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TerminologyTerminology
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fMRIfMRI

Types of scans
Axial: superior - inferior
Coronal: anterior - posterior
Saggital: left - right
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Brodmann RegionsBrodmann Regions

Cytoarchitecture
Cellular composition of a 
bodily structure

Cortical columns
Group of neurons organized 
perpendicular to cortical 
surface
Humans 6 layers (~2mm 
thick), dolphins 5, reptiles 3

Right: cortical columns of 
various types
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Brodmann RegionsBrodmann Regions

Korbinian Brodmann
Classified cortex according to 
cytoarchitectural patterns
47 distinct areas

Model free
Assumed nothing about brain 
functions (perhaps why 
labeled by numbers)
Maps to specific functions 
surprisingly well (motor cortex)

Shortcomings
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Frontal LobeFrontal Lobe

Orbitofrontal (includes 
ventromedial and ventrolateral)

Reward processing
Decision-making

Dorsolateral
Working memory
Executive function

Brodman 8/9
Theory of mind

Lots of other regions, many of 
them motor/language related
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InsulaInsula

Interoception
Sense of the physiological 
condition of the body (Craig)
Monitoring of bodily 
sensations

Flurry of findings on 
involvement in decision-
making

Ultimatum game rejection 
(Sanfey)
Relapsing in smoking (Naqvi)
Coding of variance 
(Preuschoff)

Caveat
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Subcortical RegionsSubcortical Regions

Amygdala Cerebellum

Hippocampus

Striatum
• Dorsal: Putamen, Caudate
• Ventral: Nucleus Accumbens
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Subcortical AreasSubcortical Areas

Striatum: Reward anticipation, reward computation
One of the best implicated regions in neuroeconomics

Amgydala: Fear, vigilance, learning
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Image timeImage time--seriesseries
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Sources of NoiseSources of Noise

Poor signal to noise ratio in fMRI
~ 0.25 - 0.5% (Huettel et al.)

Sources of noise
Thermal noise (from electrical circuits): biggest contributor, but 
fortunately white noise.
Scanner Drift (small instability in the scanner gradients): Typically 
introduces linear trend or low frequency noise
Subject Motion: Perhaps the most serious source of noise

Partial voluming
Region misalignment

Physiological artifacts: cardiac/respiratory cycles
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Slice timing correctionSlice timing correction

Different slices acquired at 
different times

‘Time warp’, as if slices were 
acquired simultaneously

Two approaches
Shift signal (temporal interpolation)
Shift regressor

Former done for computational 
constraints
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Realignment (Motion Correction)Realignment (Motion Correction)

Head movements
Some degree inevitable

Assumes head movements do 
not affect head shape

Six parameters:
3x translations & 3x rotations 
[x1 y1 z1] = M x [xo yo zo]
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Slice timing correction: issuesSlice timing correction: issues

Shortcomings of separating slice timing and motion correction
Before realignment

Assume head is still: one slice of brain per slice of time.
Head movements can cause slice-overlap or separation ->
interpolation over wrong brain areas 
Realignment may propagate error to other volumes.

After realignment
Realignment after head movement may shift voxels onto successive
slices -> incorrect temporal ordering
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CoregistrationCoregistration

Align brains between different modalities
Within subjects
E.g., T1 MRI and functional MRI
Not that interesting
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NormalizationNormalization

Standardize brains across subjects
Between subjects
Derive group statistics
Critical for studying cognitive functions
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NormalizationNormalization

Two approaches
“Standard” brain (exogenous): 
MNI, Talairach
“Group” brain (endogenous): 
BrainVoyager (less common)

Affine transform
rigid-body + shears and 
zooms = 12 params
zoom fails with insufficient 
slices (e.g. non-isotropic 
voxels)
prior data helps predict z-
zoom from x&y-zoom
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NormalizationNormalization

Problems
Perfection is not enough
Structural alignment doesn’t guarantee functional alignment.
Fit is limited by differences in gyral anatomy and physiology 
between subjects. 
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Spatial SmoothingSpatial Smoothing

Increase signal to noise ratio
Matched filter theorem

Challenges
FWHM unknown
Potentially vary across 
region/people
Current: impose 
exogenously
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Low Frequency NoiseLow Frequency Noise

Sources of noise
Cardiac/respiratory
Scanner drift
Other physiological

Solutions
High-pass filter (most common)
Pre-whiten
Include in regression
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Statistical Models

Statistical image
(SPM)

voxel time course

intensity

Temporal series 
fMRI

tim
e
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Choice of TechniquesChoice of Techniques

Model free
PCA/ICA
Can be difficult to interpret

Model based
Need good prior model
Ease of interpretation
Most commonly use GLM
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Panel DataPanel Data

Classical approach: random effects
“Summary statistics” approach (assumes subjects iid)
Computationally cheap
Require balanced design

Bayesian (uncommon)
Computationally expensive
Choice of priors (empirical Bayes)
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Computational IssuesComputational Issues

3-Dimensional panel
Cross section: ~ 64x64x30 voxels
Temporal dimension in the 100s.
Group sizes in the 10s.

Voxel-wise regression
Massive computational demand
Shortcuts…
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Hemodynamic ResponseHemodynamic Response

Regional Variation (within 
brain)

Derived from visual cortex
Some evidence of regional 
variation

Individual Differences 
(between brain)

Most clearly violated in elderly 
and those with pathologies 
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Correlational StructureCorrelational Structure

Panel data with both 
Serial correlation
Spatial correlation

Serial correlation
AR(1) appears to be adequate
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Spatial CorrelationSpatial Correlation

Current technique:
Average out noise
Apply spatial smoothing 
Ignore neural circuitry
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Spatial Correlation: ProblemsSpatial Correlation: Problems

Physical distance not representative of synaptic distance
E.g., visual cortex in back of head, but just a few synapses from retinal 
neurons

Incomplete (also asymmetric) knowledge of neural connectivity
~1010 neurons in the brain, and up to 15,000 connections between 
neurons
Some regions more explored than others
E.g., hippocampus vs. precuneus
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Statistical InferenceStatistical Inference

How do we assess significance? 
Multiple comparison problem

Approach
Many issues/tradeoffs
Many choices
Sadly current practice is all over the place
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Statistical InferenceStatistical Inference

Issues 
Computational (as always)
Cluster-level/voxel level?
Incorporate prior information (How?)

Choices
Bonferroni
False Discovery Rate
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fMRI Multiple Comparisons ProblemfMRI Multiple Comparisons Problem

4-Dimensional Data
1,000 multivariate observations,
each with 100,000 elements
100,000 time series, each 
with 1,000 observations

Massively Univariate
Approach

100,000 hypothesis
tests

Massive MCP!
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Multiple Comparison ProblemMultiple Comparison Problem

A MCP Solution Must Control False Positives
How to measure multiple false positives?

Familywise Error Rate (FWER)
Chance of any false positives
Controlled by Bonferroni & Random Field Methods

False Discovery Rate (FDR)
Proportion of false positives among rejected tests

A MCP Solution Must Control False Positives
How to measure multiple false positives?

Familywise Error Rate (FWER)
Chance of any false positives
Controlled by Bonferroni & Random Field Methods

False Discovery Rate (FDR)
Proportion of false positives among rejected tests



2007/7/26 Tokyo University Department of Economics 37

BonferroniBonferroni

Independent Voxels Spatially Correlated
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Multiple Comparison IlustrationMultiple Comparison Ilustration

Signal

Signal+Noise

Noise
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FWE

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%

Control of Familywise Error Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of False Discovery Rate at 10%
Occurrence of Familywise Error

Percentage of Activated Pixels that are False Positives
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Activations
Significant at
Cluster level
But not at
Voxel Level

Cluster vs. Voxel LevelCluster vs. Voxel Level



END



2007/7/26 Tokyo University Department of Economics 42

Spatial CorrelationSpatial Correlation

Current technique:
Average out noise
Apply spatial smoothing 
Ignore neural circuitry
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Choices …Choices …

Time domain / frequency domain?

AR / ARMA / state space models?

Linear / non-linear time series model?

Fixed HRF / estimated HRF?

Voxel / local / global parameters?

Fixed effects / random effects?

Frequentist / Bayesian?
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Interactions between set and event-related responses:
Attentional modulation of V5 responses

attention to motion

attention to colour
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Benjamini & Hochberg ProcedureBenjamini & Hochberg Procedure

c(V) = 1
Positive Regression Dependency on Subsets

Technical condition, special cases include
Independent data
Multivariate Normal with all positive correlations

Result by Benjamini & Yekutieli.

c(V) = Σi=1,...,V 1/i ≈ log(V)+0.5772
Arbitrary covariance structure
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Benjamini & Hochberg ProcedureBenjamini & Hochberg Procedure
Select desired limit q on E(FDR)

Order p-values, p(1) ≤ p(2) ≤ ... ≤ p(V)

Let r be largest i such that

Reject all hypotheses 
corresponding to
p(1), ... , p(r).
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Reject all hypotheses 
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JRSS-B (1995) 57:289-300
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False Discovery RateFalse Discovery Rate
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