
Evolution in Finite Populations 
 
Schaffer J. Th. Bio.  1988 
 
Proposes a definition of ESS in finite populations that 
is intended to capture the idea of “resisting invasion 
by mutants.”   
 
Recall the definition of ESS: 
 
σ  is an ESS if, for all  σ' ≠ σ, either  

(a) u(σ,σ) > u(σ',σ)  or 

(b) u(σ,σ) = u(σ',σ)  and  u(σ,σ') > u(σ',σ'). 
 

 
This is equivalent to requiring that 
 
(a’) σ  is a NE: there is no other strategy 'σ  with 

( ', ) ( , )u uσ σ σ σ>  
and 
 
(b’) If ( ', ) ( , )u uσ σ σ σ=   

(so 'σ  is an alternate best reply  to σ )  
then ( ', ') ( , ')u uσ σ σ σ<  



Schaffer takes this form as his starting point, and 
modifies (a’) and (b’) to reflect the finite population. 
 
Specifically, he replaces (a’) with  the condition that 
when a single mutant is playing 'σ  and N-1 others 
are playing σ , the payoff to σ  is higher than that to 

'σ .  That is, 
 

( ) ( )( ', ) 1 1/( 1) ( , ) 1/( 1) ( , ')u N u N uσ σ σ σ σ σ≤ − − + −  
 
(this is the version for 2-player games, the paper 
considers the general case of C players). 
 
He calls this an “equilibrium condition;” it isn’t  a 
Nash equilibrium condition, but it does look like a 
condition for the share of σ  to grow under a 
replicator-like dynamic. 
 
It is also very close to the condition used to motivate 
ESS:  Given a small invasion, the payoff of the ESS 
should exceed the payoff of the mutant, that is 
 
(1 ) ( , ) ( , ') (1 ) ( ', ) ( ', ')u u u uε σ σ ε σ σ ε σ σ ε σ σ− + > − +
 
the differences are the weak inequality and that a 
single mutant never has to play itself, so the payoff 
against itself doesn’t matter. 



It’s clear that the ESS on this definition  need not be 
Nash; 
 
Strongest difference is for 2N = , where the finite 
ESS condition is  
 

( ', ) ( , ')u uσ σ σ σ≤ .   
 
Only the cross-terms matter! 
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Here A  is a dominant strategy but it is not an ESS for 
N=2.  
 
Can’t say what –will- happen w/o an explicit 
dynamic. 

 



 

Fudenberg, Nowak and Taylor [2004]: 
Stochastic Evolution in Finite Populations 
 
We consider a population of N agents playing a 
2x2 symmetric game with payoff matrix 
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Let i denote the number of individuals using strategy 
A. 
 
The fitness of individuals using strategy A is  
 

( 1) ( )
1i

a i b N i
f

N
− + −=

−
  

 
The fitness of individuals using strategy B is  
 

( 1)
1i

ci d N i
g

N
+ − −=

−
.  

 
(These payoffs are deterministic- everyone plays 
everyone else. )  



Because of the finite population,  the two types of 
agent face a slightly different distribution of 
opponents’ play.  
 
“Frequency-dependent Moran process” 
 
(standard Moran process is a model of genetic drift) 
 
Each period, each agent “reproduces” at a rate 
proportional to its fitness, so that the number of A-
offspring is iif  and the number of B-offspring is 
( ) iN i g− .  
 
One offspring is chosen at random to enter the 
population, so that the probability of adding an A 

offspring is 
( )

i

i i

if
if N i g+ −

.   

 
However, there is a probability 1µ  that an A-offspring 
is a “mutant” that plays B instead of A, and a 
probability 2 1kµ µ=  that a B-offspring plays A  
instead of B.  
 
After reproduction, one randomly chosen agent is 
removed from the population, so that the aggregate 
population size is constant; each old agent has 
probability 1/N of being removed.   



Because the population size is constant, this process 
can be viewed as a model of imitation: 
 
Each period one agent at random is selected to 
update, and the choice of a new strategy is influenced 
both by the prevailing payoffs and the prevailing 
popularity of the choices.  
 
This is a “birth-death” process: the states are integers, 
and in each period the state can move by at most one 
step.  
 

Let ,i jP  denote the probability of a transition 
from state i  to state j.    Then , 0i jP =  if 1i j− > , and  

0,1 2 0,01P Pµ= = − ;    
 

, 1

1 2

Pr[Add an A and remove a B]

(1 ) ( )
( )

i i

i i

i i

P

if N i g N i
if N i g N

µ µ
+ =

− + − −=
+ −

  

  
, 1i iP − =Probability [add a B  and remove an A] 

 
, , 1 , 11i i i i i iP P P+ −= − −   for i = 1 to N-1;  and  

 
, 1 1 ,1N N N NP Pµ− = = − .   



Let P̂  be the version of the process where the 
mutation rates are identically zero.   In this process, 
states 0 and N  are absorbing, and the others are 
transient.  

 
We expect that the invariant distribution for small µ  
will be concentrated on these two endpoints.   
 
Intuitively, after each mutation, the process will reach 
an absorbing state of the no-mutation process and 
remain there for a long time before the next mutation 
occurs.  Moreover, we expect that the relative 
probabilities of these states will be determined by the 
probabilities of moving from one to the other when 
mutations are rare, so we need to solve the no-
mutation process first. 

 
  

Let  
1

*
0 1 1( , ) lim ( , , )x k N x k Nµ µ µ→≡ .     



 
Lemma 1:  Under P̂ ,  the probability of 

absorption at state N, starting from state 1, is  
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of absorption at 0, starting at N-1, is   
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So the relative probabilities are determined by 
the product of the ratios of payoffs to the two 
strategies.  



 
Reasons for this simple form: 
 
 
1) The general formula involves the product of 
the ratios of the one-step transition probabilities.  
    

 2) Here   
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Lemma 2:  The weight  that the limit distribution 

*( , )x k N  assigns to state N is  
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Intuition: Consider the induced Markov chain on 

the two states 0 and N. (That is, ignore all periods 
where the state has some other value- such periods 
will be vanishingly rare as θ → ∞ .)  

 
The probability of  a transition from state 0 to 

state N is 0 2 1,Nx µ φ : 
 
 the probability that of state 0, times the 

probability of a mutation to A,   followed by the 
probability that the no-mutation process is absorbed 
at all A starting from only 1 A.  

 
The probability of a transition from state N to 

state 0 is 1 1,0N Nx µ φ − .    
 
The displayed formula comes from equating 

these terms.  



 
The paper gives a direct proof  of lemma 2, but 

the induced-chain argument can be made rigorous. It 
holds in higher dimenion (i.e for games with more 
strategies) and for more general adjustment 
processes.  

 
The key assumptions are  that  
 
(1) the “vertices” (states where everyone plays 

the same action”) are absorbing in the non-mutation 
process,  

 
(2) the probability of two or more simultaneous 

mutations is of lower order than the probability of 
one mutation, and  

 
(3) that the “induced Markov chain” on the 

vertices (with transition probabilities derived from 
considering a single mutation and then following the 
no-mutation process) has a unique invariant 
distribution. 

 
(Fudenberg and Imhof [2004], in preparation.) 
    
 
 



  
Lemma 3:   The long-run probability of state N,   

is more than ½ exactly when ��� ��� ��� �� � , or 
equivalently when 
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* ( , )Nx k N  converges to 1  or 0  as γ  converges to ∞ 
or 0 respectively. 

 
In papers such as Kandori, Mailath and Rob 

[1993] where the ratio of the mutation probabilities  
has no effect on the limit distribution so long as it is 
bounded away from 0 and infinity. This is because 
the radius (the number of mutations required to leave 
the basin of an absorbing state) of one of the  
absorbing states is smaller than the radius of the other 
one, so that regardless of N  the limit distribution 
assigns positive probability to a single point.  Here, 
the radius of each absorbing state is 1. 



 
We use Lemma 3 to study how the limit 

distribution depends on the size of the population and 
on the  parameters of the payoff matrix.    

 
Plug in payoff functions into formula for γ : 
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Note that when  2N = , /b cγ = : 
As in the Schaffer’s finite-population ESS, only the 

off-diagonal terms matter when 2N = . 
 
Note that multiplying all of the if  and ig  by a 

constant has no effect on γ , and so has no effect on 
the limit of the ergodic distributions.   

 
But  γ  may change when a constant is added to all 

of the fitness functions.   
 
Main result is a classification of the outcomes w.r.t. 

the payoff matrix- most of which come from a simple 
comparison of terms.  



 
Theorem:  

(a) If ,b c a d> > , then * (1, ) 1/ 2Nx N >  for all N, 
and for any k,  

*lim ( , ) lim lim ( , , ) 1N N N Nx k N x k Nθ θ→∞ →∞ →∞= =
 

(b) If ,b c a d> < , then whether * ( , ) 1/ 2Nx k N >  
depends on k and the population size.  

 
A sufficient condition for * ( , ) 1/ 2Nx k N > is  

( 2)( )b c N d a− > − − .      



Moreover,  
 
(b.1)   In subcase b d a c> > > ,  

*lim ( , ) 1 N Nx k N→∞ = . 
 
(b.2) In subcase  d b c a> > > , 

*lim ( , ) 0N Nx k N→∞ = . 
 
(b.3) In subcases d b a c> > >  and 

d a b c> > > , there are two pure-
strategy Nash equilibria, and 

*lim ( , )N Nx k N→∞  is  1 or 0  
 

as  
1

0
ln( ( ) )b a b x dx+ −�  is greater or less 

than 
1

0
ln( ( ) )c d c x dx+ −� .   

 
The risk-dominant equilibrium need not 
be selected. 
 
Cases (c), (d) are symmetric. 



Corollary:  If the game has a strictly dominant 
strategy, the probability assigned this strategy by the 
limit distribution converges to 1 as N  goes to 
infinity.   

If the game has two strict Nash equilibria, then 
except for knife-edge cases there is an equilibrium to 
which the limit distribution assigns probability 
converging to 1 as N  goes to infinity, but the risk-
dominant equilibrium need not be selected. 
 
Idea of Proof: Recall  
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 In case  (a) , the first term in  the numerator 

exceeds the corresponding term in the denominator, 
as does the second, etc, so  1γ > , and lemma 3 
implies that * (1, ) 1/ 2Nx N > .   Moreover, the ratio of 
each pair of terms in γ  is bounded away from 1, so it 
becomes infinite as N   grows large  

 
In case (b), if ( 2) ( 2)b N a c N d+ − > + − ,  the 

pairwise comparison of terms again shows that 1γ > , 
The results for large N in subcases (b.1),  and (b.2), 
also  come from a comparison of corresponding 
terms. 



The argument for large N in subcase (b.3) involves 
approximating γ  by a ratio of integrals, using the 
idea that  
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is approximately  

( )1

0
exp ln( ( ) )N a b a x dx+ −� . 

 
Because the selection is driven by the ratio of this 

expression to ( )1

0
exp ln( ( ) )N c d c x dx+ −� , the risk 

dominant equilibrium need not be selected.  
To see why, consider a game where  d b a c> > > , 
and 2a b c d µ+ = + ≡  so that neither strategy is risk 
dominant.     Then the two integrals are the 
expectations of the logarithm of two random 
variables with the same mean.  The log is a concave 
function,  so the expected value of the log is reduced 
by a mean-preserving spread, and ( , )A A  is selected 
because b a d c− < − .   



Intuitively, when neither strategy is risk dominant 
they are equally fit at the point / 2i N= , but the 
support of the  long-run distribution depends on the 
transition probabilities at every state, and these are 
not determined by the value of the fitness functions at 
the midpoint. 
 
 
Our model makes a somewhat odd prediction in the 
subcases of (a) and case (b) that  correspond to 
“hawk-dove games,” meaning they are  symmetric 
games with two asymmetric pure-strategy equilibria. 
Since we are working in a one-population model, the  
asymmetric equilibria in the hawk-dove case cannot 
arise. Moreover, in the limit of vanishingly small 
mutation rates, the process spends almost all of its 
time in the two homomorphous states.   
 
But calculations show that when the mutation rate is 
high enough the process spends most of its time near 
the mixed-strategy equilibrium.   



 
Fudenberg and Hojman [2004] show that the order of 
limits on N and ε  doesn’t matter provided that the 
only recurrent classes of the 0ε =  process are 
attractors for the deterministic continuous time 
dynamics obtained by sending N to infinity. 
 
This is true for the case of two symmetric pure-
strategy equilibria, but not for the hawk-dove case.  
 
In hawk-dove, the interior mixed equilibrium is 
selected provided that N

N e βε −≥   for some constant 
β . 
 
Partial Intuition:  Benaim and Weibull show that in 
the limit N → ∞  the process is concentrated on the 
attractors  of the deterministic process.  When these 
contain the absorbing states of the unperturbed 
process we “expect” the two limits to yield 
distributions with the same support.   In the one-
dimensional case, the formulas for the relative 
probabilities involve the same ratio of integrals. 
(We don’t think this extends to higher dimension.)  



 
Possible extensions:  
 
MxM coordination games, as in Kandori and Rob. 
 
Multiplayer games, including “playing the field.” As 
in models of technology choice.  
 
Multiple populations. 
 
Other evolutionary processes  such as “Wright-
Fischer.” 
 
Main question: which results hold for a wide range of 
evolutionary processes? 


