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Abstract

How is long run economic growth related to the diversity of knowledge? We

formulate and study a microeconomic model of knowledge creation, through the in-

teractions among a group of R & D workers, embedded in a growth model to address

this question. Income to these workers accrues as patent income, whereas transmis-

sion of newly created knowledge to all such workers occurs due to public transmission

of patent information. Our model incorporates two key aspects of the cooperative

process of knowledge creation: (i) heterogeneity of people in their state of knowledge

is essential for successful cooperation in the joint creation of new ideas, while (ii) the

very process of cooperative knowledge creation affects the heterogeneity of people

through the accumulation of knowledge in common. The model features myopic

R & D workers in a pure externality model of interaction. Surprisingly, in the

general case for a large set of initial conditions we find that the equilibrium process

of knowledge creation converges to the most productive state, where the population

splits into smaller groups of optimal size; close interaction takes place within each

group only. Equilibrium paths are found analytically. Long run economic growth is
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to the effectiveness of public knowledge transmission. JEL Classification Numbers:
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1 Introduction

How is economic growth related to the diversity of knowledge? How does

knowledge diversity change as an economy grows? Can more effective public

knowledge transmission, via the patenting process or the internet, cause the

knowledge base to become too homogeneous and slow growth? Given spillovers

in the creation of new knowledge, is the equilibrium knowledge production path

efficient?

To address these questions, we attempt to provide microfoundations for

aggregate models of knowledge creation and transfer. The basic framework

that employs knowledge creation as a black box driving economic growth is

usually called the endogenous growth model. Here we make a modest attempt

to open that black box. The literature using this black box includes Shell

(1966), Romer (1986, 1990), Lucas (1988), Jones and Manuelli (1990), and

many papers building on these contributions.1

In particular, the model proposed below is closely related to the endogenous

growthmodel developed by Romer (1990) in which R&D firms invest resources

to develop new products. In Romer’s model, the productivity of each R & D

firm rises in proportion to the stock of general knowledge capital; the latter

is assumed to be equal to the cumulative number of products invented in the

R & D sector in the past. In addition, all workers in the R & D sector are

assumed to be homogeneous. Hence, in Romer’s model, when labor is the

unique input in the R & D sector, the number of new products developed per

unit of time is also proportional to the number of R & D workers at that time.

While maintaining the assumption of monopolistic competition in the sec-

tor that produces horizontally differentiated consumption goods, this paper

introduces several innovative features into the details of the R & D sector.

First, at any given time, all knowledge workers (K-workers) engaged in R & D

are heterogeneous in the sense that for any pair of K-workers, each has knowl-

edge distinct from the other as well as a stock of knowledge in common. Such

heterogeneity in K-workers provides them with an opportunity to cooperate

in R & D work. Second, the heterogeneity is endogenous to the model. At

each moment of time, each K-worker will want to conduct research with their

best partner (or partners); the new knowledge jointly created becomes shared

1We note that differentiation of agents in terms of quality (or vertical characteristics) of
knowledge is studied in Jovanovic and Rob (1989) in the context of a search model. In
contrast, our model examines (endogenous) horizontal heterogeneity of agents and its effect
on knowledge creation and consumption.
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knowledge, thus dynamically building up knowledge in common. When peo-

ple are not meeting, their knowledge bases grow more different. Thus, the

history of meetings and their content is important. Moreover, some of the

new knowledge created by any K-worker, either alone or in partnership with

others, is revealed in the form of patent registration and thus learned by all

K-workers, yielding additional knowledge in common. In this way, the hetero-

geneity or diversity of all K-workers changes endogenously over time. Third,

the effectiveness of cooperation between K-workers can change over time, and

this change is endogenous. If two K-workers have too much knowledge in

common, little synergy can be expected from their joint work, since neither

brings originality to the partnership. Analogously, if two K-workers have

very different knowledge bases, they have little common ground for communi-

cation, so their partnership will not be very productive. Thus, a partnership

in knowledge creation is most productive when common and differential knowl-

edge are in balance. Then, since the heterogeneity among K-workers changes

endogenously over time, the effectiveness of cooperation amongK-workers also

changes endogenously.

We model endogenous agent heterogeneity, or horizontal agent differen-

tiation, in order to look at the permanent effects of knowledge creation on

growth.2 For simplicity, we assume that it is not possible for more than two

knowledge creators to meet or work at one time, though more than one couple

can work simultaneously. When agents meet, they create new, shared knowl-

edge, thus building up knowledge in common. When agents are not meeting

with each other, their knowledge bases grow more different. The fastest rate

of knowledge creation occurs when common and differential knowledge are in

balance. The knowledge creation workers can work alone or with a partner.

The suitability of partners depends on the stock of knowledge they have in

common and their respective stocks of exclusive knowledge at a given time.

In order to provide microfoundations for behavior in the R & D sector, the

model of knowledge production detailed in Berliant and Fujita (forthcoming)

is embedded, with an extension to allow public knowledge transmission via

the patenting process, in a growth model. A manufacturing sector produces

consumption goods for both their workers and the knowledge workers, using a

Dixit and Stiglitz (1977) monopolistic competition framework. To produce a

consumption commodity under constant returns to manufacturing labor input,

2We employ a deterministic framework. It seems possible to add stochastic elements to
the model, but at the cost of complexity. It should also be possible to apply the law of large
numbers to a more basic stochastic framework to obtain equivalent results.
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a patent must be purchased from the R & D sector. Manufacturing workers,

firms, and consumers in the R & D sector are all farsighted, in the sense

that they have rational expectations about prices. The knowledge workers

themselves can either be farsighted or myopic in their choices concerning R &

D partnerships; surprisingly, the equilibrium is the same.

For simplicity, we deal exclusively with the case when the agents are sym-

metric. Our model is analytically tractable, so we do not have to resort to

simulations; we find each equilibrium path explicitly.

Our results are summarized as follows. When the initial state features

relative homogeneity of knowledge between knowledge workers, the sink will

be the most productive state, where the population splits into smaller groups

of optimal size; close interaction takes place within each group only.3 This

optimal size is larger as the heterogeneity of knowledge is more important in

the knowledge production process and as the transmission of public knowledge

becomes more effective. The efficiency result is the most surprising to us, as

we posit a model with myopic knowledge workers and with only externalities

in interactions between knowledge workers, so one would not expect efficient

outcomes.

Long run economic growth is positively related to both the effectiveness of

pairwise knowledge worker interaction and, more importantly, to the effective-

ness of public knowledge transmission. The latter is due, in part, to the en-

dogenous adjustment of group size to a better public knowledge transmission

technology. Finally, if we define efficiency constrained by the monopolistic

competition environment for consumption goods, our equilibrium paths are

constrained efficient.

The model is also at an intermediate level of aggregation. That is, al-

though it is at a more micro level than large aggregate models such as those

found in the endogenous growth literature, we do not work out completely its

microfoundations. That is left to future research.

Section 2 gives the model and notation, Section 3 analyzes the equilibrium

path of dynamics in the knowledge production sector, Section 4 analyzes the

equilibrium growth path for the entire economy, whereas Section 5 explores the

efficiency properties of the equilibrium path. Section 6 gives our conclusions

and suggestions for future knowledge workers. Two appendices provide the

proofs of key results.

3It would be reasonable to call these groups R & D teams.
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2 The Model

In this section, we introduce the basic model. There are three types of ac-

tivity in the economy. There are consumers of physical goods, producers of

physical goods, and the R & D sector. The activities in the economy repre-

senting physical commodity production and consumption are standard models

of product variety with monopolistic competition. The major difference be-

tween our model and others is the level of detail in the R & D sector, that

generates patents sold to the producers of physical, differentiated products.

We shall describe first the consumer side of the economy, namely a market for

differentiated products. In the following subsection, we describe the produc-

tion side of this market. Finally, we describe the R & D sector, the focus of

our work.

To begin, there are two types of workers: knowledge workers (K-workers)

engaged in R & D, and manufacturing workers (M-workers) producing differ-

entiated products. For simplicity, we assume that the type of each worker

is exogenously given, so workers cannot change sectors. Let N denote the

number of K-workers, and let L denote the number of M-workers.

Before getting into the details of the model, it is useful to discuss the

rationality assumptions we make regarding the agents. For the producers and

the manufacturing workers, we assume that they all have perfect foresight,

including knowledge of future prices. When knowledge workers consume,

they also have perfect foresight.

The important assumption concerns knowledge workers when they make

decisions about knowledge production, in particular which partner to work

with at any given time or whether to work alone. In our previous work, we

have used a myopic core solution concept. That is, workers in the R & D

sector make decisions about their research teams in a cooperative manner but

without looking ahead at the long term consequences. Such a concept will be

used below. But we also show in Section 5 (under some restrictions) that the

same solution arises if the workers have perfect foresight and use a core concept

or utilitarian social welfare function. Thus, the solution path we propose for

a large set of parameters and initial conditions is at the intersection of many

solution concepts, and is efficient for the R & D sector (constrained efficient

in the entire economy).

In our view, this result is strongest when considering the myopic core solu-

tion concept, since in that case we have postulated a model with externalities

and R & D agents who are myopic, but attain a constrained efficient outcome
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in spite of this.

2.1 Consumers

First, we describe consumers’ preferences (the time argument is suppressed

when no confusion arises). All workers have the same instantaneous utility

function given by

u =

∙Z M

0

q(h)ρ dh

¸1/ρ
0 < ρ < 1 (1)

In this expression, M is the total mass of varieties available in the economy at

a given time, whereas q(h) represents the consumption of variety h ∈ [0,M ].
If E denotes the expenditure of a consumer at a given time while p(h) is

the price of variety h, then the demand function is as follows:

q(h) = Ep(h)−σP σ−1 h ∈ [0,M ] (2)

where P is the price index of varieties given by

P ≡
∙Z M

0

p(h)−(σ−1)dh

¸−1/(σ−1)
(3)

Introducing (3) and (2) into (1) yields the indirect utility function

v = E/P

We now describe the behavior of an arbitrary consumer i, who is either

a K-worker or an M-worker. If this consumer chooses an expenditure path,

Ei(t) for t ∈ [0,∞) such that Ei(t) ≥ 0, then his indirect utility at time t is
given by

vi(t) = Ei(t)/P (t) (4)

where P (t) is the price index of the manufactured goods at time t.

The lifetime utility of consumer i at time 0 is then defined by

Ui(0) ≡
Z ∞

0

e−γtln[vi(t)]dt (5)

where γ > 0 is the subjective discount rate common to all consumers.

The intertemporal allocation of resources is governed by an interest rate

equal to υ (t) at time t. We must now specify consumer i’s intertemporal

budget constraint, that is, the present value of expenditure equals wealth. Let

yi(t) be the income that this consumer receives at time t. For any M-worker,
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their income at time t will be their wage at that time, whereas for any K-

worker, their income at time t will be the value of the patents they create at

that time. Then, the present value of income is given by

Wi(0) =

Z ∞

0

e−
−
ν (t)tyi(t)dt (6)

where ν(t) ≡ (1/t)
R t
0
ν (τ) dτ is the average interest rate between 0 and t; in

(6), the term exp[−ν(t)] converts one unit of income at time t to an equivalent
unit at time 0. Using the budget flow constraint, Barro and Sala-i-Martin

(1995, p. 66) show that the consumer’s intertemporal budget constraint may

be written as follows: Z ∞

0

Ei(t)e
−ν(t)tdt = ωi +Wi(0) (7)

where ωi is the value of the consumer’s initial assets, specified as follows:

ωi = 0 for M-worker i

and

ωi =
Π(0) ·M(0)

N
for K-worker i (8)

So each K-worker owns the same number M(0)
N

of patents at time 0, where the

price of patents at time 0 is Π(0).

Then, if Ei(·) stands for an expenditure path that maximizes (5) subject
to (7), the first order condition implies that

·
Ei(t)/Ei(t) = ν (t)− γ t ≥ 0 (9)

where
·
Ei(t) ≡ dEi(t)/dt. Since (9) must hold for every consumer, it is clear

that the following relation must hold

·
E(t)/E(t) = ν(t)− γ t ≥ 0 (10)

where E(t) stands for the total expenditure in the economy at time t.

2.2 Producers

We now turn to the production side of the economy. We normalize the wage

rate of manufacturing workers to 1:

wM = 1 t ≥ 0 (11)

7



The production of any variety, say h, requires the use of the patent specific

to this variety, which has been developed in the R & D sector. Once a firm has

acquired the patent at the market price (which corresponds to this firm’s fixed

cost), it can produce one unit of this variety by using one unit of M-labor.

When the manufacturer of variety h produces q(h) units, the profit is

π(h) = [p(h)− 1]q(h)

which yields the equilibrium price common to all varieties produced:

p∗ = 1/ρ (12)

Then, if M denotes the number of varieties produced at the time in question,

substituting (12) into (3) yields

P = (1/ρ)(M)−1/(σ−1) (13)

Furthermore, substituting (12) and (13), we obtain the equilibrium output of

any variety produced in the economy:

q∗ = ρE/M (14)

whereas the equilibrium profit is given by

π∗ = q∗/(σ − 1) (15)

since
1

ρ
− 1 = 1

σ − 1
We now study the labor market clearing conditions for the M-workers. In

equilibrium, labor demand is equal to labor supply, so

L =Mq∗ (16)

and, by (14),

L = ρE (17)

so that in equilibrium, the total expenditure

E∗ = L/ρ (18)
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is independent of time since L is constant. Therefore, we may conclude from

(10) that the equilibrium interest rate is equal to the subjective discount rate

over time

ν∗(t) = γ for all t ≥ 0 (19)

As a result, using (9), the expenditure of any specific consumer i is also a

constant, which is readily obtained from (7) and (19):

E∗i = γ[ωi +Wi(0)] (20)

Substituting (13) into (4) and setting Ei(t) = E∗i yields

vi(t) = ρ ·E∗i ·M(t)
1

σ−1 (21)

Finally, using (5) and (21), we obtain the lifetime utility of consumer i as

Ui(0) =
E∗i
σ

Z ∞

0

e−γt ln(M(t))dt (22)

2.3 R & D Sector

Production of a new manufactured commodity requires the purchase of a

patent. These patents are produced by the R & D sector, consisting of N

workers, and they are the only output of this sector. Each new patent embod-

ies a new idea. Not all new ideas result in patents. New ideas are produced

by K-workers using their prior stock of knowledge. The scheme for producing

new ideas is described as a knowledge production process. The basic layout

of this sector is as follows, and is similar to Berliant and Fujita (forthcoming).

At any given time, each K-worker has a stock of knowledge that has some

commonalities with other K-workers but some knowledge distinct from other

workers. Since workers possess knowledge exclusive of others, they may wish

to cooperate with each other in the knowledge production process. Hetero-

geneity of knowledge in a partnership brings more originality, but knowledge

in common is important for communication. Thus, K-worker heterogeneity

is an essential feature of the model and of the knowledge production process.

The K-workers choose to work alone or with a partner, maximizing their my-

opic payoff, namely the value of patents produced at that time. The solution

concept used is the myopic core. If they work alone, new ideas are produced

as a function of the total number of ideas known by a K-worker. If a pair of

workers produces new ideas together, their knowledge production is a function
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of their knowledge in common on the one hand and the knowledge they have

that is distinct from their partner on the other. Knowledge that is produced

by an agent at a given time becomes part of the stock of knowledge for that

agent in the future. In addition, some of these ideas become patented and

sold to the manufacturing sector. The ideas embodied in the patents become

public, and will be learned by all the agents in the R & D sector.

The basic unit of knowledge is called an idea.4 The number of potential

ideas is infinite. In this paper, we will treat ideas symmetrically.5 In describing

the process of knowledge production, that is either accomplished alone or in

cooperation with another K-worker, the sufficient statistics about the state of

knowledge of a K-worker i at a given time can be described as follows. We

shall focus on K-worker i and her potential partner K-worker j. First, ni(t)

represents the total stock of i’s ideas at time t. Second, ncij(t) represents the

total stock of ideas that i has in common with K-worker j at time t. Third,

ndij(t) represents the stock of ideas that i knows but j doesn’t know at time t.

Finally, ndji(t) represents the stock of ideas that j knows but i doesn’t know at

time t.

By definition, ncij(t) = n
c
ji(t).

6 It also holds by definition that

ni(t) = n
c
ij(t) + n

d
ij(t) (23)

Knowledge is a set of ideas that are possessed by a person at a particular

time. However, knowledge is not a static concept. New knowledge can be

produced either individually or jointly, and ideas can be shared with others.

But all of this activity takes time.

Now we describe the components of the rest of the model. To keep the

description as simple as possible, we focus on just two agents, i and j. At each

time, each agent faces a decision about whether or not to meet with others. If

two agents want to meet at a particular time, a meeting will occur. If an agent

decides not to meet with anyone at a given time, then the agent produces

separately and also creates new knowledge separately, away from everyone

4In principle, all of these time-dependent quantities are positive integers. However, for
simplicity we take them to be continuous (in R+) throughout the paper. One interpretation
is that the creation of an idea occurs at a stochastic time, and the real numbers are taken
to be the expected number of jumps (ideas learned) in a Poisson process. The use of an
integer instead of a real number adds little but complication to the analysis.

5 Extensions to idea hierarchies and knowledge structures will be discussed in the con-
clusions.

6In general, however, it is not necessary that ndij(t) = n
d
ji(t).
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else. If two persons do decide to meet at a given time, then they collaborate

to create new knowledge together.

At each moment of time, there are two mutually exclusive ways to produce

new knowledge. The first way is to work alone, away from others. We denote

the event thatK-worker i does research alone at time t by δii(t) = 1, indicating

that i works with herself. Otherwise, δii(t) = 0. Alternatively, K-worker i

can choose to work with a partner, say K-worker j. We denote the event that

K-worker i wishes to work with j at time t by δij(t) = 1. Otherwise, δij(t) = 0.

In equilibrium, this partnership is realized at time t if δij(t) = δji(t) = 1.

Consider first the case where K-worker i works alone. In this case, idea

production is simply a function of the stock of i’s ideas at that time. Let

aii(t) be the rate of production of new ideas created by person i in isolation at

time t. Then we assume that the creation of new knowledge during isolation

is governed by the following equation:

aii(t) = α · ni(t) when δii(t) = 1. (24)

If a meeting occurs between i and j at time t (δij(t) = δji(t) = 1), then

joint knowledge creation occurs, and it is governed by the following dynamics:7

aij(t) = 2β · (ncij)θ · (ndij · ndji)
1−θ
2 when δij(t) = δji(t) = 1 for j 6= i (25)

where 0 < θ < 1, β > 0. So when two people meet, joint knowledge creation

occurs at a rate proportional to the normalized product of their knowledge in

common, the differential knowledge of i from j, and the differential knowledge

of j from i. The rate of creation of new knowledge is high when the proportions

of ideas in common, ideas exclusive to person i, and ideas exclusive to person

j are in balance. The parameter θ represents the weight on knowledge in

common as opposed to differential knowledge in the production of new ideas.

Ideas in common are necessary for communication, while ideas exclusive to one

person or the other imply more heterogeneity or originality in the collaboration.

If one person in the collaboration does not have exclusive ideas, there is no

reason for the other person to meet and collaborate. The multiplicative nature

of the function in equation (25) drives the relationship between knowledge

7We may generalize equation (25) as follows:

aij(t) = max
n
2 (α− ε)ni(t), 2 (α− ε)nj(t), 2β · (ncij)θ · (ndij · ndji)

1−θ
2

o
where ε > 0 represents the costs from the lack of concentration. This generalization, however,
does not change the results presented in this paper in any essential way.
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creation and the relative proportions of ideas in common and ideas exclusive

to one or the other agent. Under these circumstances, no knowledge creation

in isolation occurs.

Income for the research sector derives from selling patents. But not all

ideas are patentable. For every collection of ideas created, we assume that

η proportion are patentable as blueprints of new products. Thus, they are

sold to the manufacturing sector. The residual ideas, namely 1−η proportion

of new ideas, becomes tacit knowledge that is only known to the creator or

creators of these ideas. They are useful for future creation of yet further

ideas.

Let yi(t) to be the income of K-worker i at time t, and let Π(t) be the price

of patents at time t. Then, suppressing t for notational simplicity:

yi = Π · η · (δii · aii +
X
j 6=i

δij · aij/2) (26)

The formula implies that the revenue from new patents is split evenly if two

K-workers are producing new ideas together.

Concerning the rule used by an agent to choose their best partner, to keep

the model tractable in this first analysis, we assume a myopic rule. At each

moment of time t, person i would like a meeting with person j when her income

while meeting with j is highest among all potential partners, including herself.

Maximizing income at a given time amounts to choosing {δij}Nj=1 so that the
right hand side of (26) is highest, meaning that a selection is made only among

the most productive partners. In other words, as we are attempting to model

close interactions within groups, we assume that at each time, the myopic

persons interacting choose a core configuration. That is, we restrict attention

to configurations such that at any point in time, no coalition of persons can

get together and make themselves better off in that time period. In essence,

our solution concept at a point in time is the myopic core.

In the case of a tie between income generated by several possible part-

nerships, agent i chooses an option that maximizes the derivative of income,

ẏi. Furthermore, when the derivative of income is still the same among best

options, agent i chooses an option that maximizes the second derivative of

income,
..
yiand so on.

All agents take prices, in this case Π, as given, implying:

max
{δij}Nj=1

(δii · aii +
X
j 6=i

δij · aij/2) (27)
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subject to the obvious constraints:

NX
j=1

δij = 1 for i = 1, ..., N (28)

Since ni is a stock variable, this is equivalent to

max
{δij}Nj=1

(
δii · aii +

P
j 6=i δij · aij/2
ni

) (29)

In order to rewrite this problem in a convenient form, we first define the

total number of ideas possessed by i and j:

nij = ndij + n
d
ji + n

c
ij (30)

and define new variables

mc
ij ≡ mc

ji =
ncij
nij

=
ncji
nij

md
ij =

ndij
nij
, md

ji =
ndji
nij

By definition, md
ij represents the proportion of ideas exclusive to person i

among all the ideas known by person i or person j. Similarly, mc
ij represents

the proportion of ideas known in common by persons i and j among all the

ideas known by the pair. From (30), we obtain

1 = md
ij +m

d
ji +m

c
ij (31)

whereas (30) and (23) yield

ni = (1−md
ji) · nij (32)

Using these identities and new variables, while recalling the knowledge

production function (25) and (24), we obtain (see Technical Appendix a for

details)
aij/2

ni
= G(md

ij,m
d
ji) (33)

where

G(md
ij,m

d
ji) ≡

β
¡
1−md

ij −md
ji

¢θ · (md
ij ·md

ji)
1−θ
2

1−md
ji

(34)

Using (24) and (33), we can rewrite the income function (26) as

yi = Π · η · ni · (δii · α+
X
j 6=i

δij ·G(md
ij,m

d
ji)) (35)
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and the optimization problem (29) as follows:

max
{δij}Nj=1

(δii · α+
X
j 6=i

δij ·G(md
ij,m

d
ji)) (36)

We now describe the dynamics of the knowledge system, dropping the

time argument. To describe these dynamics, in the end we require only an

expression relating ṁd
ij (= dm

d
ij/dt) tom

d
ij. There are two ways to acquire new

knowledge for a K-worker: internal production of new ideas and information

from public sources. The first way has the feature that ideas produced alone

are attributed to that worker, whereas ideas produced in pairs are attributed to

both K-workers who produce them. In either case, the new ideas are learned

by exactly the people who produce them. The second source of knowledge

acquisition derives from the new ideas that are patented. The patented ideas

become public information. A certain proportion of patented ideas, μ(N), are

learned by all of theK-workers. In general, μ(N) will be a decreasing function

of N . Limited time and energy determine how many of these new, public

ideas can be learned. Due to these limitations, the amount of information a

K-worker can learn from patents at a given time is, roughly, proportional to

the number of new ideas she can create in that time. The number of new ideas

and thus patents is proportional to the number of K-workers, so μ(N) will be

inversely proportional to N .8 Thus, these ideas become knowledge in common

for all agents in the research sector. The net result is an increase in ncij for

all i and j of μ(N) · η proportion of new ideas created in the economy. The

workers in the K-sector see this flow of new ideas from patents, and account

for it in when they choose actions at each moment of time. To obtain an

expression relating ṁd
ij to m

d
ij, we must first examine the knowledge dynamics

in terms of the original variables, ni, ncij, and n
d
ij.

Let us focus on agent i, as the expressions for the other agents are analo-

gous. Let A be the total number of ideas created at a given moment:

A =
NX
k=1

δkk · akk + (
NX
k=1

X
l 6=k

δkl · akl)/2 (37)

=
NX
k=1

δkk · αnk +
NX
k=1

X
l 6=k

δkl · nk ·G(md
kl,m

d
lk) (38)

8In theory, it might be possible to accumulate a stock of ideas patented in past periods to
learn in the future. The problem with this is that such information perpetually accumulates,
and thus due to time constraints there is never an opportunity to learn the content of older
patented ideas.
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The dynamics of the knowledge system are based on the assumption that

once learned, ideas are not forgotten. Using the argument above, we obtain

knowledge system dynamics:

ṅi =
NX
l=1

δil · ail + μ(N) · η · (A−
NX
l=1

δil · ail) (39)

ṅcij = δij · aij + μ(N) · η · (A− δij · aij) for all j 6= i (40)

ṅdij = (1− μ(N) · η) ·
X
k 6=j

δik · aik for all j 6= i (41)

Thus, equation (39) says that the increase in the knowledge of person i is the

sum of: the knowledge created in isolation, the knowledge created jointly with

someone else, and the transfer of new knowledge from new patents. Equation

(40) means that the increase in the knowledge in common for persons i and j

equals the new knowledge created jointly by them plus the transfer of knowl-

edge from new patents. Finally, equation (41) means that all the knowledge

created by person i either in isolation or joint with persons other than person

j becomes a part of the differential knowledge of person i from person j, except

for patented ideas that are learned by all K-workers.

Using (24) and (33), equation (39) can be rewritten as

ṅi = (1− μ(N) · η) · ni · (δiiα+
NX
l 6=i

δil ·G(md
il,m

d
li)) + μ(N) · η ·A (42)

where A is given by (38). Furthermore, using (24), (25), and (33), we have

(see Theorem A2 of Technical Appendix a)

ṁd
ij = (1− μ · η)(1−md

ij)(1−md
ji)

(
δii · α+

X
k 6=i,j

δik · 2G(md
ik,m

d
ki)

)
(43)

−md
ij[μηα(1−md

ji) ·
NX
k=1

δkk ·
nk
ni
+ (1− μ · η) · δij ·

¡
1−md

ji

¢
· 2G(md

ij,m
d
ji)

+μ · η ·
¡
1−md

ji

¢ NX
k=1

X
l 6=k

δkl ·
nk
ni
·G(md

kl,m
d
lk)]

−md
ij · (1− μ · η) ·

¡
1−md

ij

¢
·
(
δjj · α+

X
k 6=i,j

δjk · 2G(md
jk,m

d
kj)

)

for i, j = 1, 2, · · · , N , i 6= j. Thus, using (42) and (43), the knowledge

dynamics are described in terms of ni and md
ij (i, j = 1, ..., N) only.
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3 Knowledge Dynamics

3.1 The Model

Since we are concerned with the macro behavior of the economy and the big

picture in terms of growth, we make a number of simplifying assumptions. We

impose the assumption that the initial state of knowledge for all K-workers is

pairwise symmetric in terms of heterogeneity. The initial state of knowledge

is given by

ncij(0) = nc(0) for all i 6= j (44)

ndij(0) = nd(0) for all i 6= j (45)

At the initial state, each pair of K-workers has the same number of ideas,

nc(0), in common. Moreover, for any pair of K-workers, the number of ideas

that one K-worker knows but the other does not know is the same and equal

to nd(0). Given that the initial state of knowledge is symmetric among the

K-workers, it turns out that the equilibrium configuration at any time also

maintains the basic pairwise symmetry among K-workers.

Suppose that at some given time, all K-workers are pairwise symmetric to

each other. Namely, when

md
ij = m

d
ji for all i 6= j (46)

(36) is simplified as

max
{δij}Nj=1

(δii · α+
X
j 6=i

δij · g(md
ij)) (47)

where the function g is defined as

g(m) ≡ G(m,m) ≡ β
(1− 2m)θm(1−θ)

1−m (48)

Since nij = nji by definition, we can readily see, by using (32), that condi-

tion (46) is equivalent to

ni = nj for all i and j (49)

Furthermore, since aij = aji by definition, substituting (46) into (33) yields

aij/2

ni
=
aji/2

nj
= g(md

ij) (50)
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Thus, when two K-workers i and j cooperate in knowledge production and

their knowledge states are symmetric, g(md
ij) represents the creation of new

ideas per capita (normalized by the size of individual knowledge input, ni).

In this context, condition (47) means that each K-worker wishes to engage

in knowledge production in a partnership with a person (possibly including

herself) leading to the highest K-productivity.

Figure 1 illustrates the graph of the function g(m) as a bold curve for

parameter values β = 1 and θ = 1/3.

FIGURE 1 GOES HERE

Differentiating g(m) yields

g0(m) = g(m) · (1− θ)− (2− θ) ·m
(1− 2m) ·m · (1−m)

implying that

g0(m)
>

<
0 as m

<

>

1− θ

2− θ
for m ∈ (0, 1

2
) (51)

Thus, g(m) is strictly quasi-concave on [0, 1/2], achieving its maximal value at

mB =
1− θ

2− θ
(52)

which we call the “Bliss Point.” It is the point where knowledge productivity

is highest for each person. In the remainder of the paper, our main concern

is whether or not the dynamics of knowledge interaction will, starting at the

initial state given by (44) and (45), lead the system of K-workers to this bliss

point.

When condition (46) holds, using (48) and (49), the dynamics can be writ-

ten as

ṁd
ij

1−md
ij

= (1− μ · η) · (1−md
ij) ·

(
δii · α+

X
k 6=i,j

δik · 2g(md
ik)

)

−md
ij

(
μ · η · α ·

NX
k=1

δkk + (1− μ · η) · δij · 2g(md
ij) + μ · η ·

NX
k=1

X
l 6=k

δkl · g(md
kl)

)

−md
ij(1− μ · η) ·

(
δjj · α+

X
k 6=i,j

δjk · 2g(md
kj)

)
(53)

ṅi = (1− μ(N) · η) · ni ·
Ã
δii · α+

X
k 6=i,j

δik · g(md
il)

!
+ μ(N) · η ·A (54)
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for i, j = 1, 2, ..., N , where A is given by

A =
NX
k=1

δkk · αnk +
NX
k=1

X
l 6=k

δkl · nk · g(md
kl) (55)

We observe that the basic rules, (47), (53), and (42), that govern the knowl-

edge dynamics are described in terms of md
ij and ni (i, j = 1, 2, ...N) only.

Notice that no market variable is used. This enables us first to solve for

the equilibrium path of knowledge dynamics independent of commodity and

capital markets.

Next, taking the case of N = 4, we illustrate the possible equilibrium con-

figurations of partnerships in knowledge creation, noting that the equilibrium

configuration can vary with time. Figure 2 gives the possibilities at any fixed

time for N = 4. Given that the initial state of knowledge is symmetric among

the four K-workers, as noted above, the equilibrium configuration at any time

also maintains the basic symmetry among K-workers.

FIGURE 2 GOES HERE

Panel (a) in Figure 2 represents the case in which each of the fourK-workers is

working alone, creating new ideas in isolation. Panels (b-1) to (b-3) represent

the three possible configurations of partnerships, in which two couples each

work separately but simultaneously. In panel (b-1), for example, 1 and 2 work

together. At the same time, 3 and 4 work together.

Although panels (a) to (b-3) represent the basic forms of knowledge creation

with four persons, it turns out that the equilibrium path often requires a

mixture of these basic forms. That is, on the equilibrium path, people wish

to change partners as frequently as possible. The purpose is to balance the

number of different and common ideas with partners as best as can be achieved.

This suggests a work pattern with rapidly changing partners on the equilibrium

path.

Please refer to panels (c-1) to (c-3) in Figure 2. Each of these panels

represents a work pattern where a worker rotates through two fixed partners

as fast as possible in order to maximize the instantaneous increase in their

income. In panel (c-1), for example, worker 1 chooses K-workers 2 and 3 as

partners, and rotates between the two partners under equilibrium values of δ12
and δ13 such that δ12 + δ13 = 1. K-workers 2, 3 and 4 behave analogously. In

order for this type of work pattern to take place, of course, all four persons

must agree to follow this pattern. Finally, panel (d) depicts a work pattern in
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which each worker rotates though all three possible partners as fast as possible.

That is, for all i 6= j, δij ∈ (0, 1), and for all i, δii = 0 and
P

j 6=i δij = 1.

At this point, it is useful to remind the reader that we are using a myopic

core concept to determine equilibrium at each point in time. In fact, it is

necessary to sharpen that concept in the model with N persons. When there

is more than one vector of strategies that is in the myopic core at a particular

time, namely more than one vector of joint strategies implies the same, highest

income for all persons, the one with the highest first derivative of income is

selected, and so on. The justification for this assumption is that at each point

in time, people are attempting to maximize the flow of income. The formal

definition of the myopic core and proof that it is nonempty can be found in

Berliant and Fujita (forthcoming, Appendix 0). Although the theorem is

general, in the remainder of this paper we shall focus on the symmetric case.

3.2 Equilibrium Path of Knowledge Dynamics

Now we are ready to investigate the actual equilibrium path, depending on the

given initial composition of knowledge,

md
ij(0) = m

d(0) =
nd(0)

nc(0) + 2nd(0)

which is common for all pairs i and j (i 6= j). In order to sharpen the results
that follow, we introduce a specific form of the parametric function μ(N),

representing the proportion of the public information on new patents that is

actually learned by K-workers as knowledge in common. Assuming that the

flow of knowledge that each K-worker can acquire from public information on

new patents is proportional to the flow of new knowledge she can produce,

we use the following relation in the analysis below (see Appendix 1 for a

justification):

μ(N) =
C

ηN
or

μ(N) · η = C

N
(56)

where C is a positive constant representing the learning capacity (l-capacity)

of each K-worker.

In the remainder of this paper, we assume that

α < g(mB) (57)

so as to avoid the trivial case of all agents always working in isolation.
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In Figure 1, let mJ and mI be defined on the horizontal axis at the left in-

tersection and the right intersection between the g(m) curve and the horizontal

line at height α, respectively.

In the following analyses, the various cases are determined by the initial

heterogeneity of the K-workers. For each case, the associated form of work in

equilibrium is illustrated using the diagrams in Figure 2, that provides detail

for the case N = 4. To be precise:

Proposition 1: The equilibrium path of K-worker interactions and the

sink point of the knowledge creation process depend discontinuously on the

initial condition, md(0). Assuming that the number of K-workers N is large,

the pattern of interaction between K-workers and the sink point as a function

of the initial condition are as follows.

(i) For mJ < md(0) ≤ mB, we define two subcases. Let eC ≡ 2θ
1−θ .

(a) C < eC. The equilibrium path consists of an initial time interval

in which each K-worker is always paired with another but trade partners as

rapidly as possible (with δij = 1/(N − 1) for all i and for all j 6= i). When

the bliss point, emB = 1−θ
2−θ , is attained, the agents split into groups of

eNB =

1 + 1

θ− (1−θ)C
2

, and they remain at the bliss point.

(b) C > eC. The equilibrium path has all K-workers paired with

another but trading partners as rapidly as possible (with δij = 1/(N − 1) for
all i and for all j 6= i). This continues forever. The equilibrium path remains
to the left of the bliss point, so the bliss point is never attained. The sink point

is emd∗ = 1
2+C

2

.

(ii) md(0) < mJ < mB. Once again, there are two subcases. If C is

large, then all K-workers are in isolation producing new ideas alone forever.

The sink point is emd∗∗ = 1
2+C

. If C is not large, then the equilibrium path

consists of a first phase in which all K-workers are in isolation producing new

ideas. Once the system reaches mJ , the equilibrium path follows that given in

case (i).

(iii) mB < md(0) The equilibrium path consists of many phases. First,

the N K-workers are paired arbitrarily and work with their partners for a

nonempty interval of time. Second, they switch to new partners and work with

their new partners for a nonempty interval of time. Finally, each K-worker

pairs alternately with the two partners with whom they worked in the first two

phases, but not with a K-worker with whom they have not worked previously.

This process continues, possibly adding more partners.

We wish to alert the reader that the focus of the remainder of
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the paper, in particular our analysis of economic growth, will be on
case (i). Thus, we shall not discuss the other cases in great detail.

3.2.1 Case (i): mJ < md(0) ≤ mB

First suppose that the initial state is such that

mJ < md(0) < mB

Then, since g(md
ij(0)) = g

¡
md(0)

¢
> α for any possible work pairs consisting

of i and j, no person wishes to work alone at the start. However, since the value

of g(md
ij(0)) is the same for all possible pairs, all forms of (b-1) to (d) in Figure

2 are possible equilibrium work configurations at the start. To determine which

one of them will actually take place on the equilibrium path, we must consider

the first derivative of income for all persons.

In general, consider any time at which all persons have the same composi-

tion of knowledge:

md
ij = m

d for all i 6= j (58)

where

g(md) > α

Focus on person i; the equations for other persons are analogous. Since person

i does not wish to work alone, it follows that

δii = 0 and
X
j 6=i

δij = 1 (59)

Substituting (58) and (59) into (26) and using (50) yields

yi = Π · η · ni · g(md) (60)

Likewise, substituting (56), (58) and (59) into (53) and arranging terms gives

ṁd
ij = ṁ

d = 2
¡
1−md

¢
·g(md)·

½
(1− C

N
) · (1− 2md)− (1− C

N
) · (1−md) · δij −

C

2
·md

¾
(61)

for i 6= j.
Since the income function (60) is independent of the values of δij (j 6= i),

in order to examine what values of δij(j 6= i) person i wishes to choose, we

must consider the time derivative of yi. In doing so, however, we cannot use

equation (60) because the original variables have been replaced. Instead, we

must go back to the original equation (35). Then, using equations (58) to (61)
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and setting δij = δji (which must hold for any feasible meeting), we obtain the

following (see Berliant and Fujita, 2006, Technical Appendix b for proof):

ẏi = Π̇ · η · ni · g(md) +Π · η · ṅi · g(md) (62)

+Π · η · ni ·
X
j 6=i

δij · g0(md) · ṁd
ij

where

ṅi = g(m
d) · ni · (2 +

N − 2
N

· C) (63)

and ṁd
ij is given by (61). Substituting (61) into (62) and setting

P
j 6=i δij = 1

yields

ẏi = Π̇ · η · ni · g(md) +Π · η · ṅi · g(md) (64)

+Π · η · ni · 2
¡
1−md

¢
· g(md) · g0(md) ·(

(1− C
N
) · (1− 2md)− (1− C

N
) · (1−md) ·

X
j 6=i

δ2ij −
C

2
·md

)

All K-workers take Π and Π̇ as given, whereas ni is a state variable. Further-

more, the value of ṅi given above is independent of the values of δij for j 6= i.
Thus, choosing the values of δij for j 6= i is equivalent to choosing the values
that maximize the last term in (64).

Now, suppose that

md < mB

and hence g0(md) > 0. Then, assuming that C
N
< 1, in order to maximize

the time derivative of the income, person i must solve the following quadratic

minimization problem:

min
X
j 6=i

δ2ij subject to
X
j 6=i

δij = 1 (65)

which yields the solution for person i:

δij =
1

N − 1 for all j 6= i (66)

Although we have focused on person i, the vector of optimal strategies is

the same for all persons. Thus, all persons agree to a square work in which

each person rotates through all N −1 possible partners while sharing the time
equally.

The intuition behind this result is as follows. The condition md < mB

means that the K-workers have relatively too many ideas in common, and
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thus they wish to acquire ideas that are different from those of each possible

partner as fast as possible. That is, when mJ < md
ij = md < mB in Figure

1, each K-worker wishes to move the knowledge composition md
ij to the right

as quickly as possible, thus increasing the K-productivity g(md
ij) as fast as

possible.

Concerning the general case withN ≥ 4, whenmJ < md(0) = md
ji(0) < m

B

for all i 6= j, on the equilibrium path, eachK-worker i spends the same amount
of time δij = 1/ (N − 1) for all j 6= i with every other K-worker at the start.
Then, since the symmetric condition (58) holds from the start onward, the

same work pattern will continue as long as mJ < md < mB. The dynamics

of this work pattern are as follows. The creation of new ideas always takes

place in pairs. Pairs are cycling rapidly with δij = 1/ (N − 1) for all j 6= i.

K-worker 1, for example, spends 1/ (N − 1) of each period with K-worker 2,
for example, and (N − 2) / (N − 1) of the time working with other partners.
Setting md

ij = m
d and δij = 1/ (N − 1) in (61), we obtain

ṁd = 2(1−md) · g(md) ·
1− C

N

N − 1

(
(N − 2)−md

"
(2N − 3) + C

2
· N − 1
1− C

N

#)
(67)

Setting ṁd = 0 and considering that md < 1, we obtain the sink point

md∗ =
N − 2

(2N − 3) + C
2
· N−1
1−C

N

(68)

As N increases, the value of md∗increases monotonically (provided N > C)

eventually reaching the limit

emd∗ =
1

2 + C
2

(69)

In the upper half of Figure 3, the K-productivity curve g(m) is transferred

from Figure 2. In the bottom half of Figure 3, the bold curve depicts the

limiting sink, emd∗, as a function of the l-capacity parameter C. When N is

sufficiently large, the actual sink curve, md∗, is close to this limiting curve.

FIGURE 3 GOES HERE

In the context of Figure 3, we can identify two different possibilities. Sup-

pose that

mB < md∗ (70)
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That is, the sink point of the dynamics given in (67) is on the right side of

the bliss point. In this case, beginning at any point mJ < md(0) < mB,

the system reaches the bliss point in finite time. In terms of the original

parameters, using (52) and (68), condition (70) can be rewritten as

C <

©
2−θ
1−θ −

2N−3
N−2

ª
· (N − 1)

2−θ
1−θ −

2N−3
N−2 +

N
2

(71)

Sincemd∗ → emd∗, when N is sufficiently large, condition (71) can be expressed

as

C < eC ≡ 2θ

1− θ
(72)

In Figure 3, C1 provides an example of this case. The associated sink point

is given by md∗
1 .

In contrast, suppose that

md∗ < mB (73)

This occurs exactly when the inequality in (71) is reversed. Assuming that

N is sufficiently large, it occurs when the inequality in (72) is reversed. In

Figure 3, C2 represents an example of such a value of C, whereas the associated

sink point is given by md∗
2 . In this case, starting with any initial point m

J <

md(0) < mB, the system moves automatically toward md∗ < mB, but never

reaches the bliss point.

On the downward vertical axis of Figure 3, eC gives the value of the para-
meter C at the boundary of the two cases. The case (70) occurs exactly when

the value of the l-capacity C is relatively small, whereas the case (73) occurs

when C is relatively large. In what follows, under the assumption that N is

large, we examine the actual dynamics in each of the two cases.

Case (a): mJ < md(0) ≤ mB and C < eC When condition (70) holds,

starting with any initial point mJ < md(0) ≤ mB, the system following the

dynamics (61) reaches the bliss point mB in finite time. When the bliss point

is reached, we have

md
ij = m

d = mB for i 6= j (74)

and g0(md) = g0(mB) = 0. Thus, (64) becomes

ẏi = Π̇ · η · ni · g(md) +Π · η · ṅi · g(md) (75)

that is, again, independent of the values of δij (j 6= i). Thus, we consider

the second order condition for income maximization. Replace g(md) with
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G(md
ij,m

d
ji) in (62) and take the time derivative of the resulting equation.

Using (74) and the fact that g0(mB) = 0, by following the logic in Berliant and

Fujita (2006, Technical Appendix b) we obtain

..
yi =

..

Π · η · ni · g(mB) + 2Π̇ · η · ṅi · g(mB) +Π · η · ..ni · g(md) (76)

+Π · η · ni · (1−mB)2 · 4(mB)2g00(mB) ·(X
i6=j

δij ·
∙
(1− C

N
) · (1− 2mB)− (1− C

N
) · (1−mB) · δij −

C

2
mB

¸)2
where, using (63),

ṅi = g(mB) · ni · (2 +
N − 2
N

C)

..
ni = g(mB) · ṅi · (2 +

N − 2
N

C)

Since the first three terms on the right hand side of (76) are independent of

the values of δij (j 6= i) whereas g00 < 0, choosing the values of δij (j 6= i) to
maximize

..
yi is equivalent to the following optimization problem:

min
{δij}

(X
i6=j

δij ·
∙
(1− C

N
) · (1− 2mB)− (1− C

N
) · (1−mB) · δij −

C

2
mB

¸)2
(77)

subject to
X
j 6=i

δij = 1

This problem can be solved by using the rule that whenever δij > 0, the value

of the terms inside the square brackets in expression (77) must be zero, or

δij > 0 =⇒ δij =
(1− C

N
) · (1− 2mB)− C

2
mB

(1− C
N
) · (1−mB)

≡ δB (78)

whereas the number of partners for K-worker i must be chosen to satisfy the

constraint
P

j 6=i δij = 1. This applies to all K-workers.

This equilibrium configuration of partnerships at the bliss point mB can be

achieved as follows: When the system reaches mB, the population splits into

smaller groups of equal size,9

NB ≡ 1 + 1

δB
(79)

9The configuration of workers necessary to maintain the bliss point is not unique. Each
K-worker must have NB − 1 links to other K-workers, communicating with each for an
equal share of time. For example, when NB = 4, groups of 4 may form, where each worker
within a group communicates equally with every other worker in that group. However, with
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so each person works with NB − 1 other persons in their group for the same
proportion of time, δB. Recalling (61), rule (78) is equivalent to

δij > 0 =⇒ ṁd
ij = 0 at m

d
ij = m

B

That is, when all K-workers reach the bliss point, they stay there by splitting

into smaller groups of the same size, NB, so direct interactions take place

only within each group. In this way, each K-worker maintains the highest

K-productivity while enjoying the knowledge externalities derived from public

information on new patents. Figure 4 depicts an example of an equilibrium

configuration of K-worker interactions in which four groups of K-workers form

at the bliss point. The dotted arrows represent indirect interactions through

the public revelation of patent information.

FIGURE 4 GOES HERE

Substituting (52) into (78), using (79) and arranging terms, the optimal

group size NB is given by

NB = 1 +
1

θ − (1−θ)·C
2

· N
N−C

(80)

As N becomes large, the optimal group size approaches

eNB = 1 +
1

θ − (1−θ)·C
2

(81)

The optimal group size for large population eNB (as well as the optimal group

size for finite population NB) increases monotonically with the l-capacity, C;

as C increases, the transmission of public knowledge in common increases, so

it is necessary to have a larger group in order to maintain heterogeneity among

agents within the group. Recalling that eC was defined in (72), the group size
becomes infinitely large as C approaches eC from the left. Recalling that θ

is the weight given to knowledge in common in the K-production function, as

NB = 4 it is also possible to have, say, groups of six forming. With such groups, each K-
worker has communication links to only three other K-workers within their group. So not
all possible links within a group are actually active. If groups at the bliss point are larger,
then their communication structure must become more sparse to maintain the bliss point.
The minimal size of groups that coalesce at the bliss point is clearly NB. Nevertheless,
all of the calculations apply independent of the size of groups that form at the bliss point.
The same remarks apply to the various cases detailed below, except when K-workers are in
isolation.
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the value of θ increases, eNB decreases, which is not surprising. In Figure 5,

for each fixed value of the parameter C, the optimal group size eNB is graphed

as a function of θ.

FIGURE 5 GOES HERE

Substituting δB = 1/(NB−1) for δij in equation (61), then by construction,
mB is the sink point of the dynamics

ṁd
ij = 2

¡
1−md

¢
·g(md)·

½
(1− C

N
) · (1− 2md)− (1− C

N
) · (1−md) · 1

NB − 1 −
C

2
·md

¾
(82)

for i 6= j but i and j in the same group. Thus, starting with any initial point
md
ij(0) = m

d(0) ∈ (0, 1/2), if each person participates in a group ofNB persons,

and if they maintain the same group structure where each person works with

each of the NB−1 other people in their group for the same proportion of time
δB, then the system monotonically approaches the bliss point mB. However,

when md
ij(0) = m

d(0) < mB, if all N persons form a single group while setting

δij = 1/(N − 1), the system can reach the bliss point mB fastest.10

When the system reaches the bliss point, the workers break into groups

and the system becomes asymmetric, in the following sense. If K-worker i

belongs to the same group as K-worker k, then their differential knowledge

remains at the bliss point mB, maintaining the highest K-productivity g(mB).

If K-worker j belongs to a different group, then the differential knowledge

between i and j on the other diverges, namely it moves away from mB, thus

reducing g(md
ij). So once the population splits into groups, K-workers i and

j will not want to collaborate again.

Formally, setting δij = 0 in equation (61), the dynamics of differential

knowledge for K-workers i and j in different groups is given by

ṁd
ij = ṁ

d = 2
¡
1−md

¢
· g(md) ·

½
(1− C

N
) · (1− 2md)− C

2
·md

¾
(83)

that yields a sink point

md∗ =
1− C

N

2 + C
2

As N →∞, the sink point becomes

md∗ =
1

2 + C
2

= emd∗ (84)

10With a starting point md
ij(0) = m

d(0) < mB, if the population forms groups of size less
than N but larger than NB, then the system will still reach the bliss point, but at a slower
speed than if the group size were N .
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Notice that this is the same as expression (69). As the number of K-workers

becomes large, the difference between pairs of workers who interact at intensity

1/(N − 1) and pairs of workers in different groups who don’t interact is close
to zero, so they tend to the same sink point.

To sum up, for partnerships of K-workers within the same group, their

productivity is g(mB). For potential partnerships of K-workers in different

groups, their potential productivity is g(emd∗) < g(mB). So these potential

partnerships are never formed.

The implication is that we have endogenous formation of cohesive groups.

One interpretation of this phenomenon is that the groups represent firms, so

we have endogenous formation of firm boundaries.

Case (b): mJ < md(0) ≤ mB and C > eC As explained previously, in

this case the dynamics imply that only one large group forms, so each agent

works with everyone else an equal amount of time. Heterogeneity md changes,

approaching the sink point md∗ given by (68) to the left of the bliss point, so

the bliss point is never reached. In this case

mJ < md∗ < mB

and one large group is maintained forever, without achieving the highest pos-

sible productivity. Intuitively, this is due to the large externality from public

knowledge, so it is impossible to attain sufficient heterogeneity.

3.2.2 Case (ii): md(0) < mJ < mB

Under this set of parameters, g(md(0)) < α. In other words, at time 0 it

is best for everyone to work in isolation rather than in pairs. Substituting

δii = 1 and δij = 0 for i 6= j into (82), and using (56), we obtain dynamics for
work in isolation:

ṁd
ij = ṁ

d =
¡
1−md

¢
· α ·

½
(1− C

N
) · (1− 2md)− C ·md

¾
(85)

that yields the sink point

md∗∗ =
1

2 + C
1−C

N

As N →∞, the sink point approaches

emd∗∗ =
1

2 + C
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Evidently, emd∗∗ < emd∗. When N is sufficiently large, it follows that

md∗∗ < md∗

Focusing on this case, there are two possibilities, namely mJ < md∗∗ and

mJ > md∗∗.11 Assuming C is not too large, we concentrate on the first

possibility,

mJ < md∗∗ (86)

The equilibrium path has every K-worker in isolation to begin, creating new

knowledge on their own and moving to the right until they all reach the point

mJ . Then one large group forms and all K-workers create new knowledge

working in pairs where each spends equal time with every other. From here,

the equilibrium path is exactly the same as in case (i).

3.2.3 Case (iii): mB < md(0)

Next, let us consider the dynamics of the system when it begins to the right

of mB. First we consider the situation where mB < md(0) < mI , where mI

was introduced in Figure 1. In other words, the initial state reflects a higher

degree of heterogeneity than the bliss point, but g(md(0)) > α. Since the

initial state reflects a higher degree of heterogeneity than the bliss point, the

K-workers want to increase the knowledge they have in common as fast as

possible, leading to fidelity and pairwise knowledge creation.

To be precise, since md
ij(0) = md(0) for all i 6= j and g(md(0)) > α, the

situation at time 0 is the same as that in Case (i) except that we now have

md(0) > mB. Hence, focusing on person i as before, the time derivative of

income yi at time 0 is given by (64). However, since g0(md) = g0(md(0)) < 0 at

time 0, in order to maximize the right hand side of equation (64), person i now

must solve now the following quadratic maximization problem:

max
X
j 6=i

δ2ij subject to
X
j 6=i

δij = 1 (87)

Thus, person i wishes to choose any partner, say k, and set δik = 1, whereas

δij = 0 for all j 6= k. The situation is the same for all K-workers. Hence,

without loss of generality, we can assume that N persons agree at time 0 to

form the following combination of partnerships:

P1 ≡ {{1, 2} , {3, 4} {5, 6} , · · · , {N − 1, N}} (88)

11Under the second possibility, md∗∗ < mJ , each K-worker creates knowledge in isolation
forever, approaching the sink point md∗∗.

29



and initiate pairwise dancing such that12

δij = δji = 1 for {i, j} ∈ P1, δij = δji = 0 for {i, j} /∈ P1 (89)

Similar to Berliant and Fujita (2006, case (ii)), the equilibrium path can be

described as follows. The equilibrium path consists of several phases. First, in

order to increase income and K-productivity as fast as possible, they want to

develop knowledge in common with their partner as fast as possible. There-

fore, the N persons are paired arbitrarily and work with their partners for a

nonempty interval of time. This implies fast movement to the left, because

there is both shared knowledge creation and public knowledge transfer. If

potential partners are not actually meeting, their differential knowledge will

converge to the sink point of the process where no persons meet, given by (84)

and illustrated by md∗
1 in Figure 3. This process moves to the left beyond the

bliss point because they cannot switch to any new partner that will allow them

to maintain the bliss point. The actual partners move quickly to the left of the

bliss point and their K-productivity decreases rapidly. When their produc-

tivity matches that of a potential partner with whom they have not worked,

they switch to new partners and work with their new partners for a nonempty

interval of time. Once again, the two actual partners increase their knowl-

edge in common quickly, past the bliss point, and their productivity decreases

rapidly, while the differential knowledge with their potential partners moves

slowly towardmd∗, until the productivity of their current partnership and their

previous partnership are the same. Next, each person works alternately with

the two partners with whom they worked in the first two phases, but not with

a person with whom they have not worked previously. This process continues,

but the productivity of each K-worker remains near g(md∗
1 ). The equilibrium

path in this case crosses the bliss point, but this is not a sink of the process,

due to the myopic behavior of the K-workers.

4 Growth

Next we assemble the various pieces of our general equilibrium model. Our

focus is on case (i.a) of the knowledge dynamics, where the initial state of

knowledge heterogeneity is to the left of the bliss point: mJ < md(0) < mB.

Proposition 2: Assuming that the number of K-workers N is large, long

run economic growth as a function of the initial condition are as follows.
12Here we adopt the convention that {i, j} ∈ P1 means either {i, j} ∈ P1 or {j, i} ∈ P1,

whereas {i, j} /∈ P1 means neither {i, j} ∈ P1 nor {j, i} ∈ P1.
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(i) For mJ < md(0) ≤ mB, we define two subcases. Let eC ≡ 2θ
1−θ .

(a) C < eC. Let tB be the time that all K-workers reach the bliss point
mB. Then ṅ(t)

n(t)
= g(mB)(2 + N−2

N
C) for t ≥ tB. Moreover, limt→∞

Ṁ(t)
M(t)

=

βθθ(1− θ)1−θ · (2 + N−2
N
C) and limt→∞

v̇i(t)
vi(t)

=
βθθ(1−θ)1−θ ·(2+N−2

N
C)

σ−1 .

(b) C > eC. Then limt→∞
ṅ(t)
n(t)

= limt→∞
Ṁ(t)
M(t)

= 2β(C
2
)θ whereas

limt→∞
v̇i(t)
vi(t)

=
2β(C

2
)θ

σ−1 .

Therefore long run economic growth is positively related to both β, the

parameter reflecting K-productivity of work in pairs, and C, the speed of public

knowledge transmission.

4.1 Case (a): mJ < md(0) ≤ mB and C < eC
Recall that from equation (66) that the initial pattern of knowledge creation

has each K-worker interacting with every other K-worker for an equal share

of time, so the dynamics are symmetric and given by (67). The associated

sink point is given by (68). Summarizing, the assumption of case (i.a) is that

the sink point, when each K-worker is interacting with every other K-worker

with the same intensity, is to the right of the bliss point:

mJ < md(0) < mB < md∗

Let tB be the unique finite time such that the dynamics reach the bliss

point, so that:

md
ij(t) = m

d(t) = mB for t ≥ tB.

Due to the symmetry of the path in case (i.a), for all t and for all j 6= i,

g(md
ij(t)) = g(md(t))

ni(t) = n(t)

aij(t) = a(t) = n(t) · 2g(md(t))

In particular

g(md(t)) = g(mB) for t ≥ tB

a(t) = n(t) · 2g(mB) for t ≥ tB

Setting md = mB in equation (63), we have

ṅ(t) = n(t) · φB for t ≥ tB

where
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φB ≡ g(mB)(2 +
N − 2
N

C)

so
ṅ(t)

n(t)
= φB for t ≥ tB (90)

Thus, once the system reaches the bliss point, the size of each K-worker’s

knowledge expands at an exponential rate of φB, and we have:

n(t) = n(tB) · eφB(t−tB) for t ≥ tB

Recall that the number of varieties of manufactured goods at time t, that is

equal to the number of patents present at time t, is given byM(t). Since A(t)

is the total number of ideas created at time t, whereas the the proportion of

new ideas that are patented is given by η, the rate of increase in patents at

time t is given by

Ṁ(t) = η ·A(t)

In the present context of case (i.a), using equation (37),

A(t) =
N · a(t)
2

= N · n(t) · g(md(t))

and hence

Ṁ(t) = η ·N · n(t) · g(md(t))

In particular,

Ṁ(t) = η ·N · g(mB) · n(tB) · eφB(t−tB) for t ≥ tB (91)

With this in hand, we can proceed to the calculation of the asymptotic rate of

growth of patents. First, for t ≥ tB:

M(t) =M(tB) +

Z t

tB
Ṁ(τ)dτ

Using (91), Z t

tB
Ṁ(τ)dτ = η ·N · g(mB) · n(tB) · e

φB(t−tB) − 1
φB

Hence
Ṁ(t)

M(t)
=

η ·N · g(mB) · n(tB) · eφB(t−tB)

M(tB) + η ·N · g(mB) · n(tB) · eφ
B(t−tB)−1

φB
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implying

lim
t→∞

Ṁ(t)

M(t)
= φB ≡ g(mB)(2 +

N − 2
N

C) (92)

= βθθ(1− θ)1−θ · (2 + N − 2
N

C)

Notice that the asymptotic growth rate of M is the same as the asymptotic

growth rate of n.

Next we calculate the rate of growth of indirect utility of consumers. Using

(4) and (20), for any consumer i, we have:

vi(t) = Ei · ρM(t)1/(σ−1)

Since Ei is constant, this leads to

v̇i(t)

vi(t)
=

1

σ − 1 ·
Ṁ(t)

M(t)

Thus, using (92)

lim
t→∞

v̇i(t)

vi(t)
=

φB

σ − 1 =
g(mB)(2 + N−2

N
C)

σ − 1 (93)

=
βθθ(1− θ)1−θ · (2 + N−2

N
C)

σ − 1
Therefore the growth rate of indirect utility approaches a constant.

In summary, the growth rate of the individual stock of knowledge (90), the

growth rate of patents (92) and the growth rate of indirect utility (93) approach

constants as t tends to infinity. These constants are positively related to both

C and β.

It is not surprising that β, the coefficient on the joint knowledge production

function, is positively related to the growth of the economy. In contrast, it

is surprising that C is positively related to economic growth. On the face of

it, when C is higher, agents become relatively homogeneous quicker, since the

public transmission of patent knowledge is faster. In theory, it could be the

case that the result is lower K-productivity and thus lower economic growth

because the higher homogeneity reduces knowledge productivity. This was

our initial conjecture. However, in the model, as indicated by (80) or (81),

the group size at the bliss point adjusts optimally for the speed of public

transmission of knowledge. Group size increases to offset the higher speed of

public knowledge transmission and the resulting increase in group homogeneity.

The effect of larger groups at the bliss point is to create more heterogeneity
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within groups, thus maintaining higher economic growth. This is, in essence,

a general equilibrium effect that allows the economy to take advantage of a

higher speed of public information transmission.13

4.2 Case (b): mJ < md(0) ≤ mB and C > eC
The assumption that applies for this case implies that md∗ < mB. This case

is very similar to the previous one. The only change in the calculations is that

g(mB) is replaced with g(emd∗), where emd∗ is given by equation (69).14 The

system tends to md∗ as t→∞. Defining

φ∗ ≡ g(emd∗) · (2 + C)

= 2β(
C

2
)θ

Analogous calculations yield

lim
t→∞

ṅ(t)

n(t)
= φ∗ (94)

lim
t→∞

Ṁ(t)

M(t)
= φ∗ ≡ 2β(C

2
)θ

lim
t→∞

v̇i(t)

vi(t)
=

φ∗

σ − 1 =
2β(C

2
)θ

σ − 1 (95)

Again, the asymptotic growth rate of individual knowledge stock, patents,

and indirect utility are constants (different from case (i.a)), and depend posi-

tively on β and C. The surprising result here is that even though the system

does not achieve the bliss point, a higher rate of public knowledge transmis-

sion results in higher economic growth. Even though md∗ decreases as C

increases, and thus the productivity of partnerships g(md∗) declines, notice

that g(md∗) represents the normalized productivity of partnerships. In fact,

the total productivity of partnerships is n · g(md∗). In the end, the positive

effect of increasing n due to public knowledge spillovers more than offsets the

negative effect of a decline in g(md∗).

13Based on macro equilibrium conditions of the economy, we have derived the relation
(20), meaning that the total expenditure per unit of time is a constant independent of time.

In Technical Appendix b, using individual budget constraints, we show that the relation
(20) indeed holds along the equilibrium path.
14For the sake of simplicity, we assume that N is large, so we can use emd∗ given in (69)

instead of md∗ given by (68).
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5 Efficiency

Next we consider the welfare properties of the equilibrium path. Clearly, it is

first necessary to introduce a concept of constrained efficiency that accounts

for the nature of the monopolistic competition environment in the market for

consumption commodities. There is a market failure associated with this

feature of the model in itself. However, that is not the focus of our work.

Therefore, we employ a notion of constrained efficiency that allows a planner

to search for Pareto improvements by using only the choice of the time path

of partnerships in the R & D sector, with perfect foresight of the consequences

for the other sectors of the model; in particular the consumption good market

features monopolistic competition, once the time path in the R & D sector is

chosen.

Here we discuss efficiency in the context of an intertemporal utilitarian

social welfare function. We consider the following planner’s problem, where

the planner chooses {δij(·)}Ni,j=1 in order to maximize the sum of M-workers’

and K-workers’ utility:

maxW =
L

σ − 1

Z ∞

0

e−γt · ln(M(t))dt

subject to

Ṁ = η ·A

= η ·
NX
k=1

nk

Ã
δkk · α+

X
l 6=k

δkl ·G(md
kl,m

d
lk)

!

ṅi = (1− μη) · ni ·
(
δii · α+

X
j 6=i

δij ·G(md
ij,m

d
ji)

)

+μη ·
NX
k=1

nk

Ã
δkk · α+

X
l 6=k

δkl ·G(md
kl,m

d
lk)

!
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and

ṁd
ij = (1− μ · η)(1−md

ij)(1−md
ji)

(
δii · α+

X
k 6=i,j

δik · 2G(md
ik,m

d
ki)

)
(96)

−md
ij[μηα(1−md

ji) ·
NX
k=1

δkk ·
nk
ni
+ (1− μ · η) · δij ·

¡
1−md

ji

¢
· 2G(md

ij,m
d
ji)

+μ · η ·
¡
1−md

ji

¢ NX
k=1

X
l 6=k

δkl ·
nk
ni
·G(md

kl,m
d
lk)]

−md
ij · (1− μ · η) ·

¡
1−md

ij

¢
·
(
δjj · α+

X
k 6=i,j

δjk · 2G(md
jk,m

d
kj)

)

given ni (0) > 0 and md
ij(0) > 0, for i, j = 1, ..., N . The equality in the

objective function follows from (22) and (106). We must also account for the

obvious constraints:
NX
j=1

δij = 1 for each i = 1, ..., N

δij = δji for each i, j = 1, ..., N

δij ≥ 0 for each i, j = 1, ..., N

We assume that the discount rate is sufficiently large, γ > g(mB), in order to

ensure that the objective is finite. Optimality requires that at each moment of

time, the following Hamiltonian is maximized by choosing {δij}Ni,j=1 and taking
into account the obvious constraints:

H =
L

σ − 1e
−γt · ln(M(t)) + λ · Ṁ +

NX
i=1

ξi · ṅi +
NX
i=1

X
j 6=i

χij · ṁd
ij

where the multipliers follow the dynamics:

λ̇ = − ∂H

∂M
= − L

σ − 1e
−γt · 1

M
(97)

ξ̇i = −
∂H

∂ni
for i = 1, ..., N

χ̇ij = −
∂H

∂md
ij

for i, j = 1, ..., N , i 6= j

and satisfy the following transversality condition:15

lim
t→∞

H(t) = 0

15This transversality condition comes from Léonard and Van Long (1992), Theorem 9.6.1,
p. 299.
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Equation (97) implies

λ(t) =
L

σ − 1

Z ∞

t

e−γt · 1

M(τ)
dτ

=
L

σ − 1e
−γt
Z ∞

t

e−γ(τ−t) · 1

M(τ)
dτ

= e−γt · L

σ − 1

Z ∞

t

e−γ(τ−t) · 1

M(τ)
dτ

From equation (101), it follows that

λ(t) = e−γt ·Π(t)

Moreover, from equation (103),

lim
t→∞

e−γt ·M(t) ·Π(t) = 0

So

lim
t→∞

M(t) · λ(t) = 0

Suppose that the following symmetric initial conditions for case (i) are

satisfied:

ni(0) = n(0) > 0 for i = 1, ..., N

mJ < md
ij(0) = m

d(0) < mB for i, j = 1, ..., N , i 6= j
and g(mB) > α

Recall that the myopic equilibrium path for case (i) when mJ < md
ij(0) is:

δij(t) =
1

N − 1 for t
J ≤ t < tB for i, j = 1, ..., N , i 6= j (98)

δij(t) =
1

NB − 1 for t > t
B when i and j belong to the same group

where tB is the first time t such that m(t) = md(t) = mB, the bliss point mB

is given by (52) and the group size NB is given by (80).

Under these initial conditions, it can be verified that if N is sufficiently

large, then there exists a set of multipliers such that the myopic equilibrium

path detailed in (98) for case (i) satisfies the necessary conditions for optimal-

ity.

When md(t) < mB and therefore t < tB, then knowledge productivity is

higher and md
ij moves almost as fast to the right as working in isolation if

each person works with every other person with equal intensity. The intuition
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for this result follows from a combination of two reasons. Productivity is

higher when working with others as opposed to working alone on this part

of the path. When N is sufficiently large, working with others is very close

to working in isolation when the accumulation of differential knowledge is

considered, so cooperation with others will be better on net. Once the bliss

point is attained, the system reaches the highest productivity possible, and

remains there.

This intuition indicates that, when md(t) < mB, working with a smaller

group than the other N − 1 dancers, then movement to the right is slower
than working with everyone but oneself. So coalitions cannot block this path.

Furthermore, once the bliss point is achieved, this is the highest productivity

possible, so coalitions cannot block this part of the path either. Thus, the path

chosen by myopic agents, that coincides with the utilitarian welfare optimal

path, is in the core with rational expectations.

6 Conjectures and Conclusions

We have considered a model of knowledge creation and economic growth that

is based on individual behavior, allowing knowledge workers to decide whether

joint or individual production is best for them at any given time. We have

allowed them to choose their best partner or to work in isolation. One would

not expect that equilibria would be efficient for two reasons: there are exter-

nalities in R & D (both from pairwise interactions and from public knowledge

transmission through patents), and the markets for consumption goods are

characterized by monopolistic competition. The emphasis of our model is on

endogenous agent heterogeneity, whereas we examine the permanent effects of

knowledge creation and accumulation on growth.

With N persons, assuming that N is large enough, we find that, surpris-

ingly, for a range of initial conditions that imply a large degree of homogeneity

among agents, the sink is the most productive state in the R & D sector. The

population breaks into optimal size groups when it reaches the most produc-

tive state. The size of these groups is inversely related to the weight given to

homogeneity in knowledge production.

Our equilibrium is efficient, subject only to the constraint that the market

for consumption goods features monopolistic competition.

Long run economic growth is positively related to both the effectiveness

of pairwise knowledge worker interaction and, more importantly, to the ef-
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fectiveness of public knowledge transmission. The latter is due, in part, to

the endogenous adjustment of R & D group size to a better public knowledge

transmission technology.

In applying our results to real life issues, we must be very careful about

interpreting the meaning of the comparative dynamics that we have derived.

According to equation (81), for example, the optimal group size eNB increases

as C (the speed of public knowledge transmission) increases or θ (the weight

given to knowledge in common in K-production) decreases. In real life, how-

ever, once the optimal group size is reached under a fixed set of parameters,

group size does not easily adjust to a new optimal size under a new set of para-

meters. This is because of the lock-in effect of the optimal group size that was

explained at the end of Case (a) in Section 3.2.1 Case (i). In particular, the

knowledge of a K-worker in one group will drift apart from the knowledge of

K-workers in other groups. Thus, once the most productive state is achieved

under one set of parameters, realigning the K-workers into larger groups when

parameters change will not result in optimal knowledge production, since the

K-workers initially in different groups have differentiated themselves too much

from each other. This lock-in effect inherent in an R & D system may partly

explain, for example, why the Japanese economy has been suffering from a

prolonged recession and slow growth since the early 1990s. Specifically, the

so called IT revolution has significantly increased the value of C, whereas new

industries displaying rapid growth, such as computer software and advanced

service industries (including global finance), tend to have a lower value of

θ (i.e., a higher weight on knowledge diversity in K-production) than tradi-

tional manufacturing industries (based mainly on incremental improvements

in Japan). Due to the lock-in effect, R & D group size and composition were

inherited from past economic circumstances. Our model implies low mobility

of Japanese workers and researchers beyond existing institutions, through no

fault of their own. But the Japanese R & D system has not adapted ade-

quately to the new situation. Our analysis implies that research groups in the

new industries should be made more diverse and larger. Such a change would

imply short term reductions in R & D productivity in exchange for long term

gains.

Many extensions of our work come to mind. It is important and inter-

esting to add direct pairwise knowledge transfer between knowledge workers

on a team, as opposed to public knowledge that is learned by everyone, to

the model. Then we can study comparative statics with respect to speeds of
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knowledge transfer and knowledge creation on the equilibrium outcome and

on its efficiency. Markets for ideas would also be a nice feature. One set of

extensions would allow agents to decide, in addition to the people they choose

with whom to work, the intensity of knowledge creation and exchange.

Another set of extensions would be to add stochastic elements to the model,

so the knowledge creation and transfer process is not deterministic. Probably

our framework can be developed from a more primitive stochastic model, where

the law of large numbers is applied to obtain our framework as a reduced

form.16

An important application of our work would be to the literature on intel-

lectual property, where the idea production process is often modeled as a black

box; see Scotchmer (2004) and Boldrin and Levine (2005) for interesting and

provocative treatments.

Location seems to be an important feature of knowledge creation and trans-

fer, so regions and migration are important, along with urban economic con-

cepts more generally; for example, see Duranton and Puga (2001) and Helsley

and Strange (2004). A natural extension of our model would have knowledge

workers in regions, allowing only those in the same region to interact, but

making migration of knowledge workers between regions feasible.

It would be very useful to extend the model to more general functional

forms. It would be interesting to proceed in the opposite direction by putting

more structure on our concept of knowledge, allowing asymmetry or intro-

ducing notions of distance, such as a metric, on the set of ideas17 or on the

space of knowledge. Finally, it would be useful to add vertical differentiation

of knowledge, as in Jovanovic and Rob (1989), to our model of horizontally

differentiated knowledge.
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7 Appendix 1: Justification of Knowledge Ab-

sorption Function

Consider the following statement of the capacity constraint on knowledge ab-

sorption from public information on K-worker i:

C ·
Ã
δii · aii +

X
j 6=i

δij · (aij/2)
!
= μη

Ã
A−

NX
j=1

δij · aij

!
(99)

We shall explain the content of this equation piece by piece. On the right hand

side of the equation, the term in brackets A−
PN

j=1 δij · aij represents the new
knowledge produced in the economy that does not involve partnerships includ-

ing K-worker i. Recall that η gives the rate at which new ideas are patented,

whereas μ gives the rate at which publicly revealed ideas can be absorbed by a

K-worker. Therefore the right hand side of the equation represents the public

knowledge revealed by patents that is absorbed by K-worker i. The term in

brackets on the left hand side represents new knowledge created by K-worker

i at an instant. In total, the equation means that the new public knowledge

that can be absorbed by K-worker i is proportional to their capacity to pro-

duce new ideas. In essence, this is due to the constraint on their time and the

productivity of their effort both to absorb new ideas and to produce them.

Equation (99) implies:

μ =
C

η
·
δii · aii +

P
j 6=i δij · (aij/2)

A−
PN

j=1 δij · aij
Next we consider two special cases, where we assume pairwise symmetry:

nk = ni ≡ n for all i and k. First, when each agent in the knowledge sector

is working alone, namely δii = 1 for all i and δij = 0 for all i 6= j, then

A =
NX
k=1

α · nk = α · n ·N

and

μ =
C

η
· α · n
α · n · (N − 1) =

C

η
· 1

N − 1
The second special case is given by md

ij = m
d for all i 6= j and g(md) > α.

Thus, δii = 0 for all i and aij = a for all i 6= j. In this special case, we have

μ =
C

η
· a/2
Na
2
− a

=
C

η
· 1

N − 2
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Assuming N is sufficiently large, we employ the following specification.

μ(N) ≈ C

ηN

8 Appendix 2: Technical Appendix

8.1 Appendix a

Theorem A1: The following identity holds:

aij/2

ni
= G(md

ij,m
d
ji)

where Gis defined in (34).

Proof: Using (25) and (32),

aij/2

ni

=
nij

ni
· aij/2
nij

=
1

1−md
ji

· β(mc
ij)

θ · (md
ij ·md

ji)
1−θ
2

=
β
¡
1−md

ij −md
ji

¢θ · (md
ij ·md

ji)
1−θ
2

1−md
ji

= G(md
ij,m

d
ji)

which leads to (33).

Theorem A2: Knowledge dynamics evolve according to the system:

ṁd
ij = (1− μ · η)(1−md

ij)(1−md
ji)

(
δii · α+

X
k 6=i,j

δik · 2G(md
ik,m

d
ki)

)

−md
ij[μ · η · α ·

NX
i=1

δii(1−md
ji) + (1− μ · η) · δij · 2β ·

¡
1−md

ji

¢
· 2G(md

ij,m
d
ji)

+μ · η ·
NX
i=1

X
l 6=k

δkl ·
nk
ni
· β ·

¡
1−md

ji

¢
·G(md

kl,m
d
lk)]

−md
ij[(1− μ · η) ·

¡
1−md

ij

¢
·
(
δjj · α+

X
k 6=i,j

δjk · 2G(md
jk,m

d
kj)

)
]

for i, j = 1, 2, · · · , N , i 6= j
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Proof: By definition,

ṁd
ij =

d
¡
ndij/n

ij
¢

dt

=
ṅdij
nij
−
ndij
nij

· ṅ
ij

nij

=
ṅdij
nij
−md

ij ·
ṅij

nij

=
ṅdij
nij
−md

ij ·
Ã
ṅcij
nij
+
ṅdij
nij

+
ṅdji
nij

!

=
¡
1−md

ij

¢
·
ṅdij
nij
−md

ij ·
Ã
ṅcij
nij

+
ṅdji
nij

!
Setting μ = μ(N), and using (41) and (32), we have

ṅdij
nij

=

(1− μ · η) ·
P
k 6=j

δik · aik

nij

= (1− μ · η) · [δii · α · ni
nij

+
X
k 6=i,j

δik ·
aik
nij
]

= (1− μ · η) · [δii · α · ni
nij

+
X
k 6=i,j

δik ·
ni
nij

· n
ik

ni
· aik
nik
]

= (1− μ · η) · ni
nij

·
(
δii · α+

X
k 6=i,j

δik ·
nik

ni
· aik
nik

)

= (1− μ · η) ·
¡
1−md

ji

¢
·
(
δii · α+

X
k 6=i,j

δik ·
1

1−md
ki

· 2β
¡
1−md

ik −md
ki

¢θ · (md
ik ·md

ki)
1−θ
2

= (1− μ · η) ·
¡
1−md

ji

¢
·
(
δii · α+

X
k 6=i,j

δik · 2G(md
ik,m

d
ki)

)
Similarly,

ṅdji
nij

= (1− μ · η) ·
¡
1−md

ij

¢
·
(
δjj · α+

X
k 6=i,j

δjk · 2G(md
jk,m

d
kj)

)

while using (40) yields

ṅcij
nij

=
(1− μ · η)δij · aij + μ · ηA

nij

=
(1− μ · η)δij · aij + μ · η ·

PN
k=1 δkk · akk + μ · η ·

PN
k=1

P
l 6=k δkl · (akl/2)

nij

=
μ · η ·

PN
k=1 δkk · akk
nij

+
(1− μ · η) · δij · aij

nij
+

μ · η ·
PN

k=1

P
l 6=k δkl · (akl/2)
nij
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Using equations (24), (25), (33), and (32), we have:

ṅcij
nij

= μ · η · α · (1−md
ji) ·

NX
k=1

δkk ·
nk
ni
+ (1− μ · η) · δij · 2β ·

¡
1−md

ij −md
ji

¢θ · (md
ij ·md

ji)
1−θ
2

+μ · η ·
NX
k=1

X
l 6=k

δkl ·
nkl

nij
· β ·

¡
1−md

kl −md
lk

¢θ · (md
kl ·md

lk)
1−θ
2

= μ · η · α · (1−md
ji) ·

NX
k=1

δkk ·
nk
ni
+ (1− μ · η) · δij · (1−md

ji) · 2G(md
ij,m

d
ji)

+μ · η ·
NX
k=1

X
l 6=k

δkl ·
nk
ni
· (1−md

ji) ·G
¡
md
kl,m

d
lk

¢
Thus,

ṁd
ij = (1− μ · η)(1−md

ij)(1−md
ji)

(
δii · α+

X
k 6=i,j

δik · 2G(md
ik,m

d
ki)

)

−md
ij[μηα(1−md

ji) ·
NX
k=1

δkk ·
nk
ni
+ (1− μ · η) · δij ·

¡
1−md

ji

¢
· 2G(md

ij,m
d
ji)

+μ · η ·
¡
1−md

ji

¢ NX
k=1

X
l 6=k

δkl ·
nk
ni
·G(md

kl,m
d
lk)]

−md
ij · (1− μ · η) ·

¡
1−md

ij

¢
·
(
δjj · α+

X
k 6=i,j

δjk · 2G(md
jk,m

d
kj)

)

8.2 Appendix b

Here we confirm that when the expenditure of any specific consumer i is con-

stant over time and given by (20), the total equilibrium expenditure in the

economy is indeed given by equation (18).

For case (a), along the equilibrium path, the present value of income at

time 0 for K-worker i is given by

Wi(0) =

Z ∞

0

e−γtyi(t)dt

=

Z ∞

0

e−γt · [η · a(t)
2

·Π(t)]dt

Furthermore, as explained in case (a) of the Growth section,

Ṁ = η ·A(t) = η ·N · a(t)
2
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Thus,

Wi(0) =
1

N

Z ∞

0

e−γt · Ṁ(t) ·Π(t)dt (100)

where the patent price Π(t) is obtained as follows, by using (15) and (16):

Π(t) =

Z ∞

t

e−γ(τ−t) · π∗(τ)dτ

=

Z ∞

t

e−γ(τ−t) · q
∗(τ)

σ − 1dτ

=
L

σ − 1 ·
Z ∞

t

e−γ(τ−t) · 1

M(τ)
dτ (101)

that yields

Π̇(t) = γΠ(t)− L

σ − 1 ·
1

M(t)
(102)

Next, integrating (100) by parts and using (102), we obtain:

Wi(0) =
1

N

Z ∞

0

Ṁ(t) · (e−γt ·Π(t))dt

=
1

N

½£
e−γt ·M(t) ·Π(t)

¤
|∞0 −

Z ∞

0

M(t) · d(e
−γt ·Π(t))
dt

dt

¾
=

1

N

½£
e−γt ·M(t) ·Π(t)

¤
|∞0 −

Z ∞

0

M(t) · (−γe−γt ·Π(t) + e−γt · Π̇(t))dt
¾

=
1

N

½£
e−γt ·M(t) ·Π(t)

¤
|∞0 +γ

Z ∞

0

M(t) · e−γt ·Π(t)dt−
Z ∞

0

e−γt ·M(t) · Π̇(t))dt
¾

=
1

N
{
£
e−γt ·M(t) ·Π(t)

¤
|∞0 +γ

Z ∞

0

e−γt ·M(t) ·Π(t)dt

−
Z ∞

0

e−γt · (M(t) · γΠ(t)− L

σ − 1)dt}

=
1

N

½£
e−γt ·M(t) ·Π(t)

¤
|∞0 +

Z ∞

0

e−γt · L

σ − 1dt
¾

that leads to

Wi(0) =
1

N

½
lim
t→∞

e−γt ·M(t) ·Π(t)−M(0) ·Π(0) + L

σ − 1 ·
1

γ

¾
Thus, using (20) and (8), for any specific K-worker i, expenditure is:

Ei = γ

µ
Π(0) ·M(0)

N
+Wi(0)

¶
=

1

N

½
γ · lim

t→∞
e−γt ·M(t) ·Π(t) + L

σ − 1

¾
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In order to evaluate the first term in this expression, observe that by (101),

M(t) ·Π(t) =
L

σ − 1 ·
Z ∞

t

e−γ(τ−t) · M(t)
M(τ)

dτ

<
L

σ − 1 ·
Z ∞

t

e−γ(τ−t)dτ =
L

σ − 1 ·
1

γ

The second line follows since for τ > t, M(t)
M(τ)

< 1. So

lim
t→∞

e−γt ·M(t) ·Π(t) = 0 (103)

and

Ei =
1

N
· L

σ − 1
Therefore, the total expenditure of all K-workers together is:

N ·Ei =
L

σ − 1 (104)

For any specific M-worker i, we have yi(t) = wM ≡ 1 for every time t.

Thus,

Wi(0) =

Z ∞

0

e−γt · yi(t)dt =
1

γ

Noting that ωi = 0 by assumption for any M-worker, equation (20) yields:

Ei = 1

So the total expenditure of all M-workers together is:

L ·Ei = L (105)

Summing (104) and (105) yields the total expenditure of consumers in the

economy:

E∗ =
L

σ − 1 + L =
σL

σ − 1 =
L

ρ
(106)

Therefore relation (18) is verified for the equilibrium path.
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