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Abstract

We introduce the class of anti-coordination games, including the
hawk-dove game as a special case. A symmetric two-player game is
said to have the anti-coordination property if any worst response to
a mixed strategy is in the support of that mixed strategy. Every
anti-coordination game has a unique interior Nash equilibrium. We
investigate stability of the static equilibrium under several dynamics
with one-population setting. Specifically we focus on the best response
dynamic (BRD), where agents in a large population take myopic best
responses, and the perfect foresight dynamic (PFD), where agents take
best responses to the time average of the action distributions from the
present to the future. For any anti-coordination game we show (i)
that, for any initial distribution, BRD has a unique solution, which
reaches the static equilibrium in a finite time, (ii) that the same path
is one of the solutions in PFD, and (iii) that no path escapes from
the static equilibrium in PFD once the path reaches the equilibrium.
Moreover, in some subclasses of anti-coordination games, we show that
any solution from any initial state converges to the static equilibrium
in PFD. All the results for PFD hold for any discount rate.

1 Introduction

Static and dynamic properties of the hawk-dove game have been a subject
of much research in evolutionary game theory. It has been shown that the
Nash equilibrium in the hawk-dove game is stable under most evolutionary
dynamics in one-population setting.
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There are a number of possible extensions of these results to more general
games. A natural direction is to investigate evolutionarily stable strategies
(ESS). An interior ESS is known to have especially strong properties. If a
game has an interior ESS, then it is a unique Nash equilibrium. Moreover,
an interior ESS is globally stable for various dynamics including the replica-
tor dynamic, the best response dynamic, smoothed best response dynamic.1

Analyzing potential games is a second direction. Monderer and Shapley [13]
show that the fictitious play converges in beliefs to some Nash equilibrium
in any potential game.2

In this paper we propose a third direction. A symmetric game is said to
have the anti-coordination property if any worst response to a mixed strategy
lies in the support of that mixed strategy. In other words, a pure strategy is
one of the worst responses against the action distribution in the society only
if it is chosen by a positive fraction of agents in the society. This property
is an abstraction of “strategic substitutability,” but is different from sub-
modularity of payoff functions. Congestion and product differentiation are
economic examples of anti-coordination. We show that an anti-coordination
game shares several properties with a game with an interior ESS. For ex-
ample, an anti-coordination game has a unique Nash equilibrium, which is
in the interior of mixed strategies. Yet we give an example to show that a
game with an interior ESS may not have the anti-coordination property and
that the unique Nash equilibrium of an anti-coordination game may not be
an ESS.

We investigate stability of the static equilibrium under several dynamics
with one-population setting. Specifically we focus on the best response dy-
namic (BRD) and the perfect foresight dynamic (PFD). BRD is a dynamic
model of rational but myopic individuals, where agents in a large population
take best responses to the current action distribution. PFD is a dynamic
model of rational and forward-looking individuals, where agents take best
responses to the time average of the action distributions from the present to
the future.

For any anti-coordination game we show the following results. For BRD
we show that there is a unique solution for each initial state, which reaches
the static equilibrium in a finite time. For PFD we show two results. First,
we show that the unique path in BRD is also a solution in PFD. Second,
no path escapes from the static equilibrium in PFD once the path reaches
the equilibrium. Moreover, in some subclasses of anti-coordination games,

1See Hofbauer [2, 3], Hofbauer and Sandholm [5], Hofbauer and Sigmund [6] and
Shamma and Arslan [15].

2See the papers in footnote 1 and Sandholm [14].
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we show that any solution from any initial state converges to the static
equilibrium in PFD. All the results for PFD hold for any discount rate. We
then discuss static properties of anti-coordination games, where we give an
equivalent condition of anti-coordination property and also investigate its
relation with interior ESS.

The rest of this paper is organized as follows. Section 2 introduces the
anti-coordination property. Section 3 shows that the Nash equilibrium in
each anti-coordination game is globally stable under the best-response dy-
namic. Section 4 introduces the perfect foresight dynamic, and investigates
the stability of the equilibrium under the dynamic. Section 5 discusses static
properties of anti-coordination games. Section 6 concludes.

2 Anti-Coordination Games

Consider a symmetric two-player game G = (A, u), where A is the nonempty
finite set of pure actions, u = (uij) is the payoff matrix, and uij is the payoff
by choosing action i ∈ A against action j ∈ A. The set of mixed actions
is denoted by ∆ = {x ∈ RA | xi ≥ 0 for all i ∈ A,

∑
i∈A xi = 1}. For

each x ∈ ∆, supp(x) = {i ∈ A | xi > 0} is the support of x, br(x) =
argmaxi

∑
j uijxj and wr(x) = argmini

∑
j uijxj are the sets of best and

worst responses to x in pure actions, respectively. x is a (symmetric) Nash
equilibrium if supp(x) ⊆ br(x).

Definition 1. G has the anti-coordination property if wr(x) ⊆ supp(x) for
any x ∈ ∆.

G = (A, u) has the anti-coordination property if and only if (A,−u) has
the total bandwagon property in the sense of Kandori and Rob [8]. The
hawk-dove game is an example of an anti-coordination game.

Proposition 1. Every anti-coordination game has a unique Nash equilib-
rium. The equilibrium is in the interior of ∆.

Proof. The existence of a Nash equilibrium is clear. For any Nash equilibrium
x, the anti-coordination property implies

wr(x) ⊆ supp(x) ⊆ br(x).

Since wr(x) ⊆ br(x) only if the two sets are equal to A, we have supp(x) = A.
If there are two different interior Nash equilibria, then we can find one

more Nash equilibrium on the boundary. This contradicts the fact that every
Nash equilibrium is in the interior.
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Let x∗ denote the unique Nash equilibrium ofG. For any nonempty subset
B of A, let G(B) be the restricted game of G in which players choose actions
only from B. If G has the anti-coordination property, then any restricted
game of G also has the same property, and hence has a unique interior Nash
equilibrium. The Nash equilibrium of G(B) is denoted by x∗(B).

3 The Best Response Dynamic

Consider the best response dynamic (BRD) over G, which is defined in Gilboa
and Matsui [1] and Matsui [9]:

φ : [0,∞) → ∆, (BRD-0)

φ(0) = x, (BRD-1)

d+φ

dt
(t) = α(t)− φ(t), (BRD-2)

supp(α(t)) ⊆ br(φ(t)). (BRD-3)

A microfoundation of the dynamic is as follows. There is one large pop-
ulation of agents. The action distribution at time t is denoted by φ(t) ∈ ∆
(BRD-0). x is the initial action distribution (BRD-1). At each moment in
time, an agent is matched randomly with another in the same population
and play G. A fraction of the agents change their actions at each moment.
The distribution of actions chosen at time t is proportional to α(t) (BRD-2),
and every pure action chosen by a positive fraction of the agents has to be
one of the best responses to the current action distribution (BRD-3).

Example 1. Consider the following payoff matrix on A = {1, 2, 3},
0 1 1
1 0 1
1 1 0


 .

This game has the anti-coordination property. The unique Nash equilibrium
is x∗ = (x∗

1, x
∗
2, x

∗
3) = (1/3, 1/3, 1/3). We explain that path φ from initial

state x depicted in Figure 1 satisfies (BRD-0)–(BRD-3). The initial state x
lies in the region where strategy 3 is a unique best response. Hence the path
heads toward strategy 3 until the path reaches point P , where strategies 2
and 3 become indifferent. At this moment half the population begins to take
strategy 2 and the rest begins to take strategy 3. At the aggregate level, the
path kinks at P and moves toward Q. After a finite time the path reaches
x∗, where all three strategies are indifferent. Each strategy is chosen by one
third of the population and the path stays at rest afterwards.
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Strategy 1

Strategy 2 Strategy 3

x

φ

x∗

P

Q

Figure 1: Example 1

Four features deserve comment here. First, x∗ is globally stable. That is,
from any initial state x, there exists a path φ satisfying (BRD-0)–(BRD-3)
which converges to x∗. Moreover, the path φ is a unique solution for each
x. Second, φ is not differentiable. It has a kink at P , where the fraction
of agents choosing each action changes suddenly. Third, nevertheless, φ is
right differentiable and piecewise linear. Fourth, α(t) in (BRD-2) may not
be a pure strategy. That is, different agents may choose different actions
at a point in time in general. After the path reaches P , strategies 2 and 3
are chosen simultaneously. Moreover, every strategy is taken by a positive
fraction of the agents at x∗.

We restrict our analysis to piecewise linear solutions because of mathe-
matical convenience. In this paper, a path is said to be piecewise linear if it
has only finite kinked points in any bounded interval.3

The next proposition generalizes the first feature in Example 1, showing
that the Nash equilibrium of any anti-coordination game is globally stable

3BRD may have non-piecewise linear solutions, and such solutions may change the
stability of equilibria. For example, there exists a non-zero-sum rock-scissors-paper game
which has no piecewise linear solution from the equilibrium except the constant path, but
does have a more general solution which spirals out of the equilibrium. The solution is
kinked infinitely often in a neighborhood of t = 0. See Hofbauer [2] for details.
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under BRD. Global stability under BRD trivially implies local stability under
BRD, which is called social stability with respect to BRD by Matsui [9]. This
concept is known to be equivalent to robustness against symmetric equilib-
rium entrants by Swinkels [16], or social stability against equilibrium entrants
by Matsui [9].

Proposition 2. If G has the anti-coordination property, then, for any initial
state x ∈ ∆, there exists a unique piecewise linear path satisfying (BRD-0)–
(BRD-3). The path arrives at x∗ in a finite time and stays there afterwards.

Proof. For every t > 0, there exists t′ > t such that α(s) = α is constant for
every s ∈ [t, t′). Then we have

supp(α) ⊆ br(φ(s)) = br(cφ(s)φ(t) + cα(s)α)

for every s ∈ [t, t′), where cφ(s) = et−s and cα(s) = 1 − et−s. α is a best
response to φ(t) since the above inclusion holds for s = t, and given that, the
above relation for s > t implies that any pure strategy in supp(α) is a best
response to α within br(φ(t)). This means that α(t) = α = x∗(br(φ(t))), the
Nash equilibrium of G(br(φ(t))).

Since any restricted game of G has a unique Nash equilibrium, α(·) is
uniquely determined by the above construction. Since br(φ(t)) = wr(x∗(br(φ(t)))) =
wr(α(t)), the payoff of α relative to the other strategies decreases in t. There-
fore br(φ(t)) weakly increases in t in the set inclusion order, and strictly in-
creases in a finite time until φ(t) = x∗ is established. Therefore, φ arrives at
x∗ in a finite time and stays at x∗ afterwards.

Proposition 2 also follows from Hofbauer [2, Theorem 5.1.1]. He defines

V (x) = max
i

∑
j

uijxj − wB(x),

where B is the set of mixed strategies b such that supp(b) � A and every
pure strategy in supp(b) is indifferent against b, and

wB(x) = max

{∑
b∈B

∑
i,j

uijbibjλ
b

∣∣∣∣∣ λb ≥ 0,
∑
b∈B

λb = 1,
∑
b∈B

bλb = x

}
.

He shows that if there exists p ∈ ∆ with
∑

i,j uijpibj >
∑

i,j uijbibj for all
b ∈ B, then V is a global Lyapunov function for BRD, and decreases except
at x∗. These imply the global stability of x∗. It is easy to see that any
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anti-coordination game satisfies the above condition.4 Note that Hofbauer’s
result applies to a broader class of games including games with interior evo-
lutionarily stable strategies (ESS).

For anti-coordination games, however, Proposition 2 gives a sharper pre-
diction than Hofbauer’s theorem in two respects. First, the piecewise linear
path satisfying (BRD-0)–(BRD-3) is shown to be unique. Second, the path
is constructed explicitly. This construction turns out to be useful when we
show in Proposition 3 that the same path is a solution to PFD as well.

4 The Perfect Foresight Dynamic

Consider the perfect foresight dynamic (PFD) over G, which is introduced
by Matsui and Matsuyama [10]:

φ : [0,∞) → ∆, (PFD-0)

φ(0) = x, (PFD-1)

d+φ

dt
(t) = α(t)− φ(t), (PFD-2)

π(t) = r

∫ ∞

t

er(t−s)φ(s) ds, (PFD-3)

supp(α(t)) ⊆ br(π(t)). (PFD-4)

The dynamic is similar to BRD, but different in one respect. Agents
do not respond to the current action distribution. Rather, they form an
expectation π(t) by the discounted time average of the action distributions
from the present to the future (PFD-3), and choose best responses to that
expectation (PFD-4). r > 0 is called the effective discount rate.5

We again focus on piecewise linear solutions only.
Proposition 3 shows that, in anti-coordination games, solutions of BRD

are preserved under PFD with any discount rate.

Proposition 3. If G has the anti-coordination property, then, for any initial
state x ∈ ∆, there exists a piecewise linear path satisfying (PFD-0)–(PFD-4)
which converges to x∗.

4In an anti-coordination game, we have B = {x∗(B) | B � A}, that is, the set of
Nash equilibria of strictly restricted games. Taking any totally mixed strategy as p, for
instance, we can show

∑
i,j uijpibj >

∑
i,j uijbibj for any b = x∗(B) because any pure

strategy outside B gives a higher payoff against x∗(B) than any pure strategy inside B
does.

5In the literature r is often written as r = 1+ θ, where θ is the rate of time preference
relative to the arrival rate of action revision opportunities.

7



Proof. Let φ be the path constructed in Proposition 2. We will show that
φ also satisfies (PFD-4). Since br(φ(s)) ⊇ br(φ(t)) for any s ≥ t, we have
br(π(t)) = br(φ(t)) by (PFD-3). Therefore (BRD-3) implies (PFD-4).

By Proposition 3, we obtain the existence of a solution from any state to
x∗ under PFD, i.e., x∗ is globally accessible in the terminology of Matsui and
Matsuyama [10]. No matter how far from x∗ the initial state is, it is possible
that the action distribution in the society arrives at x∗.

The existence of such a solution, however, does not mean that the society
always reaches x∗. For PFD typically entails serious multiplicity of solutions,
the dynamic may have a solution which does not converge to x∗. Moreover,
there may be a path which escapes even from x∗. See Matsui and Matsuyama
[10] for the analysis of a 2× 2 coordination game. In contrast, we will show
that no path can escape from x∗ in anti-coordination games.

We first show the following lemma, which claims that α(t) may not be
a myopic best response to the current action distribution φ(t), but cannot
be a myopic worst response to φ(t) unless φ(t) is equal to x∗. This lemma
is powerful, for we obtain a restriction on α(t) without any reference to the
future behavior φ(s) for s > t.

Lemma 1. If G has the anti-coordination property and φ is a piecewise lin-
ear path satisfying (PFD-0)–(PFD-4), then, for any t ≥ 0, either φ(t) = x∗

or supp(α(t)) ∩ wr(φ(t)) = ∅ holds.

Proof. Suppose φ(t) �= x∗ and supp(α(t)) ∩ wr(φ(t)) �= ∅ for some t. Let
α = α(t), and t′ be the smallest kinked point greater than t. (If there is no
kinked point after t, skip to the last paragraph of this proof.) Then we have

supp(α) ⊆ br(π(s)) = br (cπ(s)π(t)− cφ(s)φ(t)− cα(s)α) (1)

for every s ∈ [t, t′], where

cπ(s) = er(s−t), cφ(s) =
r(er(s−t) − et−s)

1 + r
, cα(s) =

er(s−t) + ret−s

1 + r
− 1.

Since cπ(·), cφ(·) and cα(·) are linearly independent in the space of functions
on [t, t′], (1) implies that every action in supp(α) is indifferent against α. By
the anti-coordination property, we have supp(α) = wr(α).

Substitute s = t′ in (1). Since cπ(t
′), cφ(t

′) and cα(t
′) are all positive,

the set of best responses to π(t′) is given by the intersection of br(π(t)),
wr(φ(t)), and wr(α) if the intersection is nonempty. Since we have wr(α) =
supp(α) ⊆ br(π(t)) and supp(α) ∩ wr(φ(t)) �= ∅, the intersection is actu-
ally nonempty and equal to supp(α) ∩ wr(φ(t)). Therefore, supp(α(t′)) ⊆
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br(π(t′)) = supp(α)∩wr(φ(t)) = wr(φ(t′)). So t′ also satisfies φ(t′) �= x∗ and
supp(α(t′)) ∩ wr(φ(t′)) �= ∅, and hence we can continue the same argument
for the next kinked point. Since we assume that there are only finite kinked
points in any bounded interval, we can show that supp(α(s)) is decreasing
in the set inclusion order in s ≥ t, and hence equal to some supp(α(s0)) for
sufficiently large s.

Finally, by (PFD-3), π(t) is a convex combination of φ(t) and α(s) for
s ≥ t. Then we have wr(π(t)) = wr(φ(t)) ∩ ⋂

s≥t wr(α(s)) = wr(φ(t)) ∩
supp(α(s0)), which is nonempty but not equal to A because of φ(t) �= x∗.
Therefore, no pure strategy in this set is a best response to π(t). This
contradicts the fact that any pure strategy in supp(α) is a best response to
π(t) by (PFD-4).

As an immediate implication of Lemma 1, we obtain a local stability
result under PFD.

Proposition 4. If G has the anti-coordination property, then the constant
path at x∗ is a unique piecewise linear path satisfying (PFD-0)–(PFD-4) for
x = x∗.

Proof. Suppose t0 = inf{t ≥ 0 | φ(t) �= x∗} < ∞. Then we have α(s) =
α �= x∗ for any s ∈ [t0, t] for some t > t0. Therefore, α(t) = α and φ(t)
is a convex combination of x∗ and α. This implies that φ(t) �= x∗ and
wr(φ(t)) = wr(α) ⊆ supp(α), which contradicts Lemma 1.

By Proposition 4, once the action distribution reaches the Nash equilib-
rium, it stays at rest. Takahashi [17] calls this property absorption in the
discrete topology (d-absorption).

Proposition 4 and its proof are an extension of Matsui and Oyama [11,
Lemma A.4]. They show the d-absorption of the unique Nash equilibrium in
the hawk-dove game.6

Next, we turn to global stability under PFD. Although we cannot obtain
a general result in the class of anti-coordination games, we can show the
global stability in several “simple” games.

Example 2. Consider the hawk-dove game on A = {1, 2},(
0 a

1− a 0

)
, 0 < a < 1.

6Actually their result in Lemma A.4 is not for the hawk-dove game, but for a 3 × 3
game to which the hawk-dove game is “embedded” as a restricted game. However, as they
remark below Proposition 7.2, we can use the same technique as in Lemma A.4 to show
the d-absorption in the hawk-dove game.
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This game has the anti-coordination property. The unique Nash equilibrium
is x∗ = (x∗

1, x
∗
2) = (a, 1−a). For any given initial state x = (x1, x2), the path

constructed in Proposition 3 is a solution of PFD. Here we show that there
is no other solution. Suppose that φ1(t) > x∗

1. Then wr(φ(t)) = {1}, which
implies α(t) = (0, 1) by Lemma 1. That is, φ moves toward pure strategy 2.
Similarly, if φ1(t) < x∗

1, then φ moves toward pure strategy 1. If φ1(t) = x∗
1,

then, by Proposition 4, φ stays forever at x∗. In summary, the hawk-dove
game has a unique solution of PFD from any initial state, which arrives at
the Nash equilibrium in a finite time.

Example 3. Consider the following payoff matrix on A = {1, 2, 3},
 0 a 1− a
1− a 0 a
a 1− a 0


 ,

1

3
≤ a ≤ 2

3
.

Since 0 < a < 1, this is an anti-coordination game with the unique Nash
equilibrium x∗ = (1/3, 1/3, 1/3).

We will show that any solution of PFD converges to x∗, and that the
solution reaches x∗ in a finite time if 1/3 < a < 2/3. We divide the state
space ∆ into three regions ∆i = {x ∈ ∆ | i ∈ wr(x)} for i ∈ A. Without loss
of generality, we assume that 1/3 ≤ a ≤ 1/2 and that the initial state x is in
∆1. See Figure 2.

First, notice that no solution φ crosses the border from ∆i to ∆i−1 \∆i.
7

Otherwise, on the border ∆i ∩ ∆i−1, the solution has to move toward pure
strategy i + 1 by Lemma 1. An increase in the proportion of i + 1 makes
the other strategies better off. However, since a ≤ 1/2, the payoff of i − 1
increases at least as much as that of i, which contradicts the direction in
which the solution crosses the border.

Second, by the anti-coordination property, φ cannot stay forever in one
region except at x∗. Therefore, φ goes from ∆1 to ∆2, ∆3, ∆1, ∆2, and so
on. In other words, φ moves counterclockwise around x∗ in Figure 2.

Third, define P1, P2, . . . as follows. Let P1 be the intersection of the
border ∆1 ∩∆2 and the segment connecting pure strategies 1 and 2, and let
Pk be the intersection of the border ∆k ∩∆k+1 and the segment connecting
Pk−1 and pure strategy k + 1 for k ≥ 2. See Figure 2 for P1, P2, and P3.
Observe that when the solution crosses the k-th border, the pass point has
to be between x∗ and Pk. This observation follows from Lemma 1.

7We take an element of A modulo 3. For example, 1− 1 = 3 and 3 + 1 = 1.
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∆1

Strategy 1

Strategy 2 Strategy 3

∆2

∆3

P1

P2

P3

x

φ

x∗

Figure 2: Example 3

Fourth, by a tedious computation, we have

d(Pk, x
∗) =




√
2

3k
if a =

1

3
,

(a− 1/3)
√
2(a2 − a + 1/3)

ak+1(1− 2a)−k+1 − (a2 − a+ 1/3)
if
1

3
< a ≤ 1

2
,

where d(y, z) =
√∑

i(yi − zi)2 for y, z ∈ ∆, and hence Pk → x∗ as k → ∞.
This fact, combined with the third observation, implies that any solution
converges to x∗.

Fifth, note that, in ∆k, the fraction of strategy k decreases at a speed
bounded away from zero. When a solution moves from a boundary ∆k−1∩∆k

to the next boundary ∆k ∩ ∆k+1, the fraction of strategy k can change by
at most d(Pk, x

∗) + d(Pk+1, x
∗). Therefore, there exists a constant C > 0

such that it takes time at most C(d(Pk, x
∗) + d(Pk+1, x

∗)) for any solution
to move from ∆k−1 ∩ ∆k to ∆k ∩ ∆k+1. Therefore, if 1/3 < a ≤ 1/2, then∑∞

k=1 d(Pk, x
∗) < ∞, and hence any solution reaches x∗ in a finite time.
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Example 4. Consider the following payoff matrix on A = {1, . . . , n},

−a1 0 · · · 0
0 −a2 · · · 0
...

...
. . .

...
0 0 · · · −an


 , a1 > 0, . . . , an > 0.

This game also has the anti-coordination property. The unique Nash equi-

librium is x∗ = (λa−1
1 , λa−1

2 , . . . , λa−1
n ), where λ =

(∑
i a

−1
i

)−1
.

We will show that any solution of PFD converges to x∗ in a finite time.8

As in Example 3, we divide ∆ into n regions ∆i = {x ∈ ∆ | i ∈ wr(x)}.
Similarly to Example 3, any solution φ has to cross the border from ∆i

to ∆j \ ∆i for i �= j unless φ(t) = x∗ for some t. Let t0 be the moment of
crossing the border. Then the ratio φi(t)/φj(t) is equal to aj/ai for t = t0,
and is below aj/ai for t slightly greater than t0. Therefore, φi(t)/φj(t) has to
be decreasing around t = t0. This implies that αj(t0) > 0, which contradicts
Lemma 1.

Before concluding the section, we point out that all our results on PFD
hold for any discount rate r > 0. In many games, in contrast, stability
property typically depends on r. In a 2× 2 coordination game, for example,
the risk-dominant equilibrium is globally accessible only for r sufficiently
close to 1. Moreover, this equilibrium is not d-absorbing for r less than 1
and close to 0. See Matsui and Matsuyama [10].

5 Static Properties of Anti-Coordination

This section investigates some static properties of anti-coordination games.
First, we have the following result.

8The payoff matrix of Example 4 is symmetric, i.e., two players always get identical
payoffs. For a symmetric payoff matrix, global accessibility in PFD (Proposition 3) is
already obtained by Hofbauer and Sorger [7, Theorem 3] if the effective discount rate r is
greater than but sufficiently close to 1. They also show in [7, Lemma 4] that any element
of the ω-limit of each solution in PFD is a critical point of the potential function if r > 1.
Since the ω-limit is connected and any connected component of critical points in Example
4 is a singleton, the ω-limit is a singleton, i.e., the solution converges to some limit.
Because the limit has to be a Nash equilibrium, the solution converges to x∗. However,
our results are stronger than Hofbauer and Sorger’s in three respects. First, they need some
assumptions on the discount rate. Second, they do not show d-absorption (Proposition
4 of this paper), i.e., they do not exclude the possibility that a solution escapes from x∗

temporarily. Third, they do not show the finite-time convergence. According to their
proof, the rate of convergence may become slower as r gets closer to 1, whereas the time
needed for reaching x∗ in our proof is bounded from above independently of r.
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Proposition 5. G has the anti-coordination property if and only if, for any
B � A, G(B) has the anti-coordination property and wr(x∗(B)) = B.

Proof. See Appendix.

We can use this proposition inductively on the size of restricted games to
characterize the anti-coordination property. See below.

Example 5. Consider an arbitrary 3× 3 payoff matrix on A = {1, 2, 3}
u11 u12 u13

u21 u22 u23

u31 u32 u33


 .

We will give a necessary and sufficient condition for this payoff matrix to
have the anti-coordination property.

First, we consider a restricted game G({i}) for each i ∈ A. G({i}) is
obviously an anti-coordination game, and pure strategy i is a unique Nash
equilibrium x∗({i}). Then the condition that wr(x∗({i})) = {i} for each
i ∈ A is written as

uii < uji for any i �= j. (2)

The condition (2) means that each diagonal component is smaller than any
other component in the same column. By Proposition 5, we know that each
2× 2 restricted game G({i, j}) is an anti-coordination game under the con-
dition (2). Then, by Proposition 1, G({i, j}) has a unique Nash equilibrium
x∗({i, j}), which is given by

x∗
i ({i, j}) =

uij − ujj

uij + uji − uii − ujj
, x∗

j ({i, j}) =
uji − uii

uij + uji − uii − ujj
.

Next, we consider each restricted game of the form G({i, j}) with i �= j.
As we showed above, G({i, j}) has the anti-coordination property if (2) is
satisfied. Under this condition, the condition that wr(x∗({i, j})) = {i, j} for
each i �= j is equivalent to

uijuji − uiiujj < uki(uij − ujj) + ukj(uji − uii) for any distinct i, j, k. (3)

Therefore, the system of inequalities (2) and (3) characterizes the anti-
coordination property in the class of 3× 3 games.

Second, we discuss relationship between anti-coordination games and
other special classes of games. An interior ESS satisfies properties analo-
gous to Propositions 1 and 2. There is no Nash equilibrium other than the
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ESS, and the ESS is globally stable under BRD. See Hofbauer [3]. However,
the two classes of games are not nested. That is, a game with an interior ESS
may not have the anti-coordination property; the unique Nash equilibrium
of an anti-coordination game may not be evolutionarily stable. For example,
the following payoff matrix 

0 a b
1 0 1
1 1 0




has the anti-coordination property if and only if a > 0, b > 0, and a+ b > 1,
whereas it has an interior ESS if and only if a+b > 1 and 4(a+b+1) > (a−b)2.

¿From the above argument, we know that the existence of an interior ESS
does not imply the anti-coordination property. Then, what additional condi-
tion is needed for a game with an interior ESS to have the anti-coordination
property? Such a condition is given by the next proposition.

Proposition 6. Suppose that G has an interior ESS. Then, G is an anti-
coordination game if and only if G(B) has an interior Nash equilibrium for
any B � A.

Proof. See Appendix.

The class of potential games is another one whose dynamic stability has
been well investigated. It is not hard to see that, similarly to interior ESS,
an anti-coordination game may not be a potential game and vice versa.

6 Conclusion

We investigated dynamic stability of the Nash equilibrium of anti-coordination
games. For any initial state, there is a unique solution to the best response
dynamic, which reaches the unique equilibrium in a finite time. Under the
perfect foresight dynamic, the equilibrium is also stable in two senses. There
exists a path from any initial state to the equilibrium, and once the path
reaches the equilibrium, then the path stays there forever. For some sub-
classes of anti-coordination games, any solution to the perfect foresight dy-
namic converges to the equilibrium.

We should note that our results explicitly or implicitly depend on the fol-
lowing assumptions: one-population setting, exponential discounting, homo-
geneous action revision, the linearity of the payoff function in mixed strate-
gies, the piecewise linearity of solutions and, above all, the anti-coordination
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property.9 At the cost of these assumptions, we obtained rather strong pre-
dictions about perfect foresight behavior independently of the discount rate.10

This paper leaves an open question the stability of ESS under PFD, con-
jectured in Hofbauer and Sorger [7]. Although an interior ESS is known to
be globally stable under BRD, stability under PFD is neither proved nor
disproved.

Another open question is the stability of equilibria in anti-coordination
games under other dynamics. We can show that a logit equilibrium à la
McKelvey and Palfrey [12], which is a steady state of the smoothed best
response dynamic with the logit choice function, is unique (Proposition 7 in
Appendix).11 Analysis of the stability in the corresponding dynamic is not
completed, however. The stability in the replicator dynamic is also yet to be
resolved.

A Appendix

A.1 Uniqueness of Logit Equilibria

Consider the following logistic quantal response function σλ : ∆ → ∆ with
parameter λ ≥ 0:

σλ
i (x) =

exp
(
λ

∑
j uijxj

)
∑

k exp
(
λ

∑
j ukjxj

) .

x ∈ ∆ is a (symmetric) logit equilibrium with parameter λ if x = σλ(x).
As λ → ∞, σλ converges (in an appropriate sense) to the best response
correspondence. See McKelvey and Palfrey [12].

9By homogeneous action revision we mean that who can change his action at each
moment is independent of his name and any of the past history.

10The anti-coordination property in Propositions 2 and 3 can be relaxed. For instance,
suppose that each restricted game G(B) has at least one Nash equilibrium against which
every pure strategy in B is indifferent. Then there is a path from any initial state to some
equilibrium, which is a solution both in BRD and in PFD. (This may not be a unique
solution even under BRD.) For example, this condition is satisfied in the following payoff
matrix 

0 a b
b 0 a
a b 0




if and only if ab ≥ 0, whereas the anti-coordination property is satisfied if and only if
a > 0 and b > 0.

11A game with an interior ESS has an analogous property. See Hofbauer [3].
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Proposition 7. Every anti-coordination game has a unique logit equilibrium
for any parameter λ ≥ 0.

Proof. The case for λ = 0 is obvious. Suppose that x and y with x �= y are
both fixed points of σλ for some λ > 0. Let B = {i ∈ A | xi > yi} and
C = A \ B = {i ∈ A | xi ≤ yi}. Since x �= y, B and C are nonempty.
For any i ∈ B and j ∈ C, we have xi/yi > 1 ≥ xj/yj, which implies
σλ

i (x)/σ
λ
i (y) > σλ

j (x)/σ
λ
j (y). This is equivalent to∑

k

uik(xk − yk) >
∑

k

ujk(xk − yk). (4)

Let zi = max(xi − yi, 0) and z = (zi)i∈A. By the anti-coordination prop-
erty, there exists a worst response i∗ ∈ B against z, and any j ∈ C yields
a higher payoff against z than i∗ does.12 Similarly, let wi = max(yi − xi, 0)
and w = (wi)i∈A. By the anti-coordination property, there exists a worst
response j∗ ∈ C against w, and any i ∈ B yields a higher payoff against w
than j∗ does. Therefore, we have the following inequalities:∑

k

ui∗kzk <
∑

k

uj∗kzk,
∑

k

ui∗kwk >
∑

k

uj∗kwk.

Since z − w = x− y by definitions of z and w, we have∑
k

ui∗k(xk − yk) =
∑

k

ui∗k(zk −wk) <
∑

k

uj∗k(zk −wk) =
∑

k

uj∗k(xk − yk),

which contradicts (4).

Proposition 7 shows that the smoothed best response dynamic given by

φ(0) = x,
dφ

dt
(t) = σλ(φ(t))− φ(t) for t ≥ 0

has a unique steady state.

A.2 Proofs of Propositions 5 and 6

Proof of Proposition 5. The only if direction is shown as follows. For any
B � A, G(B) is an anti-coordination game. Hence it has an interior Nash
equilibrium x∗(B) by Proposition 1. Then we have wr(x∗(B)) = B since

12We can extend the domain of the worst response to RA
+ \ {0}, where RA

+ = {z ∈ RA |
zi ≥ 0 for any i ∈ A} and 0 = (0, . . . , 0). The anti-coordination property in ∆ implies the
same property in RA

+ \ {0}.
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any strategy in supp(x∗(B)) is indifferent against x∗(B), and worse than any
strategy outside supp(x∗(B)) by the anti-coordination property of G.

For the if direction, we need to show wr(x) ⊆ supp(x) for any x ∈ ∆. If
x is in the interior, then this relation is trivial. If not, we fix any such x.
Then we construct Bk ⊆ supp(x) � A and ck > 0 for each k = 0, 1, 2 . . . by

B0 = supp(x),

ck = min
i∈Bk

xi −
∑

l<k c
lx∗

i (B
l)

x∗
i (B

k)
,

Bk+1 = Bk \ argmin
i∈Bk

xi −
∑

l<k c
lx∗

i (B
l)

x∗
i (B

k)
.

Since B0 � B1 � B2 � · · · , we stop at the m-th step when Bm+1 = ∅. Then
we obtain

x =

m∑
k=0

ckx∗(Bk).

Therefore, we have

wr(x) =
m⋂

k=0

wr(x∗(Bk)) = Bm ⊆ supp(x)

since wr(x∗(Bk)) = Bk ⊇ Bm for each k.

Proof of Proposition 6. The only if direction is obvious from Proposition 1.
For the if direction, for each B ⊆ A, let x̂(B) be an interior Nash equi-

librium of G(B). Since the original game G has an interior ESS, the payoff
matrix (uij)i,j∈A is negative definite with respect to RA

0 = {x ∈ RA | ∑
i xi =

0}.13 (See Hofbauer and Sigmund [6, Exercise 6.4.3].) Since the submatrix
(uij)i,j∈B is also negative definite with respect to RB

0 , it is not hard to verify
that x̂(B) is a unique Nash equilibrium of G(B).14

By Proposition 5, it is sufficient to show that, for any B � A, any pure
strategy outside B gets a higher payoff against x̂(B) than x̂(B) itself does.
Suppose the contrary, i.e., there exist B � A and i ∈ A\B such that i is worse
than or equal to x̂(B) against x̂(B). Then x̂(B) is a Nash equilibrium also in
G(B ∪ {i}), which contradicts the uniqueness of equilibrium in G(B ∪ {i}).

13(uij)i,j∈A is negative definite with respect to RA
0 if

∑
i,j uijξiξj < 0 for any ξ ∈ RA

0 .
14Let x and y are Nash equilibria of G(B) and x �= y. Then

∑
i,j uijxixj ≥ ∑

i,j uijyixj ,∑
i,j uijyiyj ≥ ∑

i,j uijxiyj. Manipulating these inequalities, we obtain
∑

i,j uij(xi −
yi)(xj − yj) ≥ 0, which contradicts negative definiteness of the payoff matrix with respect
to RB

0 .
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