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In a Nash equilibrium, each player’s strategy is a 
best response to the strategies of the other 
players.   
 
Nash equilibrium and it refinements are the 
basis for most applications of  game theory to 
applied theoretical questions, case studies, and 
data from the field and the laboratory.  
 
Questions: When and why does play resemble 
that of a Nash equilibrium? When there are 
multiple Nash equilibria, which ones are more 
likely to be observed? 



 
Background:  
 

• The assumption that the players are rational, 
or even that their rationality is common 
knowledge, is neither necessary nor 
sufficient for standard equilibrium concepts.   

 
• In my view, the best way to think about 

equilibrium in games is as the  long-run 
outcome of a non-equilibrium dynamic 
process of learning, imitation, or evolution.   

 
• There are  many such processes, with 

varying degrees of sophistication on the part 
of the agents.  These lectures will focus on 
“evolutionary” models in a continuum 
population, which make assumptions about 
the aggregate behavior of the entire 
population.    

 
 

 
 
 
 



 
Evolutionary Game Theory 
 
Two key concepts: 
 

a) Evolutionary stable strategy (“ESS”).  
 

This is an equilibrium concept that is 
intended to capture the force of evolution.   It 
strengthens the concept of Nash equilibrium 
by also asking that the strategy be “resistant to 
invasion by mutants.”  

 
b) The replicator dynamic.   

 
This is a non-equilibrium dynamic process 
that supposes the mass of agents using a 
given strategy grows at rate proportional to 
the strategy’s current payoff. 
 

The classic result in evolutionary game theory is 
that ESS implies asymptotic stability under the 
replicator dynamic.  Some recent work has 
studied alternative evolutionary processes. 



   
Reasons this may be of interest to economists: 
 

1) Although the replicator dynamics was 
originally motivated by a simplified version 
of biological evolution, the process can also 
describe the result of some types of 
“emulation” by economic agents. 

 
2)   Some of the properties of the replicator 

dynamic extend to various classes of more 
general processes that may correspond to 
other sorts of learning or emulation.  

 
3) The study of evolutionary models has 

proved helpful (if controversial) in 
understanding animal behavior, and has 
been applied by some economists and 
anthropologists to the study of human 
behavior.  

 



Defining the Replicator Dynamic 
 
Specialize to the case of a single population 
playing a symmetric two-player stage game. 
  
Suppose there is a continuum of players, each 
of whom uses a pure strategy.   
 
 Let  ( )t sφ  be the measure  of players using pure 
strategy s at date t,  and  let  
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be the share of the population playing strategy s. 
  
Then the expected payoff to using pure strategy 

s against a randomly chosen opponent at date t 

is ( ) ( ) ( , )t ts
u s s u s sθ

′
′ ′≡� ,  

the average expected payoff in the population is 

( ) ( )t t ts
u s u sθ=� .  



 The replicator dynamic is the system    
 

( ) ( ) ( )t t ts s u sφ φ=� ,    or equivalently  
 

( ) ( )[ ( ) ]t t t ts s u s uθ θ= −� . 
 

This is equivalent from the quotient rule:  
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The standard motivation for this system is as 
follows: 
 
Each individual is genetically programmed to 
play some pure strategy, and this programming 
is inherited.  Each individual is randomly 
matched with another individual from the 
population, and the reproduction rate of each 
individual is proportional to its score in the stage 
game. In the spirit of the law of large numbers, 
the total number of  offspring of  s-strategists is 
then ( ) ( )t ts u sφ .    
 
Even in biological applications this is a highly 
simplified and stylized model, but it has proven 
to be successful there.  If there is time, I will later 
discuss some motivations for the replicator 
dynamic based on imitation instead of 
reproduction. 
 



Since ( ) ( ) ( )t t ts s u sφ φ=� , 

 

( ( )) ( ( ))t tsign s sign u sφ =� . 

 
In particular, if all payoffs are negative, the entire 
population is shrinking.  There is no problem 
with this on the biological interpretation. In most  
applications to economics the number of agents 
playing the game is held constant, while the 
share playing each strategy changes due 
imitation of successful play. 
 
Note that even if payoffs are negative, the sum 
of the population shares is always 1.  Note also 
that if the initial share of strategy s is positive, 
then its share remains positive: the share can 
shrink toward 0, but 0 is not reached in finite 
time. 



The equation  
 
 ( ) ( )[ ( ) ]t t t ts s u s uθ θ= −�  
 
says that  the share of a strategy is increasing 
whenever that strategy does better than the 
population average, even if the strategy is not 
the best response to the current state.    
Moreover, rate of increase is proportional to the 
amount that the strategy is better than average. 
 
Despite this ability of sub-optimal strategies to 
increase their share, there is still a close 
connection between steady states of the 
replicator dynamic and Nash equilibria.   



Steady States of the Replicator compared to 
Nash Equilibria: 
 

1) Every Nash equilibrium is a steady state:  
 

In the state corresponding to a Nash 
equilibrium, all strategies being played have 
the same average payoff, so the population 
shares are constant.   

 
2) Interior steady states, where all actions 

have positive probability, must be Nash 
equilibria, but steady states on the boundary 
need not be Nash.  

 
For example, any state where all agents use 
the same strategy is a steady state, since 
the dynamic does not allow the “entry” of 
strategies that are “extinct”.   
 

3) Non-Nash steady states cannot be 
asymptotically stable: If the state is 
perturbed by introducing a small weight on 
an improving deviation, the share playing 
that deviation it will grow. 



 
This last fact is true  for the more general class 
of continuous-time deterministic  processes 
where the growth rates are a strictly increasing 
function of the payoff differences.  
 
Proof that non-Nash steady states are not 
stable: 
 
 Suppose that *θ  is a steady state, but the 
corresponding strategy profile σ * is not a Nash 
equilibrium.  Then, since payoffs are continuous, 
there exists a pure strategy *support( )s σ∈ , a 
pure strategy 's  and a , 0δ ε > such that 

( ', ') ( , ')u s u sσ σ ε> +  for all 'σ  within δ  of *σ .  
Hence if there is a path that remains in a δ -
neighborhood of *σ , the growth rate of strategy 

's   exceeds that of strategy s by an amount that 
is bounded away from zero.  Thus the share of 
strategy s must converge to 0, which is a 
contradiction. 
 
 
What are the other implications of asymptotic 
stability?



 
 
Proposition [Bomze 1986]:  An asymptotically 
stable steady state in the homogenous-
population replicator dynamic corresponds to a 
Nash equilibrium that is trembling-hand perfect 
and isolated. 
 

 This result shows that asymptotic stability 
will be hard to satisfy in games with a non-trivial 
extensive form, for such games typically have 
connected sets of equilibria that differ only in 
their off-path play.   
 
 As with most dynamical systems, there is no 
guarantee that the replicator dynamics 
converge, and indeed, there are examples of 
games with no asymptotically stable steady 
states.  In particular, even a totally mixed 
equilibrium need not be asymptotically stable.    
A simple example in which there is no 
asymptotically stable steady state is the game 
“rock-scissors-paper.” 



 
Example Consider the “rock-scissors-paper” 

game  
 

0,0 1, 1 1,1
1,1 0,0 1, 1

1, 1 1,1 0,0

R S P

R
S

P

− −
− −

− −

 

 
The unique Nash equilibrium is the symmetric 
profile (1/3, 1/3,1/3).  This  steady state is 
surrounded by closed orbits, so that it is a 
“center;” hence is stable but not asymptotically 
stable.   (One way to show this is to prove that 

1 2 3θ θ θ  is constant along any trajectory.) 
 
From the viewpoint of general dynamical 
systems, centers are a knife-edge case, in the 
sense that small changes to the system (that is, 
small changes to the flow or vector field) can 
make  the steady state a sink or a source.  In 
this particular case  such a change can be made 
simply by changing the payoffs slightly  so that 
each strategy gets a small  ε > 0  when matched 
against itself. 
(In general, changing the payoffs need not lead 
to all possible small changes in the flow.) 



 
  When the diagonal payoffs are perturbed by 
adding 0ε > ,  the unique Nash equilibrium is still  
(1/3,1/3,1/3), but now the Nash equilibrium is an 
unstable steady state, and the trajectories of the 
replicator dynamics spiral outward towards the 
boundary of the simplex without reaching it. 
Conversely, the Nash equilibrium is an 
asymptotically stable steady state for small 

0ε < .) 
 
(To show this, substitute 3 1 21θ θ θ= − − , linearize 
the two-dimensional system ( )Fθ θ=�  at the 
steady state, and compute the eigenvalues. ) 
 



 

Evolutionarily Stable Strategies 

 In applications, instead of working with 
explicit evolutionary dynamics, analysts often 
use the static concept of an evolutionary stable 
strategy or ESS (Maynard Smith, J. Theor. 
Biology 1974.)  The idea of ESS is to require 
that the equilibrium be able to “repel invaders.”   
 
Suppose that the population is originally at some 
profile σ , and then a small  ε  of "mutants" start 
playing 'σ .  ESS asks that the existing 
population gets a higher payoff against the 
resulting mixture    than the mutants do.  
Specifically we ask that  
 
(*)   ( ,(1 ) ') ( ',(1 ) ')u uσ ε σ εσ σ ε σ εσ− + > − +  
 

for all sufficiently small positive  ε , or 
equivalently   
 
(**) 
 
(1 ) ( , ) ( , ') (1 ) ( ', ) ( ', ')u u u uε σ σ ε σ σ ε σ σ ε σ σ− + > − +
 

 



 
(**)
 
(1 ) ( , ) ( , ') (1 ) ( ', ) ( ', ')u u u uε σ σ ε σ σ ε σ σ ε σ σ− + > − +
 
Since (**) need only hold for  ε  close to  0,  it is 
equivalent to requiring that for all  'σ σ≠ , either  
 
(a) ( , ) ( ', )u uσ σ σ σ>  or 

(b) ( , ) ( ', )u uσ σ σ σ= and ( , ') ( ', ')u uσ σ σ σ>  
 
 

Note that (**) requires that σ  is a Nash 
equilibrium.  Otherwise the first term on the left 
hand side of the inequality is less than the 
corresponding term on its right. More formally, 
ESS is equivalent to requiring that 
 
(a’) σ  is a NE: there is no other strategy 'σ  

with ( ', ) ( , )u uσ σ σ σ>  
and 
 
(b’) If ( ', ) ( , )u uσ σ σ σ=   

(so 'σ  is an alternate best reply  to σ )  
then ( ', ') ( , ')u uσ σ σ σ< . 



 
Any strict Nash equilibrium  (where the 
equilibrium strategy yields a strictly higher 
strategy than any alternative) is an ESS.     
 
But many games do not have any strict 
equilibria, because, for example, mixed strategy 
equilibria can never be strict. And ESS need not 
exist. 

  



 Although  mixed strategy equilibria can 
never be strict, they can, however, be ESS.  
Consider a “hawk-dove” game like  

0,0 1,1
1,1 0,0

 

 
(A hawk-dove game has a with a symmetric 
mixed-strategy equilibrium and two  pure-
strategy equilibria that are asymmetric.)  
 
The unique mixed equilibrium is (½ , ½,)  and if 
either player is playing this strategy, both 
players get an expected utility of ½.  
 
 
Suppose  most players play (1/ 2,1/ 2)σ = . Then  
the payoff to an “invading strategy” 'σ    is  
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Since ( ', ') 1/ 2u σ σ <  for all 'σ σ≠ , the invading 
strategy does strictly worse, so the definition of 
an ESS is satisfied. 



Theorem: (Hofbauer and Sigmund 1988?) If σ  is 
an ESS, then for some 0δ > , ( , ') ( ', ')u uσ σ σ σ>  
for all 'σ  within δ  of σ . 
 
In words- not only is σ  a  Nash equilibrium, 
there  are no other Nash equilibria nearby, and 
σ  is a profitable deviation against any nearby 

'σ .   
 
 
 
 

Theorem  (Taylor and Jonker [Math 
BioSciences 1978]; Hofbauer et al  
[J. Theor. Biology 1979]; Zeeman [1980]):  Every 
ESS is an asymptotically stable steady state of 
the replicator dynamics. 
 
Proof: To see that ESS implies asymptotic 
stability, suppose that σ is an ESS, and let ( )sσ  
denote the weight that σ assigns to the pure 
strategy s. We will show that the “entropy” 
function  ( )( ) ( ) s

sP s σ
σ θ θ= ∏  is a strict local 

Lyapunov function at σ, that is, it has a local 
(actually global here) maximum at σ and that it is 
strictly increasing over time along trajectories in 
some neighborhood of σ.  
 



 
To see this, note that 
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where we have used ( , )t t tu u θ θ= . 
 
Since σ is an ESS, the final expression is 
positive in a neighborhood of σ , so P  is an 
increasing function of time in this neighborhood 
as well.   
 
Since P  is maximized at σ   
it is a strict local Lyapunov function at σ, and 
hence σ is asymptotically stable. 
 
The converse is false: van Damme [1987] shows 
by example that not every asymptotically stable 
steady state is an ESS.  
 
 



Selected  Appplications and Extensions of ESS 
and Evolutionary Game Dynamics 
 
 
 
 
1) The selection of equilibria in repeated games, 

particularly the prisoner’s dilemma.  Repeated 
play never eliminates static equilibria, so “All 
D”  is a Nash equilibrium of the repeated 
prisoner’ dilemma, but we feel that a fair bit of 
cooperation is likely.  
 
Does ESS explain this cooperation? And 
which repeated game strategies are selected?  



 
Consider the prisoner’s dilemma with payoff 
matrix 
 

2,2 3, 1
1,3 0,0

C D

C

D

−
−

 

 
Simplest version of the idea is due to 
Axelrod and Hamilton [Science 1981]: 
suppose the only two repeated game 
strategies are “Always Defect” and “Tit for 
Tat” and that players are completely patient.  
 
(“Tit for Tat” is the strategy “Play C in the 
first period, and from then on play the action 
the opponent played yesterday.) 



 
 
Then the infinitely repeated game payoff 
matrix is 
 

2,2 0,0
0,0 0,0

TfT AllD

TfT

AllD

 

 
 
Now imagine applying an evolutionary 
process to this repeated game. Both pure 
strategies are Nash equilibria, but AllD is not 
an ESS, since it can be “invaded” by a small 
group of TfT. 



 
Drawbacks of this argument: 
 
a) If players discount, or if they play a finite 

number of times, then AllD is a strict 
equilibrium and hence an ESS.  Thus we 
need an additional argument (e.g. on size 
of basins, or by adding noise) to select an 
equilibrium. (See e.g. Nowak, Fudenberg, 
Taylor 2004) 

 
b) It is artificial to consider only two repeated 

game strategies, why not more complex 
ones?     With time averaging, the 
strategy “Alternate between C and D as 
long as this has happened in the past 
otherwise always play D” is a strict 
equilibrium, and hence an ESS in the 
game with the three  strategies 
“Alternate,” “TfT”, and “AllD.”   



 
Fudenberg and Maskin AER [1990] and 
Binmore and Samuelson [JET 1992] 
select the efficient outcome in the 
repeated prisoner’s dilemma when 
allowing for general finitely-complex 
strategies by considering more 
complicated settings. (noise in FM, 
complexity costs in BS).  FM select the 
strategy “perfect tit for tat,” which says to 
play C if yesterday’s outcome was (C,C) 
or (D,D), and otherwise play D.  
 
(Both players using this strategy is a 
subgame-perfect equilibrium. It is not a 
subgame-perfect equilibrium for both to 
play TfT, since under this strategy a 
single deviation leads to the two-cycle 
(C,D), (D,C), which is not a Nash 
equilibrium in that subgame. )  
 
Nowak and Sigmund [Nature 1994] 
analyze a two-parameter family of 
strategies by simulation, and conclude 
that the selected strategy is “win-stay, 
lose-shift,” which is the same as perfect 
TfT. 

 



c) Binmore-Samuelson and Fudenberg-Maskin 
consider general two-player games, but two 
players is a special case.  
 
Boyd and Richerson [J. Theor. Bilogy 1998] 
analyze N-player public good games.  

 
N player symmetric game.    
Two actions, C  and D.   
Payoff functions ( | )V C i  and ( | )V D i ,  
where i is the total number (including self) who 

play C. 
 
They focus on the case where payoffs are linear 

in number of cooperators, as in standard 
model of voluntary provision of public good. 

 
In these games  ( | )V C i i cβ= −  and ( | )V D i iβ= , 

where c  is the cost of cooperation/provision, 
and β  is a scale factor that may depend on 
the size N of the group.  Here  we need 
c N β<  for cooperation to be efficient.  



 Consider the discounted infinitely repeated 
version of this game, where the strategy space 
is restricted to the two strategies: 
 
U (Uncooperative): Always D 

aT  (tft-a): C  on the first period, and then C  iff  at 
least a other people played C  yesterday. (In 
the two-player case, 1T  is the strategy “Tit for 
Tat.”) 

 
“All U”  is a strict NE for any discount factor. 
 
 “All aT ” is  a  steady state of the replicator 

dynamic, but for 1a N< −  it isn’t a Nash 
equilibrium, so it can’t be an ESS.   

 
“All 1NT − ” is a strict NE if discount factor  is close 

enough to 1, so it is an ESS.    
 
“Exactly 1a +  play aT ” is a NE for large enough 

discount factors, , but if 1a N+ <  it isn’t a 
symmetric NE (it requires a coordinating 
device) so it can’t arise in a one-population 
model. 

 
 
 



Consider 1a N= − , and take discount factor  
large enough that “all 1NT − ” is a strict NE.  
Then the two pure-strategy equilibria are 
strict and stable, and there is a unique 
mixed equilibrium strategy equilibrium, so it 
is unstable.  What do the basins of attraction 
look like? 

 
• Their main point is that holding the discount 

factor  fixed, the basin of all 1NT −  shrinks  to a 
point as N  increases, since we need a 
higher fraction using 1NT −  to have the same 
probability of a group of all 1NT − . This effect 
is geometric- we need Np q=  or 1/ Np q= .  

 
• Holding the group size fixed, the basin of all 

1NT −  increases to cover the interval as the 
discount factor goes to 1: even a very small 
chance of permanent cooperation outweighs 
a likely one period gain. 

 
  



 
 

Using “representative” numbers for the 
payoff matrix and the discount factor, their 
model predicts no cooperation, so they 
conclude that the prevalence of cooperation 
in large human societies is a puzzle- 
although they claim the conclusion of the 
model is right for animals since large groups 
of animals don’t cooperate. . 

 
Missing: social sanctions/punishments that 

directly target deviators. 
 
Also: what about populations with non negligible 

amounts of a number of strategies? 
 
And more sophisticated strategies: why just 

unconditional triggers? Does this matter? 
 



 
2)   The selection of equilibria in “cheap talk” 

games  
 
(e.g. Robson [J. Theor. Biol.  1990], 
Blume, Kim, and Sobel [GEB 1993].) 

 
Idea: Suppose that players will play the 

coordination game 
 

2,2 100,0
0, 100 1,1

L R

L

R

−
−

 

 
Before actually playing, they simultaneously 
announce their “intended actions; ” once the 
announcements are made they simultaneously 
choose actions.  There is a Nash (subgame-
perfect) equilibrium where both players 
announce R and play R, but this equilibrium is 
not an ESS, since it can be invaded by the 
strategy “announce L, and play whatever the 
opponent announces.”  More generally, if there 
is an unsent message, the mutants can invade a 
Pareto-inefficient outcome by using a “secret 
handshake.”  



 
Once again, the most straightforward application 
of ESS doesn’t deliver the conclusion we want: 
the unique ESS is for players to randomize over 
all signals so that mutants can never “recognize 
each other.”   (Schlag [1993].) To predict that 
meaningful communication will occur, we either 
need that there is always the possibility of  
creating a previously unsent signal, or a solution 
concept that incorporates drift, as in Matsui [JET 
1990] . 



 
3)    Evolution of preferences-e.g. Samuelson 

[Econometrica 2003]. 
 
4)    Mutations, flexibility, and genetic diversity in 

a changing environment. E.g. Ben Porath,  
Dekel, and  Rustichini [GEB 1993], Heller 
[GEB 2004]. 

 
5)    Evolutionary models of language formation 
 
6)    Other models of social learning, with local    

structure,  peer effects, etc. 
 
7)   Evolutionary dynamics in finite populations:       

is the continuum population a good 
approximation?   

 



Generalizations of the Replicator 
Dynamic 

   
 Samuelson and Zhang [JET 1992] say that an 
adjustment process (that is, a flow on the state 
space 1 2 1 2Θ ×Θ = Σ ×Σ ) is regular if  

 
(i) it is Lipschitz continuous,  
(ii) the sum of the flows in each 

population equals 0, and  
(iii) strategies with 0 shares have non-

negative growth rates.  
 
This implies that when it starts in the interior of 
the simplex, the process cannot hit the boundary 
in finite time. 
 
(SZ consider two-population models; in a 
symmetric game, the one-population model can 
be viewed as a special case corresponding to a 
symmetric initial position.) 



 
A  process is payoff monotone if at all interior 
points,  

 
( ) ( ')

( ) ( ) ( ') ( )
( ) ( ')

i i i i
i i i i t t
t t i i i i

t t

s s
u s u s

s s
θ θ
θ θ

> = � > =
� �

. 

 

 Recall that strategy iσ  is strictly dominated if 
there is some other (possibly mixed) strategy �σ i  
such that  
 ˆ( , ) ( , )i i i i i iu uσ σ σ σ− −>  

for all profiles of opponents’ strategies iσ − .   
 
Iterated strict dominance is the process of first 
removing all strictly dominated strategies for 
each player, then removing all strategies that 
become strictly dominated once the dominated 
strategies are deleted, and so on until no further 
deletions are possible. (It can be shown that the 
order of deletions does not matter.)     



 
Following Samuelson and Zhang, define the 
process of iterated pure-strategy strict 
dominance to be the analogous iterative process 
when only dominance by pure strategies is 
considered.    
 
This process may delete fewer strategies, since 
a strictly dominated strategy may not be 
dominated by any pure strategy. 



 
Theorem (Samuelson and Zhang): Under any 
regular, monotone dynamics, if strategy s is 
eliminated by the process of iterated pure-
strategy strict dominance, then starting from any 
interior point the share of strategy s converges 
to 0 asymptotically, irrespective of whether the 
state itself converges. 
 

Sketch of Proof:  To begin, suppose that s is 
strictly dominated by some other pure strategy 
ŝ .  Then the growth rate of s is always some 
fixed amount less than the growth rate of ŝ , and 
so the share of s in the population must go to 0. 
  
Intuitively, we expect the adjustment process to 
run through iterative deletion: Once the 
dominated strategies have shares close to 0, 
then strategies that are removed at the second 
round of iterated pure-strategy dominance must 
have lower payoffs than those of other strategies 
with non-negligible shares, so their share starts 
to shrink to 0, and so on.  



 To make this intuition more precise, 
suppose that  that s  is strictly dominated by  
pure strategy 's .  Then 
 

( ) ( ')
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ln

( ') ( ) ( ')

i i i i
t t
i i i i
t t

i i i i i i
t t t
i i i i i i
t t t

s s
s s

s s sd
dt s s s

θ θ ε
θ θ

θ θ θ ε
θ θ θ

< − �

�� 	 

= − < −�� � �


 �� �

� �

� �
 

 
so 

0 0

0 0
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Thus the share of is  is  bounded above by a 
function that converges to 0 at an exponential 
rate. Since there are only a finite number of such 
dominated strategies, there is, for any positive ε, 
a finite time T such that at all t>T every one of 
them has share less than ε.  



 
 Let is′  be a strategy for player i that is not 
strictly dominated by a pure strategy but is 
strictly dominated by some ˆis  once the first 
round of deletions is performed.   Since payoff 
functions are continuous functions of the mixed 
strategies, ˆis  has a strictly higher payoff than is′  
once the shares of all of the “pure-strategy-
strictly dominated” strategies are less than some 
sufficiently small ε, and by taking ε small enough 
we can ensure that this is true uniformly over all 
of the strategies removed at the second round of 
the iteration.  Thus after some finite time T ′, the 
shares of all of the strategies that are removed 
at the second round of iteration are bounded by 
a function that converges to 0 at an exponential 
rate, so the shares of these strategies become 
negligible at some finite time T ′′. Now iterate. 
Since the process of iterated deletion  ends in a 
finite number of rounds in finite games, only a 
finite number of iterations are required.  

 



 
  In order to eliminate strategies that are 
strictly dominated by a mixed strategy, 
Samuelson and Zhang introduce the condition of 
“aggregate monotonicity;”   this was relaxed by 
Hofbauer and Weibull [JET 1996] to convex 
monotonicity.  



 
  Interpretation of the Replicator Equation 
 
 Two related types of learning stories have 
been proposed to explain the replicator dynamic.   
 

• Social learning, in which players learn from 
other players in the population.     

 
• “Aspiration models,” in which players 

“satisfice” rather than “optimize.”   
 
There are many ways of formulating such 
models  so that they generate a payoff 
monotone dynamic, that is, a system in which 
the growth rates of strategies are ordered by 
their expected payoff against the current 
population, so that strategies that are “doing 
better” grow faster.   
 
The replicator is the particular form of a payoff 
monotone dynamic in which the rates of growth 
are proportional to payoff differences with the 
mean; it corresponds to particular functional 
form assumptions in the learning models.  This 
makes it important to understand which 
conclusions based on  the replicator dynamic or 
ESS extend to “similar” processes. 



Social Learning 
 
Here is an example of a model of social 
learning.  Suppose that each period, some 
fraction α  of the agents leaves the system, and 
are replaced by new agents, each of whom 
learns  observes the strategy and payoff of one 
exiting agent and of one other agent drawn 
randomly from the same population, where the 
probability of sampling an agent using a given 
strategy equals the population fraction using that 
strategy.  
 
New agents  make a once-and-for all choice of 
strategy, which they do by adopting the strategy 
with the higher observed payoff, or in case of a 
tie, the strategy they “inherited” from the exiting 
agent. If the agent they sample is using the 
same strategy that they “inherited,” the agents 
do not switch, even if that strategy is performing 
poorly.   
 
(The literature has extensions to sample N 
agents, other decision rules, etc.) 



Since the rule “switch if the other strategy’s 
payoff is higher” depends only on the ordinal 
rankings of the payoffs,  it will not lead to the 
replicator dynamic, since in the replicator the 
speed of adjustment depends on the size of the 
payoff differences.    
 
Moreover, if agents observe the realized payoff 
of the agent they sample, as opposed to its 
average payoff against the current population,  
the  resulting process need not select the best 
response.     
 
To see this, consider the following decision 
problem:    
 
Each period player 1 picks U or D, and Nature 
picks L  or R, with the probability of L  fixed and 
equal to p; player 1’s payoff is  
 

 9 0
2 2

L R

U

D

 



 
New agents who sample someone using the 
same strategy as their “parent” do not switch; at 
date t, fraction 1 ( )t Uθ  is using U, so a fraction 

2
1 ( )t Uθ of the active agents is composed of 

agents with U parents who sample another 
agent using U. 
  
Agents with parents using U who sample 
someone using D stick with U if and only if their 
own current payoff is 9; the fraction of such 
agents is 1 1( ) ( )t tp U Dθ θ .   
 
Agents whose parents used D switch to U if they 
meet a U-user whose payoff was 9; this 
corresponds to fraction 1 1( ) ( )t tp U Dθ θ .   
 
Combining terms yields the difference equation 

 ( )1 2
1 1 1 1 1( ) (1 ) ( ) ( ) 2 ( ) ( )t t t t tU U U p U Dθ α θ α θ θ θ+ = − + + ; 

substituting ( )1 1( ) 1t tD Uθ θ= −  and  simplifying, 
yields   1

1 1 1 1( ) ( ) ( )(1 ( ))(2 1)t t t tU U U U pθ θ αθ θ+ − = − − .   

 
Thus the system converges to all player 1’s 
using D whenever  1/ 2α <  even though U  is a 
best response whenever  2 / 9α > . 



Schlag [JET 1998] supposes that if the agent’s 
parent’s payoff is u,  and the agent samples an 
agent with payoff 'u , the agent switches with 
probability  max{0, ( ' )}b u u−  where b  is a 
constant that depends on the range of the utility 
function.  He proves that there is a sense in 
which this rule “performs well,” and that it 
produces a system that converges to the 
replicator dynamic in the limit of shorter and 
shorter time periods.   

 
There are other justifications for the 

assumption that aggregate play looks like the 
replicator dynamic.  One is that agents sample 
as above, and that there is a distribution of 
switching costs in the population, and agents 
only switch if the gain exceeds the switching 
cost.  



 
Another, due to Binmore and Samuelson 

[JET 1997], is that there is a distribution of 
“aspiration levels,” and that agents only switch if 
they see an alternative that is better  and their 
current payoff is below their aspiration level.    

 
Instead of supposing that agents observe 

the realized payoffs of other players, 
Bjornerstedt and Weibull [1995] assume that 
agents receive noisy statistical information 
directly about the  current expected payoff of the 
strategy they sample. They show that this 
assumption, together with the assumption that 
the support of the noise is sufficiently large, 
leads to a resulting process that is monotone.   

 
 To see this, suppose that the distribution of 
noise is such that the difference between any 
two noise terms has c.d.f. iΦ . Then the 
probability that a player i who is currently using 

is  and who samples a player using is�  will switch 
is the probability that the noise term is less than 
the payoff difference, namely  ( ( ) ( ))i i i i

i t tu s u sΦ −� .   



 
Under proportional sampling, the fraction that 
uses is  and samples is�   equals the fraction that 
uses is�  and samples is . The net growth rate of 
the share using is  is the inflow minus the outgo,  
so the population evolves according to the 
dynamic  
 

( )
( )

2 ( ) ( ) ( ( ) ( )) ( ( ) ( ))i

i i
t

i i i i i i i i i i i i
t t i t t i t ts

s

s s u s u s u s u s

θ

θ θ

=

	 
Φ − − Φ −
 �� �

�

� � �

 
This is payoff monotone whenever the Φi  are 
strictly increasing over the range of all payoff 
differences, which will be the case  whenever 
the support of the noise is big enough.  
 
If, moreover, the noise has a uniform distribution 
over a sufficiently large interval, and the 
distribution is the same for the various players, 
then this simplifies to the replicator dynamics. 



 

 Bjornerstedt [1995] develops an alternative 
derivation of the replicator, based on the idea 
that only “dissatisfied” agents change their 
strategy, with the probability of dissatisfaction 
depending on the agent’s own payoff and on 
some function of the current state,  such as the 
current average payoff in the population, or the 
current lowest payoff.    
 
Agents who are dissatisfied choose another 
agent at random (under proportional sampling) 
and copy that agent’s choice regardless of its 
current payoff.   
 

• If agents with lower payoffs are more likely 
to be dissatisfied, the resulting dynamic is 
payoff monotone. 

 
• The system is exactly the replicator 

dynamics in the special case where the 
probability of dissatisfaction is a suitably 
scaled linear function of the payoffs. (The 
scaling must ensure that the revision 
probabilities stay between 0 and 1, and so 
depends on the payoff function of the 
particular game.) 

 


