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Abstract

We show that simple majority rule satisfies four standard
and attractive properties—the Pareto property, anonymity,

neutrality, and (generic) transitivity—on a bigger class of
preference domains than (essentially) any other voting rule.
Hence, in this sensg, it isthe mostrobust voting rule.
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1. Introduction

A voting rule isamethod for choosing from a set of social alternatives
on the basis of voters' stated preferences. Many different voting rules have
been studied in theory and used in practice. But far and away the most
popular method has been simple majority rule, the rule that chooses
aternative x over aternativey if more people prefer x toy than vice versa.

There are, of course, good reasons for magjority rule’s’ popularity. It
not only is attractively straightforward to use in practice, but satisfies some
compelling theoretical properties, among them the Pareto property (the
principlethat if al voters preferx toy and x is available, theny should not
be chosen), anonymity (the principle that choices should not depend on
voters labels), and neutrality (the principle that the choice between apair if
alternatives should depend only on the pattern of voters preferences over
that pair, not on the alternatives’ labels). Infact, May (1952) establishes that
majority rule is theunigue voting rule satisfying the Pareto property,
anonymity, and neutrality, and afourth property called positive

responsiveness?. We shall come back to May’s characterization below.

! For convenience, we will omit the modifier “simple’ whenit is clear that we are referring to simple
majority rule rather to any of the many variants, such as the supermajority rules.

2 A voting ruleiis positively responsive if whenever alternativex is chosen (perhaps not uniquely) for a
given specification of voter’s preferences and the only change that is then made to these preferencesisto
move x up in some voter’ s preference ordering, then x becomes uniquely chosen.



But mgority rule has awell-known flaw, discovered by the Marquis
de Condorcet (1785) and illustrated by the Paradox of Voting (or Condorcet
Paradox): it can generateintransitive choices. Specifically, suppose that
there are three voters 1, 2, 3, three alternativesx, y, z, and that the profile of

voters' preferencesisasfollows:

N< X |
XN< |N
<xN |w

(i.e., voter 1prefersx toy toz, voter 2 prefersy to z to x, and voter 3 prefers
ztox toy). Then, as Condorcet noted, atwo-thirds majority prefersx toy, y
to z, and z to X, so that mgjority rule failsto selectany alternative.

Despite the theoretical importance of the Condorcet Paradox, there are
important casesin which mgjority rule avoids intransitivity. Most famously,
when alternatives can be arranged linearly and each voter’s preferences are
single-peaked in the sense that his utility declines monotonically as one
moves away from hisfavorite alternative, then, following Black (1948),
majority ruleistransitive for (almost) all® profiles of voters preferences.
Alternatively, suppose that, for every three alternatives, there is one that no
voter ranks in the middle. This property, which isaspecial case of value

restriction (see Sen 1966, Inada 1969, and Sen and Pattanaik 1969), seems

3 We clarify what we mean by “almost al” in section 2.



to have held in recent French presidential elections, where the Gaullist and
Socialist candidates have not engendered much passion, but the National
Front candidate, Jean-Marie Le Pen, has inspired either revulsion or
admiration, i.e., the vast majority of voters rank him either last or first, but
not in between. Whether or not this pattern of preferences has been goodfor
France is open to debate, but it is certainly “good” for mgjority rule: value
restriction, like single-peakedness, ensures transitivity (almost always).

So, majority rule “works well’—in the sense of satisfying the Pareto
property, anonymity, neutrality and generic transitivity—for some domains
of voters' preferences but not for others. A natural question to ask is how its
performance compares with that of other voting rules. Clearly, no voting
rule can work well forall domains; this conclusion followsimmediately
from the Arrow impossibility theorem® (Arrow, 1951). But we might
inquire whether there isavoting rule that works well for abigger class of

domains than does majority rule’

4 Our formulation of neutrality (see section 3)—which is, in fact, the standard formulation (see Sen, 1970
or Campbell and Kelly, 2002)—incorporates (i) Arrow’ sindependence of irrelevant alternatives, the
principle that the choice between two aternatives should depend only on voters' preerences for those two
alternatives and not on their preferences for other alternatives and (i) symmetry with respect to
alternatives, the principle that permuting the alternativesin voters' preferences should permute social
choicesin the same way.

5 It iseasy to find voting rules that satisfy three out of our four properties onall domains of preferences.
For example, majority rule and many of its variants, e.g., twothirds majority rule (which deems two
alternatives as socially indifferent unless onegarners at least a two-thirds majority against the other),
satisfy Pareto, anonymity, and neutrality on any domain. Similarly, rank-order voting (see below) satisfies
Pareto, anonymity, and transitivity on any domain.



We show that the answer to this question isno. Specifically, we
establish (see our Theorem) that if agiven voting ruleF workswell on a
domain of preferences, then maority rule works well on that domain too.
Conversely, if F differs from magjority rul€®, there exists some other domain
on which majority rule works well but F does not.

Thus mgjority ruleis essentially uniquely the voting rule that works
well on the most domains; it is, in this sense, the mostrobust voting rule’
Indeed, this gives us acharacterization of mgority rule different from the
one provided by May (1952) (seethe corollary to the Theorem). Notice that,
unlike May, we appeal to no monotonicity condition (May requires positive
responsiveness), but instead invoke maximal robustness.

Our Theorem s closely related to aresult obtainedin Maskin (1995),
but greatly improves on that earlier result. Maskin’'s proposition requires
two strong assumptions, one of which is particularly unpalatable.

Thefirst assumption is that the number of votersbeodd. Thisis
needed because Maskin (1995) demands transitivity forall preference
profiles drawn from a given domain (oddnessis also needed for much of the

early work on mgority rule, e.g., Inada, 1969). And, aswe will see below,

 More accurately, the hypothesisis that F differs from majority rule for a“regular” preference profile
belonging to adomain on which majority rule works well.

" More precisely, any other maximally robust voting rule can differ from majority rule only for “irregular”
profiles on any domain on which it works well (see the corollary to our Theorem).



even when preferences are single-peaked, intransitivity ispossible if the
population splits exactly 50-50 between two aternatives, an odd number of
voters prevents this from happening. To capture the ideathat such asplitis
unlikely, we will work with alarge number of voters and ask only for
generictrangitivity. (Formally, we shall work with a continuumof voters,
but it will become clear that we could aternatively deal with afinite number
by defining generic transitivity to mean transitive with “sufficiently high
probability.” Inthat case, we would not need to impose “oddness’ (a strong
assumption, since it presumably holds only half the time).

Second, Maskin (1995) invokes the restrictive assumption that the
voting rule F being compared with majority rule satisfies Pareto, anonymity,
and neutrality on any domain. Thisis quite undesirable because, although it
accommodates certain methods (such as the supermgjority rules and the
Pareto extension rules), it rules out such voting rules as the Borda count,
plurality voting, approval voting, and runoff voting. These are the most
common alternativesin practice to ssimple maority rule, yet fail to satisfy
neutrality on the unrestricted domain. We show that this assumption can be
eliminated altogether.

We proceed asfollows. In section 2, we set up the modd. In section

3, we define our five properties, Pareto, anonymity, neutrality, independence



of irrelevant alternatives, and generic transitivity formally. We also
characterize when rank-order voting—a major “competitor” of maority
rule—satisfies all these properties. In section 4, we establish alemma,
closely related to aresult of Inada (1969), that characterizes when mgjority
ruleis genericaly transitive. We usethislemmain section 5 to establish our
main Theorem on magjority rule. We obtain our alternative to May’s (1950)
characterization asacorollary. Finaly, in section 6 we discuss afew
extensions.
2. TheModd

Our model isin most respects a standard social-choice framework.
Let X be the set of socia aternatives (including aternatives that may turn
out to beinfeasible). For technical convenience, we take X to befinite with

cardinality m(* 3). The possibility of individual indifference often makes

technical argumentsin the socia-choice literature agreat deal messier (see
for example, Sen and Pattanaik, 1969). We shall smply ruleit out by
assuming that individual voters preferences can be represented by strict
orderings (of course, with only afinite number of aternatives, the
assumption that avoter is not exactly indifferent between any two
alternatives does not seem very strong). If Risastrict ordering, then, for

any aternatives x, yl x with x? y, the notation " xry" denotes“x is strictly



preferred toy in ordering R”® Let A, bethe set of al logically possible

strict orderings of X. We shall typically suppose that voters preferences are

drawn from some subset Ai A,. For example, for some ordering

(% % ,-- Xu)Of thesocial aternatives, A consists of single-peaked
preferences (relative to this ordering) if, for all RT A, whenever xRx.,, for
somei, then x,Rx;., for all j>i, and whenever x,Rx for somei, then x;.,Rx;
fordl j<i.

For the reason mentioned in the Introduction (and elaborated on
below), we shall suppose that there is acontinuumof votersindexed by
pointsin the unit interval [0,1]. A profile Ron A isamapping

R:[0,]®A,
where R(i) isvoteri’s preference ordering. Hence, profileRisa

specification of the preferences of all voters.

We shall use Lebesgue measure m as our measure of the size of

voting blocs® Given alternativesx andy and profile R, let

ar (% v)=m{i [ xR(i) v} -

8 Formally, a strict ordering is a binary relation that is reflexive, complete, transitive, and antisymmetric
(antisymmetry meansthat if xRy and x?* vy, thenitisnot the casethat yRX).

® Because L ebesgue measure is not defined for all subsets of [0,1] , wewill restrict attention to profilesR
suchthat, for all x and y,{i | xR(i)y} isaBorel set. Call theseBordl profiles.



Then gz (x,y) isthefraction of the population preferringx toy in profileR.

Let ~ bethe set of reflexive, complete, binary relations (not
necessarily transitive or strict) on X. A voting rule F is amapping that, for

each profile Ron A, (strictly speaking, we must limit attention to Borel
profiles—see footnote 9—but henceforth we will not explicitly state this
qualification), assignsarelation F(R)T ~ . F(R) can beinterpreted asthe
“social preferencerelation” corresponding toR under F. More specificaly,
for any profileR and any dternatives x, yI X , the notation “ xF (R) y”
denotes that x is socially weakly preferred toy under F(R). If both xF (R)y
and yF(R)x, weshall say that x is socially indifferent toy and denote this by

F(R)
X-y

Finally, the notation" ~ xF (R) y* denotes that x isnot socially weakly
preferred toy, given F and R. Hence, if xF (R)y and ~ yF (R) x, we shall say
that x issocialy strictly preferred toy under F(R), which we will usualy

denote by

F(R)

X
y
For example, suppose that F™ issimple majority rule. Then, for al x,

y,andR



xF"(R)y ifandonlyif ag(x,y)2 as(y,x),
i.e., x issocialy weakly preferred toy provided that the proportion of voters
preferring X toy is no less than the proportion preferringy to x.

As another example, consider rank-order voting. Given RI A, let
W (x) bemif xisthetop-ranked aternative of R, m- 1 if x is second-ranked,

and soon. That is, avoter with preference ordering R assigns m points to

her favorite aternative, m- 1 pointsto her next favorite, etc. Thus, given

profile R, C)lVR(i)(X)dm(i) is alternativex’s rank-order score (the total number

of points assigned tox) or Borda count. If £* isrank-order voting, then,

for al x,y,and R,
XF ™ (R) y if and only if vy, (x)dm(i) ® Vg, (v)dm(i),

I.e., xissocialy weakly preferred toy if X' s Borda count exceeds that of y.

Speaking in terms of social preferences may seem somewhat indirect
because the Introduction depicted avoting rule as away of making socia
choices. Because, as noted at the beginning of the section, the set of feasible
alternatives may not be known in advance, we cannot ssmply make a voting
rule a mapping from profiles to outcomes; the designated outcome might
turn out to be infeasible. However, we could defineavoting ruleasa

mapping that to each profile R on A, assigns a choicefunction c (%, which,



for each subset Yi X (whereYisthe“available’ or “feasible” set), selectsa
subset c(Y)1 v (c(Y) consistsof the“optimal” aternativesin).™
However, partly because it isless cumbersome working with preference
relations than choice functions, thereis atradition going back to Arrow
(1951) of taking the former route. Furthermore, it iswell known that thereis
aclose connection between the two approaches’™ In our setting, we shall
take the statement “x and y are socially indifferent” to mean “ify is chosen
and x isalso available, then x must be chosen too.” Similarly, “x issocialy
strictly preferred toy” should be interpreted as “if x is available, theny is not
chosen.”
3. TheProperties

We are interested in four standard properties that one may wish a
voting ruleto satisfy.

Pareto Propertyon A: Foral rRon A andal x yi x with xt vy, if, for al
i, R(i)y, then xF (R)y and ~ yF (R) x, i.€,

F(R)

X
y
In words, the Pareto property requiresthat if all voters preferx toy,

then society should also (strictly) preferx toy. Virtualy al voting rules

1% | ndeed, we took this approach in an earlier version of the paper
1! See, for example, Arrow (1959).

10



used in practice satisfy this property. In particular, mgority rule and rank-
order voting satisfy it on the unrestricted domain A, .
Anonymityon A : Supposethat p :[0,1] ® [0,1] isameasurepreserving
permutation of [0,1] (by “measure-preserving” we mean that, for all Borel
setsTi (0,4, m(T)=m(p(T)))- If, foral RonA, R isthe profile such that
R (i)=R(p (i)) for ali, then F(Rp): F(R).

In words, anonymity says that social preferences should depend only
on the distribution of voters' preferences and not on who has those
preferences. Thusif we permute the assignment of voters' preferences by

p , social preferences should remain the same. The reason for requiring that

p be measurepreserving isto ensure that the fraction of voters preferringx

toy bethesamefor R® asitisforR.

Anonymity embodies the principle that everybody’ s vote should count
equally.* Itisobviously satisfied on A, by both magjority rule and rank-
order voting.

Neutralityon A : For al profiles R and Rton A and all alternativesx, y, w, z,
if

xR(i) y if and only if wRY(i) z for all i

12 |ndeed, it is sometimes called “voter equality” (see Dahl, 1989).

11



then
xF (R) v if and only if wF (R%) z

and
yF (R)x if and only if Z7 (R§w.

In words, neutrality requires that the social preference betweenx andy
should depend only on the set of voters preferringx and on that preferringy,
and not on what thealternatives x and y actually are.

As noted in the Introduction, this (standard) version of neutrality
embodies independence of irrelevant aternatives, the principle that the
social preference between x and y should depend only on voters' preferences
between x and y, and not on preferences entailing any other aternative:
Independence of Irrelevant Alternatives(l1A) on A : For al profiles
R and Rton A and al alternativesx andy, if

xR(i) y if and only if xRqi )y for al i,

then
xF (R) yif and only if xF (RY)y,

and
yF(R)xif and only if yF (R x..
Clearly, majority rule satisfies neutrality on the unrestricted domain

A, . Rank-order voting violates neutrality on A, because, asiswell known,

12



it violates 1A on that domain. However, it satisfies neutrality on any
domain A on which “quasi-agreement” holds.

Quasi-agreement on A : Within each triple{x,y,Z 1 X, thereexists
an aternative, say x, such that either (a) for all Rl A, xRy and xRz; or (b) for
all rRT A, yRxand zRx; or (c) for al RT A, either yrRxRz or ZRxRy .

In other words, quasi-agreement holds on domain A if, for any triple
of alternatives, al voters with preferencesin A agree on the relative ranking
of one of these alternatives:. either it is best within thetriple, or it isworst, or
itisinthemiddle.

Lemmal: ™ satisfiesneutrality on A if and only if quasi-agreement
holdson A .
Proof: See appendix.

A binary relation c1 ~ istrangtiveif for all x,y,zl X, xcy and ycz
imply that xCz. Trangitivity demandsthat if x isweakly preferred toy andy
isweakly preferred to z, then x should be weakly preferred toz. We shall
define trangitivity of avoting ruleF asfollows:

Transtivityon A: F(R) istransitivefor all profilesRon A .

For our results on majority rule, we will, in fact, not require

transitivity for all profilesin A but only for almostall. To motivate this

weaker requirement, let usfirst observe that, as mentioned in the

13



Introduction, single-peaked preferences do not guarantee that mgjority rule

istransitive for al profiles. Specificaly, suppose that x <y <z and consider

the profile

03) 4
y

X
y
z

X N

That is, we are supposing that half the voters (those from 0 to4) prefer x to
y toz and that the other half (those from<4 to 1) prefery toztox. Note that

these preferences are certainly single peaked relative to the linear

arrangement, x<y<z. However, the social preference relation under
majority rulefor thisprofileisnot transitive: x is socialy indifferent toy, y
issocialy strictly preferred toz, yet zis socialy indifferent tox. We can
denotetherelation by:

Nevertheless, thisintransitivity is a knife-edge phenomenon - - it
requires that exactly as many voters prefer x toy asy tox, and exactly as
many prefer x toz as prefer ztox. Thus, thereis good reason for usto
“overlook” it as pathological orirregular. And, because we are working

with a continuum of voters, thereisaformal way in which we can do so, as

follows.

14



Let Sbeasubset of (0, 1). A profileRon A isregular with respect to

S(which we call an exceptional set) if, for all alternativesx andy,

ar(xy)T S
That is, aregular profileisone for which the proportions of voters preferring
one alternative to another all fall outside the specified exceptional set.
Generic Trangitivity on A : There existsafinite exceptional set Ssuch that,

for all profilesRon A that are regular with respect toS, F(R)istransitive.

In other words, generic transitivity requires that social preferences be
transitive only for regular profiles, ones where the preference proportions do
not fall into some finite exceptional set. For example, asLemma 2 below
implies, majority rule is generically transitive on adomain of single peaked
preferences because if the exceptional set consists of the single point4 —
i.e, s={4}—socia preferences are then transitive for all regular profiles.

In view of the Condorcet paradox, majority ruleis not generically
transitive on domain A, . By contrast, rank-order voting is not only
generically transitiveon A, but fully transitive (i.e., genericaly transitive
with exceptional set s=f ).

We shall say that avoting ruleworks well onadomain A if it satisfies

the Pareto property, anonymity, neutrality, and generic transitivity on that

15



domain. Thus, inview of our previous discussion, mgority rule works well,
for example, on adomain of single peaked preferences, whereas rank-order
voting works well on a domain with quasi-agreement.

Although we are considering only generic transitivity, we could easily
accommodate generic versions of the other conditions too without changing
any of the conclusions (indeed, we did exactly that in an earlier draft of this
paper). Thereason for concentrating only on transitivity is that, to our
knowledge, no commonly-used voting rule has nongeneric failures except

with respect that property.

4. Generic Trangitivity and Majority Rule

We will show below (see the Theorem) that mgjority rule works well
on more domains than (essentially) any other voting rule. To establish this
result, it will be useful to have a characterization of precisely when majority
rule workswell, which amounts to asking when mgjority rule is generically
transitive. We aready suggested in the previous section that a single peaked
domain ensures generic trangitivity. And we noted in the Introduction that
the same is true when the domain satisfies the property that, for every triple

of aternatives, thereisonethat isnever “inthe middle.” But these are only

16



sufficient conditions for generic transitivity; what we want is a condition that
is both sufficient and necessary.

To obtain that condition, note that, for any three alternativesx, y, z,
there are six logically possible strict orderings, which can be sorted into two

Condorcet “cycles™?:

XV z X z Yy
y z X Z Yy X
Z Xy y X z
cyclel cycle2

We shall say that adomain A satisfies theno-Condorcet-cycle property ** if
it contains no Condorcet cycles. That is, for every triple of aternatives, at
least one ordering is missing from each of cycles 1 and 2 (more precisely for

each triple{x,y, 7 , there do not exist orderings R R¢R®IN A that, when
restricted to{ x, y, 2 , generate cycle 1 or cycle 2).

Lemma 2: Mgjority ruleisgenericaly transitive on domain A if and only if
A satisfies the no-Condorcet-cycle property.™

Proof: If there existed a Condorcet cyclein A , then we could reproduce the
Condorcet paradox. Hence, the no-Condorcet-cycle property is clearly

necessary.

13 We call these Condor cet cycles because they constitute preferences that give rise to the Condorcet
paradox

14 Sen (1966) introduces this condition and calls itvalue restriction.

15 For the case of an odd and finite number of voters, Inada (1969) establishes that the no-Condorcet-cycle
property is necessary and sufficient for majority rule to betransitive.

17



To showthat it is sufficient, we must demonstrate, in effect, that the
Condorcet paradox istheonly thing that can interfere with mgority rule’s
generic trangitivity. To dothis, let us supposethat F™ isnot generically
transitiveondomain A . Then, in particular, if welet s={4} there must
exist aprofileRon A that isregular with respect to{4} but for which

F™(R) isintransitive. That is, thereexist x,y,z1 X such that
xF"(R) yr" (R) zF" (R) x, with at least one strict preference. But becauseR

isregular with respect to {3} , x="(R) y impliesthat

(1) QR(XvY)>%’

thet is, over half the voters preferx toy. Similarly, yF™ (R)z impliesthat

(2) QR(y'Z)>%’
meaning that over half the voters prefery toz. Combining (1) and (2), we
conclude that there must be some votersin R who preferxtoytoz,i.e,

T AM

3

N« X

By similar argument, it follows that

X N<
< XN
—_
>

Hence, A contains a Condorcet cycle, as wasto be shown.

16 To be precise, formula (3) says that there exists an ordering in A inwhichxis preferredtoyandyis
preferred to z. However, becauseF ™ satisfies || A we can ignore the alternatives other than X, Y,Z.

18



Q.E.D.
It is easy to check that adomain of single-peaked preferences satisfies

the no-Condorcet-cycle property. Hence, Lemma 2 implies that majority
ruleis generically transitive on such adomain. The sameistrue of the
domain we considered in the Introduction in connection with French
elections.
5. The Robustnessof Majority Rule

We can now state our main finding:
Theorem: Suppose that voting ruleF workswell on domain A . Then,
majority rule F™ workswell on A too. Conversely, supposethat F™ works
well ondomain A™. Then, if there exists profile R on A™, regular with
respect to F' s exceptional set, such that
(4) F(R)* F"(R),
there existsadomain A¢ on which F™ works well, but F does not.
Remark: Without the requirement that the profile R for which F and F™
differ belongsto a domain on which majority rule works well, the converse
assertion above would befalse. In particular, consider avoting rule that
coincides with majority rule except for profiles that contain a Condorcet
cycle. Itiseasy to seethat such arule works well onany domain for which

majority rule does because it coincides with mgjority rule on such adomain.

19



Proof: Suppose first that F workswell on A . If, contrary to the theorem,
F™ does not work well on A , then, from Lemma 2, there exists a Condorcet

cyclein A:

(5)

N X
X N<
< x N

>

for some x,y,zl x. Let Sbethe exceptional set forF on A . BecauseSis
finite (by definition of generic transitivity), we can find an integern such

that, if we divide the population inton equal groups, any profile for which
all the votersin each particular group have the same ordering inA must be

regular with respect to S.
Let g0,2p begroup 1, (,2g begroup 2, ..., and (=2,15 be group n.
Consider aprofile Ron A such that all votersin group 1 prefery tox and al

votersin the other groups preferx toy. That is, the profileis

(7)

X< |~
<X [N
<X |>

From (5), such aprofileexistson A . From neutrdity (implying I|A), the
socia preference between x andy under F(R,) does not depend on voters

preferences over other alternatives.

20



There arethree cases: either (i) x issocialy strictly preferred toy
under F(R); (i) x issocialy indifferent toy under F(R,); or (iii) y issocialy
strictly preferred tox under F(R,).

Case(): LIR)

X
y
Consider aprofileR on A inwhich al votersin group 1 preferx toy

to z; all votersin group 2 prefery to z to x; and all votersin the remaining

groups preferztox toy. Thatis,

17

« 1 2 3 n

(8) R= 123 .0
X Vy z z

y zZ X X

Z XY Yy

Notice that, in profile R, votersin group 1 preferx to z and that al other

voters prefer z tox. Hence, neutrality and the case (i) hypothesis imply that

z must be socialy strictly preferred tox under F(R;), i€,

©) F®)

Observe also that, in R, votersin group 2 prefery tox and all other

voters prefer x toy. Hence from anonymity and neutrality and the case (i)

¥ Thisis not quite right because we are not specifying how voters rank alternatives other thanx, y, and z.
But from 1A, these other alternatives do not matter for the argument.

21



hypothesis, we conclude that x must be socially strictly preferredto y under

F(Rl*),i.e.,

(10 F(R)

X
y
Now (9), (10), and generic transitivity imply thatz is socialy strictly

preferred toy under £ ( RI) e,

(11) F(R)

z
y

But (8), (11), and neutrality imply for any profile such that

N< |
N< [N
<N |w
<N |5

z must be socially strictly preferred toy. Hence, from neutrality, for any

profile R, on A such that

(12)

X< |
x< [N
<X |w
<X |>

X must be socially strictly preferred toy, i.e.,

(13) FR)
X
Yy

22



That is, we have shown that if x is socially strictly preferred toy when just
one out of n groups prefersy tox (asin (7)), thenx isagain socialy strictly
preferred toy when two groups out of n prefer y tox (asin (12)).

Now choose R, on A so that

(14) R, =

XN< [N
XN< |w
< XN |h
< XN |>

Arguing as above, we can use (12)— (14) to show that x is socialy strictly
preferred toy if three groups out of n prefer y tox. Continuing iteratively,
we conclude that x is strictly socialy preferred toy even if n- 1 groups out
of n prefery tox, which, in view of neutraity, violates the case (i)
hypothesis. Hence case (i) isimpossible.

F(R)
X

Case (ii):

But from the case (i) argument, case (i) leads to the same contradiction as

before. Hence we are left with

Case (iii): FX(_R;)

Consider aprofiler on A such that

R=

N< X |
N<><‘.
XN< |5

23



From anonymity, neutrality and the case (iii) hypothesis, we conclude that x

is socially indifferent toy and x is socially indifferenttoz under F(R), i.e,

(15) F(R)
X-y

and

(16) FX(RZ)

But the Pareto property impliesthaty is socialy strictly preferred to z under
F ( F}) , which together with (15) and (16) contradicts generic transitivity. We
conclude that case (iii) isimpossible too, and so F™ must work well on A
after all, asclaimed.

Turning to the converse, suppose that there existsdoman A™ on
which F™ workswell. If F does not work well on A™too, we can take
A¢=A™ to complete the proof. Hence, assume that F workswell on A™ with
exceptional set Sand that there exists regular profile R on A™ such that
F(R°) 1 Fm(R°) . Because F(R°) and Fm( R°) differ, thereexistal (0,1)
with
(17) 1-a >a ,

and alternatives x yI x such that g (x y)=1-a and F(Rr’) ranksx andy

differently from F"(r’). From (17), we have
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We thusinfer that

(18) vF ( R°) X

Because F isneutral on A™, we can assume that R* consists of just two
orderings R¢R@ A such that

(19) y R& and x Ry

Furthermore, because F isanonymouson A™, we can write R* as

(20) R = [oa) [a.]]

RO RE
so that voters between 0 and a have preferences R(, and those between a

and 1 have Re¢.
L et us assume for the time being that F satisfies the Pareto property,

anonymity, and neutrality on theunrestricted domain A, . Consider

zi {x,y} and profile R such that

(21) = [0a) [p.1-a) [1-a1] 18
z z X '
y X z
X y y

Then from (18)-(21), anonymity, and neutrality, we have

18 We have again |eft out the alternatives other than X, Y, Z, which we are entitled to do by [1A. To make
matters simple, assume that the orderingsof R’ are al the samefor these other alternatives. Suppose
furthermore that, in these orderings, X, Y, Z are each preferred to any alternative not in { XY, z} .
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(22) yF (R°°)x and XF(R°°) ya

From the Pareto property, we have

(23) F(R7),
z
y
But, by construction, rR”isregular with respect toF’ s exceptional set. Thus,

(22) and (23) together imply that F violates generic transitivity on

—
"

Ad=

v. Yet, fromLemma?2, £ isgenericaly transitive on A¢, which

_,

X< N
<XN
< N X
o<

impliesthat A¢isadomain onwhich F™ works well but F doesnot. Thus,
we are done in the case in which F always satisfies the Pareto property,
anonymity and neutrality.
However, if F does not always satisfy these properties, then we can no
longer infer (22) from (18)-(21), and so must argue in adifferent way.
Consider Rtand R¢ of (19). Suppose first that there exists alternative
zl X such that
(24) Ry and  R&
Let w be the aternative immediately below zin ordering r¢. If w? x, let R¢
be the strict ordering that isidentical to R¢ except that w and z are now

interchanged (so that wRéz). By construction of Re¢, the domain {R¢ Rt R§

does not contain a Condorcet cycle, and so, from Lemma2, ™ works well
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on thisdomain. Hence, we can assume that F works well on this domain too

(otherwise, we are done). Notice that neutrality of F and (18) then imply

that if we replace R¢by R®%in profile R (to obtain profile R”) we must have
(25) yF ( R ) X,

Now, if w. isthe alternativeimmediately below zin R¢andw. ¢ x, we can
perform the same sort of interchange as above to obtain R¢ and R, and so

conclude that F™ and F work well on {R¢ R¢RE} and that
(26) V= ( R:L) X-

By such a succession of interchanges, we can, in effect, movez
“downward” while still ensuring that F and F™ work well on the
corresponding domains and that the counterpartsto (18), (25) and (26) hold.
The process comes to end, however, once the alternative immediately below
zin R¢(or RERE, etc) isX. Furthermore, this must happen after finitely many
interchanges (since Xisfinite). Hence, we can assume without |oss of
generality that w=x (i.e., that X isimmediately below zin R¢).

Let R# be the strict ordering that isidentical to R¢ except that x and z
(which we are assuming are adjacent in R¢) are now interchanged. From

Lemma2, F™ workswell on A¢={R¢ Rt R# , and we can suppose that F does
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too (otherwise, we are done). Hence, from the same argument we used for

R’ above, we can conclude that

(27) yF(R*”)xandxF(R”)z
and
29) LI

y

where R isthe profile

[0a) [a,1-a) [1-a.1]
R¢ R¢ R

contradicting the generic transitivity of F on Ad. Thus, we are done in the
case where (24) holds.

Next, suppose that there exists z1 x such that
(29) xRE and  yR&.
But this caseisthe mirror image of the case where (24) holds. Thé is, just
asin the previous case we generated R# with
(30) XREREY
through afinite succession of interchangesin whichz movesdownwardsin
R¢, SO we can now generate R# satisfying (30) through a finite succession of
interchanges in whichz movesupwardsin Rr¢. If we then take

Ac¢={R¢RE¢RE , we can furthermore conclude, as when (24) holds, that F™
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and F work well on A¢. But, paraleling the argument for R, we can show
that
yF(R:)x and  zF(R:)y

ad

Py

oo
*
)

F(
X
z

where R, isthe profile

[0a) [a,1-a) [1—a,]],
RC R¢ R

implying that £ ( R ) Isintrangitive. This contradicts the conclusion that F
works well on A¢, and so again we are done.

Finally, suppose that there exists z1 X
such that
(31) ZRY  and xR& Ry.
Asin the preceding case, we can movez upwardsin R¢ through a succession
of interchanges. Only thistime, the process endswhenz and x are
interchanged to generate R¢ such that
(32) RERY .
Asin the previous cases, we can conclude thatF and F™ work well on

{R¢ R«m«}. Take R such that
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fz°°:[0’a) [a1-a) [1-a.]]
Re R¢ RE

Then, asin the arguments about R” andR’;, we infer that F(lfi“) is

intrangitive, a contradiction of the conclusion that F works well on

{ReR&RE . This completes the proof when (31) holds. Theremaining

possble casesinvolving z are all repetitions or mirror images of one or
another of the cases aready treated.
Q.E.D.

Asasimpleillustration of Theorem 1, let us see how it appliesto
rank-order voting. If X ={x,y,z}, Lemmalimpliestha F* works well, for

example, on the domain

And, as Theorem 1 guarantees, F™ also works well on thisdomain, since it

obviously does not contain a Condorcet cycle. Conversely, on the domain

I
1
T

(*) At=

N< X
XN
X<

'O“<\'E-:

F"(R)* F™(R) for any profileR in which the proportion of voterswith
ordering )3(/ isa , the proportion with ordering Yisb and
z X

(**) 1<2a<b+1
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(if (**) holds, then F*° and F™ rank x and y differently). But, from Lemma
2, F™ workswell on A¢ given by (*). Hence, from Lemma 1, A¢ constitutes
adomain on which F™ workswell but F™ does not, as guaranteed by the
Theorem.

We aready mentioned May’ s (1952) characterization of mgjority rule
in the Introduction. Inview of our Theorem, wecan provide an alternative
characterization. Specifically, call two voting rulesF and F¢generically the

same ondomain A if thereexistsafinitesetsi (0,1) such that
F(R)=FYR) forall RonA for which gs(x y)i s. Cal F maximally robust

if there exists no other voting rulethat (i) works well on every domain on
which F works well and (ii) works well on some domain on which F does
not work well. The Theorem impliesthat mgjority rule is essentially
uniquely the maximally robust voting rule:
Corollary: Mgority ruleis maximally robust, and any other maximally
robust voting ruleF is generically the same as mgjority rule on any domain
on which F or mgjority rule works well.
6. Extensions

The symmetry inherent in neutrality is often areasonable and
desirable property—we would presumably want to treat all candidatesin a

presidential election the same. However, there are aso circumstancesin
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which it is natural to favor certain aternatives. Therulesfor changing the
U.S. Constitution are acase in point. They have been deliberately devised
so that, at any time, the current version of the Constitution—the status quo—
isdifficult to revise.

In related work (see Dasgupta and Maskin, 2004), we show that when
neutrality is replaced by the weaker condition of I1A (and the requirement
that ties be broken “consistently” is also imposed), thenunanimity rule with
an order of precedence '°(the rule according to which x is chosen over y if it
precedesy in the order of precedence, unless everybody prefersy to x)
supplants majority rule as the most robust voting rule.

We have assumed throughout that voting rules must satisfy
anonymity; thisis part of the definition of “working well.” But in practice
there are many circumstances in which voters are, for good reason, not
treated equally. Think, for instance, of the weighted voting system used by
the council of the European Union, wheremore popul ous member nations
have larger weights. Such examples suggest that it is worthwhile examining
what becomes of our results when anonymity is relaxed.

Now, if we wereto eliminate anonymity atogether as arequirement,

nothing resembling our Theorem would continue to hold; instead, a

19 For discussion of this voting rulein apolitical setting see Buchanan and Tullock (1962).
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dictatorship (in which one particular voter’s preferences determine social
preferences) would now be the most robust voting rule, since it satisfies
neutrality, the Pareto property, and transitivity on the unrestricteddomain
A, . However, exploring what would happen if we replaced anonymity with
weaker conditions seems useful. Consider, for example, the properties of
voting-bloc responsiveness:

Voting-Bloc Responsivenesson A : For any v i [0,1] with m(v) >0, there
exist profiles R andR¢onA such that R(i)=R4i) for al ii v but

F(R)* F(RY.

In words, voting-bloc responsiveness requires that every bloc of
voters of positive size can sometimes affect the social ranking. The
condition is clearly satisfied by any voting rule for which the Pareto property
and anonymity hold. But it also holds for many non-anonymous voting
rules, such weighted magority rule, defined asfollows: Given a positive-

valued, Lebesgue-measurable function won [0,1], F" isweighted majority
rule with weight w, if for all alternativesx, y, and profiles R, xF"(R)y if

and only if

A w(i)dm(i) 2 @ w(i)dm(i)
iTO{j|xR(j)y} ici){j|yR(j)x}
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Analogous to our Theorem, it can be shown (see Dasgupta and Maskin,
1998) that if avoting rule satisfies the Pareto property, neutrality, generic
trangitivity, and voting-bloc responsiveness on adomain A then, for any w,
F" also satisfies those propertieson A . We conjecture that the converse

holdstoo. Thatis, if, for dl w, F(R°)1 FW(R°) for aregular profile R on

domain A" where F" satisfies these four properties, then there exists a
domain A¢ on which " satisfiesall the properties, but F does not.

Another interesting extension to consider is strategic voting. It has
long been known that there is a close connection between the problem of
defining “reasonable” social preferences on adomain of preferences and that
finding voting rules immune from strategic manipulation by voters (see
Maskin 1979 and Kalai and Muller 1977). Because we have assumed a
continuum of voters, sincere voting is automatically compatible with
individual incentives for any voting rule in which asingle voter’s ordering
makes no difference for social preferences. But the sameis not true for
coalitions (voting blocs). We conjecture that a counterpart to our Theorem
can be derived when independence of irrelevant alternativesis replaced with

the requirement that a voting rule be coalitionally strategy-proof.



Appendix

Lemma 1: For any domain A, ™ satisfiesneutrality on A if and only if
guasi-agreement holdson A .

Proof: Assume first that quasi-agreement holdson A . We must show that
F* satisfies neutrality on A . Consider profiles R and RtonA and

aternativesx, y, w, and z such that

(A1) xR(i) y if and only if wRY(i) z for all i .
We must show that

(A2) xF°(R)y if and only if wF™ (R9 z

and

(A3) yF ™ (RY x if and only if &7 (RYw.

If, for al i, xR(i) v, then because F™ satisfies the Pareto property, we have

£ (R) o F™(RY
X W
Yy z
inaccord with (A2) and (A3). Assume, therefore, that if we let
L={ipR(i)Y a1, ={i[vR(i)%
and

1$={iwRqi) 3 ad 18={i|yR(i)v}



then 1,,1¢,1,, and 1¢ are nonempty.
We claim that
(Ad) Veey (%)= Vi) (V) =vig) (V) - vy (x) forall i1 1, and il 1,

Now, (A4) holds because, if thereexisti'1 1, and zI X such that

R(i")

< N X

then quasi-agreement implies

R() foralil 1, and R() foral il I,.
X y
z z
y X
Similarly, we have
(A9) Vei) (W)= Vi) (2) = Vi) (2) - Vi) (w) foral i1 1§ and jT 14

But from (A4) and (A5) and the definition of F*°, we obtain (A2) and (A3),
asrequired.
Next, suppose that quasi-agreement does not hold on domain A .

Then there exist alternativesx, y, z and orderings R, R A such that

(A6)

N< X |

and



(A7) L

y
From (A6) and (A7) we have
(A8) Ve (%= Va('¥) <Vee( V) - Vre(x)
(A9) Ve (X) - Va(2) >Vre(z) - Vee(X)
Choose

_ [o3) [39

RT "R Re
Then from (A8) and (A9)
(A10) F7(R)

X

But, by construction, we have, for ali,

xR(i)y ifandonlyif xR(i)z
and

yR(i)x ifandonlyif zR(i)x.
Thus, if neutrality held we should have

yF(R)x ifandonlyif Z#™(R)x,
which contradicts (A10).

Q.ED.
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