

Neuroeconomics:

Background and Methods II

Ming Hsu

University of Illinois at Urbana-Champaign

Plan

Neuroanatomy

- > Terminology
- Functional neuroanatomy

Statistical analysis of fMRI data

- > Preprocessing
- Statistical modeling

•••

Terminology

Directions

- Anterior/Posterior
- Superior/inferior (dorsal/ventral)
- Lateral/Medial (also mesial, middle)

Tokyo University Department of Economics

fMRI

2007/7/26

Types of scans

- Axial: superior inferior
- Coronal: anterior posterior
- Saggital: left right

Brodmann Regions

> Cytoarchitecture

 Cellular composition of a bodily structure

Cortical columns

- Group of neurons organized perpendicular to cortical surface
- Humans 6 layers (~2mm thick), dolphins 5, reptiles 3
- Right: cortical columns of various types

2007/7/26

Tokyo University Department of Economics

Brodmann Regions

Korbinian Brodmann

- Classified <u>cortex</u> according to cytoarchitectural patterns
- > 47 distinct areas

Model free

- Assumed nothing about brain functions (perhaps why labeled by numbers)
- Maps to specific functions surprisingly well (motor cortex)
- Shortcomings

Tokyo University Department of Economics

Cerebral Cortex

•••

Frontal Lobe

Orbitofrontal (includes ventromedial and ventrolateral)

- Reward processing
- Decision-making

> Dorsolateral

- Working memory
- Executive function
- Brodman 8/9
 - Theory of mind
- Lots of other regions, many of them motor/language related

Tokyo University Department of Economics

.

Insula

Interoception

- Sense of the physiological condition of the body (Craig)
- Monitoring of bodily sensations
- Flurry of findings on involvement in decisionmaking
 - Ultimatum game rejection (Sanfey)
 - > Relapsing in smoking (Naqvi)
 - Coding of variance (Preuschoff)

Caveat

.

Subcortical Regions

Subcortical Areas

- Striatum: Reward anticipation, reward computation
 - > One of the best implicated regions in neuroeconomics
- > Amgydala: Fear, vigilance, learning

fMRI Data Analysis

Sources of Noise

Poor signal to noise ratio in fMRI

~ 0.25 - 0.5% (Huettel et al.)

Sources of noise

- Thermal noise (from electrical circuits): biggest contributor, but fortunately white noise.
- Scanner Drift (small instability in the scanner gradients): Typically introduces linear trend or low frequency noise
- Subject Motion: Perhaps the most serious source of noise
 - Partial voluming
 - Region misalignment
- > Physiological artifacts: cardiac/respiratory cycles

Slice timing correction

- Different slices acquired at different times
 - 'Time warp', as if slices were acquired simultaneously
- Two approaches
 - > Shift signal (temporal interpolation)
 - Shift regressor
- Former done for computational constraints

Realignment (Motion Correction)

- Head movements
 - Some degree inevitable
- Assumes head movements do not affect head shape
- Six parameters:
 - 3x translations & 3x rotations [x1 y1 z1] = M x [xo yo zo]

Tokyo University Department of Economics

.

Slice timing correction: issues

Shortcomings of separating slice timing and motion correction

- Before realignment
 - > Assume head is still: one slice of brain per slice of time.
 - Head movements can cause slice-overlap or separation -> interpolation over wrong brain areas
 - Realignment may propagate error to other volumes.
- After realignment
 - Realignment after head movement may shift voxels onto successive slices -> incorrect temporal ordering

Coregistration

Align brains between different modalities

- > Within subjects
- > E.g., T1 MRI and functional MRI
- Not that interesting

Normalization

Standardize brains across subjects

- Between subjects
- Derive group statistics
- Critical for studying cognitive functions

Normalization

Two approaches

- "Standard" brain (exogenous): MNI, Talairach
- "Group" brain (endogenous): BrainVoyager (less common)

Affine transform

- rigid-body + shears and zooms = 12 params
- zoom fails with insufficient slices (e.g. non-isotropic voxels)
- prior data helps predict zzoom from x&y-zoom

Tokyo University Department of Economics

.

Normalization

> Problems

- Perfection is not enough
- Structural alignment doesn't guarantee functional alignment.
- Fit is limited by differences in gyral anatomy and physiology between subjects.

Spatial Smoothing

- Increase signal to noise ratio
 - Matched filter theorem
- Challenges
 - FWHM unknown
 - Potentially vary across region/people
 - Current: impose exogenously

Low Frequency Noise

Sources of noise

- Cardiac/respiratory
- Scanner drift
- > Other physiological

Solutions

- > High-pass filter (most common)
- > Pre-whiten
- Include in regression

Tokyo University Department of Economics

Choice of Techniques

Model free

- > PCA/ICA
- > Can be difficult to interpret

Model based

- Need good prior model
- Ease of interpretation
- Most commonly use GLM

.

Random Effects: "Summary Statistic"

Panel Data

Classical approach: random effects

- Summary statistics" approach (assumes subjects iid)
- Computationally cheap
- Require balanced design
- Bayesian (uncommon)
 - Computationally expensive
 - Choice of priors (empirical Bayes)

Computational Issues

3-Dimensional panel

- Cross section: ~ 64x64x30 voxels
- > Temporal dimension in the 100s.
- > Group sizes in the 10s.
- Voxel-wise regression
 - Massive computational demand
 - Shortcuts...

Timing Issues

True signal (-) observed signal (--)

Model (green) TRUE signal (blue)

Biased estimate

2007/7/26

Tokyo University Department of Economics

Hemodynamic Response

- Regional Variation (within brain)
 - Derived from visual cortex
 - Some evidence of regional variation
- Individual Differences (between brain)
 - Most clearly violated in elderly and those with pathologies

. .

• • •

Correlational Structure

Panel data with both

- Serial correlation
- Spatial correlation
- Serial correlation
 - AR(1) appears to be adequate

Spatial correlation

Much more difficult

Spatial Correlation

Current technique:

- Average out noise
- > Apply spatial smoothing
- Ignore neural circuitry

Tokyo University Department of Economics

Spatial Correlation: Problems

- > Physical distance not representative of synaptic distance
 - E.g., visual cortex in *back* of head, but just a few synapses from retinal neurons
- Incomplete (also asymmetric) knowledge of neural connectivity
 - ~10¹⁰ neurons in the brain, and up to 15,000 connections between neurons
 - Some regions more explored than others
 - > E.g., hippocampus vs. precuneus

Statistical Inference

How do we assess significance?

Multiple comparison problem

> Approach

- Many issues/tradeoffs
- > Many choices
- > Sadly current practice is all over the place

Statistical Inference

Issues

- Computational (as always)
- Cluster-level/voxel level?
- Incorporate prior information (How?)

> Choices

- Bonferroni
- False Discovery Rate

fMRI Multiple Comparisons Problem

4-Dimensional Data

- 1,000 multivariate observations, each with 100,000 elements
- > 100,000 time series, each with 1,000 observations
- Massively Univariate Approach
 - 100,000 hypothesis tests
- Massive MCP!

2007/7/26

Tokyo University Department of Economics

Multiple Comparison Problem

A MCP Solution Must Control False Positives

How to measure multiple false positives?

Familywise Error Rate (FWER)

- Chance of any false positives
- Controlled by Bonferroni & Random Field Methods

False Discovery Rate (FDR)

Proportion of false positives among rejected tests

Bonferroni

Independent Voxels

Spatially Correlated

Tokyo University Department of Economics

Multiple Comparison Ilustration

Control of Per Comparison Rate at 10%

Cluster vs. Voxel Level

Activations Significant at Cluster level But not at Voxel Level

Statistics: volume summary (p-values corrected for entire volume)

set-level		cluster-level			voxel-level						
P	с 11	P corrected	k 1285	^{,D} uncorrected 0.000	P corrected 0.109	7 12.51	(Ž _≣) (5.01)	^{,D} uncorrected 0.000	۸, 9,2 ז וווווז		
0.964									-8	-82	-12
					0.269	10.43	(4.71)	0.000	20	-86	8
					0.272	10.40	(4.70)	0.000	-14	-80	16
		0.411	17	0.030	0.168	11.51	(4.87)	0.000	-38	-64	0
		0.000	125	0.000	0.465	9.16	(4.48)	0.000	36	-66	-4
					0.997	5.74	(3.63)	0.000	28	-52	-4

2007/7/26

Tokyo University Department of Economics

Spatial Correlation

- Average out
- Apply spati
- > Ignore neu

Tokyo University Department of Economics

- Time domain / frequency domain?
- AR / ARMA / state space models?
- Linear / non-linear time series model?
- Fixed HRF / estimated HRF?
- Voxel / local / global parameters?
- Fixed effects / random effects?
- Frequentist / Bayesian?

Interactions between set and event-related responses: Attentional modulation of V5 responses

Benjamini & Hochberg Procedure

•••

Benjamini & Hochberg Procedure

Select desired limit q on E(FDR)

> Order p-values, $p_{(1)} \leq p_{(2)} \leq ... \leq p_{(V)}$

> Let r be largest i such that

 $\underset{\mathsf{R}}{p}_{(i)} \leq i/V \times q/c(V)$

corresponding to $p_{(1)}, \dots, p_{(i)}$.

JRSS-B (1995) 57:289-300

2007/7/26

Tokyo University Department of Economics

False Discovery Rate

Consider testing H_1, H_2, \ldots, H_m based on the corresponding *p*-values P_1 , P_2, \ldots, P_m . Let $P_{(1)} \leq P_{(2)} \leq \ldots \leq P_{(m)}$ be the ordered *p*-values, and denote by $H_{(i)}$ the null hypothesis corresponding to $P_{(i)}$. Define the following Bonferroni-type multiple-testing procedure:

let k be the largest i for which $P_{(i)} \leq \frac{i}{m}q^*$;

then reject all
$$H_{(i)}$$
 $i = 1, 2, ..., k$. (1)

Theorem 1. For independent test statistics and for any configuration of false null hypotheses, the above procedure controls the FDR at q^* .

Theorem 2. The FDR controlling procedure given by expression (1) is the solution of the following constrained maximization problem:

choose α that maximizes the number of rejections at this level, $r(\alpha)$,

subject to the constraint $\alpha m/r(\alpha) \leq q^*$.

2007/7/26

Tokyo University Department of Economics

(3)