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Abstract

This paper analyzes Perfect Bayesian Equilibria in dynamic monopolies with stochastic
demand. It examines sequential take-it-or-leave-it offers and sequential auctions. It is shown
that equilibria in the former mechanism trade-off allocative efficiency and competing buyers’
opportunities to acquire an item to be sold, permitting prices and expected revenue above
those of one-shot offers and sequential auctions. Hence Coase-type conjectures are invalid
and optimal sequential auctions can be dominated. This provides one explanation why some
goods are typically sold via deals, while others are sold in auctions. An asymptotic revenue
equivalence result is shown to reconcile the two mechanisms as the time horizon of the dynamic

game gets large.

KEYWORDS: Dynamic Monopoly, Stochastic Demand, Optimal Auctions, Coase Con-

jecture, Revenue Equivalence.



1 Introduction

This paper builds on three basic observations: (i) Many economic decisions on markets, such as
sellers’ pricing and buyers’ purchase decisions, are dynamic; (i) economic agents’ preferences and
valuations are private information, and hence market demand is stochastic; (iii) in many markets,
the number of potential buyers is small, relative to supply. The implications of these conditions are
analyzed for a situation in which a monopolistic seller of one item faces a group of n potential buyers
with unit demands, whose valuations for the item are private information. There are two periods.
If the item does not sell in period 1, it is common knowledge that it may be offered again in the
final period 2. Several questions are examined. Does the dynamic nature of the transaction game
and the intrinsic market uncertainty favor one side of the market? Under what circumstances?
What will be the seller’s preferred selling mechanism in this setting? What happens in the limit,

as the time horizon becomes infinite?

Examples of markets that give rise to observations (i)-(iii) are markets for fine art, exclusive
real estate, vintage cars, clothes and jewelery, rare wines, yearling horses, certain financial assets
like government bonds, or literary rights. Some of these goods are typically sold in auctions,
while others are sold via private deals, and some through both mechanisms. In all cases, there
is a possibility of re-offering the item, should it not be sold in the first offering. The analysis
presented in this paper shows that the dynamic nature of potentially sequential offers induces
strategic behavior in small markets which sometimes favors deals over auctions, and vice versa,
as the mechanism of choice for the seller. The key distinction between the two mechanisms is
that auctions yield efficient allocations, while private take-it-or-leave-it deals provide opportunities
for buyers other than the highest valuation buyer to appropriate the item, possibly leading to
inefficient allocations'. Buyers are willing to pay for obtaining this opportunity, and the seller may
be able to exploit this willingness to pay to increase expected revenue from take-it-or-leave-it deals
over revenue from auctions. The extent to which this is possible depends on market size in terms
of the number of buyers, and on how much future surplus is discounted relative to the present. As
the number of buyers increases, such opportunities shrink, hence are less valuable, and therefore
auctions dominate deals. This may explain why literary rights and yearling horses, whose markets
are small, but potentially very valuable, are typically sold in private deals, while equally valuable

fine art and financial assets are sold in auctions to a considerably larger market.

Surprisingly, it turns out that the seller that transacts via deals rather than via auctions benefits
from the dynamic nature of the game when the future is not too heavily discounted. Expected
revenue of the dynamic game then exceeds the expected revenue of a one-shot offering, contrary
to Coase-type conjectures. This is not necessarily the case for the auction seller. The auction
seller ideally would like to be in a position to credibly commit to a single, rather than sequential

auction. Depending on market size and degree of discounting, a patient auction seller may find it

IThe seller, of course, has no a priori interest in allocative efficiency per se.



optimal to credibly preclude the first auction by setting a prohibitively high reserve price. Thus,
the game is effectively reduced to a single auction in the second period. But this comes at some
cost of auction revenue only accruing in the second period. Sequential take-it-or-leave-it sales, in
comparison, always assign positive expected revenue to the first period. Thus, if such expected
revenue is sufficiently high and the future suitably discounted, the sequential take-it-or-leave-it

mechanism dominates sequential auctions.

The two mechanisms, thus, are seen to exhibit very different results in terms of the opportuni-
ties they grant and the efficiency of the allocation they produce. The trade-off between allocative
efficiency and opportunities is the source of the difference in expected revenue they generate. In
general, the two mechanisms cannot be ranked uniformly according to expected revenue, across all
discount factors. However, a limiting revenue equivalence result is available. The result is that,
under mild conditions, the sequential take-it-or-leave-it mechanism generates the same expected
revenue as a single, optimal final auction when the number of periods becomes large. The reason is
that the sequential take-it-or-leave-it mechanism asymptotically assigns zero probability to ineffi-
cient allocations; i.e. asymptotically, the highest bidder obtains the item, while the lowest valuation
bidder expects zero surplus. Therefore, the conditions of the classical revenue equivalence theorem
(Vickrey (1961), Riley and Samuelson (1981), Myerson (1981), Milgrom and Roberts (1982); see
also Milgrom (1987), and Klemperer (2002) for a comprehensive survey) are met. An intuitive way
to think about this result is that the sequential take-it-or-leave-it mechanism mimicks a Dutch

(declining-price) auction asymptotically.
Related Literature

This work contributes to the literatures on auctions, optimal mechanisms and the Coase con-
jecture. The asymptotic revenue equivalence result connects the literature on endogenous market
regimes (e.g. Harris and Raviv (1981a)) to the optimal auction literature referenced above. The
results in this paper complement recent research by Bulow and Klemperer (1996) on auctions as
compared to negotiations. These authors show the value of an extra bidder in an auction, compared
to negotiations and to setting an optimal reserve price. Hence they examine the value of additional
competition, due to the additional buyer, in a class of mechanisms yielding an efficient allocation.
One can interpret the results of this paper this paper as showing the value of competition due
to the design of the mechanism, given the same number of potential buyers, when allocative effi-
ciency is not the primary objective. It is shown that, for a given market size, the take-it-or-leave-it
selling mechanism, by allowing for the possibility of inefficient allocations, induces intertemporal
competitive externalities which may make it worthwhile for the seller to sacrifice efficiency for
higher expected revenue. The paper also adds to the literature on optimal auctions in general
(Vickery (1961), Myerson (1981), Riley and Samuelson (1981) and why they exist (Harris and
Raviv (1981)), and optimal sequential auction in particular (McAfee and Vincent (1997), Laffont
and Robert (2002)). McAfee and Vincent (1997) prove a result reminiscent to Theorem 3 in this

paper, for sequential second-price sealed-bid auctions, where no bid shading occurs, and treat the



case of sequential first-price sealed bid case implicitly by an appeal to the revenue equivalence
theorem. This paper develops the theory of sequential first-price sealed bid auctions explicitly. A
setup similar to the sequential take-it-or-leave-it mechanism is considered in Bulow and Klemperer
(1994). Studying market frenzies and crashes, these authors consider a sequential mechanism with
exogenous, continuously declining prices and efficient allocations, in which buyers are allowed to
change their minds. In this paper, prices are endogenous, and buyers’ equilibrium strategies are

dynamically consistent.

The paper also sheds new light on Coase-type conjectures. In the context of deterministic
demand, it has been shown that a durable-goods monopolist, somewhat paradoxically, competes
with himself, charging the competitive rather than the monopoly price in equilibrium (Coase,
1972).2 Equilibria of durable-goods monopolies have been analyzed extensively, mostly from a
welfare perspective (for example Stokey, 1981; Bulow, 1982; Gul, Sonnenschein and Wilson, 1986;
Ausubel and Deneckere, 1989; Thépot, 1998).% These studies rest on two essential model building
blocks: complete information about costs and valuations, and a continuum of buyers on the space
of valuations.* Gul et al. approach the monopoly problem as a dynamic game and show that
its subgame-perfect equilibria confirm Coase’s conjecture, for stationary strategies and discount
factors near one. Ausubel and Deneckere (1989) relax the restriction to stationary strategies, and
prove that any profit between zero and the static monopoly profit can be supported as subgame

perfect equilibria if the time between offers shrinks to zero.

Critiques of these studies have centered on their two main assumptions. Bagnoli et al. (1989,
1995) show that abandoning the assumption of a continuum of buyers in favor of discrete demand
reverses the conclusions of traditional analyses, rejecting the Coase conjecture. Ausubel and De-
neckere (1992), in turn, relax the assumption of complete information and reconsider the problem
if the monopolist’s marginal cost is private information. This change in the informational structure
implies that the monopolist may find it optimal to delay sales in order to credibly signal costs. In
the extreme, for the lowest-cost seller, Ausubel and Deneckere find that no trade occurs; conven-
tional deadweight loss is replaced by signaling costs that entirely eliminate gains from potential
trade. Majerus (1992) introduces incomplete information about discrete demand parameters, by
considering a model with uncertainty about the number of consumers who have certain given,

known valuations. In this setting, the monopolist cannot extract all of the consumer surplus. For

2For the purpose of this and related analyses, durability can be broadly defined. Compare the discussion in
Bulow (1982), p. 316. Buyers care about the service the asset provides, and the asset can be considered durable if
no repeat purchases are necessary for the service provision. This interpretation includes perishable assets like airline

seats, hotel rooms, or concert tickets.
3Chen and Wang (1999) and Riley and Zeckhauser (1983) consider monopolistic pricing when buyers arrive one

at a time. The first study treats this as the seller’s unilateral optimization problem, not as an equilibrium problem.
The latter assumes that the seller can credibly commit to any strategy; that this, in general, is not possible is

precisely the point of the literature inspired by Coase.
4Note that this is formally equivalent with a bilateral bargaining model, in which the seller makes offers to a

single buyer with unknown valuation.



a discount factor close to one, or, equivalently, time intervals between offers that shrink to zero,

Coase’s conjecture is confirmed.

This paper contributes to this discussion of the Coase conjecture. It shows that sellers may
benefit from a dynamic setting with demand uncertainty: If future pay-offs are not discounted too
heavily, first period prices and the expected revenue of the entire game are higher than in a one

shot game.

The paper proceeds as follows. Section 2 introduces the main themes and insights in the
context, of two tractable examples of sequential take-it-or-leave-it sales and first-price sealed bid
auctions. Section 3 lays out the key theorems that provide the underlying theoretical foundation
of the motivating examples. Section 4 reconciles the two mechanisms by providing an asymptotic

revenue equivalence theorem. All proofs are in the appendix.

2 Uniform Examples

Consider a monopolistic seller of a single unit of an item who faces n potential buyers. Buyers
are assumed to have independent and identically uniformly distributed valuations of the item,
X; ~ uf[0,1], i =1,...,n. Each buyer’s valuation is private information. The item has no value
to the seller if it is not sold. It is common knowledge that if the item is not sold in period one, it
is re-offered for sale in period two, following the same sales mechanism whose parameters can be
adapted according to the first period outcome. Period two pay-offs are discounted with common
discount factor § € [0,1]. Two mechanisms for sale are considered: sequential take-it-or-leave-it

sales and sequential second-price sealed bid auctions.?

2.1 Sequential Take-it-or-leave-it Offers

In this mechanism, the seller announces a period one price, p; € [0, 1], and buyers decide whether
they wish to submit a purchase order at this price. If no orders are submitted, the game proceeds to
period two. In this second and final period, the seller announces a second period price, ps € [0, 1],
and buyers subsequently decide again whether to submit an order. If at any point in the game
more than one purchase order is submitted, it is assumed that buyers that have submitted an order

acquire the item with equal probability.

51t is a well known revenue equivalence result that other auction formats, e.g. sequential second-price sealed bid
auctions, yield the same expected revenue as the auction considered here, provided buyers are risk-neutral, the item
is sold to the highest valuation buyer and unsuccessful bidders have zero gain; see, for example Myerson (1981) and

Riley and Samuelson (1981)
6An alternative way of thinking about this mechanism is that, after a price is posted at the beginning of each

period, buyers visit the sales outlet and make their purchase decision, and that each buyer is equally likely to get



Since buyers’ valuations in this sequential game are private information, the game is a dynamic
game with incomplete information. The equilibrium in this game, therefore, is a Perfect Bayesian
Equilibrium (PBE).” In the two period case, a PBE is defined as first and second period prices
and buyers’ order submission strategies such that, given buyers’ strategies, the prices maximize the
seller’s expected total revenue, and, given these prices, buyer’s strategies maximize their expected

surplus. The PBE can be found using a standard backward induction algorithm.

Since it is common knowledge in period one that the item will be re-offered in period two if it
is not sold in period one, some buyers may find it optimal to wait until period two, even though
their valuation of the item exceeds p;. This is so because, if the item does not sell in period one, its
price in period two, ps, will not be any higher than p;. Denote the valuation threshold of buyers
just indifferent between buying at price p; in period one and at price ps in period two by y. This
threshold value can be interpreted as a measure of how strategic buyers behave in equilibrium. If
y* = 0 in equilibrium, then buyers will submit purchase orders according to their true valuations,
i.e. there is no waiting for lower second period prices. If, on the other hand, in equilibrium y* = 1,
then all buyers would out-wait the seller, i.e. no buyer will submit a purchse order in period one
and postpone purchse decisions to period two when the lower period two price may be expected

to prevail. This PBE outcome, if it exists, is reminiscent of the so-called Coase conjecture.

Consider period two. To reach this stage, it must be that no buyer has X; >y, i =1,...,n.
Otherwise, by definition of y, this buyer would have purchased the item in period one. Hence,

conditional on reaching period two, the seller maximizes period two expected revenue, i.e. the

p2\"
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where the first expression is the product of the second period price and the probability of at least
one buyer submitting an order, and where A, = (n 4+ 1)~%/" < 1. Hence, ps(y,n) < y for any
y € [0,1]. Note that the more strategic buyers act in period one, i.e. the higher y in equilibrium,

the higher the price the seller can charge in period two.

Now consider period one. Given y, the seller will choose p; such that the marginal buyer with
valuation y will be just indifferent between his or her expected gain from buying in either period.
Given the assumed allocation mechanism which assigns equal probability of being fulfilled to any

submitted purchase order, the marginal buyer’s expected surplus in period one is

s = =) (54 - DA 2=
= (y—pl)%ﬁ(l—y“),

to the sales outlet first.
"It will be seen that such a PBE actually exists in this game and is unique.



while the expected discounted gain in period two, given ps(y,n), is

41 1
s2(y,m,0) = dy(1 = Ap)y" ™' —— o (L= A)-
Therefore, given y, the seller’s optimal period one price is
S (=A%)
pl(y77n76) = y_(syn(l _An)nll_f\nﬁ
;q( —y")
n y"
= -0 — .
Y n+ 1( y) 1—yn

Hence, the seller’s problem can be cast as choosing the threshold y and subsequently evaluating
the prices p1(y,n,d) and p2(y,n) so as to maximize expected revenue in the sequential game. The
seller will obtain p; (y,n,d) in period one with a probability that equals the probability of at least
one buyer having a valuation X > y, i.e. with probability 1 — y™; and the seller’s discounted
revenue in period two will be dps(y,n,d) with a probability equal to the joint probability of the
event that all buyers have valuations below y, so that the game gets to period two, and that at least
one buyer has a valuation above ps(y,n,d), i.e. with probability (1 — (W)n) y" = nL_Hy".
Therefore, the seller’s expected profit of the entire game is

n

n y n
= (y-o0——(1- 1—y") + 6Ag——y" !
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n n
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This function is a polynomial of degree n + 1 in y and can be maximized over y numerically. For
the case of 2 buyers, Figure 1 shows expected profits as a function of d as well the associated

strategic threshold y.

This example provides the following observations which will be shown to hold more generally.
The strategic threshold y is always interior, i.e. for any degree of discounting, it lies strictly be-
tween 0 and 1. Hence, it is always in the seller’s interest not to annihilate the two-period structure
of the game. Moreover, for high enough discount factors, the seller benefits from having a second
round available. This invalidates Coase-type conjectures according to which buyers would out-wait
the monopolist in equilibrium. It can be interpreted in terms of a trade-off between efficiency and
opportunities. The take-it-or-leave-it mechanism considered here does not guarantee an efficient
allocation in which the highest valuation buyer obtains the item, in contrast to the auction mech-
anism considered in the next section. Instead, it allows eligible buyers, whose valuations are above
the quoted price, to acquire the item, even if they are not the highest valuation buyer. Buyers are
willing to pay for this opportunity, which the auction does not afford them. This, in turn, raises the
seller’s expected revenue. In fact, since competition is no softer in period two than in period one,
buyers’ incentives to strategically defer purchases are reduced, thus allowing the seller to credibly
charge prices in the first period that exceed the optimal price in a one-time offering. This can be
interpreted as a competitive externality in period two which has a positive, intertemporal external

effect for the seller in period one.



2.2 Sequential Auctions

Now maintain the same setup as before, but consider a sequential auction mechanism in which
buyers turn in sealed bids and the winning bidder pays his or her bid. This is referred to as a
first-price sealed-bid auction. The item is sold to the highest bidder in the auction taking place in
period one if the highest bid meets the seller’s period one reserve price. If not, a second first-price
sealed-bid auction takes place in period two. The first-price sealed-bid auction format is chosen
for the exposition here because, unlike in the revenue equivalent second-price sealed-bid auction
format where truthful bidding is an equilibrium strategy, bids are shaded, i.e. bidders submit bids
below their valuations. This makes the strategic features of the auction analysis more comparable

to the case of sequential take-it-or-leave-it offers considered above.

Again, the dynamic game can be solved by backward induction. As before, denote by y the
valuation threshold of the marginal bidder who is indifferent between submitting an eligible® bid
now or in the second period auction. Consider bidding in the second auction. Standard arguments
reveal that, when the second period reserve price is R, and the bidder’s valuation is X;, his bidding

function is
X;
b(X;,Royn) = X;— u"du/ X
Ro
n—1 1 RY
nxpt

X;

Note that the period two bidding function does not depend directly on the strategic threshold y,
as conditioning on the event {X; < y,Vj # i} cancels out in the shading of bids. The reason is
that the entire support of competing bidder’s valuations does not enter bidder ¢’s bidding function
directly, since it effectively conditions on {X; < X; Vj # i}, where X; is less than y. Of course, it
will depend indirectly on y through the dependence of the optimally chosen reserve price Ry on y;

this dependence will be derived below.

Conditional on the game getting to the second period, bidder i’s expected surplus is

X;
Sz(Xi,!hR%") = / un_ld,u’/in_l (Xl/y)n_l
Ro

1 X7 — Rp
n ynfl :

The auction seller obtains an expected payment of

m2(y,Ra,n) = E[max{b(X;,Rs),i=1,...,n};X; € [Ra,y]]
Yy _ n
= n/ [mn 1 + lR—zl} 2" Lz
R n nx"
n—1 a1, 1 2 1
— e Z R — —RTH- .
n[n(n+1)y +n LA

8Here, a bid is referred to as eligible if it is above the reserve price. It is a well-known theoretical result that it

is immaterial whether the reserve price is secret or not; see, e.g. Ashenfelter (1989).



The auction seller then chooses R, so as to maximize expected revenue in this auction,

Ry(y) = arg max w2 (y, R2,n)
2
Yy

5.

Note that, given y, the optimal reserve price does not depend on the number of bidders n. Antici-
pating future results, note also, however, that the equilibrium value of y generally is a function of
n and 8. Consequently, in contrast to standard auction results?, the optimal reserve price depends

indirectly on the number of bidders through the strategic threshold y.

Now consider bidding in the first period. Bids will be shaded beyond the usual offset, to reflect
the expected surplus in the second period auction, in case bids for the item do not meet the
reserve price in period one.!® Given Rs(y), the marginal bidder expects s2(y,y,y/2,n)y" ! =
y"L (1 -27") in the second period auction, and hence bidder i’s bidding function for the first

auction is

fyXi uw Ldu y" 1 .

/B(Xi7y7n76) = Xl_ Xin_l _6Xin_1 5(1_2 )
11X —y" y" 1 _

- — ) —(1=27").
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i

Note that, as a consequence of bid shading, y must exceed the period one reserve price Ry, so that,
unlike b(X;,y, Rs), the period one bidding function does not depend on the reserve price. In fact,

the period one reserve price is given by the bid of the marginal bidder,
1 —-n
Rl(yanaé):ﬂ(yay)na(s):y_(syﬁ(l_Z )

The auction seller obtains period one expected revenue

E [max{f(X;,y,n,0),i=1,...,n}; X; € [y,1]]

1 n_ ,n 1
= n/ [m - % —6y—(1—2"")| 2" 'dx
y U n

n 1

= - A=y (- 60— 2 - ).

a1 (ya n, 6)

Total expected auction revenue then is

w(y,n,0) = mi(y,n,0)+om(y,y/2,n)
= Pl ety g (1 — 2 ) (1 — ) + gyt D L
= n+1(1 y") +y"(1-0(1—-2"")(1 —y) +dy 2+ D)

This also is a polynomial in y which can be maximized numerically over y. As in the case of
the take-it-or-leave-it seller, the auction seller’s optimization problem can be cast as choosing a

threshold y and then evaluating the optimal reserve prices Ry (y,n,d) and R2(y). For the case of

9See, e.g., Riley and Samuelson (1981)
10See also Bernhardt and Scoones (1994)
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two bidders, figure 2 shows total expected revenue from the sequential auction procedure as well

as the strategic threshold y, both as a function of 4.

The sequential auction mechanism yields surprisingly different insights. In contrast to the seller
who implements the sequential take-it-or-leave-it seller, the auction seller does not benefit from the
second period. In fact, a patient auction seller may find it optimal to credibly annihilate the first
auction by choosing a prohibitively high period one reserve price and defer any auction revenue
to the second period. This case arises when the equilibrium threshold y is equal to unity. The
auction seller does not benefit from a second round because bidders, anticipating the possibility
of a future auction, shade their bids in the first auction by more than they would in a single
auction, thus reducing the auction seller’s period one expected revenue. If an auction takes place
in period two, then period one has revealed that all bidders have valuations below y. This is
only bad news for the seller, who will choose a period two reserve price accordingly. Bidders will
bid according to the bidding function b(-,y/2,n), with shading increasing in y. This depresses
the auction seller’s expected revenue in the second auction. Note that this auction mechanism
always yields an efficient allocation, with the highest valuation bidder obtaining the item. This
is so because bidding functions are monotonically increasing in valuations. Hence there is no
intertemporal competitive externality as there is in the case of take-it-or-leave-it offers that would

allow the auction seller to charge higher reserve prices.

A comparison of the two mechanisms reveals that there exist situations in which the sequential
take-it-or-leave-it mechanism dominates the sequential auction mechanism. Such situations arise
when expected revenue in the auction case is dominated by higher expected revenues from the
sales. This happens for intermediate discount factors and small numbers of buyers and bidders,
respectively. The economic reason underlying this observation is that the auction seller cannot
benefit from the second period and, in fact, maybe be worse off in a dynamic situation, while
the take-it-or-leave-it seller can exploit intertemporal competitive externalities among competing

buyers. Figure 3 illustrates this for the uniform examples presented in these two subsections.

The next section provides the general theoretical foundations of the strategic PBE features
in dynamic monopoly games with incomplete information that were illustrated by the foregoing

examples.

3 General Theory of Dynamic Monopolies with Stochastic

Demand

The analysis maintains the following assumptions:

11



Assumption A1l: Buyers’ valuations X; are independently and identically distributed with
CDF F(z).

Assumption A2: F(x) is twice continuously differentiable, with pdf f(z) which is positive on
the support X of F.

Assumption A3: Marginal revenue 1 — F(z) — zf(z) is downward sloping.!!

Assumption A4: The item has zero value for the seller if it is not sold; the seller maximizes

expected revenue, and the buyers maximize expected surplus.

To develop some general results on Perfect Bayesian equilibria of sequential dynamic monopoly

games, the following benchmark result will be useful.

Theorem 1: Consider a one period game in which the seller of an item can either make a final
take-it-or-leave-it, offer with expected revenue g, or hold a final first-price sealed bid auction with

expected revenue 7 4. Under assumptions A1-A4, g < m4.

The proof of this as well as subsequent results are in an appendix to the paper. Theorem 1
states the intuitively plausible proposition that in a one-shot situation a monopolist cannot do
better than to hold an auction. The proof relies on techniques advanced in Bulow and Klemperer
(1996) and borrows from monopoly theory. It shows that the expected marginal revenue of the
winning bidder in an auction is always higher than the expected marginal revenue of the nth buyer
in a take-it-or-leave-it offering. The result is relevant in this discussion, as it pins down the ranking
between the take-it-or-leave-it sale and auction mechanisms when § = 0 or 6 = 1, i.e. when the
item is either instantaneously perishable or very durable. The result suggests that in both cases
the seller chooses the auction mechanism; Theorem 3 below will confirm this for § = 1. The
further results below will, moreover, address the equally interesting intermediate cases in which §

is bounded away from zero or one, § € (0,1).

Now consider the dynamic cases with two consecutive periods. The same definition of PBE as
above applies. The following result establishes the key features of the uniform example as general

properties of sequential take-it-or-leave-it offers with incomplete information.

Theorem 2: Consider a two period game with consecutive take-it-or-leave-it offers. Under
assumptions A1-A4, there exists a unique PBE with first and second period prices p;(y*,n,d) >

p2(y*,n), which are monotonic in y*, and where y* is in the interior of X'.
The result has an obvious and significant, corollary.

Corollary 2.1: Under assumptions A1-A4, (i) there exists & € (0,1) such that, for all § € [4, 1],

1n auction theory, assumption A3 is sometimes referred to as a regularity condition. See, e.g., Klemperer (2000)
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a take-it-or-leave-it seller achieves higher expected revenue in a two period game than in a one
period game, and (ii) the equilibrium first period price p;(y*,n) > p* = argmax, p(1 — F(p)™),

where p* is the optimal price in a one-shot offering.

In other words, with stochastic demand a take-it-or-leave-it seller always benefits from the sales
opportunities provided by future periods. Enhanced competition among buyers if the item is not
sold in period one induces a competitive externality in demand. This externality allows the seller to
charge a first period price that would be higher than optimal in a simple one-shot take-it-or-leave-it

offering.

This result can be contrasted with the following theorem which deals with the sequential auction
counterpart. The PBE in the case of auctions comprises period one and two reserve prices and
bidding strategies, such that, given the bidders’ strategies, the reserve prices maximize the auction
seller’s expected revenue, and given the reserve prices, the bidding strategies maximize the bidders’

expected surpluses.

Theorem 3: Consider a two period game with consecutive first-price sealed-bid auctions.
Under assumptions A1-A4, there exists a unique PBE with first and second period reserve prices
Ri(y*,n,6) and Ry(y*,n), which are monotonic in y*; furthermore, there exists § € (0,1) : § >
§=>y*=sup{z:z € X}

The key distinction between theorem 2 and 3 is that the equilibrium threshold y* is interior
in the former, but can be on the boundary in the latter. This implies that, in the case of sequen-
tial auctions, there exist Perfect Bayesian Equilibria in which the seller foregoes the first period
auction by choosing a prohibitively high period one reserve price. Hence, Theorem 3 identifies
circumstances in which the possibility of subsequent auctions in future periods are harmful to the

seller.

Theorems 1 - 3, considered jointly, provide an important observation. Theorem 1 states that
one-shot, final auctions generate higher expected revenues that one-shot, final take-it-or-leave-
it sales. Theorem 3 predicts that, for sufficiently high 6, § € [§,1], the sequential auction is
effectively reduced to a single auction in the second period. Therefore, in this range of discount
factors, expected auction revenue increases with §, up to the expected revenue of the one-shot,
final auction. Since expected revenue is a continuous function of §,'2 this implies that expected
revenue, viewed as a function of §, produces a V shaped curve, starting at 74, declining up to the
point where § = §, and subsequently rising to m4.'® Therefore, for small n, when expected revenue
in a single, final auction and a single, final take-it-or-leave-it sale are similar in magnitude, it is
possible that the sequential sales mechanism dominates the sequential auction mechanism. The

reason is given by Theorem 2. It predicts that the take-it-or-leave-it seller’s expected revenue rises

121t is not differentiable everywhere, however.
13Recall figures 2 and 3 to illustrate this point.
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with &, since this seller benefits from future sale opportunities. The previous section illustrated

this interplay of the three theorems in the uniform examples.

4 A Limiting Revenue Equivalence Theorem

As the preceding sections demonstrated, the two mechanisms yield different strategic implications
and the expected revenues. The source of these differences is the trade-off between the efficiency
of the final allocation, which the sequential auction mechanism guarantees, and the opportunities
for buyers other than the highest valuation buyer to obtain the item, which the sequential take-
it-or-leave-it mechanism grants. Since the latter introduces the possibility of an inefficient final
allocation, this discrepancy in expected revenues is not a failure of the classical revenue equiva-
lence theorem, as one might conjecture. This section shows, however, that, under a mild additional
assumption, the sequential take-it-or-leave-it mechanism possesses properties in the limit, as the
number of periods aproaches infinity, which imply the conditions underlying the Revenue Equiva-
lence Theorem. Hence, it will be seen that, in the limit, the expected revenue of this mechanism

equals the epected revenue of a single, final optimal auction, regardless of its format.

The key step towards a revenue equivalence theorem is a result which eliminates the possibility
of an inefficient final allocation as the number of periods, m, gets large. To establish this limiting

property, one additional assumption will be maintained:
Assumption A5: (bounded support) sup{z : 2z € X} = I < 0.
Under assumptions A1-A5, Theorem 2 can be generalized to the case of m periods.

Theorem 4: Consider an m-period game with sequential take-it-or-leave-it offers. Under

assumptions A1 — A5, there exists a PBE with prices

pm+1(y*7n76) < pm(y*7n76) <... <p1(y*7n76) <p0(y*,n,5),

where pp41(y*,n,0) =0 and po(y*,n,d) = T, and strategic thresholds y* = (yF,...,y% 1), such
that
yr > . >y

The theorem is proven by induction on the results provided by Theorem 2, following in the
induction step essentially parallel arguments to the ones given in the proof of that theorem. This
result, for finite m, still permits a moderate probability of an inefficient final allocation. In the
limit, one might expect the interval between equilibrium prices and strategic thresholds to shrink
to zero, so that this residual probability vanishes and the final allocation is bound to be efficient.

This is the essence of the following limiting result.
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Theorem 5: (Asymptotic Revenue Equivalence) Suppose A1 — A5 hold in the model for m
periods, with 6 = 1. Let 7 denote the PBE expected revenue of m sequential take-it-or-leave-it

offers, and let m4 denote the expected revenue of a final optimal auction. Then, 7" — m4 as = 0.

This result establishes revenue equivalence in the limit. The reasoning behind the result is
straightforward. Index PBE prices and strategic thresholds by superscript m. As m — oo, one
might expect (and the proof demonstrates) that max{y;"* — y,k = 0,...,m + 1} — 0, and
max{pr(y*,n,1) — pp+1(y*,n, 1),k =1,...,m+ 1} = 0 as m — 0. Hence, under A2, the prob-
ability of any two buyers falling into the same price acceptance region vanishes. Since then the
highest valuation buyer will submit a purchase order first and acquire the item, while other buyers
expect zero surplus, arguments in Myerson (1981) and Riley and Samuelson (1981) imply rev-
enue equivalence. Hence, for the purposes of the theorem, the format of the auction is irrelevant.
The result has an immediate, intuitive interpretation. The limiting sequential take-it-or-leave-it
mechanism produces a (continuously) declining equilibrium price sequence, and buyers submit a
purchase order once the price has dropped to their respective valuation of the item. This is the
same format as in the case of a Dutch auction, or descending price auction. In this auction format,
the highest valuation bidder obtains the item, and losing bidders expect zero surplus. These are
precisely the conditions of the revenue equivalence theorem to apply. Since sequential take-it-or-
leave-it mechanism in the limit shares these characteristics, the theorem applies here as well and

hence predicts equal expected revenues.

5 Conclusion

This paper emphasizes the strategic implications of market uncertainty for equilibria in dynamic
markets. It highlights the trade-off between allocative efficiency and opportunities for buyers other
than the highest valuation buyer to obtain an item to be sold; this trade-off induces a competi-
tive externality in demand, due to competing buyers who are willing to pay for this opportunity.
And it concludes that there exist dynamic situations in which a take-it-or-leave-it seller can in-
tertemporally exploit this trade-off to raise prices and expected revenue above the one obtained
in a one-shot take-it-or-leave-it offer, and above the expected revenue of an auction seller. This
demonstrates that market uncertainty invalidates Coase-type conjectures and stipulates selling
mechanisms superior to auctions in terms of expected revenue. It also provides an explanation for
why certain goods are sold in private deals, while equally valuable items are sold in auction. The
two mechanisms can be reconciled however. As the number of periods gets large, the sequential
take-it-or-leave-it mechanism mimicks a Dutch auction which is revenue equivalent to a single, final

auction of any format.
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6 Appendix

6.1 Proof of Theorem 1

Since, by virtue of the Inverse Transform method for CDFs, using the inverse CDF F~1(-) every
problem satisfying A1 and A2 can be mapped into a problem in which X = [0, 1], without loss of

generality the case X = [0, 1] is considered in this and all subsequent proofs.

The marginal revenue of a bidder in the auction is 1 — F'(p) —pf(p) = 1 — F(p)(1+€(p)), where
e(p) = f(p)p/F(p) is the elasticity of F' at p. The marginal revenue of the nth potential buyer in
the sale is 1 — F'(p)™(1 + ne(p)). Therefore, using the approach as in Bulow and Klemperer (1996),

ma = Emax{l—-F(X;)(1+¢€(X;)),i=1,...,n}]

1
/ (1= F(z)(1 +e(2)))n(1 = F(2))"~" f(z)dz

0
1
1= [ F@)(+ @) - F@)" f@)ds,
0
where integration is with respect to the density of the minimum of the Xj, in light of A3. Similarly,
s = FE[max{1— F(z)"(1+ ne(z)),0}]

*

/Op (1= F(2)"(1 + ne(2)) £ (z)da,

where p* < 1 is the optimal price quote which solves 1 — F(p*)"(1 + ne(p*)) = 0. Note that

s <1-— /OP F(z)(1/n + e(z))nF(z)" ' f(z)dz.

1

Now add a = [, nF(x)" ' f(z)dz =1~ F(p*)" < 1 to the last expression, and subtract

1

/ " F@nF@) f(2)ds + / Fla)nF(z)"" f(z)dz

*

n—1

n

o (1 - lF(zo*)"“) -

n+1 n

Note that

*

Ta=1- /Op F(2)(1/n + e(@)nF ()" f(z)dz + a — b,

Next, it is shown that 1 — F(p*)" > nL_H for all n. For the purpose of this argument, the
notation recognizes that p; depends on n. Suppose that the opposite inequality were true. Then,

pr(1 = F(p*)") < 47 for any n, and hence lim,, o0 py,(1 — F(p;;)") < 1, which contradicts that

in the limit the seller earns 1 with probability 1.

Therefore, a > -2, b <

T soa—b> 0 and g < 74, completing the proof. a.

_n_
n+17
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6.2 Proof of Theorem 2 and Corollary 2.1

Proceed by backward induction. In period two, the seller’s problem is
F(p2) "
1—
o (1= (565 ).

F(y)" — F(p5)" — psnF (p5)" ="' f(p5) = 0.

so that p5 = p2(y,n) solves

Regularity A3 implies that the solution is unique, given y. Also, notice that increasing y shifts up
the left-hand side of the last expression, so that A4 implies that p5 must rise to return to equality.

Hence, ps(y,n) is monotonically increasing in y.

Following the same reasoning as in the uniform example, given y the first period price p; (y, n,d)

is such that the marginal buyer is indifferent between buying in either period, hence,

F(y)" —F(pz(y,n))“] [ 1-F(y) ]
F(y) — F(p2(y,n)) | [1=F(y)"]"

The seller will choose y* such as to equate expected marginal revenue from selling in periods one

pi(y,n,0) =y —d(y — p2(y,n))

and two. Expected revenue in either period is the product of period price and probability of sale.
Since an increase in y implies that the probability of selling in period two rises while the probability
of selling in period one falls, and since ps(y, n) is increasing in y, p1(y,n,d) must be monotonically

increasing in y.
Since for any p > 0 and y > 0,
Pr(max{X;,i=1,...,n} < p|X; >y Vi) < Pr(max{X;,i = 1,...,n} < p|X; <y Vi),
it follows that pi(y,n,d) > p2(y,n) for any y,n, d.

Finally, suppose y* were not unique, i.e. 3 y7 < y3, both equating expected marginal revenues

and yielding the same expected revenue. Then, for any n and 9§,
D1 (y;a n, 6) Z pZ(y;a n)a .7 = 17 2
and

Pr(max{X;,i=1,...,n} >y]) > Pr(max{X;,i=1,...,n} >y)
Pr(maX{Xi>i =1,.. ‘7”} € [pQ(yfan)ayﬂ) < Pr(maX{Xi)i =1,... )n} € [p2(y;’n)ay;])

Since by hypothesis expected revenue is equal for yi and y3, it must be that

pl(y;,n,é) > pl(yfanaé)
p2(y5,n) < pa2(yi,n),
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a contradiction to the monotonicity of p2(y,n). Hence y* is unique.

If § = 0, then y is irrelevant. Consider ¢ € (0, 1] and suppose y* = 1. Then, p;(1,n,d) =1 and
p2(1,n) < 1. Therefore, the expected surplus of the marginal buyer, whose valuation is y* = 1, is
zero in period one, and positive in period two. Hence, y = 1 cannot be part of a PBE. Alternatively,
suppose y* = 0. Then, p2(0,n) = 0 and p;(0,n,0) > 0. In this case, the expected surplus of the
marginal bidder is zero in period two and negative in period one. Hence y = 0 cannot be part of

a PBE. Therefore, y* must be in the interior of X'. This completes the proof of the theorem. O

The corollary follows immediately. Part (i) is implied by y* in the interior of X: In any PBE,
since y* < sup{z : € X'}, the seller never finds it optimal to choose a prohibitively high first-
period price which would induce all buyers to wait for the second period. Hence collapsing the
dynamic game to a one-shot game, which is only possible by annihilating the first period subgame,
is not optimal. Since Theorem 2 for § = 1 then implies that expected revenue is higher in the
one-shot game, by continuity of expected revenue in §, there exists be (0,1) such that expected
revenues for the sequential game are higher for all § € [§,1]. Part (ii) follows from y* > 0 in any
PBE: In a one shot game, the seller faces all buyers and hence the price p* targets all buyers; in
the first period of the dynamic game, the seller only faces high valuation buyers with valuations

above y* > 0, and hence the first period price p; (y*,n,d) > p*, targeting only these buyers. a

6.3 Proof of Theorem 3

The game is solve by backward induction. Bidder i’s bidding function in the second auction is

X;
b(Xi7R27n) = XZ - F(u)nildu/F(Xi)nil'
Ro

Bidder i’s expected surplus in this auction, conditional on it taking place, is s2(X;, Ro,n) =
fg; F(u)" 'du/F(y)"!, while the seller’s expected revenue is
X

X - F(u)" 'du/F(X)" ' X € [R,v]|,
Ro

WQ(yaR%n) =F

where the expectation is taken with respect to the distribution of the maximum of the Xj;, i.e.
nF(z)"~! f(z)dz. The seller chooses Ry so as to maximizes this expected revenue, so Ry = Rz (y,n)

solves

n [F(R)" ™ (F(y) - F(R)) - REf(ROF(R3)"] = 0
& F(y) - F(R3) - R3f(R3) = 0.
This implies the well-known result that R = R»(y,n) does not (directly) depend on n. As pointed

out earlier, it does depend on n indirectly, through the dependence of the equilibrium y on n. By

A3, the solution exists and is unique. The last equality implies that y > R2(y, n), as a consequence
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of A2. Also, since raising y shifts up the left-hand side, to return to equality R} has to rise, so

that Rs(y,n) is monotonically increasing in y.

Since the marginal bidder’s discounted expected surplus in the second auction is

Yy
ds2(y, Ra(y,n),n)F(y)" ' =0 F(u)" 'du > 0,
R2(y7n)

the bidding function f for the first auction is shaded taking this amount into consideration, beyond

conventional shading, so that

) F@) e 5 Siraymy F@)"

ﬁ(Xalhn:(S) =X F(X)n_l F(X)n—l

The reserve price of the first auction equals the bid of the marginal bidder. Hence,

fyz n F(u)n_ldu
Ri(y,n,8) = By, y,n,d) = y — § 22l .

F(y)r—!
Also,
G0 =1=0+s (M)H o) + (0 — ) F(y) e T T
ay F(y) ay W T 7

ie. Ri(y,mn,d) is monotonically increasing in y, since Ry (y,n) is.

It remains to be shown that y = 1 can be part of a PBE. To demonstrate this, consider § = 1
and compare expected revenue for y = 1 and y = 1 — ¢, for some ¢ > 0. In terms of expected
revenue, lowering y from 1 to 1 — € entails a gain g(e) due to a lower reserve price in the second
auction, as well as a loss I(€) due to additional bid shading in the first auction. It will be shown
that the net gain at e = 0 is negative - or more precisely, that lim._,o < (g(e) + I(e)) < 0 - so that
the PBE involves y = 1. First, notice that

LoOlems = LW F (R (R0, m) Byt > 0

= nF(Ry(1,n))" (1 - F(Rx(1, n))%Rﬂya n)ly=1

— n—1 f(]-)

= nF(Rx(1,n))" (1 _F(R2(1’n))2f(R2(1,n)) + Ra(1,n) f'(R2(1,n))
d ' n—1 n
GOl = —nf) [ L P

= —nf()Emax{X;,i=1,...,n—1}; X; € [R2(1,n),y]] <O0.

where the second equality uses the first order condition of the auction seller’s period two optimiza-
tion problem, the third the Implicit Function Theorem, applied to the same equation, and the last

follows from integration by parts. Also from the same first order condition,

(F(y) — F(Rx(y,n)))/ f(R2(y,n)) = Ra(y,n) <y.
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Raising y must increase expected auction revenue in the second period, as higher valuation bidders

now participate. Hence, in the notation used in the proof of Theorem 1,

E[max{MR(X;),i=1,...,n}; X; € [Ra,y]] = /R?/ (1—F(z)1 + e(2))n(l — F(x))" ! f(x)dx

must rise. Therefore, for all y,

0 < (1-FAy))n - Fy)" ' fy) -
d

(1= F(Ra)(1+ e(R))n(l = F(R2))" ™ f(Ra) - Ra.

This, together with y > R2(y,n) implies f(y) > f(Rg(y,n))%Rg(y,n). Therefore,

L g@lmo < nR(L MRy (1) (1)
Iles < —nf ()R F(Ra(1, )"

Thus, %(g(e) +1(€))|e=0 < 0. By continuity of expected revenue in §, there exists a § neighborhood
with upper bound 1, [§, 1], such that the preceding argument holds for § € [§,1]. This completes
the proof of the theorem. O

6.4 Proof of Theorem 4

For m = 2, the result is implied by Theorem 2 (which does not require A). Proceed by induction
on m. Consider m > 2, and suppose the result if true for m — 1. The result holds then for Z as

upper bound on X;, i =1,...,n. Hence, there exists a PBE for any § < Z, with

pk(y* g)) = ﬁk(g)’ k:(),...,m—l,
(

(
yl: 7) = g(g)v k707---7m_17

where the dependence on n and § is suppressed for notational convenience.

Given §, choose p,,(§) such that

pu(s) == 80— pna () | UL Pt D [ L= O ]

F(@) = F(Bm-1(®) | [1-f@)"

On the basis of this price for period m, expected revenue 7(g) can be computed as before, given
7, where the period sales probabilities are based analogously on P (7) and §(7), k=0,...,m — 1.
Maximization over § yields the PBE values, based on the maximizer §*. Now argue as before that

7 =0 and § = 1 are not part of a PBE and that §* is unique. This completes the proof. a

6.5 Proof of Theorem 5

The proof uses the following
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Lemma A.1: Suppose A1 — A5 hold in the model for m sequential take-it-or-leave-it offers.

Let ™ = max{p}'(y"™*,n,0) — pi, (y"*,n,0),k=0,...,m}. Then, ™ — 0 as m — oo.

Proof of the Lemma: It follows from the equilibrium condition that, for any k. =1,...,m — 1,

m

= (v) = (i = pi (V) (y

m*)
)

where ag(y™*) < 1 denotes the relative odds of acquiring the item in periods k and k + 1. This
equilibrium condition implies that max{p]*(y™*) — pi*,(y"*),k = 0,...,m + 1} — 0 if, and
only if, max{y™ —y;"*,k = 1,...,m — 1} — 0. Suppose there exist ¢, > 0: pJ* & [q,q + €
Vk = 0,...,m and Ym, while in a neighborhood outside of the interval the result holds. Assume
w.lo.g. g+ e <z Let p™ = inf,, min{py : p* > q + €}, p™ = sup,,, max{py" : pi* < ¢}, and let
7™ be the marginal buyer, indifferent between buying at ™ and p™, and § = inf,,{g"™}. Buyers
with valuations in [§™, §™ + a™] buy at ™ — ¢ + €, while buyers with valuations in [§™ — b™, §™]
buy at price p™ — ¢, for some a™,b™ > 0. The gap in the price path can only be sustained
in equilibrium if there exists a corresponding gap in the limit of the path of the y;**s, i.e. if
lim,, a™ > 0 or lim,, b™ > 0. The probability of acquiring the item at the price following p™,
p™, in the limit is simply lim,, F'(§™ — b)"~1, since, by hypothesis, there is zero probability of ties
in the limit, while the probability of aquiring the item at p™ in the limit is lim,, F(™)"!. By
hypothesis, p™ — p™ — 0 as m — co. Hence, the relative odds of acquisition must converge to one
and therefore it must be that lim,, 8™ = 0. By an analogous argument, lim,, ™ = 0. Hence, in

the limit, max{y™ — y;**;,k=1,...,m — 1} = 0. This proves the Lemma. a

Denote PBE prices by p*, k =0,...,m + 1. By Theorem 4 and Lemma A1, the probability of

an efficient allocation (EA) is
m+1
Pr(EA) = n <(1 = (o ))E )" + D (F}) - F(pkm—l))F(pkm)n_l>
k=1
— n(l—F(@)F@@)"! +/ %F(u)”du as m — 0o
0
= 1.

Hence, the highest valuation bidder acquires the item. Lower valuation bidders expect zero surplus.

By an appeal to the revenue equivalence theorem, lim,, oo ¢ = 7 4. O
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