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Abstract

Since Savage’s seminal work, a state space has been assumed as a primitive, which
requires the analyst to know all the uncertainties a decision maker perceives. Dekel,
Lipman and Rustichini (2001) derive a unique subjective state space from preference
on a suitable domain.

In a dynamic setting, a state space S and a filtration {Ft}T
t=0 over S have been

taken as primitives. We derive the triple (S, {Ft}T
t=0, P ) from preference, where S is a

subjective state space, {Ft}T
t=0 is a subjective filtration over S, and P is a subjective

probability over S. We also show uniqueness of the representation.

Keywords: preference for flexibility, subjective state space, subjective probability,
subjective decision tree.
JEL classification: D81

1 Introduction

1.1 Motivation and Main Results

A state space has been used as the standard tool for modeling uncertainties since Savage [17]
and Anscombe and Aumann [1]. In their models, a state space is taken as a primitive. This
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modeling implicitly requires the analyst (observer) to know all the uncertainties a decision
maker (DM) perceives. However, the DM may have in mind some “subjective” states other
than the objective states, and anticipate that those states are relevant for her decision.
Hence, it is questionable whether the state space can be a primitive. Now we are led to ask
whether a state space can be derived rather than assumed as a primitive. The derivation of
a subjective state space is addressed by Kreps [9, 10] and Dekel, Lipman and Rustichini [2]
(hereafter DLR).

In a dynamic setting, the standard tool for modeling uncertainties is a decision tree
(S, {Ft}T

t=0), where S is a state space and {Ft}T
t=0 is a filtration over S. It has been taken

as a primitive, which requires the analyst to know not only all the uncertainties the DM
perceives, but also how the DM expects those uncertainties to be resolved over time. By
the same reason as outlined above, this modeling seems restrictive. We have to ask whether
both S and {Ft}T

t=0 can be subjective. The derivation of a subjective decision tree, or a
subjective filtration over a subjective state space, is the focus of this paper.

The following table summarizes our results and the relation to previous literature:

Subjective
S {Ft}T

t=0 P
Savage X
Kreps, DLR X
This Paper X X X

In Savage [17], Anscombe and Aumann [1], and their dynamic counterparts, a state space
S and a filtration {Ft}T

t=0 over S are assumed as primitives. This literature derives a
probability measure P over S as a part of the representation. Kreps [9, 10] and DLR derive
S without assuming any objective state space. Since their models are static, filtrations
over S are not relevant. In this paper, the pair (S, {Ft}T

t=0) is derived from preference on a
suitable domain. Moreover, unlike DLR, we provide also a subjective probability measure
P over S. Thus, the triple (S, {Ft}T

t=0, P ) is subjective in this paper.

1.2 Domain

To derive a subjective state space, DLR consider preference over opportunity sets (called
“menus” henceforth) of lotteries. We consider preference over menus of menus of Anscombe-
Aumann acts. Precisely, let Ω be a finite objective state space and ∆(Z) be the set of
lotteries over an outcome space Z. Let H be the set of functions, h : Ω → ∆(Z), called
Anscombe-Aumann acts. Thus, the objective state space Ω is assumed to be payoff-relevant
in the sense that the DM’s payoff is determined once one of those states is realized. 1 We
consider preference º on the domain K(K(H)), where K(·) denotes the set of all non-empty

1The DM may have in mind some subjective states other than the objective states. We can address the
issue of subjective states even when payoff-relevant objective states are taken as primitives.
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compact subsets of “·”. Thus, there are two changes related to DLR: (1) menus of menus
rather than menus; and (2) acts rather than lotteries.

We have in mind the following timing of decisions:

Period 0: choose a menu of menus x0

Period 1−: receive a subjective signal s1

Period 1: choose a menu x1 ∈ x0

Period 2−: receive another subjective signal s2

Period 2: choose an act h ∈ x1

Period 2+: an objective state is realized and the DM receives the lottery prescribed by h

Notice that the above time line, except period 0, is not a part of the formal model.
Especially, subjective signals are not assumed as primitives. However, if the DM has in
mind the above timing of decisions and anticipates subjective signals to arrive gradually over
time, preference in period 0 should reflect her perception of those subjective uncertainties.
That is why K(K(H)) is a relevant domain for deriving a subjective decision tree.

1.3 An Example: Asset Choice Problem

What kind of behavior is consistent with the hypothesis that the DM anticipates subjective
signals to arrive over time? A key is preference for flexibility. If the DM anticipates that
some subjective information is coming later on, she would like to delay a decision until this
information arrives.

Imagine a situation where a DM chooses, by the end of period 2, between the two kinds
of assets,

h1 =

[
$100 ω1

0 ω2

]
, and h2 =

[
0 ω1

$100 ω2

]
,

where ω1 and ω2 are objective states.
First consider the menu of menus {{hi}} for i = 1, 2. If {{hi}} is chosen in period

0, there is no choice afterwards. The DM commits herself right now to choose hi. For
example, this choice object corresponds to the action, such as participating in the futures
market and making a long-term contract to buy the asset in the future.

Suppose that the DM is indifferent between h1 and h2 if she has to commit herself to
one of them. That is,

{{h1}} ∼ {{h2}}.

This ranking presumably reveals that the DM anticipates ω1 and ω2 to be equally likely.
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Even though {{h1}} and {{h2}} are indifferent, the following rankings seem appealing
in terms of flexibility:

{{h1, h2}} º {{h1}, {h2}} º {{h1}}. (1)

If the DM chooses {{h1}, {h2}}, she can delay a decision until period 1. If she chooses
{{h1, h2}}, she can delay a decision until period 2.

Our hypothesis for explaining ranking (1) is as follows: the DM anticipates that subjec-
tive signals arrive both in period 1 and in period 2 and that they convey some information
about the objective states. She will be able to update her initial belief over {ω1, ω2} in
response to those subjective signals. To obtain this new information, the DM would like
to delay a decision.

What subjective decision tree can be derived from ranking (1)? There are four cases:

(i) {{h1, h2}} ∼ {{h1}, {h2}} ∼ {{h1}} ∼ {{h2}};
(ii) {{h1, h2}} ∼ {{h1}, {h2}} Â {{h1}} ∼ {{h2}};
(iii) {{h1, h2}} Â {{h1}, {h2}} ∼ {{h1}} ∼ {{h2}};
(iv) {{h1, h2}} Â {{h1}, {h2}} Â {{h1}} ∼ {{h2}}.

Ranking (i) says that the DM does not care when she commits herself to choose between
h1 and h2. In other words, she does not desire flexibility. This ranking reveals that no
subjective signals are expected to arrive and that the initial belief about the objective
states does not get updated over time.

Ranking (ii) says that the DM strictly desires flexibility in period 1, while she does
not in period 2. This ranking can be justified by the following story: the DM anticipates
that at least two subjective signals will arrive in period 1. One signal suggests that ω1 is
more likely to happen, while the other signal suggests the opposite. If {{h1}, {h2}} has
been chosen, the DM can make a decision contingent upon this new information. Hence,
{{h1}, {h2}} is strictly preferred to {{h1}}. However, since she does not expect another
signal to arrive later on, she is willing to decide in period 1 between h1 and h2. Hence,
{{h1, h2}} and {{h1}, {h2}} are indifferent.

The above reasoning suggests that the DM has a subjective decision tree such as Figure
1.

period 0 period 1 period 2

Figure 1: subjective decision tree deduced from ranking (ii)

The opposite explanation works for ranking (iii). That is, the DM presumably antici-
pates no subjective signal in period 1, while she expects at least two subjective signals to
arrive in period 2. That is why she does not desire flexibility in period 1, while she does in
period 2. We can deduce a subjective decision tree such as Figure 2.
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period 0 period 1 period 2

Figure 2: subjective decision tree deduced from ranking (iii)

Finally, ranking (iv) reveals that the DM anticipates at least two subjective signals to
arrive in period 1 as well as in period 2. Hence, she strictly desires flexibility both in period
1 and in period 2. Presumably, the DM has a subjective decision tree such as Figure 3.

period 0 period 1 period 2

Figure 3: subjective decision tree deduced from ranking (iv)

What is the importance of taking into account menus of menus rather than menus?
In other words, what is the main difference between K(K(H)) and K(H) for our purpose?
Though K(H) is relevant for deriving subjective uncertainties, it is too small to distinguish
the timing of resolution of those uncertainties. 2 For example, each of ranking (ii), (iii),
and (iv) implies

{{h1, h2}} Â {{h1}} ∼ {{h2}},
which, in terms of elements of K(H), translates into the ranking

{h1, h2} Â {h1} ∼ {h2}.
Hence, the three rankings (ii), (iii) and (iv) cannot be discriminated on K(H).

1.4 Functional Form

We axiomatize preference on K(K(H)) having the following representation: there exist (i)
a “full” state space S1 × S2 × Ω, where S1 and S2 are sets of subjective signals, (ii) the
filtration {Ft}3

t=0 over S1 × S2 × Ω generated by the product structure, (iii) a countably
additive probability measure P on S1 × S2 × Ω, and (iv) a non-constant mixture linear
function u : ∆(Z) → R such that U0 : K(K(H)) → R represents preference, where

Ut(xt) ≡ EP
[

max
xt+1∈xt

Ut+1(xt+1)

∣∣∣∣Ft

]
, t = 0, 1, 2

2This difference is analogous to the difference between a static model for lotteries and Kreps and
Porteus [11] or Epstein and Zin [5], where the DM may distinguish two compounded lotteries even though
these lotteries induce the same distribution on the outcome space; that is, the timing of resolution of risk
(objective uncertainties) matters.
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with the convention maxx3∈x2 U3(x3) ≡ u(x2) for all x2 ∈ H. For each xt, Ut(xt) : S1 ×
S2 × Ω → R is an Ft-measurable function. Thus, this representation is characterized by
two components: the filtered probability space (S1 × S2 × Ω, {Ft}3

t=0,P) and the mixture
linear function u. Moreover, we show uniqueness of the representation.

The above representation is interpreted as follows: the DM behaves as if she has in
mind the time line described in Section 1.2 and anticipates subjective signals to arrive
gradually over time. The DM certainly knows her future risk preference, while she is not
sure of future beliefs about Ω. Hence, subjective uncertainty concerns beliefs about Ω. In
response to a subjective signal, the DM will update her initial belief over Ω.

1.5 Related Literature

Kreps [9, 10] provides an axiomatic foundation of a subjective state space. DLR show
uniqueness of the representation by imposing a richer structure on the domain. Let Z be
finite and P(·) denote the set of all non-empty subsets of “·”. DLR consider P(∆(Z)) as the
domain. Though they have several different models, we focus on the additive representation
with a non-negative measure, that is, the functional form U : P(∆(Z)) → R defined by

U(x) =

∫

S

sup
l∈x

u(l, s) dµ(s), (2)

where S is a state space, µ is a countably additive non-negative measure on S, and u(·, s) :
∆(Z) → R is a state-dependent mixture linear function. They show that the set of ex-post
preferences induced from {u(·, s)}s∈S is uniquely determined from preference. This set is
called the subjective state space.

Rustichini [16] addresses a multi-period extension of DLR. Let C be the set of consump-
tions and C∞ be the set of infinite consumption streams. His domain is P(C∞). He fails
to derive a subjective decision tree because his model is essentially static in the sense that
all subjective uncertainties are resolved in the next period. Modica [12] considers a menu
of menus within the Kreps’s framework. That is, his domain is P(P(Z)). This framework,
however, cannot pin down the representation as in Kreps [9]. Kraus and Sagi [8] take a
different approach to address intertemporal choice consistent with preference for flexibility.
In their model, incompleteness of preference is essential.

We may be tempted to interpret µ in (2) as a belief of the DM about the subjective un-
certainties. However, µ is not unique because of the state-dependence of the ex-post utility
functions. Precisely, there may exist distinct components (S, u(·, s), µ) and (S ′, u′(·, s′), µ′)
representing the same preference but satisfying µ 6= µ′ even if S = S ′. Thus, their model
fails to derive a subjective probability over a subjective state space.

The special nature of the domain H helps us to derive meaningful probabilities. Unlike
preference on ∆(Z), an SEU representation on H has two components: a risk preference
and a belief over Ω. In our model, subjective uncertainties are related to beliefs over Ω,
and do not affect the DM’s risk preference. This state-independence of risk preference is
the reason why we can pin down a subjective probability.
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Domains consisting of menus with some objective states are not new. Epstein [4] in-
troduces the domain P(H) and provides non-Bayesian updating models. In this setup, Ω
is assumed as a “complete” description of the world in the sense that the DM’s payoff is
determined once one of those states is realized. Nevertheless, the issue of subjective uncer-
tainty is still relevant because the DM may expect some subjective signals to arrive prior
to the realization of the objective states.

As has been pointed out, when considering P(H), we have in mind the following timing
of decisions: (1) the DM chooses a menu of acts; (2) after receiving a subjective signal,
she chooses an act out of the menu; (3) an objective state is realized and she receives
the outcome prescribed by the act. Hence, in this domain, subjective uncertainties are
resolved first. Presumably the realized subjective state conveys some information about
the objective states. Later on, one of the objective states is realized.

Nehring [13], Ghirardato [6] and Ozdenoren [14] are other literature considering menus
with objective states. This literature addresses the issue of an “incomplete” state space.
When the DM perceives Ω to be a coarse or incomplete description of the world, she
should anticipate some subjective uncertainties to remain unresolved even after one of the
objective states is realized. To capture the DM’s coarse perception of the world, the above
three authors take an “opportunity act” as a choice object. That is, their domains are sets
of set-valued Savage acts or of set-valued Anscombe-Aumann acts.

The difference between those domains and P(H) is the timing of decisions. In the above
three literature, (1) the DM chooses an opportunity act; (2) an objective state is realized
and she receives the menu prescribed by the act; (3) after observing a subjective state, she
chooses an outcome out of the menu. Hence, the order in which subjective and objective
uncertainties resolve is reversed.

Finally, notice that, on the sub-domain K(K(∆(Z))) ⊂ K(K(H)), our representation
collapses to the following functional form without any subjective states,

U(x0) = max
x1∈x0

max
l∈x1

u(l),

which does not coincide with the multi-period counterpart of DLR’s additive representation.
Therefore, our representation is not a generalization of DLR. As shown in Takeoka [19],
the generalization can be achieved by the similar argument to our main result if one of our
axioms is dropped.

2 Model

2.1 Domain: Formal Definition

Let Ω be a finite objective state space with #Ω = n. Let Z be a compact metric outcome
space. Let ∆(Z) be the set of all Borel probability measures over Z and H the set of all
functions, h : Ω → ∆(Z), called Anscombe-Aumann acts (henceforth acts). Notice that
∆(Z) is a compact metric space under the weak convergence topology and H is also a
compact metric space under the product topology.
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Let K(H) be the set of all non-empty compact subsets of H. Generic elements are
denoted by x1, y1, · · · , and interpreted as menus or opportunity sets of acts. Endow K(H)
with the Hausdorff metric. Details are relegated to Appendix A.

Let K(K(H)) be the set of all non-empty compact subsets of K(H) with the Hausdorff
metric. Generic elements are denoted by x0, y0, · · · , and interpreted as menus of menus of
acts. The assumptions about the timing of decisions are in Section 1.2.

Preference º is defined on D ≡ K(K(H)).

2.2 Axioms

The following five axioms on º are formally identical to those of DLR, but are imposed
here on K(K(H)) rather than on K(∆(Z)).

AXIOM 1 (Order): º is complete and transitive.

AXIOM 2 (Continuity): For all x0 ∈ D, {z0 ∈ D|x0 º z0} and {z0 ∈ D|z0 º x0} are
closed.

AXIOM 3 (Strong Nondegeneracy): There exist l, l′ ∈ ∆(Z) such that {{l}} Â {{l′}}.

Axiom 3 is stronger than that of DLR, which requires in our setting that there exist
x0, x

′
0 ∈ D such that x0 Â x′0.

Define the mixture

λx1 + (1− λ)x′1 ≡ {λh + (1− λ)h′|h ∈ x1, h
′ ∈ x′1}, (3)

for any x1, x
′
1 ∈ K(H) and λ ∈ [0, 1], and

λx0 + (1− λ)x′0 ≡ {λx1 + (1− λ)x′1|x1 ∈ x0, x
′
1 ∈ x′0},

for any x0, x
′
0 ∈ D and λ ∈ [0, 1].

AXIOM 4 (Independence): For all x0, y0, z0 ∈ D and for all λ ∈ (0, 1],

x0 Â y0 ⇒ λx0 + (1− λ)z0 Â λy0 + (1− λ)z0.

Independence can be justified as in DLR by two separate steps. Take any x1, z1 ∈ K(H)
and λ ∈ [0, 1]. As the first step, consider the lottery λ◦x1+(1−λ)◦z1, which assigns x1 with
probability λ and z1 with probability (1 − λ). vNM independence axiom implies that, for
any λ ∈ (0, 1], if x1 is preferred to y1, then λ◦x1+(1−λ)◦z1 is preferred to λ◦y1+(1−λ)◦z1.
As the second step, consider how the DM ranks λ ◦ x1 + (1− λ) ◦ z1 and λx1 + (1− λ)z1.
The difference between these two objects is when the randomization (λ, 1−λ) gets realized.
For the former, this randomization gets realized first, and, subsequently, choice out of the
realized menu takes place, while this order is reversed for the latter. As long as the DM
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surely believes that her future preference on H satisfies mixture linearity, she does not care
about this difference. Therefore, it follows from the above two steps that preference on
K(H) will satisfy Independence. By applying the same argument twice, Independence on
K(K(H)) can be justified whenever the DM surely anticipates her future preference on H
to satisfy mixture linearity.

The next axiom says that a bigger menu of menus is always weakly preferred.

AXIOM 5 (Monotonicity): For all x0, x
′
0 ∈ D, x0 ⊂ x′0 ⇒ x′0 º x0.

If the DM chooses a bigger menu of menus, she can retain more flexibility until period
1. Hence, this axiom is consistent with preference for flexibility.

The axioms proposed from now on have no counterparts in DLR. The next axiom is
relevant only for the multi-period setup and says that the DM always weakly prefers to
delay a decision.

AXIOM 6 (Aversion to Commitment): For all x′0 ∈ D and for all finite x0 ∈ D,

x′0 ∪ {∪x1∈x0x1} º x′0 ∪ x0.

For example, let x′0 = {{h0}} and x0 = {{h1}, {h2}}. Then,

x′0 ∪ x0 = {{h0}, {h1}, {h2}}, and, (4)

x′0 ∪ {∪x1∈x0x1} = {{h0}, {h1, h2}}. (5)

If the DM chooses (5), she can always choose a weakly bigger menu in period 1 in contrast
with (4). That is, (5) leaves more options open until period 2 than does (4). Hence, it is
appealing in terms of flexibility that (5) is weakly preferred to (4).

For any h ∈ H, define

O1(h) ≡ {h′ ∈ H | {{h(ω)}} º {{h′(ω)}} for all ω}.

That is, O1(h) is the set of all acts dominated by h state by state in terms of commitment
ranking over lotteries. This dominance notion is applicable to any menu. For each x1 ∈
K(H), let

O1(x1) ≡ ∪h∈x1O1(h). (6)

That is, O1(x1) is the set of all acts dominated by some act in x1. Lemma B.4 (i) in
Appendix B.2 ensures that O1(x1) is a well-defined menu, that is, O1(x1) ∈ K(H). Notice
also that x1 ⊂ O1(x1). Finally, this dominance notion is extended to any menu of menus
by taking the operation O1 element by element. That is, for each x0 ∈ D,

O(x0) ≡ {O1(x1) |x1 ∈ x0}.

Lemma B.4 (iii) ensures that O(x0) ∈ D.
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AXIOM 7 (Risk Preference Certainty): For all x0 ∈ D, x0 ∼ O(x0).

This axiom can be justified as follows: suppose that the DM surely knows her future risk
preference, that is, the ranking over lotteries. Then commitment ranking {{l}} º {{l′}},
which is ex ante evaluation of lotteries, coincides with the risk preference in period 2. Since
any act in O1(h) \ {h} is dominated by h in terms of this risk preference, the DM should
be indifferent between {h} and O1(h). Similarly, she should be indifferent between x1 and
O1(x1) because the additional part O1(x1) \ x1 is surely valueless. Consequently, x0 and
O(x0) should be indifferent.

3 Representations

3.1 Second-Order Additive SEU Representation

Consider the functional form U0 : K(K(H)) → R defined by

U0(x0) ≡
∫

S1

max
x1∈x0

U1(x1, s1) dµ0(s1), (7)

where

U1(x1, s1) ≡
∫

S2

max
h∈x1

U2(h, s1, s2) dµ1(s2|s1),

U2(h, s1, s2) ≡
∑
ω∈Ω

u(h(ω)) µ2(ω|s1, s2),

S1 and S2 are topological state spaces, µ0 is a countably additive probability measure over
S1, µ1 : S1 → ∆(S2) and µ2 : S1 × S2 → ∆(Ω) are conditional probability systems, and
u : ∆(Z) → R is a non-constant mixture linear function. 3

An interpretation of this functional form is as follows: The DM behaves as if she has
in mind the time line described in Section 1.2 and anticipates subjective signals to arrive
gradually over time. She will update her initial belief over Ω in response to those subjective
signals. She is certain about risk preference u, but not sure of future beliefs about Ω. Thus
subjective uncertainty concerns beliefs about Ω.

Definition 3.1. Preference º on D admits a second-order additive SEU representation if
there exists functional form (7) with components ({St}2

t=1, {µt}2
t=0, u) representing º.

3Suppose that X and Y are topological spaces. The σ-algebra over X, denoted by B(X), is assumed
to be the Borel σ-algebra. The set of countably additive probability measures on X, denoted by ∆(X),
is endowed with the weak convergence topology. A function f : X → ∆(Y ) is said to be a conditional
probability system if f is measurable with respect to B(X) and B(∆(Y )).
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Any second-order additive SEU representation with ({St}2
t=1, {µt}2

t=0, u) determines a
filtered probability space (S, {Ft}2

t=0, P ) as we now describe. First, a countably additive
probability measure P over S1 × S2 is defined as the unique measure satisfying

P (E1 × E2) ≡
∫

E1

µ1(E2|s1) dµ0(s1),

for all E1 ∈ B(S1) and E2 ∈ B(S2). The set S is defined as the support of P . Finally, the
product structure of S1 × S2 induces the filtration {Ft}2

t=0 over S as follows:

F0 ≡ {S},
F1 ≡ {Ss1 | s1 ∈ supp(µ0)},
F2 ≡ {{(s1, s2)} | (s1, s2) ∈ S},

where Ss1 ≡ {(s1, s2) | (s1, s2) ∈ S}. 4 Since the DM has no information in period 0, F0 is
the null partition. She expects to receive a subjective signal s1 in period 1. The remaining
subjective uncertainties conditional on these signals are captured by F1. Since all subjective
uncertainties are resolved in period 2, F2 is the discrete partition. Notice that the objective
uncertainties, that is, Ω, still remain unresolved in period 2.

A second-order additive SEU representation can be rewritten as in Section 1.4. Let
S×Ω be the “full” state space. Since the conditional probability system µ2 is regarded as a
measurable function from S into ∆(Ω), the pair (P, µ2) determines the probability measure
P over S × Ω. The filtration {F∗

t }3
t=0 over S × Ω can be defined by F∗

t ≡ {E × Ω|E ∈ Ft}
for t = 0, 1, 2, and by the discrete partition F∗

3 over S × Ω. Then,

Ut(xt) = EP

[
max

xt+1∈xt

Ut+1(xt+1)

∣∣∣∣∣F
∗
t

]
, t = 0, 1, 2

with the convention maxx3∈x2 U3(x3) ≡ u(x2) for all x2 ∈ H. For each xt, Ut(xt) : S×Ω → R
is an F∗

t -measurable function.

3.2 Subjective Decision Tree and Canonical Representation

Let ({St}2
t=1, {µt}2

t=0, u) be a second-order additive SEU representation and (S, {Ft}2
t=0, P )

be the derived filtered probability space. Notice that a state (s1, s2) ∈ S itself should not
matter for the DM. She only cares about the information associated with the state, that
is, the belief µ2(s1, s2) ∈ ∆(Ω). Hence, the set of all µ2(s1, s2) as (s1, s2) varies over S is
effectively identified with the subjective state space of the DM. Similarly, {Ft}2

t=0 and P are
relevant for the DM only because they, together with µ2 : S → ∆(Ω), induce conditional
distributions over ∆(Ω).

More precisely, the filtered probability space (S, {Ft}2
t=0, P ) derived from a represen-

tation admits a reduced form as we now describe. Let P ◦ µ−1
2 ∈ ∆(∆(Ω)) denote the

4For any countably additive measure ν, supp(ν) denotes its support.

11



distribution over ∆(Ω) induced by the mapping µ2 : (S, P ) → ∆(Ω). This distribution is
regarded as the initial prior over ∆(Ω). We call

S ≡ supp(P ◦ µ−1
2 ) ⊂ ∆(Ω)

the subjective state space. After receiving a signal s1 in period 1, the DM updates P by
Bayes’ Rule, that is, P (·|s1) = µ1(·|s1) ∈ ∆(S2). This updated belief and the mapping µ2

induce the conditional distribution over S ⊂ ∆(Ω), which is denoted by µ1(·|s1) ◦ µ−1
2 . In

period 0, the DM expects s1 according to µ0, which is the marginal distribution of P on S1.
Let µ∗0 ∈ ∆(∆(S)) be the distribution of µ0 induced by the mapping s1 7→ µ1(·|s1) ◦ µ−1

2 .
This second-order belief, µ∗0, is interpreted as a “probability tree” over S. The pair (S, µ∗0)
summarizes all the relevant information for the DM, and is called the subjective decision
tree.

The above argument suggests that the information in period 0 can be summarized by
a probability measure µ0 ∈ ∆(∆(∆(Ω))). We are led to the following definition:

Definition 3.2. A functional U0 : D → R is canonical if there exist µ0 ∈ ∆(∆(∆(Ω)))
and a non-constant mixture linear function u : ∆(Z) → R such that

U0(x0) =

∫

∆(∆(Ω))

max
x1∈x0

U1(x1, µ) dµ0(µ), (8)

where

U1(x1, µ) =

∫

∆(Ω)

max
h∈x1

U2(h, p) dµ(p), for µ ∈ ∆(∆(Ω)),

U2(h, p) =
∑

ω

u(h(ω))p(ω), for p ∈ ∆(Ω).

The next proposition ensures that we can pay attention to canonical representations
without loss of generality. A proof can be found in Appendix B.1.

Proposition 3.1.

(i) Any canonical representation (µ0, u) is a second-order additive SEU representation.

(ii) Let (S, µ∗0) be the subjective decision tree derived from a second-order additive SEU
representation ({St}2

t=1, {µt}2
t=0, u). Then, the canonical form (8) with components

(µ∗0, u) represents the identical preference.

Now we are ready to state the main theorem. See Appendix B.2 for a proof.

Theorem 3.1. The following statements are equivalent:

12



(a) Preference º on D satisfies Order, Continuity, Strong Nondegeneracy, Independence,
Monotonicity, Aversion to Commitment, and Risk Preference Certainty.

(b) Preference º on D admits a canonical representation (µ0, u).

One might expect that DLR axioms, that is, Axiom 1-5, on D imply a representation
of the form of DLR’s additive representation. That is,

U0(x0) =

∫

S1

max
x1∈x0

U1(x1, s1) dµ0(s1), (9)

where S1 is a state space, µ0 is a non-negative measure over S1, and U1(·, s1) : K(H) → R
is a state-dependent utility function over menus. In order to obtain (9), we have to deal
with functionals U1(·, s1) over the infinite dimensional space K(H), while DLR rely heavily
on the fact that their menus are subsets of the finite dimensional space ∆(Z). 5 Hence,
even the “static” result (9) is not straightforward.

Moreover, to go from (9) to a second-order additive SEU representation, U1(·, s1) has
to be rewritten as

U1(x1, s1) =

∫

S2

max
h∈x1

U2(h, s1, s2) dµ1(s2|s1). (10)

To ensure this, we use Aversion to Commitment. From the argument of DLR, U1(·, s1) can
be taken to be mixture linear. Hence, we can hope that the ex-post preference induced
by U1(·, s1) satisfies Order, Continuity and Independence. However, Monotonicity may not
be inherited. That is, DLR axioms do not ensure that U1(y1, s1) ≤ U1(x1, s1) whenever
y1 ⊂ x1 for all s1 ∈ S1. Moreover, we cannot directly impose Monotonicity on each ex-
post preference because U1(·, s1) is a part of the representation. Aversion to Commitment
indirectly ensures Monotonicity of the ex-post preferences.

Finally, in a second-order additive SEU representation, each U2(·, s1, s2) : H → R differs
only in the beliefs over Ω, not in the risk preference. To reduce the differences in the utility
functions over acts to the differences in beliefs, we use Risk Preference Certainty. As shown
in the next section, this axiom has the added benefit of pinning down a unique subjective
probability.

4 Uniqueness

In this section, we discuss uniqueness of representations. We show first that preference on
D admits a unique canonical representation. A proof is relegated to Appendix B.3.

Theorem 4.1. If two canonical forms (µi
0, u

i), i = 1, 2, represent the same preference º
on D, then:

5When Z is finite, ∆(Z) can be identified with a compact convex subset of a finite dimensional Euclidean
space.
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(i) u1 and u2 are cardinally equivalent; and

(ii) µ1
0 = µ2

0.

Unlike DLR, Theorem 4.1 pins down a unique probability measure. As mentioned in
Section 1.5, this is made possible by the state-independence of risk preference.

Next we consider uniqueness of a second-order additive SEU representation. Take two
components, ({Si

t}2
t=1, {µi

t}2
t=0, u

i), i = 1, 2, representing the same preference. To show
uniqueness, we have to compare these two representations somehow. However, S1

1 and
S2

1 need not coincide in the set-theoretic sense because they include subjective signals,
which can be anything. Consequently, µ1

0 and µ2
0 need not be comparable. To avoid such

trivial non-uniqueness, we pay attention to the subjective decision trees derived from those
representations. As mentioned in Section 3.2, all the relevant information described by
a second-order additive SEU representation can be summarized by its subjective decision
tree. The following theorem shows that preference on D uniquely determines the subjective
decision tree:

Theorem 4.2. If two second-order additive SEU representations, ({Si
t}2

t=1, {µi
t}2

t=0, u
i),

i = 1, 2, represent the same preference º on D, then:

(i) u1 and u2 are cardinally equivalent; and

(ii) (S1, µ1∗
0 ) = (S2, µ2∗

0 ).

This result follows from Proposition 3.1 (ii) and Theorem 4.1. Details can be found in
Appendix B.4.

Finally, we clarify the connection between a canonical representation and its subjective
decision tree. As shown in Proposition 3.1 (i), (µ0, u) can be regarded as a second-order
additive SEU representation. Hence, the subjective decision tree (S, µ∗0) can be derived
from the representation as in Section 3.2. The following is an immediate consequence of
Proposition 3.1 (ii) and Theorem 4.1:

Corollary 4.1. Let (S, µ∗0) be the subjective decision tree derived from a canonical repre-
sentation (µ0, u). Then µ∗0 = µ0.

5 Special Cases

Some readers might think that how many times the DM expects subjective signals is struc-
turally fixed and equal to two by considering preference on K(K(H)). This is not necessarily
the case because, as illustrated in Section 1.3, the DM may expect subjective signals to ar-
rive just once. This section is devoted to explaining that the number of times of subjective
signals depends on preference, not necessarily on the structure of the domain.

14



Take a canonical representation (µ0, u). There exist two cases where the DM anticipates
subjective signals to arrive just once. At one case, the DM expects no subjective signal in
period 1. This case can be captured by #supp(µ0) = 1. At the other case, the DM expects
all subjective uncertainties to be resolved by the end of period 1 and hence no subjective
uncertainty to remain in period 2. In other words, subjective signals in period 1 are fully
informative. This corresponds to the case where #supp(µ) = 1 for any µ ∈ supp(µ0).
Figure 4 shows the subjective decision trees associated with these two cases.

(1) no signal in period 1 (2) no signal in period 2

Figure 4: special cases

As shown below, these special cases are obtained as corollaries of Theorem 3.1 if one of
the axioms is replaced with a stronger axiom.

5.1 No Subjective Signal in Period 1

The next axiom states that the DM does not desire flexibility in period 1.

AXIOM 5′ (Strategic Rationality): For all x′0, x0 ∈ D, x′0 º x0 ⇒ x′0 ∼ x′0 ∪ x0.

Kreps [9] shows that º on P(Z) satisfies Order and Strategic Rationality if and only if
there exists a utility function u : Z → R such that U : P(Z) → R, defined by

U(x) ≡ sup
z∈x

u(z),

represents º. That is, the DM surely knows future preference over Z. In other words,
she anticipates no subjective signal regarding future preference. Analogously, Strategic
Rationality in our model implies that the DM expects no subjective signal in period 1.

Notice that Order and Strategic Rationality imply Monotonicity. Indeed, take any x0, x
′
0

with x0 ⊂ x′0. Order implies x0 º x′0 or x′0 º x0. If x0 º x′0, Strategic Rationality implies
x0 ∼ x0 ∪ x′0 = x′0, and hence x′0 º x0.

If Monotonicity is replaced with Strategic Rationality in Theorem 3.1, the following is
obtained as a corollary:

Corollary 5.1. The following statements are equivalent:

(a) Preference º on D satisfies Order, Continuity, Strong Nondegeneracy, Independence,
Strategic Rationality, Aversion to Commitment, and Risk Preference Certainty.

(b) Preference º on D admits a canonical representation (µ0, u) with #supp(µ0) = 1.

See Appendix B.5 for a proof.
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5.2 No Subjective Signal in Period 2

The next axiom states that it is not valuable to delay a decision until period 2.

AXIOM 6′ (Neutrality to Commitment): For all x′0 ∈ D and for all finite x0 ∈ D,

x′0 ∪ {∪x1∈x0x1} ∼ x′0 ∪ x0.

This axiom reveals that the DM expects all subjective uncertainties to be resolved by
the end of period 1.

Clearly, Neutrality to Commitment implies Aversion to Commitment. If Aversion to
Commitment is replaced with Neutrality to Commitment in Theorem 3.1, the following is
obtained as a corollary:

Corollary 5.2. The following statements are equivalent:

(a) Preference º on D satisfies Order, Continuity, Strong Nondegeneracy, Independence,
Monotonicity, Neutrality to Commitment, and Risk Preference Certainty.

(b) Preference º on D admits a canonical representation (µ0, u) such that #supp(µ) = 1
for all µ ∈ supp(µ0).

A proof can be found in Appendix B.6.

6 Interpersonal Comparisons

In this section, we compare preferences on D having canonical representations (µ0, u) in
terms of preference for flexibility, and provide behavioral definitions capturing distinct
attitudes toward resolution of subjective uncertainty.

Consider two agents, denoted by i = 1, 2. Agent i has preference ºi on D admitting
a canonical representation (µi

0, u
i). Let (S i, µi

0) be agent i’s subjective decision tree and
Si

1 ≡ supp(µi
0) be the set of agent i’s subjective signals in period 1. Throughout this

section, we assume the following conditions:

Finite Support (FS): µi
0 and each µi ∈ supp(µi

0) have finite supports.

Identical Risk Preference (IR): º1 and º2 are identical on ∆(Z), that is, for any
l, l′ ∈ ∆(Z), {{l}} Â1 {{l′}} if and only if {{l}} Â2 {{l′}}.

Under FS, Si
1 is finite. Moreover, S i can be written as ∪µ∈Si

1
supp(µ). 6 Hence, S i is also

finite. Under IR, without loss of generality, we can assume u1 = u2 = u.

Definition 6.1.

6This follows from Corollary 4.1 and Lemma B.8.
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(i) º2 desires more flexibility than º1 if, for any x0, x
′
0 ∈ D with x0 ⊂ x′0,

x′0 Â1 x0 ⇒ x′0 Â2 x0.

(ii) º2 desires more period 2-flexibility than º1 if, for any x1, x
′
1 ∈ K(H) with x1 ⊂ x′1,

{x′1} Â1 {x1} ⇒ {x′1} Â2 {x1}.
(iii) º2 expects later resolution of subjective uncertainty than º1 if:

(1) for any x1, x
′
1 ∈ K(H) with x1 ⊂ x′1, {x′1} Â1 {x1} ⇔ {x′1} Â2 {x1}; and

(2) for any finite x0 ∈ D and x1 ≡ ∪x′1∈x0
x′1, {x1} Â1 x0 ⇒ {x1} Â2 x0.

Part (i) says that, whenever agent 1 strictly prefers a bigger menu of menus, so does
agent 2. As an example, consider the following rankings:

{{h1, h2}} Âi {{h1}, {h2}} Âi {{h1}} ºi {{h2}}.
Monotonicity and Aversion to Commitment imply {{h1, h2}, {h1}, {h2}} ∼i {{h1, h2}}.
Thus, we have

{{h1, h2}, {h1}, {h2}} Âi {{h1}, {h2}} Âi {{h1}}. (11)

Notice that both strict rankings in (11) are consistent with Monotonicity. The second
ranking in (11) seems concerned with preference for flexibility in period 1, while the first
ranking in (11) says that the DM prefers to delay a decision until period 2. Presumably, she
anticipates some subjective uncertainties to remain unresolved even after seeing a signal in
period 1. The first ranking would reflect preference for flexibility in period 2, conditional on
signals in period 1. Therefore, Monotonicity captures two kinds of preference for flexibility.
Part (i) says that agent 2 is more sensitive to flexibility in period 1 as well as to flexibility
in period 2, given the information in period 1.

Part (ii) says that, whenever agent 1 prefers to commit herself to a bigger menu, so
does agent 2. Once agent i commits herself to a menu x1, she faces x1 in period 2 because
she has to choose x1 in period 1 no matter what signal arrives. Hence, agent i is only
concerned with the subjective uncertainties in period 2, but does not care about how those
uncertainties are resolved over time. Part (ii) presumably implies that agent 2 perceives
more subjective uncertainties than does agent 1.

Imagine two decision trees such that both trees have identical terminal nodes, but one
filtration is finer than the other. Part (iii) is intended for such a comparison. Condition
(1) says that agent 1 strictly prefers to commit herself to a bigger menu if and only if agent
2 does too. That is, both agents value flexibility in period 2 identically – presumably, they
have identical subjective state spaces. Condition (2) says that, whenever agent 1 strictly
prefers to delay a decision until period 2, so does agent 2. Presumably, this is because agent
2 anticipates more subjective uncertainties to remain unresolved even after seeing a signal
in period 1. In other words, agent 2 expects later resolution of subjective uncertainty than
does agent 1.
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Notice that part (i) implies part (iii.2). Indeed, Monotonicity and Aversion to Com-
mitment imply {x1} ∼i {x1} ∪ x0.

7 Hence, (iii.2) can be rewritten as: {x1} ∪ x0 Â1 x0 ⇒
{x1}∪x0 Â2 x0, which is a special case of part (i). Since the ranking {x1}∪x0 Âi x0 corre-
sponds to the first ranking in (11), (iii.2) is concerned with period 2-flexibility, conditional
on signals in period 1.

Both of part (ii) and part (iii.2) capture preference for flexibility in period 2. The
difference is that the ranking {x1} Âi x0 reflects the agent’s expectation over the subjective
uncertainties conditional on signals in period 1, while the commitment ranking is ex ante,
prior to knowing signals in period 1.

The above behavioral definitions admit the following characterizations. Proofs can be
found in Appendix B.7.

Theorem 6.1. Assume FS and IR. Then:

(i) º2 desires more flexibility than º1 if and only if S1
1 ⊂ S2

1 .

(ii) º2 desires more period 2-flexibility than º1 if and only if S1 ⊂ S2.

(iii) º2 expects later resolution of subjective uncertainty than º1 if and only if S1 = S2,
and for any µ1 ∈ S1

1 , there exists µ2 ∈ S2
1 such that supp(µ1) ⊂ supp(µ2).

Part (i) says that agent 2 desires more flexibility than agent 1 if and only if agent 2
expects more subjective signals to arrive in period 1 than does agent 1.

Part (ii) says that agent 2 desires more period 2-flexibility than agent 1 if and only
if the subjective state space of agent 2 is bigger than that of agent 1. Two remarks are
in order. Part (ii) is the counterpart of Theorem 2 (1) of DLR (p. 910). 8 Second, since
S1

1 ⊂ S2
1 implies S1 ⊂ S2, part (i) and (ii) imply that º2 desires more period 2-flexibility

than º1 whenever º2 desires more flexibility than º1.
The condition supp(µ1) ⊂ supp(µ2) means that µ1 assigns probability one to a smaller

event than does µ2. In that sense, µ1 is more informative than µ2. Part (iii) says that
agent 2 expects later resolution of subjective uncertainty than does agent 1 if and only if
they perceive identical subjective states, and for any signal of agent 1, agent 2 expects at
least one less informative signal in period 1.

Part (iii) is weaker than saying that one subjective decision tree is finer than the other.
Since µ ∈ Si

1 is a belief over ∆(Ω), it is possible that supp(µ) ∩ supp(µ′) 6= ∅ even if µ
and µ′ are distinct signals. If Si

1 is “partitional”, that is, supp(µ) ∩ supp(µ′) = ∅ for all
µ, µ′ ∈ Si

1, part (iii) is equivalent to saying that (S2, µ2
0) is “finer” than (S1, µ1

0).

7By Monotonicity, {x1} ∪ x0 ºi {x1}. The other direction follows from Lemma B.1 in Appendix B.2.
8In Theorem 2 (1) of DLR, the implication only works in one direction. If preference satisfies Mono-

tonicity, the other direction is also true.
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A Hausdorff Metric

Let d be a metric on H. Let

d(h, x1) ≡ min
h′∈x1

d(h, h′), and e(x′1, x1) ≡ max
h′∈x′1

d(h′, x1).

For each x1, y1 ∈ K(H), define

dh(x1, y1) ≡ max[e(x1, y1), e(y1, x1)].

Then, dh is called the Hausdorff metric on K(H). It is known that K(H) is a compact metric
space under this metric.

The Hausdorff metric on D is similarly constructed from dh. Let

D(x1, x0) ≡ min
x′1∈x0

dh(x1, x
′
1), and E(x′0, x0) ≡ max

x′1∈x′0
D(x′1, x0).

For each x0, y0 ∈ D, let

dH(x0, y0) ≡ max[E(x0, y0), E(y0, x0)].

Since K(H) is compact under the Hausdorff metric dh, so is K(K(H)) under dH .

B Proofs

B.1 Proof of Proposition 3.1

(i) Let (µ0, u) be a canonical representation. Let S1 ≡ supp(µ0) and S2 ≡ ∆(Ω). Define µ1 :
S1 → ∆(S2) as the identity mapping, that is, µ1(s1) = s1. Define µ2 : S1 × S2 → ∆(Ω) by
µ2(s1, s2) = s2. Since they are continuous, µ1 and µ2 are measurable with respect to the Borel
σ-algebra.

(ii) Let (S, µ∗0) be the subjective decision tree derived from ({St}2
t=1, {µt}2

t=0, u). Let ϕ(s1) ≡
µ1(·|s1) ◦ µ−1

2 ∈ ∆(∆(Ω)). That is, ϕ(s1) is the distribution of µ1(s1) induced by µ2 : S → ∆(Ω).
By definition, µ∗0 is the distribution of µ0 induced by the mapping ϕ : S1 → ∆(∆(Ω)). By the
change-of-variable formulas, for all x1,

U1(x1, s1) =
∫

S2

max
h∈x1

(∑
u(h(ω))µ2(ω|s1, s2)

)
dµ1(s2|s1)

=
∫

∆(Ω)
max
h∈x1

(∑
u(h(ω))p(ω)

)
dϕ(s1)(p)

≡ U∗
1 (x1, ϕ(s1)),
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and, for all x0,

U0(x0) =
∫

S1

max
x1∈x0

U1(x1, s1) dµ0(s1)

=
∫

S1

max
x1∈x0

U∗
1 (x1, ϕ(s1)) dµ0(s1)

=
∫

∆(∆(Ω))
max
x1∈x0

U∗
1 (x1, µ) dµ0 ◦ ϕ−1(µ)

=
∫

∆(∆(Ω))
max
x1∈x0

U∗
1 (x1, µ) dµ∗0(µ)

≡ U∗
0 (x0).

Since U0 = U∗
0 , the canonical form U∗

0 with components (µ∗0, u) represents the identical preference.

B.2 Proof of Theorem 3.1

B.2.1 Outline of the Proof

Necessity of the axioms is routine. We show sufficiency. Recall the key lemma for the DLR’s
representation (Lemma 3.1, p.915) about characterization of a compact convex menu via its
support function. We analogously identify a menu of menus x0 with a (suitably defined) support
function. For any p ∈ S2 ≡ ∆(Ω), let

U2(h, p) ≡
∑
ω

u(h(ω))p(ω),

where u is a mixture linear function representing commitment ranking over ∆(Z). For any
µ ∈ S1 ≡ ∆(∆(Ω)), let

U1(x1, µ) ≡
∫

S2

max
h∈x1

U2(h, p) dµ(p).

Now, for any x0 ∈ D ≡ K(K(H)), define the “support function” σx0 : S1 → R by

σx0(µ) ≡ max
x1∈x0

U1(x1, µ). (12)

The key step in the proof is to show that support functions identify menus of menus up to
indifference, that is,

σx0 = σy0 ⇔ x0 ∼ y0. (13)

This does not follow from convexity theory: in particular, since support functions defined by (12)
are not standard, it is not the case that σx0 = σy0 ⇒ x0 = y0, even when x0 and y0 are convex.
Indeed, notice the following:

(i) Any x0 and its closed convex hull co(x0) have the same support function because U1(·, µ) is
mixture linear with respect to mixture operation (3).
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(ii) Let co1(x0) be the set of all closed convex hulls co(x1) as x1 varies over x0. Then x0 and
co1(x0) have the same support function because U2(·, p) is mixture linear.

(iii) Recall that O1(x1) ∈ K(H) is the menu of all acts dominated by some act in x1. (See (6)
in Section 2.2 for details.) Let O(x0) ∈ D be the set of all O1(x1) as x1 varies over x0.
Any x0 and O(x0) have the same support function because U2(h, p) ≥ U2(h′, p) whenever
h “dominates” h′.

(iv) Let I(x0) be the set of all non-empty compact menus y1, where y1 ⊂ x1 for some x1 ∈ x0.
Then x0 and I(x0) have the same support function because U1(x1, µ) ≥ U1(y1, µ) whenever
y1 ⊂ x1.

These observations imply that x0 and x′0 have identical support functions if x′0 can be derived
from x0 by a finite sequence of the above steps.

Let CO(x0) be the set of all menus O1(co(y1)), where y1 is a non-empty compact subset of
O1(co(x1)) and x1 varies over co(x0). We show that: (1) the axioms imply x0 ∼ CO(x0); and (2)

σCO(x0) = σCO(y0) ⇔ CO(x0) = CO(y0).

These two steps and the above observations (i)-(iv) imply (13).
The remaining part of the proof is to show that there exists a unique probability measure µ0

over S1 such that
∫

S1

σCO(x0)(µ) dµ0(µ)

represents preference over the set of CO(x0)’s. For this step, we adapt the argument in DLR.

B.2.2 Proof of Sufficiency

As a preliminary result, we provide a useful implication of Monotonicity and Aversion to Com-
mitment. Say that x0 covers y0 if, for any y1 ∈ y0, there exists x1 ∈ x0 such that y1 ⊂ x1.

Lemma B.1. If x0 covers y0, then x0 º y0.

Proof. We first show the statement when y0 is finite.

Step 1: If º satisfies Monotonicity and Aversion to Commitment and if y0 is finite, then x0 º y0

whenever x0 covers y0.

Denote y0 by {yi
1|i = 1, · · · , I}. For any yi

1 ∈ y0, there exists xi
1 ∈ x0 such that yi

1 ⊂ xi
1.

Let zi
0 ≡ {xi

1 \ yi
1, y

i
1}. Since y0 ⊂ ∪I

i=1z
i
0, Monotonicity implies ∪I

i=1z
i
0 º y0. By Aversion to

Commitment,

{x1
1} ∪ (∪I

i=2z
i
0) º {x1

1 \ y1
1, y

1
1} ∪ (∪I

i=2z
i
0) = ∪I

i=1z
i
0.

By repeating the same argument finite times, x∗0 ≡ {xi
1|i = 1, · · · , I} º ∪I

i=1z
i
0. Since x∗0 ⊂ x0,

Monotonicity implies x0 º x∗0. Therefore, x0 º y0.
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Now we turn to the general case. Suppose otherwise. Then there exist x0 and y0 such that
x0 covers y0 but y0 Â x0. From Continuity and Lemma 0 (p. 1421) of Gul and Pesendorfer [7],
there exists a finite subset y∗0 ⊂ y0 such that y∗0 Â x0. Since x0 covers y∗0, Step 1 implies x0 º y∗0.
This is a contradiction.

As Lemma 1 (p.922) of DLR, Order, Continuity and Independence imply x0 ∼ co(x0). We
can restrict our attention to the sub-domain, D1 ≡ {x0 ∈ D|x0 = co(x0)}. Then, D1 is a compact
and convex space.

Order, Continuity and Independence ensure a mixture linear representation U : D1 → R
because D1 is a mixture space. Let u : ∆(Z) → R be the restriction of U on ∆(Z), that is,
u(l) ≡ U({{l}}). Since ∆(Z) is compact, there exist a maximal element l̄ and a minimal element
l with respect to u. Since Strong Nondegeneracy implies that u is not constant, we can assume
u(l) = 0 and u(l̄) = 1 without loss of generality.

Say that a metric ρ on ∆(Z) is the Prohorv metric if, for any µ, ν ∈ ∆(Z),

ρ(µ, ν) ≡ inf{ε > 0|µ(E) ≤ ν(Uε(E)) + ε, ν(E) ≤ µ(Uε(E)) + ε, ∀E ∈ B(Z)},
where Uε(E) ≡ {z ∈ Z| infz′∈E π(z, z′) ≤ ε} and π is a metric on Z. It is well-known that the
weak convergence topology is metrizable by this metric. Furthermore, the product metric on
H ≡ ∆(Z)n is equivalent to the topology generated by d(h, h′) ≡ (

∑
ω ρ(h(ω), h′(ω))p)1/p for

some p ≥ 1. Hence, without loss of generality, we can choose these metrics.
For any x0 ∈ D, let

co1(x0) ≡ {co(x1)|x1 ∈ x0}. (14)

That is, co1(x0) is the set of all closed convex hulls co(x1) as x1 varies over x0. Notice that co1(x0)
and co(x0) are distinct objects.

Lemma B.2.

(i) For all x0 ∈ D, co1(x0) ∈ D.

(ii) For all x0 ∈ D1, co1(x0) ∈ D1.

(iii) co1 : D → D is Hausdorff continuous.

(iv) For all x0 ∈ D, x0 ∼ co1(x0).

Proof. (i) Consider the closed convex hull operator co(·) : K(H) → K(H). First of all, since K(H)
is compact, co(x1) ∈ K(H). Hence, this operator is well-defined. To show co1(x0) ∈ D, it suffices
to show that co(·) : K(H) → K(H) is Hausdorff continuous.

It can be shown that the Prohorov metric ρ has the following properties: (1) ρ(αµ, αν) =
αρ(µ, ν) for any α > 0 and µ, ν ∈M(Z), whereM(Z) is the set of non-negative countably additive
measures over Z; and (2) ρ(µ + ν, µ′ + ν ′) ≤ ρ(µ, ν) + ρ(µ′, ν′) for all µ, µ′, ν and ν ′ ∈ M(Z).
Hence, the metric d on H has the similar properties.

Recall the notation in Appendix A,

d(h, x′1) ≡ min
h′∈x′1

d(h, h′), and e(x1, x
′
1) ≡ max

h∈x1

d(h, x′1).
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Step 1: For any convex menu x′1, d(·, x′1) is a convex function.

Take any h1, h2 ∈ H, and λ ∈ [0, 1]. Let h′i ≡ argminh′∈x′1
d(hi, h

′), i = 1, 2. Then,

λd(h1, x
′
1) + (1− λ)d(h2, x

′
1) = d(λh1, λh′1) + d((1− λ)h2, (1− λ)h′2)

≥ d(λh1 + (1− λ)h2, λh′1 + (1− λ)h′2)
≥ min

h′∈x′1
d(λh1 + (1− λ)h2, h

′)

= d(λh1 + (1− λ)h2, x
′
1).

Thus, d(·, x′1) is convex whenever x′1 is convex.

To show that co(·) is Hausdorff continuous, the next step is sufficient.

Step 2: dh(co(x1), co(y1)) ≤ dh(x1, y1) for all x1, y1 ∈ K(H).

By definition, for any h ∈ x1,

d(h, co(y1)) ≤ e(x1, co(y1)). (15)

Since d(·, co(y1)) is a convex function by Step 1, (15) holds for any h ∈ co(x1). Thus,

e(co(x1), co(y1)) ≤ e(x1, co(y1)). (16)

On the other hand, since y1 ⊂ co(y1),

e(x1, co(y1)) ≤ e(x1, y1). (17)

Taking (16) and (17) together,

e(co(x1), co(y1)) ≤ e(x1, y1). (18)

By the same argument, (18) holds when x1 and y1 are reversed. Hence,

dh(co(x1), co(y1)) ≤ dh(x1, y1).

(ii) From Dunford and Schwartz [3, Lemma 4 (iii) and (iv), p.415], co(·) : K(H) → K(H) is
mixture linear, that is, for any x1, y1 ∈ K(H) and λ ∈ [0, 1],

co(λx1 + (1− λ)y1) = λco(x1) + (1− λ)co(y1).

Since a mixture linear operator preserves convexity, co1(x0) is convex whenever x0 ⊂ K(H) is
convex.

(iii) Let xn
0 → x0 with xn

0 , x0 ∈ D. We want to show co1(xn
0 ) → co1(x0). By definition,

dH(co1(xn
0 ), co1(x0)) = max

[
max
x1∈xn

0

min
y1∈x0

dh(co(x1), co(y1)), max
y1∈x0

min
x1∈xn

0

dh(co(x1), co(y1))
]

.
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By Step 2 in the proof of part (i),

dH(co1(xn
0 ), co1(x0)) ≤ max

[
max
x1∈xn

0

min
y1∈x0

dh(x1, y1), max
y1∈x0

min
x1∈xn

0

dh(x1, y1)
]

= dH(xn
0 , x0).

By assumption, dH(xn
0 , x0) converges to zero. Hence, co1(xn

0 ) → co1(x0).

(iv) Since x1 ⊂ co(x1), Lemma B.1 implies co1(x0) º x0. We will show the converse direction
step by step.

Step 1: If x0 ∈ D is finite and if each element xi
1 ∈ x0 is also finite, then there exits λ ∈ (0, 1)

such that co(co1(x0)) ⊂ λco(x0) + (1− λ)co(co1(x0)).

Take x1 ∈ co(co1(x0)). Since co1(x0) is finite, x1 can be written as a convex combination of
elements of co1(x0). That is, x1 =

∑
i αico(xi

1), where xi
1 ∈ x0 and αi > 0 with

∑
i αi = 1. When

xi
1 is finite, as in Lemma 1 (p.922) of DLR, we can show that, for all λi sufficiently small, co(xi

1) =
λix

i
1 + (1−λi)co(xi

1). Since x0 is finite, by taking a small λ > 0, co(xi
1) = λxi

1 + (1−λ)co(xi
1) for

all i. Then,

x1 =
∑

i

αi(λxi
1 + (1− λ)co(xi

1))

= λ
∑

i

αix
i
1 + (1− λ)

∑

i

αico(xi
1).

Since
∑

i αix
i
1 ∈ co(x0) and

∑
i αico(xi

1) ∈ co(co1(x0)), x1 ∈ λco(x0) + (1− λ)co(co1(x0)).

Step 2: For any x0 ∈ D satisfying the condition of Step 1, x0 º co1(x0).

Suppose otherwise, that is, co1(x0) Â x0. Since co(co1(x0)) ∼ co1(x0) and co(x0) ∼ x0,
co(co1(x0)) Â co(x0). Independence requires that, for any λ ∈ (0, 1],

λco(co1(x0)) + (1− λ)co(co1(x0)) Â λco(x0) + (1− λ)co(co1(x0)).

Monotonicity and Step 1 imply that λco(x0)+(1−λ)co(co1(x0)) º co(co1(x0)) for some λ ∈ (0, 1].
Since λco(co1(x0)) + (1− λ)co(co1(x0)) = co(co1(x0)), we have a contradiction.

Step 3: For any x0 ∈ D, x0 º co1(x0).

Take any x0 ∈ D. By the property of Hausdorff metric, there exists a sequence {xn
0}∞n=1

such that: (1) xn
0 → x0; (2) xn

0 is finite; and (3) each element of xn
0 is also finite. From Step 2,

xn
0 º co1(xn

0 ). Part (iii) implies x0 º co1(x0).

For x0 ∈ D, let

I(x1) ≡ {y1 ∈ K(H)|y1 ⊂ x1}. (19)

Let I(x0) ≡ ∪x1∈x0I(x1).
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Lemma B.3.

(i) For all x0 ∈ D, I(x0) ∈ D.

(ii) For all x0 ∈ D1, I(x0) ∈ D1.

(iii) I : D → D is Hausdorff continuous.

(iv) For all x0 ∈ D, x0 ∼ I(x0).

Proof. (i) Since I(x0) ⊂ K(H), it suffices to show that I(x0) is closed. Let yn
1 → y1 with

yn
1 ∈ I(x0). Then there exists a sequence {xn

1} in x0 satisfying yn
1 ⊂ xn

1 . Since x0 is compact,
without loss of generality we can assume that xn

1 converges to a point x1 ∈ x0. Suppose that there
exists h ∈ y1\x1. Since x1 is compact, there exists an open neighborhood U(h) with U(h)∩x1 = ∅.
For all n sufficiently large, we can find hn ∈ U(h)∩ yn

1 because yn
1 → y1. Since yn

1 ⊂ xn
1 , hn ∈ xn

1 .
This contradicts the fact that xn

1 → x1. Therefore y1 ⊂ x1, and hence y1 ∈ I(x0).

(ii) Take y′1, y1 ∈ I(x0). Then there exist x′1, x1 ∈ x0 such that y′1 ⊂ x′1 and y1 ⊂ x1. Since x0

is convex, αx′1 + (1 − α)x1 ∈ x0 for any α ∈ [0, 1]. Clearly, αy′1 + (1 − α)y1 ⊂ αx′1 + (1 − α)x1.
Hence, αy′1 + (1− α)y1 ∈ I(x0).

(iii) Let xn
0 → x0. We have a sequence {I(xn

0 )}∞n=0. Since D is a compact metric space, we
assume without loss of generality that I(xn

0 ) → z0 for some point z0 ∈ D. We want to show
I(x0) = z0.

Step 1: z0 ⊂ I(x0).

Let z1 ∈ z0. Since I(xn
0 ) → z0, we can find a sequence zn

1 → z1 with zn
1 ∈ I(xn

0 ). There exists
a sequence xn

1 ∈ xn
0 with zn

1 ⊂ xn
1 . Since {xn

1} is a sequence in K(H), we can assume xn
1 → x1 for

some x1 ∈ K(H). Since xn
0 → x0 and xn

1 → x1 with xn
1 ∈ xn

0 , we have x1 ∈ x0. Thus z1 ∈ I(x0)
because z1 ⊂ x1.

Step 2: I(x0) ⊂ z0.

Let y1 ∈ I(x0). There exists x1 ∈ x0 such that y1 ⊂ x1. Since xn
0 → x0, there exists a

sequence xn
1 ∈ xn

0 with xn
1 → x1. From a property of the Hausdorff metric, there exists a sequence

zm
1 → y1 such that zm

1 is a finite subset of y1. Take the open 1/m-neighborhood of y1, denoted by
B(y1, 1/m). We can assume without loss of generality that zm

1 ∈ B(y1, 1/m) for all m ≥ 1. Since
zm
1 is a finite subset of x1, there exists a finite subset ynm

1 ⊂ xnm
1 such that ynm

1 ∈ B(y1, 1/m).
Since K(H) is compact, the subsequence {ynm

1 }∞m=0 converges to y1. Since I(xnm
0 ) → z0 and

ynm
1 → y1 with ynm

1 ∈ I(xnm
0 ), we have y1 ∈ z0.

(iv) Since x0 ⊂ I(x0), Monotonicity implies I(x0) º x0. By definition of I, for any y1 ∈ I(x0),
there exists x1 ∈ x0 such that y1 ⊂ x1. That is, x0 covers I(x0). Lemma B.1 implies x0 º I(x0),
and hence x0 ∼ I(x0).

Lemma B.4.
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(i) For all x1 ∈ K(H), O1(x1) ∈ K(H).

(ii) If x1 ∈ K(H) is convex, O1(x1) is also convex.

(iii) For all x0 ∈ D, O(x0) ∈ D.

(iv) For all x0 ∈ D1, O(x0) ∈ D1.

(v) O : D → D is Hausdorff continuous.

Proof. (i) We want to show that O1(x1) is compact. Since K(H) is a compact metric space, it
suffices to show that O1(x1) is closed. Let hn → h with hn ∈ O1(x1). Then there exists a sequence
{kn}∞n=0 in x1 satisfying {kn(ω)} º {hn(ω)} for all ω. Since ∆(Z) is compact, for each ω, the
sequence {kn(ω)}∞n=0 has a convergent subsequence {kni(ω)}∞i=0 with the limit point lω ∈ ∆(Z).
Define k∗ ∈ H by k∗(ω) ≡ lω. Since Ω is finite, we can find a subsequence {km}∞m=0 of {kn}∞n=0

satisfying km → k∗. Notice that k∗ ∈ x1. Since {km(ω)} º {hm(ω)} for all ω, Continuity implies
{k∗(ω)} º {h(ω)}. Thus, h ∈ O1(k∗) ⊂ O1(x1).

(ii) Take any h, h′ ∈ O1(x1). There exist k, k′ ∈ x1 such that {k(ω)} º {h(ω)} and {k′(ω)} º
{h′(ω)} for all ω. Since x1 is convex, λk+(1−λ)k′ ∈ x1 for any λ ∈ [0, 1]. Order and Independence
imply that, for all ω,

λ{k(ω)}+ (1− λ){k′(ω)} º λ{h(ω)}+ (1− λ){h′(ω)},

equivalently,

{λk(ω) + (1− λ)k′(ω)} º {λh(ω) + (1− λ)h′(ω)}.

Hence, λh + (1− λ)h′ ∈ O1(x1).

(iii) It suffices to show that O1(·) : K(H) → K(H) is Hausdorff continuous. Let xn
1 → x1.

Since K(H) is compact, the sequence {O1(xn
1 )}∞n=1 has a convergent subsequence {O1(xm

1 )}∞m=1

with the limit y1 ∈ K(H). We want to show O1(x1) = y1.

Step 1: O1(x1) ⊂ y1.

Let h ∈ O1(x1). There exists h̄ ∈ x1 such that {{h̄(ω)}} º {{h(ω)}} for all ω. Since xm
1 → x1,

we can find a sequence {h̄m}∞m=1 in H satisfying h̄m ∈ xm
1 and h̄m → h̄ in the sense of the metric

on H, equivalently, for all ω, h̄m(ω) → h̄(ω) in the sense of the metric on ∆(Z). To show h ∈ y1, it
suffices to find a sequence {hm}∞m=1 such that hm → h with hm ∈ O1(xm

1 ). Indeed, O1(xm
1 ) → y1

and hm → h with hm ∈ O1(xn
1 ) imply h ∈ y1.

Fix an arbitrary ω. There exist two cases: (1) {{h̄(ω)}} Â {{h(ω)}}; and (2) {{h̄(ω)}} ∼
{{h(ω)}}. If case (1) holds, Continuity implies {{h̄m(ω)}} Â {{h(ω)}} for all m sufficiently large.
Hence, define hm(ω) ≡ h(ω) for all m sufficiently large and, otherwise, hm(ω) ≡ l∗ for some
lottery l∗. If case (2) holds, define hm(ω) ≡ h(ω) as long as {{h̄m(ω)}} º {{h̄(ω)}} ∼ {{h(ω)}}.
Otherwise, take the first natural number k ≥ 1 satisfying {{h̄(ω)}} ∼ {{h(ω)}} Â {{h̄k(ω)}}. Let
lω(λ) ≡ λh̄k(ω) + (1 − λ)h(ω). Continuity ensures that there exists λm such that {{lω(λm)}} ∼
{{h̄m(ω)}} for all sufficiently large m satisfying {{h̄(ω)}} Â {{h̄m(ω)}}. Since h̄m(ω) → h̄(ω),
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λm → 0 as m →∞. Define hm(ω) ≡ lω(λm). Case (1) and (2) imply that there exists a sequence
{hm}∞m=1 such that hm → h and {{h̄m(ω)}} º {{hm(ω)}} for all ω, and hence hm ∈ O1(xm

1 ).

Step 2: y1 ⊂ O1(x1).

Take h ∈ y1. Since O1(xm
1 ) → y1, there exists a sequence hm ∈ O1(xm

1 ) with hm → h in the
sense of the metric on H. By definition, there exists h̄m ∈ xm

1 such that {{h̄m(ω)}} º {{hm(ω)}}
for all ω. Since H is compact, we can assume that {h̄m} converges to the limit h̄ ∈ H. Since h̄m →
h̄ and xm

1 → x1 with h̄m ∈ xm
1 , h̄ ∈ x1. Furthermore, Continuity implies {{h̄(ω)}} º {{h(ω)}}

for all ω. Hence, h ∈ O1(x1).

(iv) It suffices to show that O1(·) : K(H) → K(H) is mixture linear, that is, for any x1, x
′
1 ∈

K(H) and λ ∈ [0, 1],

λO1(x1) + (1− λ)O1(x′1) = O1(λx1 + (1− λ)x′1).

Step 1: λO1(x1) + (1− λ)O1(x′1) ⊂ O1(λx1 + (1− λ)x′1).

Take any h′′ ∈ λO1(x1) + (1 − λ)O1(x′1). There exist h ∈ O1(x1) and h′ ∈ O1(x′1) satisfying
h′′ = λh + (1− λ)h′. By definition, there exist h̄ ∈ x1 and h̄′ ∈ x′1 such that

{{h̄(ω)}} º {{h(ω)}}, and {{h̄′(ω)}} º {{h′(ω)}},

for all ω. Take λh̄ + (1− λ)h̄′ ∈ λx1 + (1− λ)x′1. By Independence,

{{λh̄(ω) + (1− λ)h̄′(ω)}} = λ{{h̄(ω)}}+ (1− λ){{h̄′(ω)}},
º λ{{h(ω)}}+ (1− λ){{h′(ω)}},
= {{λh(ω) + (1− λ)h′(ω)}}.

Hence, h′′ ∈ O1(λx1 + (1− λ)x′1).

Step 2: O1(λx1 + (1− λ)x′1) ⊂ λO1(x1) + (1− λ)O1(x′1).

Take any h′′ ∈ O1(λx1 + (1 − λ)x′1). There exist h̄ ∈ x1 and h̄′ ∈ x′1 satisfying {{λh̄(ω) +
(1 − λ)h̄′(ω)}} º {{h′′(ω)}} for all ω. We will find h ∈ O1(x1) and h′ ∈ O1(x′1) satisfying
h′′ = λh + (1 − λ)h′. Fix an arbitrarily ω. Assume first that {{h̄(ω)}} º {{h̄′(ω)}}. By
Independence,

{{h̄(ω)}} º {{λh̄(ω) + (1− λ)h̄′(ω)}} º {{h̄′(ω)}}.

We have the following two cases: (1) {{h̄′(ω)}} º {{h′′(ω)}}; and (2) {{h̄(ω)}} º {{h′′(ω)}} Â
{{h̄′(ω)}}.

If case (1) holds, define h(ω) = h′(ω) ≡ h′′(ω). Since {{h̄(ω)}} º {{h̄′(ω)}},

{{h̄(ω)}} º {{h(ω)}} and {{h̄′(ω)}} º {{h′(ω)}}.

Moreover, h′′(ω) = λh(ω) + (1− λ)h′(ω).
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If case (2) holds, take two lotteries lω and l′ω such that lω ∼ h̄(ω), l′ω ∼ h̄′(ω) and h′′(ω) =
αlω + (1− α)l′ω for some α ∈ (0, 1]. From Independence, λ ≥ α. Define

h(ω) ≡ α

λ
lω +

(
1− α

λ

)
l′ω, and h′(ω) ≡ l′ω.

Then, we have

{{h̄(ω)}} º {{h(ω)}} and {{h̄′(ω)}} º {{h′(ω)}},

and h′′(ω) = λh(ω) + (1− λ)h′(ω). By the symmetric argument, we can find such h(ω) and h′(ω)
even when {{h̄′(ω)}} º {{h̄(ω)}}.

Now h and h′ constructed as above satisfy h ∈ O1(h̄) ⊂ O1(x1), h′ ∈ O1(h̄′) ⊂ O1(x′1), and
h′′ = λh + (1− λ)h′. Therefore, h′′ ∈ λO1(x1) + (1− λ)O1(x′1).

(v) Let xn
0 → x0 with xn

0 , x0 ∈ D. We want to show O(xn
0 ) → O(x0). By definition,

dH(O(xn
0 ), O(x0)) = max

[
max
x1∈xn

0

min
y1∈x0

dh(O1(x1), O1(y1)), max
y1∈x0

min
x1∈xn

0

dh(O1(x1), O1(y1))
]

.

We have to show that, for any ε > 0, there exists N such that, for all n ≥ N ,

max
x1∈xn

0

min
y1∈x0

dh(O1(x1), O1(y1)) < ε, and max
y1∈x0

min
x1∈xn

0

dh(O1(x1), O1(y1)) < ε. (20)

Step 1: For any ε > 0, there exists N1 such that, for all n ≥ N1,

max
x1∈xn

0

min
y1∈x0

dh(O1(x1), O1(y1)) < ε.

Suppose otherwise. Then there exists ε > 0 such that

max
x1∈xn

0

min
y1∈x0

dh(O1(x1), O1(y1)) ≥ ε

for any n. There exists xn
1 ∈ xn

0 satisfying miny1∈x0 dh(O1(xn
1 ), O1(y1)) ≥ ε. Since K(H) is

compact, we can assume that the sequence {xn
1} converges to the limit x∗1. Since xn

0 → x0 and
xn

1 → x∗1 with xn
1 ∈ xn

0 , x∗1 ∈ x0. From Hausdorff continuity of O1 : K(H) → K(H) (Lemma
B.4 (iii)), O1(xn

1 ) → O1(x∗1). Since dh(O1(xn
1 ), O1(y1)) ≥ ε for all n and y1 ∈ x0, we have

dh(O1(x∗1), O1(y1)) ≥ ε for all y1 ∈ x0, which contradicts x∗1 ∈ x0.

Step 2: For any ε > 0, there exists N2 such that, for all n ≥ N2,

max
y1∈x0

min
x1∈xn

0

dh(O1(x1), O1(y1)) < ε.

Suppose otherwise. Then there exists ε > 0 such that

max
y1∈x0

min
x1∈xn

0

dh(O1(x1), O1(y1)) ≥ ε
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for any n. There exists yn
1 ∈ x0 satisfying minx1∈xn

0
dh(O1(x1), O1(yn

1 )) ≥ ε for all n. Since
x0 is compact, we can assume that the sequence {yn

1 } converges to the limit y∗1 ∈ x0. Since
xn

0 → x0, we can find a sequence xn
1 ∈ xn

0 such that xn
1 → y∗1. By Hausdorff continuity of

O1, O1(xn
1 ) → O1(y∗1) and O1(yn

1 ) → O1(y∗1). Since dh(O1(xn
1 ), O1(yn

1 )) ≥ ε for all n, we have
0 = dh(O1(y∗1), O1(y∗1)) ≥ ε, which is a contradiction.

Let N = max[N1, N2]. By Step 1 and 2, we have (20).

For all x0 ∈ D1, define

CO(x0) ≡ O(co1(I(O(co1(x0))))). (21)

That is, CO(x0) is the set of all menus O1(co(y1)), where y1 is a non-empty compact subset of
O1(co(x1)) and x1 varies over x0. Lemma B.2 (ii), (iii), B.3 (ii), (iii), B.4 (iv) and (v) imply that
CO : D1 → D1 is Hausdorff continuous.

From Lemma B.2 (iv), B.3 (iv) and Risk Preference Certainty, we can pay attention to the
sub-domain

D2 ≡ {x0 ∈ D1|x0 = CO(x0)}.

Since CO is Hausdorff continuous, D2 is compact. For any x1 ∈ x0 ∈ D2, O1(x1) = x1. Moreover,
if y1 ⊂ x1 and O1(y1) = y1, then y1 ∈ x0.

Let

K∗(H) ≡ {x1 ∈ K(H)|x1 = O1(co(x1))}.

From Lemma B.4 (i), K∗(H) is well-defined. From Lemma B.4 (ii), any x1 ∈ K∗(H) is convex.
From Lemma B.2 (i), (ii), Lemma B.4 (iii), and (iv), both co : K(H) → K(H) and O1 : K(H) →
K(H) are Hausdorff continuous and mixture linear. Hence, K∗(H) is compact and convex.

Let S2 ≡ ∆(Ω). Since #Ω = n, S2 is identified with the (n−1)-dimensional unit simplex. For
all x1 ∈ K∗(H) and p ∈ S2, let

U2(h, p) ≡
∑

ω∈Ω

u(h(ω))p(ω)

and

ζx1(p) ≡ max
h∈x1

U2(h, p). (22)

(22) defines the function ζ : K∗(H) → C(S2), where C(S2) is the set of all real-valued continuous
functions on S2 with the sup-norm. As shown in Takeoka [20, Lemma B.2, p. 21-22], ζ is injective,
continuous and mixture linear.

Let S1 ≡ ∆(S2). Since S2 is a compact metric space, S1 is also a compact metric space under
the weak convergence topology. For all x1 ∈ K∗(H) and µ ∈ S1, define

U1(x1, µ) ≡
∫

S2

ζx1(p) dµ(p) =
∫

S2

max
h∈x1

U2(h, p) dµ(p).
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For all x0 ∈ D2, let

σx0(µ) ≡ max
x1∈x0

U1(x1, µ). (23)

Since any x1 ∈ x0 ∈ D2 belongs to K∗(H), σx0(µ) is well-defined. Now (23) defines the function
σ : D2 → C(S1), where C(S1) is the set of all real-valued continuous functions on S1 with the
sup-norm.

Lemma B.5.

(i) σ is continuous.

(ii) For all x′0, x0 ∈ D2, λσx′0 + (1− λ)σx0 = σCO(λx′0+(1−λ)x0).

(iii) σ is injective, that is, σx0 = σx′0 ⇒ x0 = x′0.

Proof. (i) For each x0 ∈ D2, define u(x0) ≡ {u(x1)|x1 ∈ x0}, where

u(x1) ≡ {(u(h(ω)))ω∈Ω ∈ Rn|h ∈ x1}. (24)

Since u : ∆(Z) → [0, 1] is continuous and mixture linear, u(x1) ⊂ [0, 1]n is a compact and convex
set. From Step 1 in Lemma B.2 of Takeoka [20, p. 22], the function u : K∗(H) → K([0, 1]n),
defined by (24), is Hausdorff continuous, where K([0, 1]n) is the set of all non-empty compact
subsets of [0, 1]n with the Hausdorff metric. Hence, u(x0) is compact. Let K(K([0, 1]n)) be the
set of non-empty compact subsets of K([0, 1]n) with the Hausdorff metric.

Step 1: The map Ψ : D2 3 x0 7→ u(x0) ∈ K(K([0, 1]n)) is Hausdorff continuous.

Take a sequence xn
0 → x0 with xn

0 , x0 ∈ D2. Since K(K([0, 1]n)) is compact, we can assume
that {Ψ(xn

0 )}∞n=1 converges to the limit w0 ∈ K(K([0, 1]n)). We want to show Ψ(x0) = w0.
To show Ψ(x0) ⊂ w0, take any u(x̄1) ∈ Ψ(x0), where x̄1 ∈ x0. Since xn

0 → x0, we can find
{xn

1}∞n=1 such that xn
1 → x̄1 with xn

1 ∈ xn
0 . Hausdorff continuity of u implies u(xn

1 ) → u(x̄1). Since
u(xn

1 ) → u(x̄1) and Ψ(xn
0 ) → w0 with u(xn

1 ) ∈ Ψ(xn
0 ), we have u(x̄1) ∈ w0. Hence, Ψ(x0) ⊂ w0.

For the other direction, take any w1 ∈ w0. Since Ψ(xn
0 ) → w0, we can find {xn

1}∞n=1 such that
u(xn

1 ) → w1 with xn
1 ∈ xn

0 . Since K∗(H) is compact, assume xn
1 → x̄1 for some x̄1 ∈ K∗(H). The

conditions, xn
1 → x̄1 and xn

0 → x0 with xn
1 ∈ xn

0 , imply x̄1 ∈ x0. Hausdorff continuity of u implies
w1 = u(x̄1) ∈ Ψ(x0), and hence w0 ⊂ Ψ(x0).

Step 2: For any x0, y0 ∈ D2, dsupnorm(σx0 , σy0) ≤ dHausdorff(u(x0), u(y0)).

For any fixed µ ∈ S1,

|σx0(µ)− σy0(µ)| =
∣∣∣∣max
x1∈x0

∫

s2

ζx1(p) dµ(p)− max
y1∈y0

∫

s2

ζy1(p) dµ(p)
∣∣∣∣

=
∣∣∣∣
∫

s2

ζx∗1(p) dµ(p)−
∫

s2

ζy∗1 (p) dµ(p)
∣∣∣∣ ,
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where x∗1 ∈ x0 and y∗1 ∈ y0 are maximizers. Let ȳ1 be a minimizer of the following problem:

min
y1∈A

dsupnorm(ζy1 , ζx∗1), where

A ≡
{

y1 ∈ K∗(H)
∣∣∣
∫

S2

ζy1 dµ ≤
∫

S2

ζy∗1 dµ

}
.

Notice y0 ⊂ A. Since ζ is continuous, A is compact, and hence the minimizer indeed exists. Since

dsupnorm(ζx1 , ζy1) ≤ dHausdorff(u(x1), u(y1))

holds for all x1, y1 ∈ K∗(H) by Step 2 in Lemma B.2 (i) of Takeoka [20],

|σx0(µ)− σy0(µ)| =
∣∣∣∣
∫

s2

ζx∗1(p) dµ(p)−
∫

s2

ζȳ1(p) dµ(p)
∣∣∣∣

≤
∫ ∣∣ζx∗1(p)− ζȳ1(p)

∣∣dµ(p)

≤ dsupnorm(ζx∗1 , ζȳ1)
≤ min

y1∈y0

dsupnorm(ζx∗1 , ζy1)

≤ min
y1∈y0

dHausdorff(u(x∗1), u(y1))

≤ dHausdorff(u(x0), u(y0)).

Since this inequality holds for all µ ∈ S1, we have

dsupnorm(σx0 , σy0) ≡ sup
µ∈S1

|σx0(µ)− σy0(µ)| ≤ dHausdorff(u(x0), u(y0)).

From Step 1 and Step 2, σ is continuous.

(ii) For each µ ∈ S1, let x∗1 and x∗∗1 satisfy U1(x∗1, µ) = maxx1∈x′0 U1(x1, µ) and U1(x∗∗1 , µ) =
maxx1∈x0 U1(x1, µ). Since λx∗1 +(1−λ)x∗∗1 ∈ λx′0 +(1−λ)x0, mixture linearity of U1(·, µ) implies,

λσx′0(µ) + (1− λ)σx0(µ) = λU1(x∗1, µ) + (1− λ)U1(x∗∗1 , µ)
= U1(λx∗1 + (1− λ)x∗∗1 , µ)
= max

x1∈CO(λx′0+(1−λ)x0)
U1(x1, µ)

= σCO(λx′0+(1−λ)x0)(µ).

(iii) Let x0 6= x′0. Then there exists x̄1 ∈ x′0 \ x0. 9 Since ζ : K∗(H) → C(S2) is injective,
ζx̄1 ∈ ζ(x′0) \ ζ(x0), where ζ(x0) and ζ(x′0) are the images of x0 and of x′0 under ζ, respectively.

Step 1: ζ(x0)∩ (C+(S2)+{ζx̄1}) = ∅, where C+(S2) ⊂ C(S2) is the set of non-negative continuous
functions on S2.

9The symmetric argument works when x̄1 ∈ x0 \ x′0.
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Suppose otherwise. There exist x̂1 ∈ x0 and f ∈ C+(S2) such that ζx̂1 = f + ζx̄1 . Since f ≥ 0,
ζx̂1(p) ≥ ζx̄1(p) for all p ∈ S2. Moreover, since x̂1 6= x̄1, f is non-zero, and hence there exists some
p ∈ S2 satisfying ζx̂1(p) > ζx̄1(p). Thus, we have x̄1 ⊂ x̂1. From the property of D2, x̄1 ∈ x0.
This is a contradiction.

Step 2: There exist a linear functional Λ on C(S2) and a constant c ∈ R such that Λ(f) > c >
Λ(f ′) for all f ∈ C+(S2) + {ζx̄1} and f ′ ∈ ζ(x0).

Since ζ is continuous and mixture linear and since x0 is compact and convex, ζ(x0) is a compact
convex subset of C(S2). Furthermore, since C+(S2) is closed and convex, so is C+(S2)+{ζx̄1}. From
Step 1, we know that ζ(x0) and C+(S2) + {ζx̄1} are disjoint. The separation hyperplane theorem
(Dunford and Schwartz [3, Theorem 10, p.417]) ensures that there exist a linear functional Λ on
C(S2) and a constant c ∈ R such that Λ(f) > c > Λ(f ′) for all f ∈ C+(S2)+ {ζx̄1} and f ′ ∈ ζ(x0).

Since 0 ∈ C+(S2), we know that Λ(ζx̄1) > c > Λ(ζx1) for all ζx1 ∈ ζ(x0). Thus,

Λ(ζx̄1) > max
x1∈x0

Λ(ζx1). (25)

Step 3: Λ is positive, that is, Λ(f+) ≥ 0 for all f+ ∈ C+(S2).

From Step 2, Λ(f+) > Λ(ζx1 − ζx̄1) for all f+ ∈ C+(S2) and ζx1 ∈ ζ(x0). This means that Λ is
bounded from below on C+(S2). Take a lower bound α ∈ R. Then Λ(f+) ≥ α for all f+ ∈ C+(S2).
Suppose that Λ is not positive. There exists f̄+ ∈ C+(S2) with Λ(f̄+) < 0. Since θf̄+ ∈ C+(S2)
for all θ > 0, Λ(θf̄+) = θΛ(f̄+) diverges to −∞ as θ tends to ∞. This contradicts the fact that
Λ(f+) ≥ α for all f+ ∈ C+(S2).

Since Λ is a positive linear functional on C(S2), the Riesz Representation theorem (Rudin [15,
Theorem 2.14, p. 40]) ensures the existence of a positive measure ν̄ on S2 satisfying

Λ(f) =
∫

S2

f(p) dν̄(p), (26)

for all f ∈ C(S2). Let µ̄ ∈ ∆(S2) be the normalization of ν̄. Taking (25) and (26) together, we
have

σx′0(µ̄) = max
x1∈x′0

U1(x1, µ̄) ≥
∫

S2

ζx̄1 dµ̄ > max
x1∈x0

∫

S2

ζx1 dµ̄ = σx0(µ̄).

Since σx′0 6= σx0 , we have shown that σ is injective.

Let C ⊂ C(S1) be the range of σ.

Lemma B.6.

(i) C is convex.

(ii) The constant function equal to zero belongs to C.
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(iii) The constant function equal to one belongs to C.

(iv) The supremum of any two points f, f ′ ∈ C belongs to C. That is, max[f(µ), f ′(µ)] ∈ C.

(v) f ≥ 0 for all f ∈ C.

Proof. (i) Take any f, f ′ ∈ C and λ ∈ [0, 1]. There exist x′0, x0 ∈ D2 satisfying f ′ = σx′0 and
f = σx0 . From Lemma B.5 (ii),

λf ′ + (1− λ)f = λσx′0 + (1− λ)σx0 = σCO(λx′0+(1−λ)x0).

Since CO(λx′0 + (1− λ)x0) ∈ D2, C is convex.
(ii) Let x0 ≡ CO({{l}}) ∈ D2. Since u(l) = 0, σx0(µ) = 0 for all µ ∈ S1.
(iii) Let x0 ≡ CO({{l̄}}) ∈ D2. Since u(l̄) = 1, σx0(µ) = 1 for all µ ∈ S1.
(iv) Take any f ′, f ∈ C. There exist x′0, x0 ∈ D2 such that f = σx0 and f ′ = σx′0 . Let

x′′0 ≡ CO(co(x0 ∪ x′0)) ∈ D2 and f ′′ ≡ σx′′0 ∈ C. Then, f ′′(µ) = max[σx0(µ), σx′0(µ)].
(v) Since each x1 ∈ x0 ∈ D2 contains the constant act l,

ζx1(p) = max
h∈x1

(∑

ω∈Ω

u(h(ω))p(ω)

)
≥

∑

ω∈Ω

u(l)p(ω) = 0,

for any p ∈ S2. Hence, for any µ ∈ S1, σx0(µ) ≥ 0.

Since σ is injective, we can define W : C → R by W (f) ≡ U(σ−1(f)). Notice that W (0) = 0
and W (1) = 1, where 0 and 1 are identified with the zero function and with the unit function,
respectively. Since U and σ are continuous, so is W with respect to the sup-norm. Furthermore,
W : C → R is mixture linear. Indeed, take any f, f ′ ∈ C and λ ∈ [0, 1]. There exist x0, x

′
0 ∈ D2

such that f = σx0 and f ′ = σx′0 . Since U is mixture linear,

W (λf ′ + (1− λ)f) = W (λσx′0 + (1− λ)σx0)

= U(σ−1(λσx′0 + (1− λ)σx0))

= U(σ−1(σCO(λx′0+(1−λ)x0)))

= U(CO(λx′0 + (1− λ)x0))
= U(λx′0 + (1− λ)x0)
= λU(x′0) + (1− λ)U(x0)
= λW (f ′) + (1− λ)W (f).

By adapting Lemma 10 (p. 928) of DLR, we can show that W is linear in the sense that W (αf +
βf ′) = αW (f) + βW (f ′) for any f, f ′, αf + βf ′ ∈ C, where α, β ∈ R+.

By the same argument as in DLR, we will extend W to C(S1) step by step. For any r ≥ 0, let
rC ≡ {rf |f ∈ C}. Let H ≡ ∪r≥0rC. As the first step, we will extend W : C → R to H. For any
f ∈ H \ {0}, there exists r > 0 satisfying (1/r)f ∈ C. Define W (f) ≡ rW ((1/r)f). As shown in
DLR, W : H → R is well-defined, monotonic, and linear.

Let

H∗ ≡ H −H = {f1 − f2 ∈ C(S1)|f1, f2 ∈ H}.
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Since 0 ∈ H, H ⊂ H∗. For any f ∈ H∗, there exist f1, f2 ∈ H satisfying f = f1 − f2. Define
W (f) ≡ W (f1)−W (f2). As in DLR, we can show that W : H∗ → R is well-defined and linear.

Finally, we will extend W to C(S1).

Lemma B.7. H∗ is dense in C(S1).

Proof. By the Stone-Weierstrass theorem (Schaefer [18, Theorem 8.1, p. 243]), it is enough to
show that: (i) H∗ is a vector sublattice; (ii) for any distinct points µ, µ′ ∈ S1, there exists f ∈ H∗

such that f(µ) 6= f(µ′); and (iii) H∗ contains the constant function equal to one. By the same
argument as in Lemma 11 (p. 928) of DLR, condition (i) holds. Condition (iii) directly follows
from Lemma B.6 (iii) and the definition of H∗.

To show condition (ii), take any distinct points µ, µ′ ∈ S1. By the separating hyperplane
theorem, there exists a linear functional Γ on S1 and a constant c ∈ R such that Γ(µ) > c > Γ(µ′).
Without loss of generality, we can assume c = 0. Since C(S2) is a weak* dense subset of the dual
space of S1 (Dunford and Schwartz [3, Corollary 6, p. 425]), there exists f ∈ C(S2) such that

∫

S2

f dµ > 0 >

∫

S2

f dµ′.

We can assume ‖f‖ is sufficiently small. From Lemma B.5 in Takeoka [20, p. 25], there exist
x1, y1 ∈ K∗(H) such that

∫

S2

(ζx1 − ζy1) dµ > 0 >

∫

S2

(ζx1 − ζy1) dµ′.

Hence,
∫

S2

ζx1 dµ >

∫

S2

ζy1 dµ, and
∫

S2

ζy1 dµ′ >
∫

S2

ζx1 dµ′. (27)

If
∫

S2

ζx1 dµ =
∫

S2

ζy1 dµ′,

redefine x1 as the menu {h ∈ H|d(x1, h) ≤ ε} for some small ε > 0. Then,
∫

S2

ζx1 dµ >

∫

S2

ζy1 dµ′. (28)

Moreover, as long as ε > 0 is small enough, (27) still holds after this modification. Let x0 ≡
CO(co({x1, y1})). Taking (27) and (28) together,

σx0(µ) =
∫

S2

ζx1 dµ >

∫

S2

ζy1 dµ′ = σx0(µ
′).

Since σx0 ∈ C ⊂ H∗, condition (ii) holds.
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Since D2 is compact, the same argument as in Lemma 12 (p. 929) of DLR implies that there
exists a constant K > 0 such that W (f) ≤ K‖f‖ for any f ∈ H∗. By the Hahn-Banach theorem,
we can extend W to W : C(S1) → R so that W is linear, continuous and increasing. Lemma B.7
ensures uniqueness of this extension. Now we have the following commutative diagram:

D2 - R

?
C(S1)

¡
¡¡µ
W

U

σ

Since W is a positive linear functional on C(S1), the Riesz representation theorem (Dunford and
Schwartz [3, Theorem 3, p. 265]) ensures that there exists a unique countably additive non-negative
measure µ0 on S1 satisfying

W (f) =
∫

S1

f(µ) dµ0(µ),

for all f ∈ C(S1). Especially, µ0 can be taken to be a probability measure. Thus, for any x0 ∈ D2,

U(x0) = W (σ(x0)) =
∫

S1

σ(x0) dµ0(µ) =
∫

S1

max
x1∈x0

U1(x1, µ) dµ0(µ). (29)

B.3 Proof of Theorem 4.1

(i) Since u and u′ are mixture linear representations of the same preference on ∆(Z), they are
cardinally equivalent by the standard argument.

(ii) As shown above, u and u′ are cardinally equivalent. Thus, (µ′0, u) also represents the
same preference. Let U0 and U ′

0 be the canonical representations associated with (µ0, u) and with
(µ′0, u), respectively. For all x0 ∈ D and µ ∈ ∆(∆(Ω)), define

σx0(µ) ≡ max
x1∈x0

U1(x1, µ),

where

U1(x1, µ) ≡
∫

∆(Ω)
max
h∈x1

(∑
ω

u(h(ω))p(ω)

)
dµ(p).

Then,

U0(x0) =
∫

σx0(µ) dµ0(µ), and U ′
0(x0) =

∫
σx0(µ) dµ′0(µ). (30)

Since U0 and U ′
0 are mixture linear functions over D representing the same preference, there

exist α > 0 and β ∈ R such that U ′
0 = αU0 + β. For any lottery l,

U ′
0({{l}}) = αU0({{l}}) + β

u(l) = αu(l) + β.
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We must have α = 1 and β = 0, and hence U0 = U ′
0. From (30), for all x0,

∫
σx0(µ) dµ0(µ) =

∫
σx0(µ) dµ′0(µ). (31)

Take any x0, y0 ∈ D and α, β ≥ 0. Equation (31) holds even when σx0 is replaced with ασx0−βσy0 .
From Lemma B.7, the set of all such functions is a dense subset of the set of all real-valued
continuous functions on ∆(∆(Ω)). Hence, equation (31) still holds even if σx0 is replaced with
any real-valued continuous function. The Riesz representation theorem (Dunford and Schwartz [3,
Theorem 3, p. 265]) implies µ0 = µ′0.

B.4 Proof of Theorem 4.2

By the same argument as in Theorem 4.1 (i), u1 and u2 are cardinally equivalent. We show the
second result. Let (Si, µi∗

0 ) be the subjective decision tree derived from a second-order additive
SEU representation ({Si

t}2
t=1, {µi

t}2
t=0, u

i) for i = 1, 2.
For any η ∈ ∆(∆(∆(Ω))), let Eη ∈ ∆(∆(Ω)) denote the “mean” of η. Formally, Eη is defined

as the unique probability measure satisfying
∫

∆(Ω)
f(p) d(Eη)(p) =

∫

∆(∆(Ω))

∫

∆(Ω)
f(p) dµ(p) dη(µ), (32)

for all real-valued continuous functions f on ∆(Ω). Indeed, Eη is well-defined by the Riesz
representation theorem.

Lemma B.8. Si = supp(Eµi∗
0 ).

Proof. Since Si = supp(P i ◦ (µi
2)
−1), it suffices to show that P i ◦ (µi

2)
−1 = Eµi∗

0 . For any
real-valued continuous function f on ∆(Ω),

∫

∆(Ω)
f(p) dP i ◦ (µi

2)
−1(p) =

∫

Si
1×Si

2

f(µi
2(s1, s2)) dP i(s1, s2)

=
∫

Si
1

∫

Si
2

f(µi
2(s1, s2)) dµi

1(s2|s1) dµi
0(s1)

=
∫

Si
1

∫

∆(Ω)
f(p) d

(
µi

1(·|s1) ◦ (µi
2(s1, ·))−1

)
dµi

0(s1)

=
∫

∆(∆(Ω))

∫

∆(Ω)
f(p) dµ(p) dµi∗

0 (µ).

From uniqueness of Eµi∗
0 , P i ◦ (µi

2)
−1 = Eµi∗

0 .

From Lemma B.8, if µ1∗
0 = µ2∗

0 , then S1 = S2. Hence, it is enough to see that µ1∗
0 = µ2∗

0 .
From Proposition 3.1 (ii), the original representation ({Si

t}2
t=1, {µi

t}2
t=0, u

i) and its canonical form
(µi∗

0 , ui) represent the same preference. Moreover, by assumption, ({Si
t}2

t=1, {µi
t}2

t=0, u), i = 1, 2,
represent the same preference. Thus, (µi∗

0 , ui), i = 1, 2, also represent the same preference. It
follows from Theorem 4.1 (ii) that µ1∗

0 = µ2∗
0 .
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B.5 Proof of Corollary 5.1

((b) ⇒ (a)) Assume that there exists µ ∈ ∆(∆(Ω)) such that U0(x0) = maxx1∈x0 U1(x1, µ)
represents preference. We will show that º satisfies Strategic Rationality.

Let x0 º y0. The representation implies that

max
x1∈x0

U1(x1, µ) ≥ max
x1∈y0

U1(x1, µ). (33)

Since x0 ⊂ x0 ∪ y0, we have maxx1∈x0∪y0 U1(x1, µ) ≥ maxx1∈x0 U1(x1, µ). Suppose that this
weak inequality holds with strict inequality. Then there exists y∗1 ∈ y0 such that U1(y∗1, µ) >
maxx1∈x0 U1(x1, µ). This contradicts (33). Thus, maxx1∈x0∪y0 U1(x1, µ) = maxx1∈x0 U1(x1, µ),
and hence x0 ∪ y0 ∼ x0.

((a) ⇒ (b)) From Theorem 3.1, there exists a canonical representation (µ0, u). Suppose
#supp(µ0) 6= 1. There exist µ, µ′ ∈ supp(µ0) with µ 6= µ′. As in Lemma B.7, we can find
x̄1, x̄

′
1 ∈ K(H) such that

U1(x̄1, µ) > U1(x̄′1, µ) and U1(x̄′1, µ
′) > U1(x̄1, µ

′).

(See condition (27).) From Continuity, there exists ε > 0 such that x̄1(ε) ≡ {h|d(h, x̄1) ≤ ε} and
x̄′1(ε) ≡ {h|d(h, x̄′1) ≤ ε} satisfy

U1(x̄1(ε), µ) > U1(x̄1, µ) > U1(x̄′1(ε), µ) > U1(x̄′1, µ), and
U1(x̄′1(ε), µ

′) > U1(x̄′1, µ
′) > U1(x̄1(ε), µ′) > U1(x̄1, µ

′). (34)

Let

x0 ≡ {x1|U1(x1, µ) ≤ U1(x̄1(ε), µ)} ∩ {x1|U1(x1, µ
′) ≤ U1(x̄′1, µ

′)},
x′0 ≡ {x1|U1(x1, µ) ≤ U1(x̄1, µ)} ∩ {x1|U1(x1, µ

′) ≤ U1(x̄′1(ε), µ
′)}.

From (34), the representation implies

x0 ∪ x′0 Â x0 and x0 ∪ x′0 Â x′0. (35)

Since Order implies x0 º x′0 or x′0 º x0, we have, by Strategic Rationality,

x0 ∪ x′0 ∼ x0 or x0 ∪ x′0 ∼ x′0.

This contradicts (35).

B.6 Proof of Corollary 5.2

((b) ⇒ (a)) We will show that º satisfies Neutrality to Commitment. Take any x′0 and finite x0.
Let x̄1 ≡ ∪x1∈x0x1.

Take any p ∈ ∆(Ω). Since x1 ⊂ x̄1 for any x1 ∈ x0, we have maxh∈x̄1 U2(h, p) ≥ maxh∈x1 U2(h, p)
for all x1 ∈ x0. Thus,

max
h∈x̄1

U2(h, p) ≥ max
x1∈x0

max
h∈x1

U2(h, p). (36)
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Suppose that this weak inequality holds with strict inequality. Then there exists h∗ ∈ x̄1 such
that U2(h∗, p) > maxx1∈x0 maxh∈x1 U2(h, p) ≥ U2(h∗, p). This is a contradiction. Hence, (36)
holds with equality. For all p, we have

max
x1∈x′0∪{x̄1}

max
h∈x1

U2(h, p) = max
x1∈x′0∪x0

max
h∈x1

U2(h, p). (37)

Let δp denote the degenerate probability measure at p, which assigns p to probability one.
Then, (37) implies

U0(x′0 ∪ {x̄1}) =
∫

max
x1∈x′0∪{x̄1}

U1(x1, δp) dµ0(δp)

=
∫

max
x1∈x′0∪{x̄1}

max
h∈x1

U2(h, p) dµ0(δp)

=
∫

max
x1∈x′0∪x0

max
h∈x1

U2(h, p) dµ0(δp)

=
∫

max
x1∈x′0∪x0

U1(x1, δp) dµ0(δp)

= U0(x′0 ∪ x0).

((a) ⇒ (b)) From Theorem 3.1, there exists a canonical representation (µ0, u).

Step 1: If x0 is finite, x0 ∼ {∪x1∈x0x1}.

Neutrality to Commitment implies

x0 = x0 ∪ x0 ∼ x0 ∪ {∪x1∈x0x1} ∼ {∪x1∈x0x1} ∪ {∪x1∈x0x1} = {∪x1∈x0x1}.

Step 2: For all x0, x0 ∼ {cl(∪x1∈x0x1)}, where cl(x1) is the closure of x1.

Since {cl(∪x1∈x0x1)} covers x0, Lemma B.1 implies {cl(∪x1∈x0x1)} º x0. Suppose {cl(∪x1∈x0x1)} Â
x0. From Continuity and the property of the Hausdorff metric, there exists a finite subset
y1 ⊂ cl(∪x1∈x0x1) such that {y1} Â x0. Since any h ∈ y1 is an accumulation point of ∪x1∈x0x1,
there exists h′ ∈ ∪x1∈x0x1 close to h in the sense of the metric on H. Thus, by Continuity, we can
assume that y1 ⊂ ∪x1∈x0x1. Denote y1 by {hi|i = 1, · · · , I}. For all i, there exists xi

1 ∈ x0 such
that hi ∈ xi

1. Let x∗0 = {xi
1|i = 1, · · · , I}. Step 1 and Lemma B.1 imply that

x∗0 ∼ {∪x1∈x∗0x1} º {y1} Â x0. (38)

Since x∗0 ⊂ x0, (38) violates Monotonicity.

From Step 2, for any x0,

U0(x0) = U0({cl(∪x1∈x0x1)})
=

∫

∆(∆(Ω))

∫

∆(Ω)
max

h∈cl(∪x1∈x0x1)
U2(h, p) dµ(p) dµ0(µ)

=
∫

∆(Ω)
max

h∈cl(∪x1∈x0x1)
U2(h, p) dµ̄(p),
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where µ̄ over ∆(Ω) is the “mean” probability with respect to µ0. (See (32) for details.) Redefine
µ0 ∈ ∆(∆(∆(Ω))) by µ0(δp) ≡ µ̄(p). For each p ∈ supp(µ̄), let U1(x1, δp) ≡ maxh∈x1 U2(h, p).
Then,

U0(x0) =
∫

∆(Ω)
sup

h∈(∪x1∈x0x1)
U2(h, p) dµ̄(p)

=
∫

∆(Ω)
max
x1∈x0

max
h∈x1

U2(h, p) dµ̄(p)

=
∫

∆(∆(Ω))
max
x1∈x0

U1(x1, δp) dµ0(δp).

This is the required result.

B.7 Proof of Theorem 6.1

First of all, we prepare the following lemma:

Lemma B.9. For any finite subset P ≡ {p1, · · · , pi, · · · , pI} ⊂ ∆(Ω), there exist positive numbers
v1, · · · , vI such that

x1 ≡
I⋂

i=1

{
h ∈ H ∣∣U2(h, pi) ≤ vi

}
(39)

is a non-empty compact convex menu, and the boundary of each lower contour set partly coincides
with a non-trivial part of the boundary of x1.

Proof. Since u : ∆(Z) → R is continuous, there exist a maximal and a minimal lottery, l and l,
with respect to u. Since u is non-constant and mixture linear, without loss of generality, we can
assume u(l) = 1 and u(l) = 0. Consequently, u is regarded as a mixture linear function from
∆(Z) into [0, 1].

Consider the set

W ≡
{

w ∈ [0, 1]n
∣∣∣∣‖w‖ ≤

1
2

}
,

where ‖·‖ is the square norm of Rn. For any pi ∈ P , there exists a unique point wi ∈ W such that
wi · pi > w · pi for all w ∈ W with w 6= wi. That is, w · pi = wi · pi is the supporting hyperplane
of W at wi. Now let vi ≡ wi · pi and define

x1 ≡
I⋂

i=1

{
h ∈ H ∣∣U2(h, pi) ≤ vi

}
.

Since U2(l, pi) ≤ vi for all i, x1 is non-empty. Since U2(·, pi) is continuous and mixture linear, x1

is a compact and convex menu. Finally, notice that there exists an act hi such that u(hi) = wi.
Since wi · pi > wj · pi for all i and j 6= i, we have U2(hi, pi) > U2(hj , pi) for all i and j 6= i. Thus,
the last property holds.
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Lemma B.10. For any finite subset {µ1, · · · , µj , · · · , µJ} ⊂ ∆(∆(Ω)) with finite supp(µj), there
exist x1

1, · · · , xj
1, · · · , xJ

1 ∈ K(H) such that, for any j, U1(x
j
1, µ

j) > U1(xk
1, µ

j) for all k 6= j.

Proof. Let

S∗2 ≡ ∪J
j=1supp(µj) ⊂ ∆(Ω).

Let I ≡ #S∗2 . Since S∗2 is a finite set, S∗2 can be denoted by {p1, · · · , pi, · · · , pI}.
Each µj is regarded as an element of the (I − 1)-dimensional unit simplex. We can find

{a1, · · · , aJ} ⊂ RI such that µjaj > µjak for any j and k 6= j. Without loss of generality, assume
that the absolute value of the i-th coordinate of aj is sufficiently small.

From Lemma B.9, there exist positive numbers v1, · · · , vI such that the menu x1 ∈ K(H),
defined by

x1 ≡
⋂

pi∈S∗2

{
h ∈ H ∣∣U2(h, pi) ≤ vi

}
,

satisfies all the properties in the lemma. For each j, define

xj
1 ≡

⋂

pi∈S∗2

{
h ∈ H

∣∣∣U2(h, pi) ≤ vi + aj
i

}
∈ K(H).

Since each aj
i is sufficiently small, the boundary of each lower contour set partly coincides with a

non-trivial part of the boundary of xj
1. Thus, for any k 6= j,

U1(x
j
1, µ

j) =
∑

i

max
h∈xj

1

U2(h, pi)µj(pi)

=
∑

i

(
vi + aj

i

)
µj(pi)

=
∑

i

viµj(pi) +
∑

i

aj
iµ

j(pi)

>
∑

i

viµj(pi) +
∑

p

ak
i µ

j(pi)

= U1(xk
1, µ

j).

(i) (only if part) Suppose S1
1 6⊂ S2

1 . Then there exists µ0 ∈ S1
1 \ S2

1 . Denote S2
1 by {µj |j =

1, · · · , J}. Apply Lemma B.10 to the set S2
1 ∪ {µ0}. Then there exist menus {xj

1}J
j=0 such that,

for any j = 0, · · · , J , U1(x
j
1, µ

j) > U1(xk
1, µ

j) for all k 6= j. Define

x0 ≡
J⋂

j=0

{
x1 ∈ K(H)

∣∣∣ U1(x1, µ
j) ≤ U1(x

j
1, µ

j)
}

.
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Then x0 is a non-empty compact convex menu of menus, and the boundary of each lower contour
set partly coincides with a non-trivial part of the boundary of x0. Let

x̂0 ≡
J⋂

j=1

{
x1 ∈ K(H)

∣∣∣U1(x1, µ
j) ≤ U1(x

j
1, µ

j)
}
∈ D.

Since x0 ⊂ x̂0, for all µ ∈ S1
1 ,

max
x1∈x̂0

U1(x1, µ) ≥ max
x1∈x0

U1(x1, µ),

and this weak inequality holds with strict inequality for µ0. The associated representation implies
x̂0 Â1 x0. On the other hand, for all µ ∈ S2

1 ,

max
x1∈x̂0

U1(x1, µ) = max
x1∈x0

U1(x1, µ),

and hence the associated representation implies x̂0 ∼2 x0. This is a contradiction.
(if part) Assume S1

1 ⊂ S2
1 . For any x0, y0 with y0 ⊂ x0, let x0 Â1 y0. Since y0 ⊂ x0, for all

µ ∈ S1
1 ,

max
x1∈x0

U1(x1, µ) ≥ max
x1∈y0

U1(x1, µ). (40)

Furthermore, since x0 Â1 y0, there must exist at least one signal µ∗ ∈ S1
1 such that (40) holds

with strict inequality. Thus, the assumption S1
1 ⊂ S2

1 implies x0 Â2 y0.

(ii) (only if part) Suppose S1 6⊂ S2. Then there exists p0 ∈ S1 \ S2. Denote S2 by {pi|i =
1, · · · , I}. By applying Lemma B.9 to {p0} ∪ S2, there exist positive numbers {vi}I

i=0 such that
the menu x1 defined as in Lemma B.9 satisfies all the properties in the lemma. Let

x̂1 ≡
I⋂

i=1

{
h ∈ H ∣∣U2(h, p) ≤ vi

}
.

Since x1 ⊂ x̂1, for all p ∈ S1,

max
h∈x̂1

U2(h, p) ≥ max
h∈x1

U2(h, p),

and this weak inequality holds with strict inequality for p0. Thus, the associated representation
implies {x̂1} Â1 {x1}. However, by construction, for all p ∈ S2,

max
h∈x̂1

U2(h, p) = max
h∈x1

U2(h, p).

Hence, the associated representation implies {x̂1} ∼2 {x1}. This is a contradiction.
(if part) Assume S1 ⊂ S2. For any x1, y1 with y1 ⊂ x1, let {x1} Â1 {y1}. Since y1 ⊂ x1, for

all p ∈ S1,

max
h∈x1

U2(h, p) ≥ max
h∈y1

U2(h, p). (41)
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Furthermore, since {x1} Â1 {y1}, there must exist at least one state p∗ ∈ S2 such that (41) holds
with strict inequality. Thus, the assumption S1 ⊂ S2 implies {x1} Â2 {y1}.

(iii) (only if part) The first result is a direct consequence of part (ii). We will show the second
claim.

Suppose otherwise. There exists µ1∗ ∈ S1
1 such that supp(µ1∗) 6⊂ supp(µ2) for all µ2 ∈ S2

1 .
Since S1 = S2, supp(µ1∗) ⊂ S2. By applying Lemma B.9 to S2, we have positive numbers
{vp}p∈S2 such that the menu x1, defined as (39), satisfies all the properties in the lemma. For
each µ2 ∈ S2

1 , choose hp satisfying U2(hp, p) = vp for each p ∈ supp(µ2). Let x1(µ2) be the convex
hull of {hp|p ∈ supp(µ2)}. Let x0 ≡ {x1(µ2)|µ2 ∈ S2

1} and x̄1 ≡ ∪x1∈x0x1. For each µ2 ∈ S2
1 ,

∫

S2

max
h∈x̄1

U2(h, p) dµ2(p) = max
x1∈x0

∫

S2

max
h∈x1

U2(h, p) dµ2(p),

and hence {x̄1} ∼2 x0. On the other hand, taking into account S1 = S2, for each µ1 ∈ S1
1 ,

U1(x̄1, µ
1) =

∫

S2

max
h∈x̄1

U2(h, p) dµ1(p) ≥ max
x1∈x0

∫

S2

max
h∈x1

U2(h, p) dµ1(p) = max
x1∈x0

U1(x1, µ
1),

and this weak inequality holds with strict inequality for µ1∗ because supp(µ1∗) 6⊂ supp(µ2) for all
µ2 ∈ S2

1 . Thus, we have {x̄1} Â1 x0. This is a contradiction.
(if part) Assume that, for any µ1 ∈ S1

1 , there exists µ2 ∈ S2
1 such that supp(µ1) ⊂ supp(µ2).

Take any finite x0 and assume {x1} Â1 x0, where x1 ≡ ∪x′1∈x0
x′1. Since x′1 ⊂ x1 for all x′1 ∈ x0,

we have
∫

max
h∈x1

U2(h, p) dµ1(p) ≥ max
x′1∈x0

∫
max
h∈x′1

U2(h, p) dµ1(p), (42)

for all µ1 ∈ S1
1 . Furthermore, since {x1} Â1 x0, there must exist at least one signal µ1∗ ∈ S1

1

such that (42) holds with strict inequality. By assumption, there exists µ2∗ ∈ S2
1 such that

supp(µ1∗) ⊂ supp(µ2∗). Thus, the associated representation implies {x1} Â2 x0.
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