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1 Introduction

In this paper we introduce a model of voluntarily repeated games in a large society. Players are

randomly matched to play a component game (specifically a two-person prisoner’s dilemma) and after

each round of play, they can choose whether to continue playing the game with the same partner or

not. While there is a large society that players belong to, each direct interaction (a partnership) is

voluntarily separable. In a partnership, there is a merit of mutual cooperation but there is a gain by

free-riding on the partner’s cooperation as well.

In our model, the incentive to free-ride is stronger than in ordinary repeated games, in which

players are confined, for three reasons. First, a deviator can exit the partnership immediately after

the deviation, escaping from any future punishment by the victim(s). Second, the information flow is

severly limited. Actions within a partnership are assumed not to be revealed to players outside of the

partnership, and, due to the random death, it is impossible to tell whether a player is in the matching

pool because of a partnership separation or by birth. Third, the large society and random death

make it impossible for a player who may know a deviator to start the contagion of defection (Kandori,

1992) effectively. Therefore, the known disciplining strategies such as trigger strategies (Fudenberg

and Maskin, 1986) and contagion of defection do not sustain cooperation in our model. Our model

describes a large anonymous society, which needs a different type of discipline from those of a society

of directly interacting long-run players.

There are many real-world situations which fit this model. Borrowers can move from a city to

another after defaulting. Workers can shirk and then quit the job. However, in the real-world,

cooperative mode of behavior is still prevalent. We think that there is a disciplining system embedded

in a society which supports cooperation even among boundedly rational players with little information

about the past of each other.

Our idea is as follows. Voluntary termination of a partnership is not only useful for a deviator but

also an option for the victim to escape from the potential future exploitation and at the same time

to force the deviator into the random matching pool. If a newly made partnership can only produce

much lower payoff, then returning to the matching pool serves as a punishment.1 In order to create

such payoff difference, one cannot start cooperating from the outset of a new partnership. Instead,

there must be a trust-building period, in which partners do not cooperate but keep the partnership

1In the main body of the paper we assume that the probably of getting a new match in the pool is 1.
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to build up trust capital, which will be lost once the current partnership ends. Then no player would

deviate from the strategies with large enough trust capital.

We show that (1) playing cooperation from the first period of a match does not consitute even a

Nash equilibrium in our model, (2) a myopic strategy which defects and ends a partnership immediately

is a Nash equilibrium strategy but not neutrally stable, (3) sufficiently long period of trust-building

with disciplinary cooperation afterwards is not only a Nash equilibrium but also neutrally stable

strategy, and (4) in some cases, various trust-building periods co-exist in an equilibrium so that some

are exploiting others. We also consider some extensions of the model such as allowing the probability of

matching be less than 1 and allowing cheap talk before starting VRPD. When the matching probability

is less than 1, it is easier to sustain cooperation. When cheap-talk is allowed, there is a unique EES

strategy (Swinkels, 1992), which has the shortest equilibrium trust-building period.

This paper is organized as follows. In Section 2, we describe the basic model and stability concepts.

In Section 3, we focus on equilibria in which players voluntarily keep the partnership and cooperate

repeatedly. In Section 4, we consider matching frictions in relation to efficiency wage. In Sections 5,

we consider drift and define another stability concept similar to EES (Swinkels, 1992) and, in Section

6, we analyze cheap-talk model with EES. Section 7 concludes the paper.

2 Model and Stability Concepts

2.1 Model

Consider a society with a continuum of players, each of whom may die in each period t = 1, 2, . . . with

probability 0 < (1 − δ) < 1. When they die, they are replaced by newly born players, keeping the

total population constant.

When a player is newly born, he enters into the matching pool where players are randomly paired

to play a Voluntarily Repeated Prisoner’s Dilemma (VRPD) as follows.

In each period, players play the following Extended Prisoners’ Dilemma (EPD). First, they play

ordinary one-shot Prisoners’ Dilemma, whose actions are denoted as Cooperate and Defect. After

observing the play action profile of the period by the two players, they choose simultanously whether

or not they want to keep the match into the next period (action k) or bring it to an end (action e).

Unless both choose k, the match is dissolved and players will have to start the next period in the

matching pool and be randomly paired to play another VRPD anew. In addition, even if they both
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choose k, partner may die with probability 1− δ which forces the player to go back to the matching

pool next period. If both choose k and survive to the next period, then the match continues, and the

matched players play EPD again. (See Figure 1 for the outline of the game.)
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Figure 1: Outline of VRPD

Assume that there is limited information available to play EPD. In each period, players know the

VRPD history of their current match but have no knowledge about the history of other matches in

the society.

In each match, a profile of play actions determines the players’ instantaneous payoffs for each

period while they are matched. We denote the payoffs associated with each play action profile as:

u(C, C) = c, u(C, D) = `, u(D, C) = g, u(D, D) = d with the ordering g > c > d > `.2

P1 \ P2 C D
C c, c `, g

D g, ` d, d

Table 1: Payoff of PD

2We can normalize these payoffs such as c = 1 and/or d = 0. However, because later we introduce a payoff to be
accrued when the player has no partner, we leave these payoffs as they are.
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Because we assume that the innate discount rate is zero except for the possibility of death, each

player finds the relevant discount factor to be δ ∈ (0, 1). With this, life-long payoff for each player is

well-defined given his own strategy (for VRPD) and the strategy distribution in the matching pool

population over time.

Let t = 1, 2, . . . indicate the periods in a match, not the calendar time in the game. Under the

limited information assumption, without loss of generality we can focus on strategies that only depend

on t and the private history of actions in the Prisoner’s Dilemma within a match. In t-th period of a

match, let (x1t, x2t) ∈ {C, D}2 be the action profile in PD, where the subscript 1 or 2 indicates the

player role in this match (which is randomly assigned when a match is formed). Then a partnership

history of VRPD at the beginning of t = 2, 3, . . ., conditional upon the partnership being still alive is

ht = {(x1τ , x2τ )}t−1
τ=1, while h0 = {∅}. Let

Ht := {C,D}2(t−1)

be the set of partnership histories at the beginning of t ≥ 2 and let H1 := {∅}.

Def.: A pure strategy s of VRPD specifies (xt, yt)∞t=1 where:

xt : Ht → {C, D} specifies an action choice xt(ht) ∈ {C, D} given the partnership history ht, and

yt : Ht × {C, D}2 → {k, e} specifies whether or not the player wants to keep or end the partnership,

depending upon the partnership history at the beginning of t, ht, and the current period action profile

(x1t, x2t).

The (infinite) set of pure strategies of VRPD is denoted as S and the set of all strategy distributions

in the population is denoted as P(S). For simplicity we assume that each player uses a pure strategy.

We investigate stability of stationary strategy distributions in the matching pool. Although the

strategy distribution in the matching pool may be different from the distribution in the entire society,

if the former is stationary, there is an associated stationary distribution of social states. See Appendix

A for the details. Hence stability of stationary strategy distributions in the matching pool implies

stability of social states. By looking at the strategy distributions in the matching pool, we can directly

compute life-time payoffs of players easily.

Below we show how the lifetime payoffs are computed for a player in a match and for a player in

the matching pool, waiting to be randomly matched.
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When a strategy s ∈ S is matched with another strategy s′ ∈ S, the expected number of days s

spends with s′ will be denoted as D(s, s′) and is computed as follows. Notice that even if s and s′

intend to maintain the match, it will only continue with probability δ2, which is the probability that

both survive to the next period. Suppose that if no death occurs while they form the partnership, s

and s′ will end the partnership at the end of T (s, s′)-th period of the match. Then

D(s, s′) := 1 + δ2 + δ4 + · · ·+ δ2{T (s,s′)−1} =
1− δ2T (s,s′)

1− δ2
.

When s is matched with s′, the portion of his lifetime s expects to spend within the match with

s′ is:

r(s, s′) :=
D(s, s′)

DL
= (1− δ)D(s, s′) =

1− δ2T (s,s′)

1 + δ

where DL = 1 + δ + δ2 + · · · = 1
1−δ is the number of total days s expects to live in his lifetime.

When s is matched with s′, the expected total discounted value of the payoff stream that s expects

to receive while the match with s′ remains alive is denoted as V I(s, s′). The average per period payoff

that s expects to receive during the match with s′ is denoted as vI(s, s′). Clearly,

vI(s, s′) :=
V I(s, s′)
D(s, s′)

, or V I(s, s′) = D(s, s′)vI(s, s′).

Example 1. An extension of the trigger strategy in the ordinary (non-voluntary) repeated prisoner’s

dilemma is as follows:

t = 1: Play C and keep the partnership for any observation.

t ≥ 2: Play C if the partnership history of PD actions consists only of (C, C). Otherwise play D.

Keep the partnership for any observation.

If two players endowed with this trigger strategy tr are matched, then D(tr, tr) = 1
1−δ2 , r(tr, tr) =

1
1+δ , and

V I(tr, tr) = c + δ2c + δ4c + · · · = c

1− δ2
,

vI(tr, tr) = c.

Now consider a myopic strategy d̃ as follows:

t = 1: Play D and e (end the partnership) for any observation.

t ≥ 2: Since this is off-path, any action can be specified.
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If tr is matched with d̃, then D(tr, d̃) = D(d̃, tr) = 1, and

V I(tr, d̃) = vI(tr, d̃) = `,

V I(d̃, tr) = vI(d̃, tr) = g.

Thus, d̃ is a better response than tr if one expects to be matched with tr often.

Next we show the structure of the lifetime and average payoff of a player with strategy s ∈ S in

the matching pool, waiting to be matched randomly with a partner. When a strategy distribution

in the matching pool is p ∈ P(S) and is stationary, we write the expected total discounted value of

lifetime payoff streams s expects to receive in his lifetime as V (s; p) and the average per period payoff

s expects to receive during his lifetime as

v(s; p) :=
V (s; p)

DL
= (1− δ)V (s; p).

A straightforward way to compute V (s; p) is to set up a recursive equation. If p has a finite

support, then we can write

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V I(s, s′)

+[δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}}+ δ2{T (s,s′)−1}δ]V (s; p)
]
,

where supp(p) is the support of the distribution p, T (s, s′) is the date at the end of which s and s′

end the match, the sum δ(1− δ){1 + δ2 + · · ·+ δ2{T (s,s′)−2}} is the probability that s loses the partner

s′ before T (s, s′), and δ2{T (s,s′)−1}δ is the probability that the match continued until T (s, s′) and s

survives at the end of T (s, s′) and goes back to the matching pool. (See Figure 2.)
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JĴ

δ2(T (s,s′)−1)δ

Continuation
payoff

V (s; p) V (s; p) V (s; p) V (s; p)

#

"

Ã

!

Figure 2: Transition structure of a payoff stream

By computation

V (s; p) =
∑

s′∈supp(p)

p(s′)
[
V I(s, s′) +

{δ(1− δ)(1− δ2{T (s,s′)−1})
1− δ2

+ δ2{T (s,s′)−1}+1
}

V (s; p)
]
,

=
∑

s′∈supp(p)

p(s′)
[
V I(s, s′) + {1− r(s, s′)}V (s; p)

]
.

Let

r(s; p) :=
∑

s′∈supp(p)

p(s′)r(s, s′).

Then

V (s; p) =
∑

s′∈supp(p)

p(s′)V I(s, s′) + {1− r(s; p)}V (s; p),

⇐⇒ V (s; p) =
∑

s′∈supp(p)

p(s′)
r(s; p)

V I(s, s′).

Hence the average payoff can be decomposed3 as a convex combination of “in-match” average

payoff:

v(s; p) =
V (s; p)

DL
=

∑

s′∈supp(p)

p(s′)r(s, s′)
r(s; p)

vI(s, s′), (1)

3However, this means that, in general, v(s; p) 6= P
s′ p(s′)vI(s, s′). That is, v is not linear in the second component.

This is due to the recursive structure of the V function.
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where the ratio r(s, s′)/r(s; p) is the relative length of periods that s expects to spend in a match with

s′.

In particular, if p is a monomorphic strategy distribution4consisting of a single strategy s′, then

v(s; p) = vI(s, s′).

Example 2. Consider a two-strategy distribution p such that α of the population use tr-strategy

and (1 − α) of the population use d̃-strategy. The average payoff of tr-strategy when the strategy

distribution in the matching pool is always p is:

v(tr; p) =
αr(tr, tr)vI(tr, tr) + (1− α)r(tr, d̃)vI(tr, d̃)

αr(tr, tr) + (1− α)r(tr, d̃)

=
αc/(1 + δ) + (1− α)(1− δ)`
α/(1 + δ) + (1− α)(1− δ)

=
αc

α + (1− α)(1− δ2)
+

(1− α)(1− δ2)`
α + (1− α)(1− δ2)

.

2.2 Nash Equilibrium

Def. Given a stationary strategy distribution in the matching pool p ∈ P(S), s ∈ S is a best reply

against p if for all s′ ∈ S:

v(s; p) ≥ v(s′; p),

and is denoted as s ∈ BR(p).

Def. A stationary strategy distribution in the matching pool p ∈ P(S) is a Nash equilibrium if for

all s ∈ supp(p):

s ∈ BR(p).

2.3 Neutral Stability

Recall that in an ordinary 2-person symmetric normal-form game G = (S, u), a (mixed) strategy

p ∈ P(S) is a Neutrally Stable Strategy if for any (mixed) strategy q ∈ P(S), there exists 0 < ε̄q < 1

such that for any ε ∈ (0, ε̄q), Eu(p, (1− ε)p + εq) ≥ Eu(q, (1− ε)p + εq).

An extension of this concept to our extensive form game is to require a strategy distribution not

to be invaded by a small fraction of a mutant strategy who enters the matching pool in a stationary

manner.
4If the outcome is monomorphic, i.e., the same for all players in the society, then we call a strategy distribution as

monomorphic outcome distribution. This distinction becomes important in Section 5 where we consider drift.
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Def. Given ε > 0 and a (stationary) strategy distribution p ∈ P(S), a strategy s′ ∈ S invades p if for

any s ∈ supp(p),

v(s′; (1− ε)p + εs′) ≥ v(s; (1− ε)p + εs′), (2)

and for some s ∈ supp(p),

v(s′; (1− ε)p + εs′) > v(s; (1− ε)p + εs′), (3)

where we have abused the notation and used s both as a strategy s ∈ S and a monomorphic strategy

distribution consisting only of s, i.e., s ∈ P(S).

A weaker notion of invasion that requires weak inequality only (which is used in the notion of

Evolutionary Stable Strategy) is too weak in our extensive-form model since any strategy that is

different in the off-path actions from the incumbent strategies can invade under the weak inequality

condition.

Def. A (stationary) strategy distribution p ∈ P(S) is a Neutrally Stable Distribution if, for any s′ ∈ S,

there exists ε̄ ∈ (0, 1) such that s′ cannot invade p for any ε ∈ (0, ε̄).

If a monomorphic strategy distribution consisting of a single pure strategy s is a neutrally stable

distribution, then s will be called a Neutrally Stable Strategy (NSS). The condition for s to be a NSS

reduces to: for any s′ ∈ S, there exists ε̄ ∈ (0, 1) such that, for any ε ∈ (0, ε̄),

v(s; (1− ε)p + εs′) ≥ v(s′; (1− ε)p + εs′).

It can be easily seen that any neutrally stable distribution is a Nash equilibrium.

We need some assumptions to justify this definition. Suppose that there is a continuous evolu-

tionary process (such as replicator dynamics or best response dynamics) behind this definition and

we discretize the process to model VRPD. Mutation occurs seldom enough so that, within the time

span in which stationary strategy distribution is formed, only single mutation can occur. On the other

hand, death-birth process takes place sufficiently quickly so that the strategy which is newly created

by a mutation forms a stationary distribution within a single period. At the same time, strategy

updates occurs sufficiently slowly so that incumbents’ strategy distribution remains the same after a

single period. While we do not insist that the above definition is the best among we can imagine, it

is tractable and justifiable.
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3 Voluntarily Repeated Cooperative Equilibria

In this section we consider strategies that voluntarily keep a partnership and play C repeatedly. There

are many such strategies and only some of them constitute a Nash equilibrium or neutrally stable

distribution.

3.1 Monomorphic Strategy Nash Equilibria

It is easy to see that the monomorphic strategy distribution ptr ∈ P(S) consisting only of the trigger

strategy in Example 1 is not a Nash equilibrium. The average payoff of tr-strategy and d̃-strategy

under ptr are v(tr; ptr) = vI(tr, tr) = c, and v(d̃; ptr) = vI(d̃, tr) = g. Therefore d̃-strategy earns

strictly larger average payoff than the trigger strategy. By a similar logic, any strategy that starts

with C in the first period of a match cannot constitute a Nash equilibrium.

Lemma 1. Any pure strategy that starts with C in t = 1 cannot constitute a monomorphic Nash

equilibrium.

Proof. Let s be a strategy that plays C in the first period of a match and p be the monomorphic

strategy distribution of s. Clearly, d̃ earns g as the average payoff under p, which is the maximum

possible payoff any strategy can expect in any circumstances. I.e., d̃ ∈ BR(p) and s 6∈ BR(p), which

proves the assertion.

On the other hand, pd̃ consisting only of d̃-strategy is a Nash equilibrium. Against d̃, any strategy

must play one-shot PD. Therefore, any strategy that starts with C in t = 1 earns strictly smaller

average payoff than that of d̃, and any strategy that starts with D in t = 1 earns the same average

payoff as that of d̃.

However, if the population consists only of d̃-strategy, some cooperative strategies can invade.

Consider a class of strategies that play D in the first period (like d̃) and keep the partnership and

play C in t ≥ 2 if the partnership is alive. A strategy in this class earns the same average payoff as

d̃-strategy when it is matched with d̃ but higher average payoff when it is matched with the same

strategy (they get c at least in the second period). Therefore the population of d̃-strategy is invaded

by a strategy in this class.

Some strategies in this class may not constitute a monomorphic strategy Nash equilibrium. Clearly,

it is not an equilibrium to play C repeatedly after t = 1 and keep the partnership, regardless of history.
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Consider the following class of strategies, which keeps the partnership if and only if both partners

played C after t = 1.

Def. Let c1-strategy be as follows.

t = 1: Play D and keep the partnership if and only if (D, D) is observed.

t ≥ 2: Play C and keep the partnership if and only if (C, C) is observed in the current period.

c1-strategy is a monomorphic strategy Nash equilibrium, if playing D and ending the partnership

in some period t ≥ 2 does not give a higher average payoff. This is not always true since the gain

g − c of playing D instead of C may be large as compared to the cost of restarting a partnership. In

the following, we investigate the necessary and sufficient condition for the following generalization of

c1-strategy to be a Nash equilibrium.

Def. For any T = 1, 2, 3, 4, . . ., let cT -strategy be as follows.

t = 1, . . . , T : Play D and keep the partnership if and only if (D, D) is observed in the current period.

t ≥ T + 1: Play C and keep the partnership if and only if (C, C) is observed in the current period.

We call the first T periods of cT -strategy as the trust-building periods and the periods afterwards

as the cooperation periods. Once the trust is built, cT -strategy plays C disciplinarily in the sense that

it ends the match if the partner did not choose C.

Let the monomorphic strategy distribution consisting only of cT -strategy be denoted as pT . Sup-

pose that the stationary strategy distribution in the matching pool is pT . The average payoff of

cT -strategy under pT is computed as follows. A match of cT against cT continues as long as they both

live and the payoff sequence is d for the first T periods and c thereafter:

D(cT , cT ) = 1 + δ2 + · · · = 1
1− δ2

,

V I(cT , cT ) = {1 + δ2 + · · ·+ δ2(T−1)}d + (δ2T + · · · )c.

Since v(cT ; pT ) = vI(cT , cT ), the average payoff is

v(cT ; pT ) = (1− δ2T )d + δ2T c. (4)

Suppose that a player with cT -strategy is at the beginning of t-th period of a match, where

t ∈ {1, 2, . . .}. The average payoff that this player expects to receive in the rest of his lifetime, denoted

as v(cT ; pT , t), is called the continuation average payoff of lifetime and the average payoff that he
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expects to receive in the match, denoted as vI(cT , cT , t), is called the continuation average payoff in

the match. The latter increases as t increases, since there is less time to build trust. Once the trust is

built (t ≥ T + 1), the continuation average payoff in the match is constant and is c. (See Figure 3.)

2 4 6 8 10
t

2

4

6

8

10

12
continuation average payoff

Figure 3: The continuation average payoff of cT -strategy in the match with cT .

(Parameter values: c = 10, d = 1, δ = 0.9, T = 5.)

The increasing nature of the continuation average payoff of cT works as an incentive device to play

C in the cooperation periods. A deviation from cT in the cooperation periods costs the player trust

capital, which is defined as the value difference between the continuation average payoff in t > T and

the average payoff in the matching pool. It is computed as follows.

By the definition,

v(cT ; pT , t) = r(cT , cT , t)vI(cT , cT , t) + [1− r(cT , cT , t)]v(cT ; pT ) (5)

where,

r(cT , cT , t) =
1

1− δ2

/ 1
1− δ

=
1

1 + δ

vI(cT , cT , t) =
{

(1− δ2(T−t))d + δ2(T−t)c if t ≤ T
c if t ≥ T + 1

It follows then:

v(cT ; pT , t) = v(cT ; pT ) + r(cT , cT , t)[vI(cT , cT , t)− v(cT ; pT )]

= v(cT ; pT ) + r(cT , cT , t) · TC(cT , cT , t) (6)
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where:

TC(cT , cT , t) =
{

δ2(T−t)(1− δ2t)(c− d) if t ≤ T
(1− δ2T )(c− d) if t ≥ T + 1

(7)

which is the trust capital.

For any deviation strategy s which imitates cT until some period in the cooperation periods and

plays D, the one-shot payoff is at most g but the player must return to the matching pool next period

and settle with the average payoff of v(cT ; pT ) during the periods when partnership would have been

maintained (for the portion of r(cT , cT , t) of his lifetime). The resulting average payoff is:

v(s, cT ; t) = r(cT , cT , t)[(1− δ2)g + δ2v(cT ; pT )] + [1− r(cT , cT , t)]v(cT ; pT )

= v(cT ; pT ) + r(cT , cT , t)(1− δ2)[g − v(cT ; pT )]. (8)

It follows that the incentive constraint for cT -strategy to be followed during the cooperation periods

is (6) being not less than (8), i.e.,

TC(cT , cT , t) = (1− δ2T )(c− d)

≥ (1− δ2)[g − v(cT ; pT )]

= (1− δ2)(g − c) + (1− δ2)(1− δ2T )(c− d).

Or,

δ2 1− δ2T

1− δ2
(c− d) ≥ g − c. (9)

It follows immediately that, as long as g − c > 0, a positive number of trust building periods is

necessary for equilibrium cooperation (i.e., T ≥ 1) as was already shown in Lemma 1.5

Now we prove that in fact the above incentive constraint is the only condition that is required for

pT to be a Nash equilibrium. Let on-path history at a decision node of t = 2, 3, . . ., be the play path

until the decision node of the t-th period in a match of two cT -strategies. That is, the on-path history

in PD in periods t ≤ T is (D, D)t−1 and in periods t ≥ T +1 is {(D, D)T , (C, C)(t−T−1)}. The on-path

history at the continuation decision phase is similarly defined.

Lemma 2. Take an arbitrary T = 1, 2, 3, . . .. Let pT be the stationary strategy distribution in the

matching pool, consisting only of cT -strategy.

5By contrast, if there is a matching friction as in Shapiro-Stiglitz (1984) so that one might have to spend some periods
without forming a partnership, it is possible to play C from the beginning for sufficiently low probability of getting a
new match. For the details, see Section 4.
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(a) Any strategy that ends the match in some period t = 1, 2, . . . along on-path history is not a best

reply against pT .

(b) Any strategy that chooses C in some period t ≤ T along on-path history is not a best reply against

pT .

(c) Let s be any strategy that chooses D at some t ≥ T + 1 along on-path history. Then

v(cT ; pT ) ≥ v(s; pT ) ⇐⇒ δ2 1− δ2T

1− δ2
(c− d) ≥ g − c.

Proof. See Appendix B.

The sufficient length of trust-building periods T depends on the payoff configuration G = (g, c, d, `)

and the death probability δ. For each (δ, T ) ∈ (0, 1)× {1, 2, . . .}, define

f(δ, T ) := δ2 1− δ2T

1− δ2
.

For each G and T = 1, 2, . . ., define δG(T ) implicitly by

f(δG(T ), T ) =
g − c

c− d
.

Then the incentive constraint (9) is satisfied for (δ, T,G) if and only if

δ ≥ δG(T ).

Because f(δ, T ) is increasing in T , δG(T ) is decreasing in T . It is easy to see that f(δ, 1) = δ2 and

limT→∞ f(δ, T ) = δ2/(1− δ2). Therefore, for any G,

δG(1) =
√

g − c

c− d
> · · · > δG(∞) =

√
g − c

g − d
.

Since δG(∞) < 1,for any G and for any δ ∈ (δG(∞), 1), we can define the minimum length TG(δ)

of trust building periods that satisfies the incentive constraint by

TG(δ) := argminT∈{1,2,...}{δG(T ) | δ ≥ δG(T )}.

(See Figure 5 in Section 3.3.)

Proposition 1. For any G and any δ ∈ (δG(∞), 1), the monomorphic distribution pT consisting only

of cT -strategy is a Nash equilibrium if and only if T ≥ TG(δ).
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Proof. Lemma 2 implies that no strategy which differ on the play path from cT -strategy is better

off if and only if T is sufficiently long so that (9) holds, i.e., T ≥ TG(δ). Strategies that differ from

cT -strategy off the play path do not give a higher payoff.

Proposition 1 shows that for sufficiently long trust-building periods and sufficiently high survival

probability, voluntarily repeated cooperation is sustained.

Note that the lower bound to the discount factor that sustains the trigger-strategy equilibrium if

there is no option to end a match is
√

g−c
g−d = δG(∞). This means that cooperation in voluntarily

repeated PD requires more patience.

3.2 Monomorphic NSS

As we discussed at the beginning of Section 3.1., the myopic strategy that plays D and ends the

partnership immediately is not NSS.

Lemma 3. Myopic d̃-strategy played by all players is not an NSS.

Proof.: For any ε ∈ (0, 1), let p := (1− ε)pd̃ + εc1. From (1),

v(d̃; p) = d;

v(c1; p) = (1− ε)
r(c1, d̃)
r(c1; p)

vI(c1, d̃) + ε
r(c1, c1)
r(c1; p)

vI(c1, c1).

Since vI(c1, d̃) = d and vI(c1, c1) = (1− δ2)d + δ2c > d, c1-strategy invades pd̃.

In general, in order to check whether a Nash equilibrium strategy is a NSS, we only need to consider

mutants that are best replies to the Nash equilibrium strategy.

Lemma 4. Suppose p ∈ P(S) is a NE. If a pure strategy s′ ∈ S invades p, then s′ is an alternatvie

best reply to p, i.e., s′ ∈ BR(p).

Proof. See Appendix B.

There are only two kinds of strategies that may become alternative best replies to pT . The obvious

ones are those that differ from cT -strategy off the play path. These will give the same payoff as

cT -strategy and therefore cannot invade pT .6 The other kind is the strategies that play D in the
6However, a strategy distribution may drift toward such strategies and eventually force the distribution out of NSS.

Since this concern is of dynamic nature, we postpone the discussion til Section 5.
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cooperation periods. When δ > δG(T ), however, Lemma 2 (c) implies that such strategies are not

alternative best reply. Therefore cT -strategy is NSS for this case.

There remains the boundary case of δ = δG(T ) that pT is a Nash equilibrium. For this case, we

consider an alternative best reply to pT which earns the highest payoff when meeting itself. Since

we only allow pure strategy entrants, without loss of generality we can focus on cT+1-strategy as

the alternative best reply that earns the highest payoff against itself. Below we identify a sufficient

condition that cT+1-strategy cannot invade pT .

Let pT+1
T (α) be the two-strategy distribution consisting of cT and cT+1-strategies such that α of

the players are cT -strategy in the matching pool. Note that cT+1-strategy cannot invade pT if and

only if there exists ᾱ ∈ (0, 1) such that for any α ∈ (ᾱ, 1], v(cT ; pT+1
T (α)) ≥ v(cT+1; pT+1

T (α)).

For any G, any α ∈ [0, 1] and any δ ∈ (0, 1), let

∆vT (α, δ) = v(cT ; pT+1
T (α))− v(cT+1; pT+1

T (α)).

The following “characteristic” function to ∆vT makes the computation simple.

Lemma 5. For any G, any α ∈ [0, 1] and any δ ∈ (0, 1), let

∆ṽT (α, δ) = {v(cT ; pT+1
T (α))− v(cT+1; pT+1

T (α))}{1− (1− α)δ2(T+1)}(1− αδ2(T+1))/δ2T .

Then ∆vT (α, δ) ≥ 0 if and only if ∆ṽT (α, δ) ≥ 0. Moreover,

(a) For each δ ∈ (0, 1), ∆ṽT (α, δ) is a concave, quadratic function of α; and

(b) For any δ ∈ (0, 1), ∆ṽT (0, δ) < 0.

Proof.: This is by computation. See Appendix B.

When α = 1, by definition of δG(T ), δ > δG(T ) if and only if ∆ṽT (1, δ) > 0. Therefore for any

δ > δG(T ), cT+1 cannot invade pT .

By definition of δG(T ), ∆vT (1, δG(T )) = ∆ṽT (1, δG(T )) = 0. We argue indirectly by the concavity

of ∆ṽT function and Lemma 5 (b) that cT+1-strategy cannot invade pT if and only if ∆ṽT (α, δ) has a

strictly negative slope at α = 1. This implies that for α near 1, ∆ṽT (α, δ) > 0, which is equivalent to

∆vT (α, δ) > 0. See Figure 4.
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Figure 4: The value difference between cT -strategy and cT+1-strategy under two-strategy

distribution pT+1
T and geometric strategy distribution p∞T (α) (see Section 3.3)

(Parameter values: g = 10, c = 6, d = 1, ` = −1, T = 1, δL = 0.893 < δG(T ) ≈ 0.894427 < δH = 0.9.)

Define δ̂G(T ) implicitly as follows:

[1− {δ̂G(T )}2(T+1))](g − `) = c− d.

Lemma 6. For any G and any T , ∂∆ṽT
∂α (1, δG(T )) < 0 if and only if

δ > δ̂G(T ). (10)

Proof. See Appendix B.

Since r(cT , cT ) = (1− δ){1 + δ2 + · · · } and r(cT+1, cT ) = (1− δ){1 + δ2 + · · ·+ δ2T }, the condition

(10) is equivalent to

(c− d)r(cT , cT ) > (g − `)r(cT+1, cT ).

The LHS can be interpreted as the relative merit of cT -strategy against cT+1-strategy (to start co-

operating one period early when meeting itself) and the RHS is the relative merit of cT+1-strategy

(when meeting the other strategy). As T increases, (10) becomes more difficult to satisfy, since the
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difference between r(cT , cT ) and r(cT+1, cT ) becomes smaller. Hence (10) puts an upper bound to T .

Figure 4 shows, however, the existence of G and T ≥ T ∗G that satisfy (10).

In sum, we have the following parametric condition for the existence of monomorphic NSS.

Proposition 2. (a) For any G, any δ > δG(∞) such that δ 6= δG(T ) for any T , pT is neutrally

stable for any T ≥ TG(δ).

(b) For any G, any δ > δG(∞) such that δ = δG(T ) for some T , pT is neutrally stable if and only

if T ≥ TG(δ) and δ > δ̂G(T ).

We have shown that when δ is large enough, voluntarily repeated cooperation is NSS with sufficient

number of trust-building periods, even though myopic defection is not.

3.3 Polymorphic Strategy Distributions

In this section we consider the possibility that different strategies co-exist in an equilibrium. There

are two types of diversity. We first consider cT -strategies with different length of trust building. We

then consider strategy combination in which (C, D) and (D, C) are played after trust building.

3.3.1 Different Trust-Building Periods

We show the existence of polymorphic neutrally stable distributions, in which various cT -strategies

co-exist. Diversity of trust-building periods generates subtle balances so that each strategy benefits

from matches with certain strategies while the same strategy loses by matcthes with other strategies.

In an equilibrium, if population share of a certain strategy changes, payoff balance is destroyed, forcing

a chain of population adjustments to take place which, in turn, brings the strategy distributuion back

to the original equilibrium.

If a polymorphic strategy distribution with the infinite support is a candidate of a neutrally stable

distribution, then the population distribution of ct-strategies must be “geometric”.

Lemma 7. Take any G and T < ∞. Let p be a stationary strategy distribution with the support

{cT , cT+1, . . .}. If v(cT ; p) = v(cT+τ ; p) for all τ = 1, 2, . . ., then the fraction of cT+τ -strategy is

α(1− α)τ for each τ = 0, 1, 2, . . ..
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Proof: See Appendix B.

Moreover, if {cT , cT+1, . . .} are distributed according to the geometric distribution and cT and cT+1

have the same average payoff, then all other strategies in the support have also the same payoff.

Lemma 8. Take any G and T < ∞. Let p∞T (α) be a stationary strategy distribution with the support

{cT , cT+1, . . .} such that the fraction of cT+τ -strategy is α(1− α)τ for each τ = 0, 1, 2, . . .. Then

v(cT ; p∞T (α)) = v(cT+1; p∞T (α)) ⇒ v(cT+τ ; p∞T (α)) = v(cT ; p∞T (α)) ∀τ = 1, 2, . . . ,

Proof: See Appendix B.

By a similar logic to Lemma 2, strategies which end the partnership earlier than T (either by

choosing e or by choosing C along the on-path history) cannot invade p∞T (α), nor strategies which end

the partnership after playing C in the cooperation periods. It remains to find out the condition on T

and δ that warrants the existence of α∗ ∈ (0, 1) which satisfies the following three conditions.

1. v(cT ; p∞T (α∗)) = v(cT+1; p∞T (α∗)).

This condition, together with Lemma 8, implies that all strategies in the support of p∞T (α∗) have

the same payoff.

2. for α < α∗, v(cT ; p∞T (α)) > v(cT+1; p∞T (α)) and α > α∗, v(cT ; p∞T (α)) < v(cT+1; p∞T (α)) at least

near α∗. (See Figure 4.)

This implies that cT or cT+1 cannot invade (increase the fraction in) p∞T (α∗). Moreover, if cT+τ

(τ ≥ 2) increases the fraction in p∞T (α∗), it is as if cT+1 increases. Hence cT gets larger payoff

and thus cT+τ (τ ≥ 2) cannot invade in the sense of increasing the fraction.

3. Incentive constraints to prevent D once the cooperation periods started for each of cT+τ -strategy

(τ = 0, 1, 2, . . .): for each τ , let sτ be the strategy that imitates cT+τ -strategy for the first T +τ+1

periods (that is, to build trust for T + τ periods and then play C once, so that it is clear that

the partner is cT+τ -strategy if the partnership continues) and then plays D in T + τ + 2. A

sufficient condition for such strategy to be unable to invade p∞T (α∗) is

v(cT+τ ; p∞T (α∗)) > v(sτ ; p∞T (α∗)). (11)
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Note that, among on-path deviations during the cooperation periods, sτ strategy earns the

highest payoff, due to the discounting.

Lemma 9. Take any G such that there exists T ∈ {1, 2, . . .} such that δ̂G(T ) < δG(T ). For any T

such that δ̂G(T ) < δG(T ), there exists δ∗G(T ) ∈ (δ̂G(T ), δG(T )) such that for any δ ≥ δ∗G(T ), there

exists α∗(δ) that satisfies 1 and 2.

Proof: See Appendix B.

To see if such G exists, note that for any G, δ̂G(T ) is increasing in T . δ̂G(0) =
√

1− c−d
g−` < ∞ =

δG(0), and δG(∞) =
√

g−c
g−d < 1 = δ̂G(∞). Therefore the graphs of δ̂G(T ) and δG(T ), when the time

scale is extended to real numbers, have an intersection. (See Figure 5.)

Lemma 10. For any (G,T ) and for δ sufficiently close to but less than δG(T ),

v(cT+τ ; p∞T (α∗(δ))) > v(sτ ; p∞T (α∗(δ)))

for any τ = 0, 1, 2, . . ..

Proof: See Appendix B.

By combining Lemmas 9 and 10, we have the existence of a polymorphic NSD with the support

{cT , cT+1, . . .}.

Proposition 3. Take any G such that there exists T ∈ {1, 2, . . .} such that δ̂G(T ) < δG(T ). For

any T such that δ̂G(T ) < δG(T ), for δ ∈ (δ∗G(T ), δG(T )) that is sufficiently close to δG(T ), there is a

neutrally stable polymorphic strategy distribution of the form p∞T (α∗(δ)) for some α∗(δ) ∈ (0, 1).

Proof: Lemma 9 shows the existence of α∗(δ) such that all strategies in the support have the same

payoff and that no strategy in the support can increase its fractions. Lemma 10 shows that strategies

that differ on the play path during the cooperation periods of any cT+τ strategy cannot earn higher

payoff. To finish, we show that other strategies that differ on the play path from {cT , cT+1, . . .} do

not earn higher payoff, in Appendix B.

Therefore, cooperation and exploitation can co-exist. Moreover, it is possible that the polymorphic

NSD includes cT with shorter trust-building periods than any monomorphic NSS under the relevant
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(G, δ). The idea is as follows. Let T + 1 be the shortest trust-bulding periods of monomorphic NSS.

Since cT itself is not NSS, another strategy that chooses D during the cooperation periods can enter

the population. Among mutants, cT+1 strategy that chooses D at T +1 earns the highest payoff when

meeting itself. However, if cT+1 met another cT+1, there is an incentive to play D at T +2. And so on.

Therefore cT+1, cT+2, . . . will enter. If the distribution becomes stable, it must be the case that (a)

the distribution must be geometric (Lemma 7) and (b) as the share α of the most efficient strategy cT

decreases, the exploiting strategy cT+1 should have less merit. The property (b) is represented by the

condition δ̂G(T ) < δ < δG(T ) in Lemma 9 that the value difference between cT and cT+1 is decreasing

and negative near α = 1.

Figure 5 below illustrates the parameteric conditions of monomorphic NSS and polymorphic NSD.

δ

T

√
g − c

c− d

1

√
g − c

g − d

δ = δG(T )

δ = δ̂G(T )

Area where
polymorphic NSD exist

Area where
monomorphic NSS exist

1 2 3 4

Figure 5
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3.3.2 Off-diagonal Coordination

We consider strategy distributions in which (C, D) and (D, C) are played after trust building. For

some G, the average payoff of repeating (C, D) and (D, C) is higher than the repetition of (C, C).

Therefore it is important to consider this class.

To be filled later.

3.4 Welfare Comparison

Since there are multiple cooperative equilibria, one may want to find out the most efficient one. Among

the same type (monomorphic or geometric polymorphic) NSD, clearly the one with the shortest trust-

building periods is most efficient (but not fully efficient since T > 0.) However, it is difficult to

compare a monomorphic NSS with a polymorphic NSD. With the same trust-building periods T ,

pT gives higher average payoff than each strategy in the support of p∞T (α∗), since cT in the latter

is exploited by other strategies in the support. However, there may be a polymorphic NSD with a

shorter trust-building periods than the most efficient monomorphic NSS as we discussed above.

4 Matching Friction and Efficiency Wage

Trust capital works as an incentive constraint because, if one deviates from cT by playing D in a

cooperation period, s/he is forced to start a new partnership wasting next T periods for trust building

before cooperation begins. This loss in payoff deters a deviation incentive.

Note, however, this logic holds because we implicitly assumed that one can always find a new

partnership in the matching pool. In fact, if one assumes that one can find a new parnership only

with the probability 1− u ∈ (0, 1) and spends the next period without a partner and payoff of 0 with

probability u ∈ (0, 1), incentive constraint may be satisfied without trustbuilding periods.

With this possibility of ”unemployment”, average payoff that cT strategy player expects to receive

in the matching pool (but before s/he finds a partner) is:

v0(cT ; pT ) = (1− u)v(cT ; pT )

= (1− u)[(1− δ2T )d + δ2T c]

= v(cT ; pT )− UT ,
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where v(cT ; pT ) is now interepreted as the average payoff that cT expects to receive when the new

partnership is formed (i.e., at the beginning of period 1 of the partnership), and UT = u[(1− δ2T )d +

δ2T c].

It follows that the value of cT in the t-th period of partnership is now defined as:

v(cT ; pT , t) = r(cT , cT , t)v(cT , cT , t) + [1− r(cT , cT , t)]v0(cT ; pT )

= v0(cT , pT ) + r(cT , cT , t)[v(cT , cT , t)− v0(cT ; pT )]

= v0(cT ; pT ) + r(cT , cT , t)TC0(cT , cT , t)

where,

TC0(cT , cT , t) =
{

δ2(T−t)(1− δ2t)(c− d) + u[(1− δ2T )d + δ2T c] if t < T
(1− δ2T )(c− d) + u[(1− δ2T )d + δ2T c] if t ≥ T

or,

TC0(cT , cT , t) = TC(cT , cT , t) + u[(1− δ2T )d + δ2T c]

= TC(cT , cT , t) + UT .

Hence, if d ≥ 0, trust capital is larger with unemployment than without it. In fact, if:

TC0(cT , cT , T ) = TC(cT , cT , t) + UT

≥ (1− δ2)[g − v0(cT ; pT )]

= (1− δ2)[g − v(cT ; pT ) + UT ],

or equivalently:

(1− δ2T )δ2(c− d) ≥ (1− δ2)(g − c)− δ2UT ,

then IC constraint is satisfied.

In fact, if:

δ2UT = u[(1− δ2T )d + δ2T c]

≥ (1− δ2)(g − c),

or, equivalently,

u ≥ (1− δ2)(g − c)
(1− δ2T )d + δ2T c

,
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then IC constraint is satisfied even for c0 and cooperation without trust building period becomes a

self-sustaining state.

As readers may have observed already, this is the well known result of efficiency wage theory

(see, e.g., Shapiro and Stiglitz, 1984, and Okuno-Fujiwara, 1989) where unemployment works as a

disciplinary device that deters moral hazard behavior. Trust building periods in our model works as

an alternative disciplinary device against moral hazard.

5 Equivalent Strategies, Drift, and Equilibrium Evolutionary Sta-
bility

5.1 Equivalent Strategies and Drift

Our discussions so far implicitly assumed that there is a single pair of strategies corresponding to each

matching game outcome. However, because our matching game itself is an extensive form game, there

are many (pure) strategies that generate the same outcome. Thus, each Nash equilibrium outcome

corresponds to a set of strategy distributions, not to a single strategy distribution.

To make it precise, we define equivalent strategies as follows.

Def. Given a strategy distribution, p ∈ P(S), a strategy s′ ∈ S is equivalent with strategy s ∈ supp(p)

in distribution p if, for all s” ∈ supp(p), the matching game outcome between s′ and s” is identical

with that between s and s”.

We write s′ ≈p s when s′ is equivalent with s in p. Given s ∈ supp(p), we shall denote the set of

all (pure) strategies which are equivalent with s in p as E(s; p), or:

E(s; p) := {s′ ∈ S|s′ ≈p s}.

We shall denote the set of all (pure) strategies which are equivalent with some s ∈ supp(p) in p as

E(p), or:

E(p) := {s′ ∈ S|∃s ∈ supp(p) such that s ≈p s′}.

Then, given a strategy distribution p ∈ P(S), we can define the set of strategy distributions which

are equivalent with p as follows:

P(E(p)) := {p′ ∈ P(S)|supp(p′) ⊆ E(p) and outcome distributions of p and p′ are identical}.

24



Def. For each Nash equilibrium that consists of a single strategy distribution, p ∈ P(S), an associated

set of NE strategy distributions (NE set or NE component) is:

NE(p) := {p′ ∈ P(E(p))|BR(p′) ⊆ E(p)},

Remark 1. If p ∈ P(S) is a monomorphic equilibrium NE, NE(p) is a monomorphic outcome NE.

If p ∈ P(S) consists of non-equivalent strategies in p, NE(p) is a polymorphic outcome NE.

We shall denote by NE(P(S)) the set of NE Sets of the VRPD.

We define similar concept for neutral stability. However, we first generalize the concept of invasion

as follows.

Def. Given ε > 0 and a distribution p ∈ P(S), a strategy distribution p′ ∈ P(S) invades p if for any

s′ ∈ supp(p′) and s ∈ supp(p),

v(s′; (1− ε)p + εp′) ≥ v(s; (1− ε) + εp′),

and for some s′ ∈ supp(p′) and s ∈ supp(p),

v(s′; (1− ε)p + εp′) > v(s; (1− ε) + εp′).

Def. A set of Nash Equilibrium strategy distributions, NE(p), is a Neutrally Stable Set if, for any

p ∈ NE(p) and for any p′ ∈ P(S), there exists ¯ε ∈ (0, 1) such that p′ cannot invade p for any ε ∈ (0, ε̄).

A neutrally stable set (NSSet) is called a monomorphic outcome NSSet if its outcome is monomor-

phic while it is called a polymorphic outcome NSSet if its outcome is polymorphic.

5.2 Example and Drift

An illustrative example may be useful. Let us restrict the set of strategies to P(S) = {c1, ĉ1, c∞, d̃}.
We have already defined c1, which is a disciplinary strategy with trustbuilding period of length 1, and

d̃, which is a myopic strategy to play D once and then end the partnership.

By definition, c∞ is the strategy defined as:

For any t = 1, 2, . . . : play D and k for any observation.

Finally, ĉ1 is defined as follows:

25



t = 1: Play D and k for any observation.

t ≥ 2: Play C and k for any observation.

Now consider the monomorphic strategy distribution p1 which consists only of the strategy c1. It

is clear that ĉ1 ≈p1 c1 and E(p1) = {c1, ĉ1} as ĉ1’s behavior with c1 and with ĉ1 is identical to the

behavior of c1 who matches with another c1. It follows that

v(c1; p) = v(ĉ1; p) = (1− δ2)d + δ2c for all p ∈ P(E(p1)).

However, notice:

vI(c∞, c1) = d, r(c∞, c1) =
(1− δ4)/(1− δ2)

1/(1− δ)
=

1− δ4

1 + δ
,

vI(c∞, ĉ1) = (1− δ2)d + δ2g, r(c∞, ĉ1) =
1/(1− δ2)
1/(1− δ)

=
1

1 + δ
,

vI(ĉ1, c∞) = (1− δ2)d + δ2`, r(ĉ1, c∞) =
1/(1− δ2)
1/(1− δ)

=
1

1 + δ
.

In order to find NE(p1), let p ∈ P(E(p1)) such that p(ĉ1) = 1− α while p(c1) = α.

v(c1; p) = v(ĉ1; p) = (1− δ2)d + δ2c, r(c1, c1) = r(ĉ1, c1) = r(ĉ1, ĉ1) = 1
1+δ ,

v(c∞; p) = (1− µ(α))vI(c∞, c1) + µ(α)vI(c∞, ĉ1), µ(α) = αr(c∞,ĉ1)
αr(c∞,ĉ1)+(1−α)r(c∞,c1) .

Then straightforward computations yield:

v(c1; p) ≥ v(c∞; p) ⇔ α ≤ ᾱ :=
(1− δ4)(c− d)

g − c + (1− δ4)(c− d)
.

It follows then:

NE(p1) = {p ∈ P(E(p1))|p(ĉ1) ≤ ᾱ} while NS(p1) = {p ∈ P(E(p1))|p(ĉ1) < ᾱ}.

Thus, we find the following dynamics in this four-strategies population.

One may think of the starting strategy distribution which consists only of d̃, or pd̃ ∈ P(S). Clearly,

with the current definition of P(S), pd̃ is the only component of ES(pd̃) or {pd̃} = ES(pd̃). As we

have shown, however, ES(pd̃) is not a NSSet and c1 (possibly along with some fraction of ĉ1) invades.

if, moreover, IC condition is satisfied, then c1 or its equivalent strategies start to propagate. This

process eventually results to a distribution p ∈ NS(p1), which is a NSSet.

However, strategy distribution may drift as c1 and ĉ1 yield identical expected payoffs as long as

strategy distribution stays within P(E(p1)). Sooner or later, this drift will move strategy distribution
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out of NS(p1). If it occurs, c∞ invades and starts to propagate in the society. A monomorphic

distribution, p∞, consisting only of c∞ may evolve.

However, in p∞, strategies c∞ and d̃ are equivalent and population drift may occur, making strategy

distribution with sufficiently many d̃, to which c1 may invade. Thus the soecity’s strategy distribution

perpetually cycles along these states without resting forever.

5.3 Equilibrium Evolutionarily Stable Set

Neutrally stable strategies (or NS distributions) have been criticized on two grounds.

First, it is too weak as a solution concept because it allows drift. As our example in the previous

subsection shows, given a candidate strategy for equilibrium, there may be many other strategies

that generate the same payoffs because their behaviors are different from candidate strategy only at

off-path nodes. If such strategies invade, eventually, stability of candidate strategy (distribution) may

be destroyed.

Second, in a human society, no new strategies will propagate even if they are better response to the

incument strategies. Humans are more intelligent and they should adopt such new strategies if they

are not only better response to the incumbent strategies but also they remain best response after new

strategies propagate. Simply put, invading strategies should be restricted to those strategies which

are best responses against the ”post-entry” distributions.

These considerations lead to the concept of ”Equibrium Evolutionarily Stability”, which is origi-

nally introduced by Swinkles (1992). Formally,

Def. A set Θ v P(S) is equilibrium evolutionarily stable (EES) if it is minimal with respect to:

1. Θ is closed,

2. Θ ⊆ NE(P(S)),

3. there exists ε̄ ∈ (0, 1) such that for all ε ∈ (o, ε̄) such that, for all p ∈ Θ and for all p′ ∈ P(S):

supp(p′) ⊆ BR((1− ε) + εp′) ⇒ (1− ε)p + εp′ ∈ Θ.

6 Refinement by Cheap Talk

Recall that the reason that cT -strategy can invade the population of d̃-strategy is that c1-strategy

keeps the partnership after (D, D) as a signal for future cooperation. This reminds us of papers like

27



Robson (1990) and Matsui (1991) who showed that cheap talk can be used as a signal to play the

Pareto efficient Nash equilibrium in coordination games.

We now introduce cheap talk to our model.

6.1 Model

Assume that when two players are newly matched, they simultaneously choose a message from a

countably infinite set M . M is common to all players. The messages do not alter the payoff and thus

are cheap-talk. We assume that the message choices of the matched players is private information in

the match.

Def.: A pure strategy sCT of VRPD with cheap talk consists of (m,σ) such that:

1. m ∈ M specifies an initial message,

2. σ : M → S specifies a strategy σ(m′) chosen for each message m′ ∈ M the partner announces.

In the rest of the paper, however, in order to ease the notation we shall denote pure strategy by

σ, omitting the message m. We chose such convention because we focus on the following two types of

strategies; babbling strategy where message choice has no meaninful contents and neologism strategy

where the message is “neologism”.

Let SCT be the set of all pure strategies of VRPD with cheap talk. There are many ways to extend

a pure strategy in S (of the ordinary VRPD) into the cheap-talk model.

1. “Babbling” strategy: s ∈ S is extended as a degenerate strategy σB ∈ SCT which uses a

constant-vaued function σB(m) = s for all m ∈ M .

This strategy makes initial message exchange meaningless because s ∈ S is played regardless of

the message received from the partner.

2. “Neologism” strategy: Different VRPD strategies s, s′ ∈ S are played depending upon the result

of information exchange. For example, suppose the current population consists of a babbling strategy

σB ∈ SCT where σB(m) = s ∈ S for any m ∈ M . Against this monomorphic strategy distribution,

consider an entrant population who uses a strategy σN ∈ SCT such that

(a) it announces a neologism message, i.e., a message which is not used by the current population,

and
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(b) σN (m) = s when m is not the neologism, while

(c) σN (m′) = s′ 6= s when m′ is the neologism.

With this neologism strategy, σN , entrants play exactly the same way as incumbents (i.e., play

s) when they are matched with incumbents, while they play differently (i.e., play according to s′)

against fellow entrants. They can identify incumbents who announce non-neologism messages from

fellow entrants who announce neologism message at the initial message exchange.

6.2 Evolutionary Stability of Babbling Equilibria

When we discuss babbling strategies, for each pure strategy s ∈ S, we write corresponding babbling

strategy of the cheap talk model (actually, set of strategy distributions because message choice is

arbitrary) as σB(s) ∈ P(SCT ). Because babbling strategies ignores messages from partners and the

message choice is irrelevant for the entire population, we can also extend a strategy distribution

p ∈ P(S) of the ordinary VRPD to an associated babbling strategy distribution of the cheap talk

game in an obvious manner. In order to ease notations, we shall write this distribution (actually, set

of distributions because message choice is arbitrary) as σB(p) ∈ P(SCT ), with the superscript B.

Similarly, suppose a neologism strategy tries to invade an incumbent babbling strategy distribution,

σB(p′) ∈ P(S), which adops p ∈ P(S) if and only if both partners use neologism. Again in order

to ease notation, we shall denote such strategy distribution (i.e., strategy distribution which tries to

invade p′ using neologism-contingent use of p) as σN (p; p′).

As is well-known in this research area, babbling extension of Nash equilibria are Nash equilibria

of the cheap-talk model.

Lemma 11. For any Nash equilibrium strategy distribution p ∈ P(S) of VRPD, the associated babbling

strategy distribution pB ∈ P(SCT ) is a Nash equilibrium strategy distribution of the cheap talk model.

In subsection 3.4.entitled ”Welfare Comparison”, we showed that, given G, either the monomorphic

NSS with the minimum trust-building periods or one of the polymorphic NSD is the most effcient

(i.e., whose expected payoff provides the largest value) NSD of VRPD. Let p∗ ∈ P(S) of VRPD

be this most efficient (whose expected payoff is the highest) NSD of VRPD. Let p∗B ∈ P(SCT )

be the associated babbling strategy. Clearly, there is an associated set of NE strategy distribution,

NE(p∗B) ∈ NE(P(S)).
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Lemma 12. For any G, the NE outcome distributions NE(p∗B) ∈ NE(P(S)) is the Equlibrium

Evolutionarily Stable Set.

Proof. See Appendix B.

7 Concluding Remarks

7.1 Related Literature

Datta (1996) and Kranton (1996a) consider a complete information, two-player, voluntarily repeated

game similar to ours. The component game is a continuum-action prisoner’s dilemma, representing a

borrower-lender situation etc. Therefore the players in their model can gradually increase the “level

of cooperation”, which makes the same disciplining system as our cT -strategy.

Ghosh and Ray (1996) consider an incomplete information model. Since there are players who

always defect, it is rational to play D at the beginning of a partnership, not only to build trust

but also to distinguish the types of the opponents. Their equilibrium notion requires that the joint

deviation by the partners should not improve the payoffs (in addition to the individual deviations)

and thus if such equilibrium exists, it is efficient. However, the existence is not warranted.

These models assume full rationality of players and adopt equilibrium notions requiring sequential

rationality.

Carmichael and MacLeod (1997) formulate an evolutionary model with initial gift exchange stage

added to the voluntarily repeated prisoner’s dilemma. The gift choice works the same way as the

“level of cooperation” adjustment.

Overall, the idea of trust-building is embedded in all equilibrium strategies in the above litera-

ture. However, we have not seen works showing that cooperation and exploitation co-exist among

homogeneous players.

7.2 Future Research

To be filled later.
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Appendix A: On the Stationarity of Strategies

We demonstrate that if the matching pool strategy distribution is stationary, there will be an

associated social state distribution. In turn, if this associated social state distribution is stationary,

the original matching pool distribution remains stationary.

We should emphasize the causal direction is from matching pool distributuion to the social state

distribution. In fact, it should be fairly obvious that, even if the social state distributuion happens to

be stationary for some time, usually it would not create stationarity of matchig pool distribution.

Def. A matching state is a triple θ = (s, s′; t) where s, s′ ∈ S denote strategies used by two partners

and t ∈ Z := {0, 1, 2, . . . } denotes the number of periods that have passed since the partnership was

created.

In particular, (s, s′; 0) denotes a match which is just created by random pairing, and partners are

of types s and s′. If t > T (s, s′), match must have been dissolved in T (s, s′) even if both partners

survived and hence (s, s′; t) should represent off-path state.

Note that the order of strategies is important. We treat that the state θ = (s, s′; t) is deffrent from

the state θ′ = (s′, s; t) so that θ represents the state where s faces the t-th period of a partnership,

while θ′ represents the state where s′ faces the t-th period of the same partnership.

Def. We denote by P ∈ ∆(S) the population distribution of strategies in the entire population.

Thus, P (s) denotes the population share (proportion of those players who adopt s) among the total

population.

We denote by Q(θ) = Q(s, s′; t) the population share (proportion of those pairs who are in the

state θ) among the total number of population. Note that the same pairing (s, s′; t) is counted twice,

once as (s, s′; t) and another as (s′, s; t), making total number of matchings the same as the total

population. We call Q as a social state.
∑

s′∈S Q(s, s′; 0) := q(s) is the share of strategy s ∈ S in total population who are just matched

with new partners, i.e., who are in the matching pool at the beginning of the period. Hence, q(s)

represents the ratio of s strategies in the matching pool to the total population of the society. Finally,

q̄ :=
∑

s∈S is the proportion of players who are in the matching pool (at the beginning of a period,

but before matching takes place) in the entire population.
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Obviously,

• Q(s, s′; t) = 0 if t > T (s, s′).

• Q(s, s′; t) = 0 if either P (s) = 0 or P (s′) = 0 even if t ≤ T (s, s′).

• ∑
s′∈S

∑
t∈Z Q(s, s′; t) = P (s) for all s ∈ S.

We denote by p ∈ ∆(S) the starategy distribution in the matching pool. Thus, p(s) is the ratio of

strategy s among players in the matching pool.

By definition,

p(s) =
q(s)∑

s′∈S q(s′)
.

Suppose matching pool distribution p and matching pool population ratio p̄ are both stationary

over periods. Then, the associated social state Q is defined as follows (see also the figure in the next

page, which explains the dynamics of strategy c1 population facing with various ct strategies with

t ≥ 1.)

(a) First, q(s) is constructed as q(s) = q̄ · p(s) for all s ∈ S.

(b) At the matching pool new partnerships are created. They are Q(s, s′; 0) := q(s) · q(s′) for all

s, s′ ∈ S.

(c) If T (s, s′) ≥ 1, those partnerships which were created in the previous period or those partnerships

that enter into t = 1 (in this period) must be

Q(s, s′; 1) := δ2Q(s, s′; 0) = δ2q(s)q(s′)

because

• (1 − δ)Q(s, s′; 0) of type s players dies and are replaced by newly born s players at the

beginning of this period, and

• δ(1 − δ)Q(s, s′; 0) of type s players returns to the matching pool at the beginning of this

period, because of her partner dies at the end of previous period, hence

• total of (1− δ2)Q(s, s′; 0) of the match state in t = 0 is dissolved at the end of the previous

period, leaving Q(s, s′; 1) := δ2Q(s, s′; 0).
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• Note that total of

Qmp(s, s′; 1) = (1− δ2)Q(s, s′; 0) = (1− δ2)q(s)q(s′)

type s players return to matchig pool from Q(s, s′; 0) at the beginning of t = 1.

(d) Those partnerships that enter into t < T (s, s′) (in this period) is

Q(s, s′; t) = δ2Q(s, s′; t− 1) = δ2tQ(s, s′; 0) = δ2tq(s)q(s′).

Those effectively return to matching pool is

Qmp(s, s′; t) = (1− δ2)Q(s, s′; t− 1) = (1− δ2)δ2(t−1)Q(s, s′; 0)

= (1− δ2)δ2(t−1)q(s)q(s′).

(e) If t = T (s, s′),

Q(s, s′;T (s, s′)) = δ2Q(s, s′;T (s, s′)) = δ2T (s,s′)q(s)q(s′).

Those effectively return to matching pool is

Qmp(s, s′;T (s, s′)) = Q(s, s′;T (s, s′)) = δ2T (s,s′)q(s)q(s′).

(f) If t > T (s, s′),

Q(s, s′; t) = 0 and Qmp(s, s′; t) = 0.

(g) In each period,
∑

t∈Z Qpm(s, s′; t) returns to matching pool from matches with s′ players, or

∑

t∈Z

Qpm(s, s′; t) =
T (s,s′)−1∑

t=0

(1− δ2)δ2tq(s)q(s′) + δ2T (s,s′)q(s)q(s′)

= (1− δ2)
1− δ2T (s,s′)

1− δ2
q(s)q(s′) + δ2T (s,s′)q(s)q(s′)

= q(s)q(s′)

It follows that the total number (as a ratio of total population) of s players returning to matching

pool is:
∑

s′∈S

∑

t∈Z

Qpm(s, s′; t) =
∑

s′∈S

q(s)q(s′) = q(s).
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It follows that there are:

∑

t∈Z

Q(s, s′; t) =
T (s,s′)∑

t=1

δ2tq(s)q(s′) =
1− δ2(T (s,s′)+1)

1− δ2
q(s)q(s′)

type s players who are in the various stages of matches with type s′ players. Then, there are:

q(s) =
∑

s′∈S

∑

t∈Z

Q(s, s′; t) =

[∑

s′∈S

1− δ2(T (s,s′)+1)

1− δ2
q(s′)

]
q(s)

type s players in the total population.

Appendix B: Proofs

Proof of Lemma 2:

(a) Let s′ be a strategy that chooses e in some t after on-path history. If t ≤ T , the average payoff

of s′ under pT is d and is strictly less than v(cT ; pT ) = (1 − δ2T )d + δ2T c. If t ≥ T + 1, the

average value is

D(s′, cT ) =
1− δ2t

1− δ2
,

V I(s′, cT ) = (1 + δ2 + · · ·+ δ2(T−1))d + (δ2T + · · ·+ δ2(t−1))c,

v(s′; pT ) = vI(s′, cT ) =
1− δ2

1− δ2t

[1− δ2T

1− δ2
d +

δ2T (1− δ2(t−T ))
1− δ2

c
]
.

By computation,

{v(cT ; pT )− v(s′; pT )}(1− δ2t)

= (1− δ2t)(1− δ2T )d− (1− δ2T )d + (1− δ2t)δ2T c− δ2T (1− δ2(t−T ))c

= (1− δ2T )δ2t(c− d) > 0.

(b) If one chooses C in t ≤ T along on-path history, then the average payoff is less than d since the

partnership ends there and hence is less than v(cT ; pT ) = (1− δ2T )d + δ2T c.

(c) Let s be any strategy that chooses D at some t ≥ T + 1 along on-path history.

D(s, cT ) =
1− δ2t

1− δ2
,

V I(s, cT ) = (1 + δ2 + · · ·+ δ2(T−1))d + (δ2T + · · ·+ δ2(t−2))c + δ2(t−1)g,

v(s; pT ) =
1− δ2

1− δ2t

[1− δ2T

1− δ2
d +

δ2T (1− δ2(t−T−1))
1− δ2

c + δ2(t−1)g
]
.
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By computation,

{v(cT ; pT )− v(s; pT )}(1− δ2t)

= (1− δ2t)(1− δ2T )d + (1− δ2t)δ2T c

−(1− δ2T )d− (δ2T − δ2(t−1))c− (1− δ2)δ2(t−1)g,

= −δ2t(1− δ2T )d + δ2(t−1)(1− δ2T+2)c− (1− δ2)δ2(t−1)g,

= δ2(t−1)
[
−δ2(1− δ2T )d + (1− δ2 + δ2 − δ2T+2)c− (1− δ2)g

]
,

= δ2(t−1)
[
δ2(1− δ2T )(c− d)− (1− δ2)(g − c)

]
.

Therefore

v(cT ; pT )− v(s; pT ) ≥ 0 ⇐⇒ δ2 1− δ2T

1− δ2
(c− d) ≥ g − c.

Proof of Lemma 4:

Let q := (1− ε)p + εs′. From (1), for any s ∈ supp(p),

v(s′; q) = (1− ε)
r(s′; p)
r(s′; q)

v(s′; p) + ε
r(s′, s′)
r(s′; q)

vI(s′, s′),

v(s; q) = (1− ε)
r(s; p)
r(s; q)

v(s; p) + ε
r(s, s′)
r(s; q)

vI(s, s′).

If s′ invades p, then for any s ∈ supp(p),

(1− ε)
r(s′; p)
r(s′; q)

v(s′; p) + ε
r(s′, s′)
r(s′; q)

vI(s′, s′) ≥ (1− ε)
r(s; p)
r(s; q)

v(s; p) + ε
r(s, s′)
r(s; q)

vI(s, s′),

and for some s ∈ supp(p),

(1− ε)
r(s′; p)
r(s′; q)

v(s′; p) + ε
r(s′, s′)
r(s′; q)

vI(s′, s′) > (1− ε)
r(s; p)
r(s; q)

v(s; p) + ε
r(s, s′)
r(s; q)

vI(s, s′),

for sufficiently small ε > 0. By letting ε → 0, we obtain

v(s′; p) ≥ v(s; p),

for any s ∈ supp(p). Since p is a Nash equilibrium, we have that s′ ∈ BR(p).

Proof of Lemma 5:
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From (1),

v(cT ; pT+1
T (α)) =

αr(cT , cT )
r(cT ; pT+1

T (α))
vI(cT , cT ) +

(1− α)r(cT , cT+1)
r(cT ; pT+1

T (α))
vI(cT , cT+1), (12)

v(cT+1; pT+1
T (α)) =

αr(cT+1, cT )
r(cT+1; pT+1

T (α))
vI(cT+1, cT ) +

(1− α)r(cT+1, cT+1)
r(cT+1; pT+1

T (α))
vI(cT+1, cT+1). (13)

By computation

r(cT , cT ) = (1− δ){1 + δ2 + · · · } =
1

1 + δ
= r(cT+1, cT+1);

r(cT , cT+1) = (1− δ){1 + δ2 + · · ·+ δ2T } =
1− δ2(T+1)

1 + δ
= r(cT+1, cT );

r(cT ; pT+1
T (α)) =

α

1 + δ
+

(1− α)(1− δ2(T+1))
1 + δ

;

r(cT+1; pT+1
T (α)) =

α(1− δ2(T+1))
1 + δ

+
(1− α)
1 + δ

;

vI(cT , cT ) = (1− δ2T )d + δ2T c;

vI(cT+1, cT+1) = (1− δ2(T+1))d + δ2(T+1)c;

vI(cT , cT+1) =
1− δ2

1− δ2(T+1)

{1− δ2T

1− δ2
d + δ2T `

}
;

vI(cT+1, cT ) =
1− δ2

1− δ2(T+1)

{1− δ2T

1− δ2
d + δ2T g

}
.

Therefore

v(cT ; pT+1
T (α)) =

(1− δ2T )d + δ2T (1− δ2)` + δ2T [c− (1− δ2)`]α
1− δ2(T+1) + αδ2(T+1)

. (14)

v(cT+1; pT+1
T (α)) =

(1− δ2(T+1))d + δ2(T+1)c + δ2T [(1− δ2)(g − d)− δ2c]α
1− αδ2(T+1)

. (15)
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By computation

(1− δ2(T+1) + αδ2(T+1))(1− αδ2(T+1))
δ2T

{
v(cT ; pT+1

T (α))− v(cT+1; pT+1
T (α))

}

=
1

δ2T

[
(1− αδ2(T+1)){(1− δ2T )d + δ2T (1− δ2)` + δ2T [c− (1− δ2)`]α}

+(1− δ2(T+1) + αδ2(T+1)){(1− δ2(T+1))d + δ2(T+1)c + δ2T [(1− δ2)(g − d)− δ2c]α}
]

=
1

δ2T

[
(1− δ2T )d + δ2T (1− δ2)`− (1− δ2(T+1)){(1− δ2(T+1))d + δ2(T+1)c}

−αδ2(T+1){(1− δ2T )d + δ2T (1− δ2)`}+ αδ2T {c− (1− δ2)`}

−αδ2(T+1){(1− δ2(T+1))d + δ2(T+1)c} − α(1− δ2(T+1))δ2T {(1− δ2)(g − d)− δ2c}

α2δ4T+2{c− (1− δ2)`} − α2δ4T+2{(1− δ2)(g − d)− δ2c}
]

= −{(1− δ2(T+1))(c− d) + (1− δ2)(d− `)}

+α[{1 + δ2 − 2δ2T+4}c + {1− 3δ2 + 2δ2T+4}d− (1− δ2){(1 + δ2(T+1))` + (1− δ2(T+1))g}]

−α2δ2(T+1)(1− δ2)(c− ` + g − d)

= ∆ṽT (α, δ).

Therefore,

∆ṽT (α, δ) := AT (δ)α2 + BT (δ)α + CT (δ), (16)

where

AT (δ) = −δ2(T+1)(1− δ2)(c− ` + g − d) < 0;

BT (δ) = {1 + δ2 − 2δ2T+4}c + {1− 3δ2 + 2δ2T+4}d− (1− δ2){(1 + δ2(T+1))` + (1− δ2(T+1))g};

CT (δ) = −{(1− δ2(T+1))δ2(c− d) + (1− δ2)(d− `)} < 0.

The claims in the lemma follow immediately.

Proof of Lemma 6:

Let µT (α) = αr(cT ,cT )

r(cT ;pT+1
T (α))

and µT+1(α) = αr(cT+1,cT )

r(cT+1;pT+1
T (α))

. Then (12) and (13) become

v(cT ; pT+1
T (α)) = µT (α)vI(cT , cT ) + {1− µT (α)}vI(cT , cT+1),

v(cT+1; pT+1
T (α)) = µT+1(α)vI(cT+1, cT ) + {1− µT+1(α)}vI(cT+1, cT+1).

By differentiation,

∂v(cT ; pT+1
T (α))

∂α
= µ′T (α){vI(cT , cT )− vI(cT , cT+1)},

∂v(cT+1; pT+1
T (α))

∂α
= µ′T+1(α){vI(cT+1, cT )− vI(cT+1, cT+1)}.
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By computation,

µ′T (α) =
r(cT , cT )r(cT , cT+1)

[αr(cT , cT ) + (1− α)r(cT , cT+1))]2

→ r(cT , cT+1))
r(cT , cT )

= 1− δ2(T+1) as α → 1,

µ′T+1(α) =
r(cT+1, cT )r(cT , cT+1)

[αr(cT+1, cT ) + (1− α)r(cT+1, cT+1))]2

→ r(cT+1, cT+1)
r(cT+1, cT )

=
r(cT , cT )

r(cT , cT+1)
=

1
1− δ2(T+1)

, as α → 1.

At δ = δG(T ),

v(cT ; pT+1
T (1)) = vI(cT , cT ) = v(cT+1; pT+1

T (1)) = vI(cT+1, cT ).

Therefore,

∂∆ṽT

∂α
(1, δG(T )) =

r(cT , cT+1))
r(cT , cT )

{vI(cT , cT )− vI(cT , cT+1)}

− r(cT , cT )
r(cT , cT+1)

{vI(cT+1, cT )− vI(cT+1, cT+1)},

= (1− δ2(T+1))
δ2T (1− δ2)(g − `)

1− δ2(T+1)
− 1

1− δ2(T+1)
δ2T (1− δ2)(c− d)

= δ2T (1− δ2)
{

(g − `)− c− d

1− δ2(T+1)

}
.

Proof of Lemma 7:

Consider ct-strategy for an arbitrary t ∈ {T, T + 1, T + 2, . . .} and the beginning of period t + 1

in a match, when ct-strategy is about to start cooperation. Let αt be the conditional probability that

the partner is the same strategy. The conditional probability is 1− αt that the partner has a longer

trust-building period. The continuation payoff of ct-strategy at the beginning of t + 1 is

V (ct; p, t + 1) = αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V (ct; p)}+ (1− αt){` + δV (ct; p)}. (17)

On the other hand, the continuation payoff of ct+1-strategy at the beginning of t + 1 is

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}

+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct+1; p, t + 2)}. (18)
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Notice that the payoff structure for ct+1-strategy at the beginning of period t + 2 when it just

finished the trust building is the same as that of ct-strategy at t + 1, i.e.,

V (ct+1; p, t + 2) = V (ct; p, t + 1).

Therefore (18) becomes

V (ct+1; p, t + 1) = αt{g + δV (ct+1; p)}

+(1− αt){d + δ(1− δ)V (ct+1; p) + δ2V (ct; p, t + 1)}

⇐⇒ V (ct+1; p, t + 1) =
αt{g + δV (ct+1; p)}+ (1− αt){d + δ(1− δ)V (ct+1; p)}

1− (1− αt)δ2
. (19)

From the assumption,

V (ct; p) = V (ct+1; p). (20)

Then, since the payoff until t is the same for both ct and ct+1, we also have

V (ct; p, t + 1) = V (ct+1; p, t + 1). (21)

(21) implies that the RHS of (17) and (19) must be the same. Using (20) and letting V ∗(p) = V (ct; p) =

V (ct+1; p), αt must satisfy

αt{ c

1− δ2
+

δ(1− δ)
1− δ2

V ∗(p)}+ (1− αt){` + δV ∗(p)}

=
αt{g + δV ∗(p)}+ (1− αt){d + δ(1− δ)V ∗(p)}

1− (1− αt)δ2
.

Since this equation does not depend on t, we have established that (20) implies αt = α for all

t = T, T + 1, . . .. This implies that the fraction of cT+τ -strategy is of the form α(1− α)τ .

Proof of Lemma 8:

Under the fraction structure of p∞T (α), the payoff sequence of strategies are as follows.

Table 3(a)-(c) show the sequence of payoffs for cT , cT+1, and cT+2 within a match.

p∞T (s′) s′ \ time 1 2 · · · T − 1 T T + 1 T + 2 T + 3
α cT d d · · · d c c c · · ·

(1− α) cT+1 and up d d · · · d `

Table 3(a): Payoff sequence of cT -strategy under p∞T (α) within a match against s′.
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p∞T (s′) s′ \ time 1 2 · · · T − 1 T T + 1 T + 2 T + 3
α cT d d · · · d g

(1− α)α cT+1 d d · · · d d c c · · ·
(1− α)2 cT+2 and up d d · · · d d `

Table 3(b): Payoff sequence of cT+1-strategy under p∞T (α) within a match against s′.

p∞T (s′) s′ \ time 1 2 · · · T − 1 T T + 1 T + 2 T + 3
α cT d d · · · d g

(1− α)α cT+1 d d · · · d d g
(1− α)2α cT+2 d d · · · d d d c · · ·
(1− α)3 cT+3 and up d d · · · d d d `

Table 3(c): Payoff sequence of cT+2-strategy under p∞T (α) within a match against s′.

Notice that the bold-faced sub-table of Table 3(b) is identical to the Table 3(a). This is because

from 2nd period on, cT+1-strategy behaves the same way as cT -strategy against itself and cT+2, . . .

strategies.

Similarly, after 2nd period on, cT+2-strategy behaves the same way as cT+1-strategy against itself

and cT+3, . . . strategies.

In equation, the long-run payoff of cT -strategy is decomposed as

V (cT ; p∞T (α)) = αV (cT , cT ; p∞T (α))

+(1− α)V (cT , cT+1; p∞T (α)). (22)

The long-run payoff of cT+1-strategy is decomposed as

V (cT+1; p∞T (α)) = αV (cT+1, cT ; p∞T (α))

+(1− α)[α{d + δ2V (cT , cT ; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))}

(1− α){d + δ2V (cT , cT+1; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))}]

= αV (cT+1, cT ; p∞T (α))

+(1− α)[d + δ2V (cT ; p∞T (α)) + δ(1− δ)V (cT+1; p∞T (α))], (23)

where the last equality uses (22).

Equivalently we can write

[1− (1−α)δ(1− δ)]V (cT+1; p∞T (α)) = αV (cT+1, cT ; p∞T (α))+ (1−α)d+(1−α)δ2V (cT ; p∞T (α)). (24)
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Similarly from Table 3(b) and 3(c),

V (cT+2; p∞T (α)) = αV (cT+2, cT ; p∞T (α))

(1− α)[d + δ2V (cT+1; p∞T (α)) + δ(1− δ)V (cT+2; p∞T (α))].

Note that cT+1 and cT+2 earn the same payoff against cT and thus V (cT+2, cT ; p∞T (α)) = V (cT+1, cT ; p∞T (α)).

Therefore the long-run payoff of cT+2-strategy solves

V (cT+2; p∞T (α)) = αV (cT+1, cT ; p∞T (α))

+(1− α)[[d + δ2V (cT+1; p∞T (α)) + δ(1− δ)V (cT+2; p∞T (α))].

This is equivalent to

[1−(1−α)δ(1−δ)]V (cT+2; p∞T (α)) = αV (cT+1, cT ; p∞T (α))+(1−α)d+(1−α)δ2V (cT+1; p∞T (α)). (25)

If V (cT ; p∞T (α)) = V (cT+1; p∞T (α)), then the last term of the right hand sides of (4) and (5) are

the same and therefore

V (cT+1; p∞T (α)) = V (cT+2; p∞T (α)).

We can continue this argument for any t > T .

Proof of Lemma 9:

We prove this lemma by a series of steps.

(a) For any (G,T, α, δ), v(cT ; p∞T (α)) = v(cT ; pT+1
T (α)).

Proof of (a): Against cT -strategy, all strategies with longer trust-building behave the same

way.

(b) For any (G,T, α, δ), let ∆v∞T (α, δ) := v(cT ; p∞T (α)) − v(cT+1; p∞T (α)). Then for any (G,T, δ),

∆v∞T (1, δ) = ∆vT (1, δ).

Proof of (b): Clearly when α = 1, the value differences between cT and cT+1 under p∞T and

pT+1
T are the same.

(c) For any (G,T, δ), ∆v∞T (0, δ) < 0.
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Proof of (c): By computation,

∆v∞T (0, δ) = vI(cT , cT+1)− vI(cT+1, cT+2)

=
(1− δ2T )d + δ2T (1− δ2)`

1− δ2(T+1)
− (1− δ2(T+1))d + δ2(T+1)(1− δ2)`

1− δ2(T+2)

=
1

(1− δ2(T+1))(1− δ2(T+2))

[
{(1− δ2T )d + δ2T (1− δ2)`}(1− δ2(T+2))

−{(1− δ2(T+1))d + δ2(T+1)(1− δ2)`}(1− δ2(T+1))
]

=
1

(1− δ2(T+1))(1− δ2(T+2))

[
−(d− `){1− δ2(T+1) − (1− δ2(T+2))(1− δ2T )}

]

<
1

(1− δ2(T+1))(1− δ2(T+2))

[
−(d− `){1− δ2(T+1) − (1− δ2(T+1))(1− δ2T )}

]

=
1

(1− δ2(T+1))(1− δ2(T+2))

[
−(d− `)(1− δ2(T+1))δ2T

]
< 0.

(d) For any (G,T, δ) and any α < 1, ∆v∞T (α, δ) > ∆vT (α, δ).

Proof of (d): Since cT+1 cannot be exploited under the two-strategy distribution pT+1
T while

it is exploited by strategies with longer trust-building periods under p∞T , v(cT+1; pT+1
T (α)) >

v(cT+1; p∞T (α)). From (a), the statement holds.

Finally, we combine the above to prove the lemma. (b), (c), and (d) together imply that, for a given

(G,T, δ), the graph of ∆v∞T (α, δ) is uniformly above the graph of ∆vT (α, δ) except at α = 1 and both

graph starts from a negative value at α = 0. Hence, if there exists α such that ∆vT (α, δ) = 0 and

∂∆vT
∂α (α, δ) < 0, then the desired α∗ with the same properties for ∆v∞T also exists. (See Figure 4.)

The existence of such α for ∆vT is warranted if δ > δ̂G(T ) so that the slope of ∆ṽT is negative,

and if δ < δG(T ) but sufficiently close to is so that ∆ṽT (α, δ) > 0 near α = 1.

Proof of lemma 10:

Fix an arbitrary τ = 0, 1, 2, . . .. By computation,

vI(cT+τ , cT+τ ) = (1− δ2(T+τ))d + δ2(T+τ)c,

vI(sτ , cT+τ ) =
1

1− δ2(T+τ+2)

[
(1− δ2(T+τ))d + δ2(T+τ)(1− δ2)c + δ2(T+τ+1)(1− δ2)g

]
.

For δ ≈ δG(T ),

(1− δ2)g ≈ δ2(1− δ2T )(c− d) + (1− δ2)c.
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Hence

vI(sτ , cT+τ ) ≈ 1
1− δ2(T+τ+2)

[
(1− δ2(T+τ))d + δ2(T+τ)(1− δ2)c

+δ2(T+τ+1){δ2(1− δ2T )(c− d) + (1− δ2)c}
]

=
1

1− δ2(T+τ+2)

[
(1− δ2(T+τ))d + δ2(T+τ)c− δ2(T+τ+1)c

+δ2(T+τ+1){−δ2(1− δ2T )d + (1− δ2(T+1))c}
]

=
1

1− δ2(T+τ+2)

[{
(1− δ2(T+τ))d + δ2(T+τ)c

}
(1− δ2(T+τ+2) + δ2(T+τ+2))

−δ2(T+τ+2){δ2T c + (1− δ2T )d}
]

= vI(cT+τ , cT+τ )− δ2(T+τ+2)

1− δ2(T+τ+2)
δ2T (1− δ2τ )(c− d) < vI(cT+τ , cT+τ ).

Hence for δ sufficiently close to δG(T ), the in-match average payoff is smaller for sτ . Moreover, it

is easy to see that

r(cT+τ , cT+τ ) =
1

1 + δ
> r(sτ , cT+τ ) =

1− δ2(T+τ+2)

1 + δ
.

By definition,

v(cT+τ ; p∞T (α)) =
w + α(1− α)τr(cT+τ , cT+τ )vI(cT+τ , cT+τ ) + (1− α)τ+1r(cT+τ , cT+τ+1)vI(cT+τ , cT+τ+1)

R1 + α(1− α)τr(cT+τ , cT+τ ) + (1− α)τ+1r(cT+τ , cT+τ+1)

where w =
∑τ−1

k=0 α(1− α)kr(cT+τ , cT+k)vI(cT+τ , cT+k) and R1 =
∑τ−1

k=0 α(1− α)kr(cT+τ , cT+k).

Notice that sτ behaves the same way as cT+τ against cT+k for k = 0, 1, . . . , τ − 1 and cT+τ+1 and

strategies with longer trust-building periods. Hence

v(sτ ; p∞T (α)) =
w + α(1− α)τr(sτ , cT+τ )vI(sτ , cT+τ ) + (1− α)τ+1r(cT+τ , cT+τ+1)vI(cT+τ , cT+τ+1)

R1 + α(1− α)τr(sτ , cT+τ ) + (1− α)τ+1r(cT+τ , cT+τ+1)
.

Let R2 := α(1− α)τr(cT+τ , cT+τ ) and R3 := (1− α)τ+1r(cT+τ , cT+τ+1). Then

v(cT+τ ; p∞T (α)) =
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

) R1 + R3

R1 + R2 + R3
+

R2v
I(cT+τ , cT+τ )

R1 + R2 + R3

=
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)

+
R2

R1 + R2 + R3

[
vI(cT+τ , cT+τ )−

( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)]
. (26)

Let R′
2 := α(1− α)τr(sτ , cT+τ ). Then

v(sτ , ; p∞T (α)) =
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

) R1 + R3

R1 + R′
2 + R3

+
R′

2v
I(sτ , cT+τ )

R1 + R′
2 + R3

=
( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)

+
R′

2

R1 + R′
2 + R3

[
vI(sτ , cT+τ )−

( w

R1 + R3
+

R3v
I(cT+τ , cT+τ+1)

R1 + R3

)]
. (27)
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Since R2 > R′
2,

R1+R3
R1+R2+R3

< R1+R3
R1+R′2+R3

, which implies that R′2
R1+R′2+R3

< R2
R1+R2+R3

. Therefore the

second term of (26) is larger than that of (27).

Proof of Proposition 3:

We consider all on-path deviations that make a difference in the average payoff.

On-path deviations during the “common” trust-building periods t = 1, 2, . . . , T :

The on-path history is unique and of the form {(D, D), . . . , (D, D)}. Possible deviation types that

make difference in the payoffs are:

(a) Play e after on-path history, during the common TB.

Recall the logic of Lemma 2 (for monomorphic distribution). We showed that such strategy has

average payoff d but any cT strategy under pT has average payoff more than d since it is a convex

combination of c and d. Now we cannot use cT but can use c∞ which has the same payoff as cT

under α∗. c∞ earns g after TB, against any cτ where T ≤ τ < ∞. Hence the average payoff of

c∞ is more than d and thus it is better than choosing e during TB.

(b) Play C after on-path history, during the common TB.

Clearly, strategies in this class have smaller average payoff than d under p∞T (α).

Thanks to the new definition that during TB, only (D, D) will induce k, we do not need to

distinguish further devisions after C during TB.

On-path deviations in t ≥ T + 1: note that there are three kinds of on-path histories after the

common trust-building periods.

1. {(D, D)t−1}: This occurs when both partners had TB not less than t− 1. For the continuation

decison node, add one more (D, D).

Action choice phase: Since both C and D are on-path actions we do not need to check.

Continuation decision phase: The analysis is the same as (a) above.

2. {(D, D)τ , (C, C)t−τ} for some τ ≥ T : This occurs when both partners had the same τ periods

of TB. For the continuation decision node, add one more (C, C).

Action choice phase: The incentive constraint is proved to be satisfied in Lemma 10.
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Continuation decision phase: If a strategy chooses C but e afterwards during the cooperation

periods, the payoff is less than the above deviation strategy.

3. {(D, D)t−1, (C, D)}: This is relevant only at the continuation decision node in t. This happens

when one partner had t− 1 periods of trust-building, while the other had a longer TB.

However, by the definition of cT strategy, the partner will choose e and thus your decision does

not matter.

Proof of Lemma 12:

any NE strategy of VRPD, p′ ∈ P(S), and define any assocaited babbling strategy pσB(p) ∈
P(SCT ). If there is another strategy p ∈ P(S), whose expected payoff is higher than that of p, then

the following neologism strategy (”early harvest” neologism strategy), σN (p; p′) ∈ SCT , such that it

invades pB with the following features.

1. σN (p; p′) uses a neologism, i.e., it uses a message which is not being used by any strategy in

supp(NE(p′)),

2. σN (p; p′) = p, i.e., when they receives the neologism, it plays suppp or plays s ∈ supp(p) with

probability p(s),

3. σN (p; p′) = p′, i.e., when they receives non-neologism messages, it plays suppp′ or plays s ∈
supp(p′) with probability p′(s).

Clealy σN (p; p′) can invade p′B. However, NE(p) to be an EES, p must be a best response against the

post-entry distribution, (1 − εp′) + εp. Unless p itself is a NSS, such property does not hold. Hence

the assertion holds.
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