceptional set.  Thus, 

(22) and (23) together imply that F violates generic transitivity on 

  
, ,

z z x
y x z
x y y

  ′ℜ =  
  

.  Yet, from Lemma 2, mF  is generically transitive on ′ℜ , which 

implies that ′ℜ  is a domain on which mF  works well but F does not.  Thus, 

we are done in the case in which F always satisfies the Pareto property, 

anonymity and neutrality. 

 However, if F does not always satisfy these properties, then we can no 

longer infer (22) from (18)-(21), and so must argue in a different way. 

 Consider  and R R′ ′′  of (19).  Suppose first that there exists alternative 

z X∈  such that 

(24)           and          .zRy zR x′ ′′  

Let w be the alternative immediately below z in ordering R′′ .  If w x≠ , let R∗′′  

be the strict ordering that is identical to R′′  except that w and z are now 

interchanged (so that wR z∗′′ ).  By construction of R∗′′ , the domain { }, ,R R R∗′ ′′ ′′  

does not contain a Condorcet cycle, and so, from Lemma 2, mF  works well 
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on this domain.  Hence, we can assume that F works well on this domain too 

(otherwise, we are done).  Notice that neutrality of F and (18) then imply 

that if we replace  by  in profile R R∗′′ ′′ oR  (to obtain profile ∗
oR ) we must have 

(25)   ( ) .yF x∗
oR  

Now, if w∗  is the alternative immediately below z in R∗′′ and w x∗ ≠ , we can 

perform the same sort of interchange as above to obtain  and R∗∗ ∗∗′′ oR and so 

conclude that mF  and F work well on { }, ,R R R∗ ∗∗′ ′′ ′′  and that 

(26)  ( )yF x∗∗
oR . 

By such a succession of interchanges, we can, in effect, move z 

“downward” while still ensuring that F  and mF  work well on the 

corresponding domains and that the counterparts to (18), (25) and (26) hold.  

The process comes to end, however, once the alternative immediately below 

z in  (or , , etc.)R R R∗ ∗∗′′ ′′ ′′  is x.  Furthermore, this must happen after finitely many 

interchanges (since X is finite).  Hence, we can assume without loss of 

generality that w x=  (i.e., that x is immediately below z in R′′ ). 

Let R′′′  be the strict ordering that is identical to R′′  except that x and z 

(which we are assuming are adjacent in R′′ ) are now interchanged.  From 

Lemma 2, { } works well on , ,mF R R R′ ′ ′′ ′′′ℜ = , and we can suppose that F does 
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too (otherwise, we are done).  Hence, from the same argument we used for 

ooR above, we can conclude that 

(27)   ( ) ( ) and yF x xF z∗ ∗
oo ooR R  

and 

(28)   ( )F

z
y

∗
ooR

   , 

where ∗
ooR  is the profile 

 [ ) [ ) [ ]0, ,1 1 ,1
R R R

α α α α− −
′ ′′ ′′′

   , 

contradicting the generic transitivity of  on F ′ℜ .  Thus, we are done in the 

case where (24) holds. 

 Next, suppose that there exists z X∈  such that 

(29)         and        xRz yR z′ ′′ . 

But this case is the mirror image of the case where (24) holds.  That is, just 

as in the previous case we generated R′′′  with 

(30)  xR zR y′′′ ′′′  

through a finite succession of interchanges in which z moves downwards in 

R′′ , so we can now generate R′′′  satisfying (30) through a finite succession of 

interchanges in which z moves upwards in R′′ .  If we then take 

{ }, ,R R R′ ′ ′′ ′′′ℜ = , we can furthermore conclude, as when (24) holds, that mF  
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and F work well on ′ℜ .  But, paralleling the argument for ∗
ooR , we can show 

that 

  ( ) ( )      and      yF x zF y∗∗ ∗∗
oo ooR R  

and 

  ( )
,

F

x
z

∗∗
ooR

 

where ∗∗
ooR  is the profile 

 [ ) [ ) [ ]0, ,1 1 ,1
R R R

α α α α− −
′ ′′ ′′′

, 

implying that ( )F ∗∗
ooR is intransitive.  This contradicts the conclusion that F 

works well on ′ℜ , and so again we are done. 

 Finally, suppose that there exists z X∈  

such that 

(31)          and       zRy xR z R y′ ′′ ′′ . 

As in the preceding case, we can move z upwards in R′′  through a succession 

of interchanges.  Only this time, the process ends when z and x are 

interchanged to generate R̂′′  such that 

(32)   ˆ ˆzR xR y′′ ′′ . 

As in the previous cases, we can conclude that F and mF  work well on 

{ }ˆ, ,R R R′ ′′ ′′ .  Take ˆ ooR  such that 
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[ ) [ ) [ ]0, ,1 1 ,1ˆ
ˆR RR

α α α α− −
=

′ ′′′′
ooR . 

Then, as in the arguments about  and ∗ ∗∗
oo ooR R , we infer that ( )ˆF ooR  is 

intransitive, a contradiction of the conclusion that F works well on 

{ }ˆ, ,R R R′ ′′ ′′ .  This completes the proof when (31) holds.  The remaining 

possible cases involving z are all repetitions or mirror images of one or 

another of the cases already treated. 

 Q.E.D. 

 As a simple illustration of Theorem 1, let us see how it applies to 

rank-order voting.  If { }, ,X x y z= , Lemma 1 implies that ROF  works well, for 

example, on the domain 

     ,  
x z
y y
z x

  
 
  

   . 

And, as Theorem 1 guarantees, mF  also works well on this domain, since it 

obviously does not contain a Condorcet cycle.  Conversely, on the domain 

(*)    ,   ,  
x y z
y z y
z x x

  ′ℜ =  
  

   , 

( ) ( )m ROF F≠R R  for any profile R in which the proportion of voters with 

ordering  is 
x
y
z

α , the proportion with ordering  is 
y
z
x

β  and  

(**)   1 2 1α β< < +  
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(if (**) holds, then  and RO mF F  rank x and y differently).  But, from Lemma 

2, mF  works well on ′ℜ  given by (*).  Hence, from Lemma 1, ′ℜ  constitutes 

a domain on which mF  works well but ROF  does not, as guaranteed by the 

Theorem. 

 We already mentioned May’s (1952) characterization of majority rule 

in the Introduction.  In view of our Theorem, we can provide an alternative 

characterization.  Specifically, call two voting rules F and F′  generically the 

same  on domain ℜ  if there exists a finite set ( )0,1S ⊂  such that 

( ) ( )F F ′=R R  for all  on ℜR  for which ( ),q x y S∉R .  Call F maximally robust 

if there exists no other voting rule that (i) works well on every domain on 

which F works well and (ii) works well on some domain on which F does 

not work well.  The Theorem implies that majority rule is essentially 

uniquely the maximally robust voting rule: 

Corollary: Majority rule is maximally robust, and any other maximally 

robust voting rule F is generically the same as majority rule on any domain 

on which F or majority rule works well. 

6.  Extensions 

 The symmetry inherent in neutrality is often a reasonable and 

desirable property—we would presumably want to treat all candidates in a 

presidential election the same.  However, there are also circumstances in 
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which it is natural to favor certain alternatives.  The rules for changing the 

U.S. Constitution are a case in point.  They have been deliberately devised 

so that, at any time, the current version of the Constitution—the status quo—

is difficult to revise. 

 In related work (see Dasgupta and Maskin, 2004), we show that when 

neutrality is replaced by the weaker condition of IIA (and the requirement 

that ties be broken “consistently” is also imposed), then unanimity rule with 

an order of precedence 19(the rule according to which x is chosen over y if it 

precedes y in the order of precedence, unless everybody prefers y to x) 

supplants majority rule as the most robust voting rule. 

We have assumed throughout that voting rules must satisfy 

anonymity; this is part of the definition of “working well.”  But in practice 

there are many circumstances in which voters are, for good reason, not 

treated equally.  Think, for instance, of the weighted voting system used by 

the council of the European Union, where more populous member nations 

have larger weights.  Such examples suggest that it is worthwhile examining 

what becomes of our results when anonymity is relaxed. 

Now, if we were to eliminate anonymity altogether as a requirement, 

nothing resembling our Theorem would continue to hold; instead, a 

                                            
19 For discussion of this voting rule in a political setting see Buchanan and Tullock  (1962). 
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dictatorship (in which one particular voter’s preferences determine social 

preferences) would now be the most robust voting rule, since it satisfies 

neutrality, the Pareto property, and transitivity on the unrestricted domain 

Xℜ .  However, exploring what would happen if we replaced anonymity with 

weaker conditions seems useful. Consider, for example, the properties of 

voting-bloc responsiveness: 

Voting-Bloc Responsiveness on ℜ : For any [ ]0,1V ⊆  with ( ) 0Vµ > , there 

exist profiles  and  on ′ ℜR R  such that ( ) ( )i i′=R R  for all i V∉  but 

( ) ( )F F ′≠R R . 

 In words, voting-bloc responsiveness requires that every bloc of 

voters of positive size can sometimes affect the social ranking.  The 

condition is clearly satisfied by any voting rule for which the Pareto property 

and anonymity hold.  But it also holds for many non-anonymous voting 

rules, such weighted majority rule, defined as follows: Given a positive-

valued, Lebesgue-measurable function [ ] on 0,1w , wF  is weighted majority 

rule with weight w, if for all alternatives x, y, and profiles ( ),     wxF yR R  if 

and only if 

   ( ) ( )
( ){ }

        
i j x j y

w i d iµ
∈

≥∫
R

    ( ) ( )
( ){ }

.        
i j y j x

w i d iµ
∈
∫

R
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Analogous to our Theorem, it can be shown (see Dasgupta and Maskin, 

1998) that if a voting rule satisfies the Pareto property, neutrality, generic 

transitivity, and voting-bloc responsiveness on a domain ℜ  then, for any w, 

wF  also satisfies those properties on ℜ .  We conjecture that the converse 

holds too.  That is, if, for all w, ( ) ( )wF F≠o oR R  for a regular profile oR on 

domain ∗ℜ  where wF  satisfies these four properties, then there exists a 

domain ′ℜ  on which wF  satisfies all the properties, but F does not. 

 Another interesting extension to consider is strategic voting.  It has 

long been known that there is a close connection between the problem of 

defining “reasonable” social preferences on a domain of preferences and that 

finding voting rules immune from strategic manipulation by voters (see 

Maskin 1979 and Kalai and Muller 1977).  Because we have assumed a 

continuum of voters, sincere voting is automatically compatible with 

individual incentives for any voting rule in which a single voter’s ordering 

makes no difference for social preferences.  But the same is not true for 

coalitions (voting blocs).  We conjecture that a counterpart to our Theorem 

can be derived when independence of irrelevant alternatives is replaced with 

the requirement that a voting rule be coalitionally strategy-proof. 



Appendix 

 

Lemma 1: For any domain ℜ , ROF  satisfies neutrality on ℜ  if and only if 

quasi-agreement holds on ℜ . 

Proof: Assume first that quasi-agreement holds on ℜ .  We must show that 

ROF  satisfies neutrality on ℜ .  Consider profiles  and  on ′ ℜR R  and 

alternatives x, y, w, and z such that 

(A1)   ( ) ( ) if and only if  for all x i y w i z i′R R . 

We must show that 

(A2)   ( ) ( ) if and only if RO ROxF y wF z′R R  

and 

(A3)   ( ) ( ) if and only if RO ROyF x zF w′ ′R R . 

If, for all i, ( )x i yR , then because ROF  satisfies the Pareto property, we have 

  ( )ROF
x
y

R   and  ( )ROF
w
z

′R    , 

in accord with (A2) and (A3).  Assume, therefore, that if we let 

  ( ){ } ( ){ } and x yI i x i y I j y j x= =R R  

and 

  ( ){ } ( ){ } and w zI i w i z I j y j w′ ′ ′= =R R    , 



 2

then , , , and x w y zI I I I′ ′  are nonempty. 

 We claim that  

(A4)  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   for all     and   x yi i j jv x v y v y v x i I j I− = − ∈ ∈R R R R . 

Now, (A4) holds because, if there exist xi I∗ ∈  and z X∈  such that 

    ( )i

x
z
y

∗R
    , 

then quasi-agreement implies 

  ( ) ( )
for all and for allx y

i j
i I j I

x y
z z
y x

∈ ∈
R R . 

Similarly, we have 

(A5)  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )   for all     and   w zi i j jv w v z v z v w i I j I′ ′ ′ ′ ′ ′− = − ∈ ∈R R R R . 

But from (A4) and (A5) and the definition of ROF , we obtain (A2) and (A3), 

as required. 

 Next, suppose that quasi-agreement does not hold on domain ℜ .  

Then there exist alternatives x, y, z and orderings ,R R′∈ℜ  such that 

(A6)   R
x
y
z

 

and 
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(A7)   R
y
z
x

′    . 

From (A6) and (A7) we have 

(A8)  ( ) ( ) ( ) ( )R R R Rv x v y v y v x′ ′− < −  

(A9)  ( ) ( ) ( ) ( )R R R Rv x v z v z v x′ ′− > −    . 

Choose 

   [ ) [ ]1 1
2 20, ,1

      
R R

=
′

R    . 

Then from (A8) and (A9) 

(A10)   ( )ROF
y
x
z

R    . 

But, by construction, we have, for all i, 

   ( ) ( )   if and only if   x i y x i zR R  

and 

   ( ) ( )   if and only if   y i x z i xR R . 

Thus, if neutrality held we should have 

   ( ) ( )   if and only if   RO ROyF x zF xR R , 

which contradicts (A10). 

 Q.E.D. 
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