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Abstract. We model happiness as a measurement tool used to rank alterna-

tive actions. The quality of the measurement is enhanced by a happiness func-

tion that adapts to the available opportunities, a property favored by evolution.

The optimal function is based on a time-varying reference point —or performance

benchmark— that is updated in a statistically optimal way. Habits and peer com-

parisons arise as special cases of this process. This also results in a volatile level

of happiness that continuously reverts to its long-term mean. Throughout, we

draw a parallel with a problem of optimal incentives, which allows us to apply

statistical insights from agency theory to the study of happiness.

1. Introduction

For long, utility was assumed to depend only on the absolute levels of our material

outcomes. However, a large body of research now argues that utility, whether

defined in terms of decision-making or hedonic experience, is sharply dependent on

the difference between these outcomes and a time-varying reference point —examples

include Markowitz [1952], Stigler and Becker [1977], Frank [1985], Constantinides

[1990], Easterlin [1995], Clark and Oswald [1996], and Frederick and Loewenstein

[1999]. Two pervasive phenomena in these lines are habituation (e.g., becoming

accustomed to an expensive life-style or a physical handicap) and peer comparisons

(e.g., caring about relative wages or consumption levels); both of which can be

described by a reference point that is determined, respectively, by past outcomes

and by the outcomes of peers. In fact, these phenomena appear to be innate: they

are present in young children, and have been documented in every known human

culture —Brown [1999]. Suggesting in turn that they served an evolutionary role in

the descent of our species.
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In this paper, we are interested in the hedonic aspects of utility, or happiness.

At a biological level, we view happiness as a decision-making device that trans-

lates potential choices into a ranking criteria —e.g., Damasio [1994], Robson [2001a].

Accordingly, we adopt an evolutionary approach to uncover its rationale. Here we

propose that habituation and peer comparisons can arise as special cases of the same

general phenomenon, namely, a reference point that is updated over time in a sta-

tistically meaningful way. In addition, our approach will encompass two well-known

psychological phenomena: a reference point that is affected by the individual’s ex-

pectations, and a happiness level that although volatile, continuously reverts to its

long-term mean. We argue that these phenomena can be derived from the same

underlying biological role.

The endogenous variable in our model is the individual’s happiness function. We

assume that this function is implicitly designed by nature. Following the general

framework of Binmore [1994], Robson [2001a], Samuelson [2004], and Samuelson

and Swinkels [2004], we focus directly on the limiting outcome of evolution. This

outcome is described as the solution to a metaphorical principal-agent problem,

where the principal corresponds to the evolutionary process controlling the innate

characteristics of the individual, or agent, who in turn serves the purpose of genetic

replication. Crucially, when we speak of the evolutionary end-point, we refer to

the ancestral hunter-gather environment and the suitable adaptations developed

back then. In the modern world, in contrast, the rate of environmental change has

dwarfed the rate of evolutionary adaptation, resulting in a level of maladaptation

in many respects. Our approach will be relevant to the extent that the adaptations

developed in the ancestral environment are still present in our innate characteristics

today.

The happiness function, in particular, will serve as a measurement tool used to

compare alternative choices. Following Frederick and Loewenstein [1999], and Rob-

son [2001b], our central assumption will be an exogenous limit over the precision of

the agent’s measurement, from which a role for adaptation is derived. For example,

these authors argue that an adaptive utility is analogous to an eye that adjusts to

the luminosity of the environment in order to increase its accuracy, or a voltmeter



EVOLUTIONARY EFFICIENCY AND HAPPINESS 3

that delivers a more precise measurement when calibrated to the specific problem

at hand.1

Here we take the analogy one step further. We consider an abstract choice setting

where the agent must compare alternative inputs x towards the production of a

random output y (consider, for example, a hunter-gatherer who is searching for

fruit). Associated to each level of y, there will be a real-valued hedonic utility, or

happiness, V (y). The agent will measure the impact of x by means of the conditional

expectation E[V (y) | x], where V (y) serves as a “lens” that can adjust to the
environment. The quality of the measurement will be restricted by two constraints.

The first is an upper and lower bound on the happiness function V (y), which we

interpret as a physical limit on the emotions that the body can produce. The

second constraint describes a limit on the agent’s perception sensitivity: we assume

that two alternatives x1 and x2 cannot be distinguished by the agent whenever the

difference between E[V (y) | x1] and E[V (y) | x2] is smaller than some minimum
threshold. When combined, these constraints will provide the basis for an adaptive

V (y).

The fact that the agent’s choice is over inputs, while happiness depends on the

level of output, will lead to a parallel between the evolutionary problem and a stan-

dard problem of optimal incentives under moral hazard —where V (y) corresponds

to a performance reward for the agent. In both cases, the principal who designs

V (y) will seek to maximize the signal value of this function (due to measurement

limits in the former case, and due to a cost of effort in the latter). This parallel will

be central to our approach, since it will allow us to import a number of statistical

insights from incentive theory to the study of happiness.

The optimal happiness functions we derive correspond to an extreme version of

the S-shaped value functions in prospect theory (Kahneman and Tversky [1979]),

with a slope that is fully concentrated around an endogenous reference point. The

position of this reference point is determined by the underlying technological oppor-

tunities. Moreover, it will optimally adjust over time so that it constantly matches

the agent’s potential. In order to illustrate this adaptive mechanism, we consider

an environment where the optimal reference point corresponds to the conditional

1Frederick and Loewenstein [1999] also argue that hedonic adaptation can serve a protective role

against extreme emotional states. In section 6, we suggest a way in which these two approaches

can be combined.
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expectation of output based on all available information. In particular, this expec-

tation will exploit information contained in past levels of output and in the output

of peers, from which habituation and peer comparisons are derived. Consequently,

the specific functional form for these habits and peer comparisons will reflect their

underlying informative role.

A distinctive result is a generalized form of habituation. From a standard class of

output technologies, we derive a reference point that is positively related to past lev-

els of output as well as contemporaneous peer output (describing standard negative

externalities), but negatively related to past values of peer output (which departs

from usual formulations). This represents an individual who becomes habituated

not only to her own success, but also to the success of her peers. For example, the

negative effect of a permanent increase in peer output will fade away over time.

We begin our analysis with a static model where the basic evolutionary problem

is presented. We then extend this model to a dynamic setup where adaptation is

discussed.

2. The Static Model

Consider a representative agent (i.e., a hunter-gatherer) who faces an abstract

one-shot project. To fix ideas, suppose this project amounts to an opportunity to

collect fruit. The agent first observes the current state of nature s, which describes

the physical configuration of the world, such as the presence of fruit and dangers in

specific locations. Next, she selects a course of action x ∈ X , which represents the
strategy adopted, such as traveling in a certain direction or climbing a particular

tree. The combination of x and s randomly determines a level of output y ∈ R —the
amount of fruit collected. Denote the conditional probability distribution of output

by f(y | x, s), a function known by the agent.
Beyond this example, output y is meant to summarize the achievement of prox-

imate evolutionary goals. Namely, those tangible goals that favored the ultimate

evolutionary goal of genetic replication during the ancestral environment —examples

presumably included wealth, health, and sex, as well as the well-being of friends and

kin. Accordingly, the decision variable x represents the actions taken in pursuit of

these goals.

We are interested in the case where the agent’s decision is guided by emotional

rewards that are based on the realized level of output —as opposed to rewards that

are based directly on x. This means that the agent will be allocated full autonomy
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over the choice of x, rather than being prescribed a specific behavior. The idea is

that because of an informational advantage that stems from her observation of s

(representing a complex environment), the agent has comparative advantages when

it comes to selecting the appropriate means of production —Binmore [1994, p.151]

and Robson [2001a] follow a similar approach.2 Emotional rewards will take the form

of a one-dimensional level of happiness V (y) (a summary of emotions), experienced

once y is realized. We assume that the agent can freely dispose of y, which allows

us to focus without loss on non-decreasing happiness functions.

The agent will measure the impact of alternative choices x via the expected value

of happiness E[V | x, s] ≡ R V (y)f (y | x, s)dy. Here the happiness function serves
as a “lens” that transforms a functional space of probability distributions f into a

single dimension, expected happiness, from which a decision criteria is obtained.3

Observe that this setup allows for a distinction between hedonic utility and decision

utility. The former refers to the emotional experience, V (y), whereas the latter refers

to the standard notion of decision-theoretic utility (a ranking of alternative choices),

given here by the state-contingent utility function u(x, s) ≡ E[V | x, s].
The happiness function will be implicitly designed by an evolutionary process,

which we call the “principal.” When designing this function, the metaphorical

objective for the principal is to promote the production of y, which is simply another

way to say that in a population of individuals endowed with a diversity of happiness

functions, those producing higher levels of y will have a reproductive advantage. For

concreteness, we assume that the principal seeks to maximize the expected value of

y —which leads to the same results as maximizing the expected value of any other

increasing function of y.4

Rather than studying the evolutionary trial-and-error dynamics, we are interested

in describing the limiting outcome once sufficient experimentation and selection have

taken place, while holding the environment fixed. We represent this limiting out-

come by means of an optimization problem where the principal directly selects a

happiness function that maximizes her objective. (Recall that, in general, an evo-

lutionary process where genetic traits are passed on to offspring with small random

2Samuelson and Swinkels [2004] study a model where part of this autonomy is subtracted in

order to compensate for cognitive biases.
3See Damasio [1994] for a neurological foundation of emotions as a decision-making device, and

Robson [2001a] for an evolutionary foundation of expected utility.
4The technologies we consider below fit the assumptions under which Robson [1996] shows that

expected-value criteria are optimal.
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variations might converge to a local maximum that is not globally optimal. How-

ever, for the technologies considered below, the global optimum will coincide with

a local maximum that is unique.)

2.1. Measurement Imperfections. Our theory is based on two constraints that,

when combined, will limit the precision of the agent’s ranking of x. The first is a

physical bound that limits the highest and lowest value that V can take: normalizing

these bounds to 0 and 1, we assume that V (y) ∈ [0, 1] for all y. In all the applica-
tions below, these bounds will bind, implying that the principal would benefit from

an organism capable of more extreme emotions. In practice, however, expanding

these bounds will presumably have an evolutionary cost as well —for example, addi-

tional energy would need to be devoted towards building and maintaining a larger

emotional apparatus. As a result, the principal will have an incentive to use what-

ever bounds are available in the most efficient possible way. This is the problem we

focus on.

The second constraint imposes a limit on the agent’s ability to measure, or per-

ceive, small differences in her objective E[V | x, s]. We represent this imperfection
using a reduced form that allows for a simple analysis. Given any pair of choices

x1 and x2, we assume that there is a minimum threshold ε > 0 such that whenever

|E[V | x1, s]− E[V | x2, s]| ≤ ε, these two choices cannot be ranked. Accordingly,

all choices that deliver an expected payoff within ε distance of the optimized value

maxxE[V | x, s] will be part of the same indifference set, denoted the “satisficing”
set. We assume that the agent’s choice is randomly drawn from this set. For our

purposes, it suffices to assume that her draw is monotonic in the sense that the

probability assigned to any subset of the satisficing set is inversely proportional to

the size of the latter.5

This assumption imposes a coarseness in the agent’s measurement analogous to a

computer that must round any small difference to zero because it uses only finitely

many digits, or an eye that cannot rank the luminosity of two sources when they are

sufficiently similar. In both these examples, because of the imperfection, adapting

to the problem at hand will improve the measurement quality: an eye uses a pupil

5Along similar lines, Simon [1959, p.261] argues that when the utilities of two alternatives are

only slightly different, the subject is likely to vacillate in his choice. As an empirical precedent, he

reports an experiment where subjects are asked to rank two unequal weights: when these weights

approach each other, the frequency of a correct answer approaches 1/2. A related type of imperfect

optimization is used for ε-equilibria in games —Radner [1980].
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that opens in the dark in order to maximize the relative differences in luminosity,

while a computer uses a decimal point that floats. The function V will play a very

similar role.

As shown below, the principal would benefit from a smaller ε. However, reducing

ε is likely to require additional energy as well —e.g., in the form of repeated mea-

surements, or more intensive optimization techniques. In this case, the principal

will also benefit from a happiness function that best aids an imperfect machinery,

whatever the size of the underlying imperfection happens to be. We approach this

problem by first solving for the optimal happiness function for any given small ε,

and then characterizing the limit as ε → 0. This limit will serve as an analytically

convenient representation of an environment where small imperfections remain.

2.2. Output Technology. We focus on output technologies of the form

y = E[y | x, s] + z,

where z is an exogenous shock drawn from a continuous density function that has

full support, and is strictly monotonic on either side of its mean —such as a normal.

The shock is realized after x is selected. We assume that E[y | x, s] is continuous
in x, while X (the choice space) is a compact subset of RN , which guarantee that
the choice space is sufficiently rich, and an optimal action always exists.

Under these technologies, the conditional densities f(y | x, s) are single-peaked
at their mean E[y | x, s], and are single-crossing in x: for all x1 6= x2, f(y | x1, s)
and f(y | x2, s) intersect for only one value of y (in this case, between their two
means). These densities are also ordered across x according to first-order stochastic

dominance. These are the key distributional properties we employ.

2.3. A One-Dimensional Formulation. The agent’s choice problem can be sim-

plified to an equivalent problem where her choice is one-dimensional. To do this,

we define a real-valued index ϕ(x, s) as follows:

ϕ(x, s) ≡ E[y | x, s]−minxE[y | x, s]
maxxE[y | x, s]−minxE[y | x, s] .

Notice that, for any given s, ϕ(x, s) ranges from zero to one. We refer to ϕ as the

“efficiency” of the agent’s decision —for example, ϕ(x, s) = 1 means that, given s,

the agent selected the optimal action. Using this index, we can express E[y | x, s]
as a function of ϕ and s alone: E[y | x, s] = E[y | ϕ(x, s), s] ≡ ϕmaxxE[y | x, s] +
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(1− ϕ)minxE[y | x, s]. Accordingly, output becomes
y = E[y | ϕ, s] + z,(1)

where E[y | ϕ, s] is increasing and continuous in ϕ.

This formulation will allow us to express the agent’s problem, without loss of

generality, as one where she directly selects the level of ϕ, subject to ϕ ∈ [0, 1], while
x is sent to the background. Note that this simplification is for analytical purposes

only: the existence of an underlying complex problem —where the agent actually

compares values of x, not values of ϕ— remains essential for the interpretation of

the model.

We begin our analysis with the simplest case where E[y | ϕ, s] is independent
of the state s, which means that both maxxE[y | x, s] and minx E[y | x, s] are
independent of s. In this case, while s might affect the value of each particular

choice x, it does not change the agent’s overall output potential. As a result, the

conditional density of y simplifies to f (y | ϕ). We return to the general case in the
dynamic model below.

2.4. The Optimal Happiness Function. Expressed in terms of ϕ ∈ [0, 1], the
agent’s objective function is given by E[V | ϕ] ≡ R V (y)f (y | ϕ)dy. Accordingly,
her satisficing set corresponds to the set of choices ϕ that deliver an expected

happiness within ε distance of maxϕE[V | ϕ]. Notice that under the technologies
above, the densities f (y | ϕ) have full support and are ordered across ϕ according
to first-order stochastic dominance. As a result, for any V that is not constant (and

non-decreasing), E[V | ϕ] is increasing in ϕ, and therefore maximized at ϕ = 1.

Thus, the satisficing set, now given by {ϕ : E[V | ϕ] ≥ E[V | 1]− ε}, becomes the
interval [ϕmin(V, ε), 1], where the lower boundary ϕmin(V, ε) is uniquely determined

by the equality E[V | ϕmin(V, ε)] = E[V | 1] − ε. This boundary represents the

lowest efficiency level ϕ that can arise in equilibrium.

From the principal’s standpoint, the impact of V is fully summarized by the value

of ϕmin(V, ε), with a larger value being strictly preferred. Her problem can therefore

be expressed as

max
V

ϕmin(V, ε)(I)

s.t. V (y) ∈ [0, 1] for all y,
which corresponds to minimizing the set of inefficient choices ϕ < 1 that the agent

confuses with ϕ = 1. Let ϕ∗ denote the optimized value for this problem —which for
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any ε > 0, is smaller than 1. The following Lemma will allow us to solve for the

optimal V using a dual approach:6

Lemma 1. Suppose V ∗ is a solution to problem I (namely, ϕmin(V
∗, ε) = ϕ∗).

Then, V ∗ must also solve

max
V

E[V | 1]− E[V | ϕ∗](II)

s.t. V (y) ∈ [0, 1] for all y.

Proof. Suppose not. Then there must exist a V 6= V ∗ (satisfying the constraint)
such that E[V | 1] − E[V | ϕ∗] > E[V ∗ | 1] − E[V ∗ | ϕ∗] ≡ ε. But this implies that

ϕmin(V, ε) > ϕ∗, a contradiction.

In other words, in order for V ∗ to be optimal, there cannot exist an alternative

V that leads to a difference between E[V | 1] and E[V | ϕmin(V ∗, ε)] larger than ε,

since this would deliver a boundary ϕmin(V, ε) larger than ϕmin(V
∗, ε).

Proposition 1. Problem I is solved by a one-step happiness function V ∗ such that

V ∗(y) =

(
1 for all y ≥ by,
0 for all y < by,

where the threshold by is uniquely determined by the equality f (by | 1) = f(by | ϕ∗).
Moreover, this solution is unique up to a measure-zero subset.

Proof. The objective in problem II is equal to
R
V (y) [f(y | 1)− f (y | ϕ∗)] dy. This

integral is maximized by setting V (y) = 1 for every y such that f(y | 1) ≥ f (y | ϕ∗),
and V (y) = 0 for every y such that f(y | 1) < f(y | ϕ∗). Moreover, from the single-
crossing of f , we have f(y | 1) > f(y | ϕ∗) for all y > by, and f(y | 1) < f(y | ϕ∗)
for all y < by. Finally, since f(y | 1) 6= f(y | ϕ∗) almost everywhere, this solution is
unique up to a zero-measure subset, and therefore solves problem I as well.

This result can be illustrated graphically. The upper panel of Figure 1 graphs the

conditional density f(y | ϕ). The bold curve represents f(y | 1), the most desirable
function for the principal, while the dashed curve represents f(y | ϕ∗) —where ϕ∗,

by definition, will always belong to the satisficing set. The dual objective is to

maximize the difference in expected happiness under these two alternatives, which

is the only way to exclude every ϕ < ϕ∗ from the satisficing set. As depicted in the

lower panel, this is achieved by a V that maximally rewards all values of y for which

6Existence of an optimal V follows from a standard argument.
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Figure 1. The Optimal V

f(y | 1) > f (y | ϕ∗), and vice versa: under any other V, the two distributions would
appear more similar for the agent. The threshold by lies where the two densities
intersect. Under the technologies in (1), this occurs between the peaks E[y | ϕ∗]
and E[y | 1].
A statistical parallel can be drawn with a problem of optimal incentives —e.g.,

Holmstrom [1979], Levin [2003]. Interpret V as a performance bonus, ϕ as a costly

effort variable, and the bounds for V as a two-sided limited-liability constraint.

Under this interpretation, the one-step bonus above will maximally punish the agent

following a deviation to ϕ∗. Accordingly, we can view this bonus as implicitly testing

the null “ϕ = 1” against the alternative “ϕ = ϕ∗.” In this case, the null will be

rejected whenever the likelihood ratio f(y|ϕ∗)
f (y|1) exceeds one.

2.5. The Limit When ε → 0. As ε converges to zero, the lower bound of the

satisficing set ϕ∗ converges to one. Consequently, as suggested by Figure 1, the

happiness threshold by —which lies between E[y | ϕ∗] and E[y | 1]— converges to
E[y | 1]. Proposition 2 follows as a result:
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Proposition 2. Given ε, let V ∗(ε) denote the optimal one-step function character-

ized by Proposition 1. Then, in the limit as ε converges to zero, V ∗(ε) converges

point-wise to the one-step function

V (y) =

(
1 for all y ≥ E[y | 1],
0 for all y < E[y | 1].

Up to a measure-zero subset, this limiting function uniquely maximizes the de-

rivative ∂
∂ϕ
E [V | ϕ]|ϕ=1 ≡

R
V (y) fϕ(y | ϕ)|ϕ=1 dy, which represents the limiting

version of the objective in the dual problem II. Maximizing this derivative guar-

antees that marginal deviations away from ϕ = 1 have a maximal impact over the

agent’s objective, thus improving her ability to discriminate. The analogy in op-

timal incentives is a first-order approach where all incentive power is focused over

small effort deviations (e.g., Rogerson [1985], Levin [2003]).

These extreme rewards arise because the agent, by construction, is risk-neutral

with respect to happiness, and happiness is costless to the principal within the

bounds. Smoother happiness functions would arise if instead of imposing the [0, 1]

bounds, we assumed that there is a neutral level of happiness that is physiologically

optimal, and that deviations from this level are increasingly costly. The Appendix

studies this case. There, we present a parameterization that delivers a family of

smooth S-shaped curves with differing slopes around the reference point (similar

to those used by Kahneman and Tversky [1979]). In the limit as these slopes

converge to infinity, the curves converge to the one-step functions above. The

analytical advantage of the limiting functions is that they are fully characterized by

the position of by.
3. The Dynamic Model

We now extend the model to a dynamic setup where the agent lives for multiple

periods t = 1, 2, ... We equate every period with one separate project —the simplest

possible case. At the beginning of period t, the agent observes a state st and selects

an action xt ∈ X. Output is then given by yt = E[yt | xt, st] + zt, which we assume
satisfies the same properties as above, with zt i.i.d. across time. As before, we use

the one-dimensional representation in (1), where yt = E[yt | ϕt, st] + zt, and the
agent directly selects the efficiency level ϕt ∈ [0, 1]. After yt is realized, the agent
experiences a happiness level Vt ∈ [0, 1].
In contrast to the special case studied in the static model, we now allow the

extreme values maxxt E[yt | xt, st] and minxt E[yt | xt, st] to vary with st, so that
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E[yt | ϕt, st] also varies with st. In particular, we assume that these extreme values
now depend on a subset of st, denoted Ωt. Accordingly, output becomes

yt = E[yt | ϕt,Ωt] + zt.(2)

The new variable Ωt may represent, for example, current weather conditions. We

assume that Ωt can be encoded, together with yt, into the happiness function (which

means that Ωt must be relatively simple). As a result, happiness becomes Vt(yt,Ωt).

This dependence on Ωt implies that happiness can now adapt to changes in output

potential.

The agent’s objective for period t is to maximize the expected value of Vt, as

opposed to some expected discounted value of future happiness. In other words,

everything the agent cares about, present and future, is reflected in present emo-

tions. This model will capture forward-looking behavior by interpreting a given

project as being forward looking itself, and rewarded by current happiness. Con-

sider, for example, a hunter-gatherer who eats in excess of current needs in order to

accumulate fat, or helps a friend, precisely because it makes her feel happy today

(a modern counterpart might be an individual who invests in her retirement funds

for precisely the same reason). Below, we also discuss the case where the agent

internalizes future happiness above and beyond Vt.

Since the agent faces a separate project every period, any such period is identical

to the static model above —save for the presence of Ωt. Moreover, Ωt simply enters as

a technological constant in all the previous analysis. As a result, from Proposition 2,

the optimal limiting function Vt (as ε→ 0) will be a one-step function with thresholdbyt = E[yt | ϕt,Ωt]|ϕt=1 —namely, the peak of the density f (yt | ϕt,Ωt)|ϕt=1 . In other
words, the impact of Ωt will occur via a threshold byt that is updated in a statistically
optimal way.

3.1. Habituation. We proceed with two simple examples where byt incorporates a
habit due to an Ωt that is correlated across time. Possible causes for this correlation

include environmental shocks and an intrinsic talent that persists over time.

Example 1: A Markovian Habit. Suppose output is given by yt = ϕt + θt,

where θt is a random shock that follows the Markovian process θt = θt−1 + zt.

Equivalently, output can be expressed as yt = ϕt+θt−1+zt. This technology satisfies

equation (2) with Ωt = θt−1, which is correlated across time. Notice that θt−1 can

be inferred from the lagged equality yt−1 = ϕt−1 + θt−1. As a result, output becomes
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yt = ϕt+(yt−1−ϕt−1)+zt. In equilibrium, once ϕt = ϕt−1 = 1, this equation reduces

to yt = yt−1+ zt, from which it follows that yt−1 (the best predictor of yt) becomes

the optimal reference point:

byt = E[yt | ϕt,Ωt]|ϕt=1 = yt−1.

In this case, the agent will experience a high level of happiness if and only if her

current output exceeds what she achieved one period ago. This result follows from

an optimal statistical inference. In order to best guide the agent, the principal

will employ her most accurate source of information regarding ϕt (analogous to an

optimal incentive scheme). From the equality yt − yt−1 = ϕt − ϕt−1 + zt, we learn

that the most accurate source is the difference yt− yt−1. As a result, this difference
becomes the carrier of happiness. In contrast, if the reference point did not adapt,

as θt drifts to extreme values, all decisions ϕt would appear increasingly good or

increasingly bad, and thus increasingly similar.

On the other hand, observe that a reduction in ϕt will affect yt in exactly the

same way as a low realization of zt, implying that these two variables cannot be

distinguished by Vt. As a consequence, the principal must punish the agent following

low realizations of zt, and vice versa: happiness is inevitably affected by chance. In

fact, in equilibrium, the sole carrier of happiness becomes the random shock zt

(which equals yt− byt). This implies that the expected value of happiness will be the
same for every period, regardless of past levels of output: the effects of the shocks

are always short-lived. These features are shared by all the examples that follow.

In many languages, the word “happiness” is closely linked to “fortune” and “luck.”

For the ancient Greeks, happiness (eudaimonia) was ultimately determined by the

will of the gods.7

Example 2: Auto-Regressive Habits. Suppose output is given by yt = ϕt+θt,

and θt follows the auto-regressive process θt =
P

αsθt−s+ zt for arbitrary constants

αs, and s ≥ 1. In this case, Ωt is the vector (θt−1, θt−2, ...). Following similar steps to
those in Example 1, output becomes yt = ϕt+

P
αs(yt−s−ϕt−s)+zt. In equilibrium,

this equation reduces to yt =
P

αsyt−s + (1−
P

αs)+ zt, from which we obtain

byt = E[yt | ϕt,Ωt]|ϕt=1 =
X

αsyt−s +
³
1−

X
αs

´
.

7“When viewed through mortal eyes, the world’s happenings —and so our happiness— could only

appear random, a function of chance” —McMahon [2004, p.7].
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The reference point is now a weighted average between past levels of output and

the equilibrium efficiency level ϕt = 1 (e.g., allowing habituation to occur at a

slower rate than in Example 1). The specific weights guarantee that the carrier of

happiness yt − byt employs only the new information contained in yt.
3.2. Habits and Forward-Looking Behavior. Notice that the presence of habits

does not deter the agent from selecting ϕt = 1. A possible interpretation is that

the agent is simply unaware of these habits, and therefore does not take them into

account. This interpretation is consistent with a common finding in the psychology

literature that individuals tend to underestimate the degree to which they will adapt

to changing circumstances —Gilbert et al. [1998], Loewenstein and Schkade [1999].8

This opens the possibility that a rational agent, who recognizes the existence of

these habits (and manages to internalize their effect), might benefit from a deviation.

Whether such a profitable deviation exists will depend on how the reference pointbyt is determined outside equilibrium. So far, this issue has not been discussed.
Consider the technologies of Example 2. In general, there will be several alterna-

tive formulations for the reference point, all of which are equivalent in equilibrium.

In one extreme, byt may correspond to an exogenous function of past levels of out-
put, namely, byt = P

αsyt−s + (1−
P

αs). In the other extreme, byt may equal
the best predictor of yt conditional on ϕt = 1 and all past information, namely,byt = E[yt | ϕt,Ωt]|ϕt=1 =

P
αsθt−s + 1 (where the values of θt−s are inferred from

the technological equalities θt−s = yt−s − ϕt−s).
9 When ϕt−s = 1 for all s, both

formulations coincide. The difference arises outside equilibrium:

In the former case, a reduction in ϕt will reduce future reference points by reducing

yt, thus increasing the expected value of future happiness. As a result, the deviation

might indeed be beneficial.10 In the latter case, in contrast, the agent understands

that a reduction in ϕt will not affect her future reference points because these only

depend on the underlying technological shock θt, and not on the particular value of

yt. This case describes an agent who cannot change his future output expectations

8See also Frey and Stutzer [2004] for a study of biased predictions, and Burnham and Phelan

[2001] for a witty account.
9In this case, the agent uses her best cognitive abilities to form an expectation, only to then

compare her actual success against this self-imposed benchmark. Such a procedure would add

flexibility to the reference point, which can be evolutionarily advantageous in an environment

where the parameters of the technological process change over time.
10For example, if the agent maximizes a geometrically-discounted sum of future happiness levels

at rate β, a marginal deviation away from ϕt = 1 will be beneficial if and only if
P

βsαs > 1.
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by merely reducing ϕt. Therefore, a deviation will never be beneficial. As a result,

this agent can be described as either maximizing a present discounted value of future

happiness levels, or equivalently, as maximizing current happiness alone.

The above distinction will also be relevant for policy. In the former case, for

instance, a tax policy that leads to an increasing income profile over the life cycle

might increase long-term happiness. In the latter case, in contrast, expectations

may fully adjust to the policy, therefore eliminating the desired effect.

4. Multiple Agents

In order to derive peer effects, we extend the model to include multiple agents

i. Actions for period t, denoted ϕit, are selected simultaneously, and they randomly

determine an output level yit for each agent. Let yt denote the average output across

agents, and let wit ≡ yit − yt denote relative output. The new assumption is that
the agents will experience common productivity shocks (e.g., due to a shared en-

vironment), implying that peer output becomes valuable when assessing individual

performance.11 Dropping the i superscript, we focus on technologies such that

wt = E[wt | ϕt,Ωt] + zt,(3)

which we assume satisfies our previous assumptions with wt in the place of yt. In

addition, we assume that zt is independent across agents and that the population

average for these shocks is zero —i.e., an exact law of large numbers applies.

Although the principal cares only about yt, happiness is also allowed to depend

on yt (as well as Ωt). From (3), the conditional density f (yt | ϕt, yt,Ωt) depends on
yt and yt only through wt. As a result, happiness can be expressed without loss as

Vt(wt,Ωt). It follows that this model is identical to the model with a single agent,

with wt replacing yt. Consequently, from Proposition 2, the optimal Vt is a one-step

function with Vt(wt,Ωt) = 1 for all wt ≥ bwt, and Vt(wt,Ωt) = 0 otherwise —wherebwt = E[wt | ϕt,Ωt]|ϕt=1 .

11If the principal directly benefitted from relative output wit, peer effects would immediately

arise —see, for example, Cole et al. [1992] for the potential benefits conveyed by wit. Here we

show how these effects can extend beyond any direct advantage of achieving a high wit. In a

complementary approach, Samuelson [2004] derives peer effects that lead to an imitation of con-

sumption levels (even when only absolute consumption is relevant), which may be desirable in an

environment where the optimal level of consumption is not fully known by the agent.
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Example 3: Static Peer Comparisons. Suppose output for each agent is given

by yt = ϕt+Γt+ zt. The term Γt represents an aggregate shock that is shared by all

agents, whereas zt is the idiosyncratic shock from (3). Both Γt and zt are realized

after ϕt is selected. No restrictions over the distribution of Γt are imposed. In this

case, Ωt will be redundant. In equilibrium, by averaging across agents we obtain

yt = 1+Γt. Therefore, yt−yt = wt = (ϕt−1)+ zt, which satisfies (3). The optimal
reference point for wt becomes bwt = E[wt | ϕt]|ϕt=1 = 0. Thus, the reference point
for yt is given by

byt = yt.
The carrier of happiness now becomes the agent’s relative income yt − yt. The

reason why yt enters the happiness function is because it filters out the aggregate

shock Γt, and thus increases the statistical power of the measurement device. The

resulting happiness function is analogous to a relative performance scheme inside

a firm. By tightening the connection between effort and reward, its effect is to

magnify the cost of withdrawing effort —e.g., Lazear and Rosen [1981], Green and

Stokey [1983].

A distinctive implication of the model arises when habits and peer comparisons

are combined. We begin with a simple example that combines the technologies from

Examples 1 and 3:

Example 4: A Markovian Habit and Dynamic Peer Comparisons. Sup-

pose output for each agent is given by yt = ϕt + Γt + θt, where Γt is an arbitrary

aggregate shock, and θt follows the Markovian process θt = θt−1 + zt. The differ-

ence with Example 1 is the presence of Γt, and the difference with Example 3 is

the persistence of zt. Using this technology, we can write yt − yt−1 = (ϕt − ϕt−1)

+ (Γt − Γt−1) + zt. Moreover, in equilibrium, yt − yt−1 = Γt − Γt−1. Combining

these expressions, we obtain wt = (ϕt − ϕt−1) + wt−1 + zt, which satisfies (3) (with

Ωt = wt−1 = θt−1 − θt−1). As a result, the reference point in terms of wt becomesbwt = wt−1. Accordingly, the reference point in terms of yt becomes
byt = yt−1 + yt − yt−1.

This reference point is not the mere sum of yt−1 and yt. Such a reference point

would imply that the carrier of happiness is the difference between the increase

in output ∆yt = yt − yt−1 and the average peer output yt. This would lead to a
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comparison between an innovation and an absolute level. Rather, the carrier of

happiness is the difference in differences

∆yt −∆yt,

where the role of yt−1 is to filter out the lagged aggregate shock Γt−1.

Thus, while yt−1 and yt reduce current happiness, yt−1 has the opposite effect. We

interpret this as a generalized process of habituation that extends to the output of

peers. Consider, for example, a sudden and permanent increase in yt, while holding

yt constant. This increase will initially shift the reference point to the right, with a

likely decrease in happiness. But after one period, yt will enter the reference point

with a negative sign, shifting it back to its original level. As a result, the agent will

have successfully coped. Equivalently, this agent has become habituated to her new

lower social position wt, even though her own income has not changed.
12

We conclude with a result that encompasses all the examples above:

Proposition 3. Suppose output for each agent is given by yt = ϕt+Γt+θt, where Γt

is an arbitrary aggregate shock, and θt follows the auto-regression θt =
P

αsθt−s+zt
for arbitrary constants αs, and zt i.i.d. Then, the optimal reference point for period

t is given by

byt =Xαsyt−s + yt −
X

αsyt−s.

Proof. Using the above technology, we can write

yt −
X

αsyt−s = ϕt −
X

αsϕt−s + Γt −
X

αsΓt−s + zt.

Therefore, in equilibrium, yt−
P

αsyt−s = (1−
P

αs)+Γt−
P

αsΓt−s. Combining

these two expressions, we obtain

wt =
X

αswt−s + (ϕt − 1)−
X

αs(ϕt−s − 1) + zt,
which satisfies (3). The result follows from setting ϕt = ϕt−s = 1 (so that bwt =P

αswt−s), and rearranging terms.

The carrier of happiness is now the generalized difference in differences

yt −
X

αsyt−s −
h
yt −

X
αsyt−s

i
.

12This may potentially describe an agent who copes with peer success by changing her reference

group. To the best of our knowledge, a satisfactory formal model of reference-group formation is

yet to be developed.
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The term
P

αsyt−s corresponds to a conventional habit, whereas the presence ofP
αsyt−s again results in habituation to peers. Regardless of the properties of the

aggregate shocks (including any intertemporal correlations), the same coefficients

enter both forms of habituation. The reason is that yt−s is impacted by the aggregate

shock Γt−s, which is redundant when assessing ϕt. Subtracting yt−s from yt−s filters

out this shock. The implication is that lagged output and lagged peer output

have the opposite effect over happiness. Consider, for example, an individual with

a stable level of wealth who compares himself with a neighbor who is currently

wealthier. The above formulation allows him to feel better when, for as long as

he can remember, this neighbor has always been wealthier —as opposed to the case

where their relative fortunes have been recently reversed.

4.1. Income and Happiness Surveys. A reference point that depends negatively

on the lagged income of peers might also be useful when describing the happiness

surveys. To illustrate this, suppose we restrict to linear reference points of the form

byt =Xαsyt−s + λyt +
X

βsyt−s,

where yt denotes income, perhaps measured in logs, and where the sum of the right-

hand coefficients does not exceed one —a condition required if a general increase

in income is to have a non-negative impact over happiness. Such a model would

explain habituation to own income via positive coefficients αs (for example, full

habituation to permanent changes in yt would require
P

αs = 1), and it would

explain a concern for relative income via a positive λ.

A number of authors have argued that beyond the point where basic needs have

been covered, an individual’s absolute level of income has a minimal impact over

her reported happiness. Rather, the bulk of its impact comes from the relative

social position it conveys —e.g., Easterlin [1995], Oswald [1997], Frank [2004]. In

the above model, this would correspond to a λ close to 1 —so that simultaneous

increases in yt and yt mostly cancel each other out.
13 But when combined with the

initial restriction that
P

αs + λ +
P

βs ≤ 1, notice that a λ that is close to 1 may

coexist with significant habits for own income only when the term
P

βs happens

to be negative —as suggested by the Proposition above.

13Easterlin [1995], for example, implicitly favors a λ = 1. This extreme version is necessary

to eliminate any time-series association between income and happiness when the growth rate for

income varies with time.
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5. Conclusions

We have modeled happiness as a measurement instrument that guides the agent’s

decisions. The quality of the measurement is enhanced when the happiness function

adapts to the current decision environment —adaptation is thus favored by nature. In

the model, this adaptation occurs through an output benchmark, or reference point,

that integrates all information that can predict the agent’s performance. Whenever

output is correlated across time and across agents, habits and peer comparisons

arise as special cases.

Our goal has been to argue that happiness, as best observed by current empirical

methods, contains the signs of statistical inference. In particular, we have suggested

a statistical parallel between happiness and an optimal incentive scheme that seeks

to promote effort, allowing us to import the insights of agency theory to the study

of our innate psychological features. This approach rationalizes, for example, why

serendipity has an impact over happiness —and why this impact is short-lived.

The examples of habits and peer comparisons that we considered are far from

exhaustive. Possible extensions could address the issue of habituation patterns

that differ systematically according to the type of good involved, as well as the

endogenous formation of reference groups. In both cases, statistical principles may

prove to play a role.

6. Appendix: Costly Happiness

Here we replace the assumption that happiness is bounded. Instead, we assume

that the hedonic machinery of the agent is such that there exists a specific level of

happiness V0 that is most desirable from a physiological point of view, and deviations

away from V0 are increasingly costly. For example, V0 might consume the least

amount of calories when experienced. Alternatively, this might be a happiness level

that maximizes the health of the agent.14

In particular, we assume that whenever V (y) departs from V0, it causes an indi-

rect evolutionary cost C(V (y), V0) ∈ R. Assuming risk-neutrality, and an additive
structure for this cost, the problem for the principal becomes

max
V

∂

∂ϕ
E [V | ϕ]

¯̄̄̄
ϕ=1

− E[C | V ],

14An analogy employed in the psychology literature is that happiness is like blood sugar —e.g.,

Wilson et al. [2002]. See also Sapolsky [1999] for a discussion of the health costs of negative

emotions.
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Figure 2. Costly Happiness

where the first term is the limiting version of the objective in II, and the second

term is the expected value of C in equilibrium. (Notice that the assumption of a

bounded happiness would correspond to the case where C is zero within [0, 1], and

infinity outside this range.) The principal must now trade off the signal value of a

departure from V0 against its physiological cost.

We illustrate this trade-off for the case where C(V (y), V0) takes the simple form
1
n
|V (y)− V0|n , and output is given by y = ϕ+ z, with z distributed as a standard

normal. This specification allows for a solution in closed form that is parameterized

by the degree of curvature n in the cost function. The first-order conditions for

V (y) become

(V (y)− V0)n−1 =
fϕ(y | 1)
f(y | 1) = y − by, for V (y) ≥ V0, and

(V0 − V (y))n−1 = −fϕ(y | 1)
f(y | 1) = by − y, for V (y) < V0,

where by = E [V | 1] .15
15The equality fϕ(y|1)

f(y|1) = y − by is derived from the normal density

f(y | ϕ) = 1√
2π
exp

µ
−1
2
(y − ϕ)2

¶
.
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Figure 2 (drawn to scale) plots V (y) − V0 as a function of y − by, the carrier of
happiness. When n = 2, the optimal happiness function is a 45◦ line. Whenever

n > 2, the optimal function becomes S-shaped: concave to the right of the reference

point, and convex to the left. Moreover, as n becomes large, the optimal function

converges to a one-step function with V (y)−V0 = 1 to the right of by, and V (y)−V0 =
−1 to the left. After a normalization of units, this limiting case coincides with the
functions derived in Proposition 2.
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