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Abstract

We provide a descriptive model of choice by elimination that includes for its

foundation. The basis of the model involves a decision procedure based on

elimination rather than selecting an alternative. In this model, the alternative

that cannot be eliminated by any of its comparables ends up being chosen.

The necessary and sufficient condition for the model, which we call “axiom of

choice by elimination” (ACE), reflects the idea of “bounded rationality.” This

condition is also normatively appealing since it is immune to “money pump”

type of arguments despite the fact that it is weaker than the independent of ir-

relevant alternative (IIA). Our framework makes it possible not only to provide

two characterizations for IIA and Simon’s satisficing but also to accommodate

endogenous reference-dependent choice.
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1 Introduction

Imagine an individual who needs to buy a house. Given the complexity of the problem,

she solicits recommendation from a friend of hers. He suggests her to go for a specific

house, say x. In order to decide whether she will go with his advice or not, she looks

into properties that are comparable to x, in several aspects, such as price, location

and size, through some real estate Web sites. For example, if x has three bedrooms

and a big garage, she may include them into search criteria along with her budget.

Then the Web site provides a list of houses which are comparable to x and remain

within her budget. If she finds a house which dominates x in this list, she discards

the advice. Otherwise, she is convinced to buy house x. If this is the case, house x is

one of the acceptable suggestion (so it can be chosen).

In fact, this choice procedure is commonly used in real estate. Indeed, there is

a term called “comparables” which is an abbreviation for “comparable properties.”1

Comparables are properties that have reasonably similar sizes, locations, and ameni-

ties and they are used for purposes of comparison between different houses. In the

above example, “comparables” correspond to the list of houses provided by the web

site. In real life, consumers have only a finite amount of time, knowledge, and/or

attention to spend on a particular decision problem. Therefore, focusing on compa-

rables (or the list) helps the decision maker to reduce her complex problem into a

much more manageable one (Payne (1982) and Payne et al. (1988)).

What is more, these behaviors are not confined to real estate. Especially, after the

explosion of internet, a consumer has been able to deploy the help of e-commerce sites

(e.g., amazon.com, expedia.com) which construct sets of comparables (or shopper’s

list) for different choice problems, thereby narrowing down the decision-making pro-

cess.2 These sophisticated tools assist online customers by customizing the electronic

1In marketing literature, “awareness set,” “consideration set,” “relevant set,” and “evoked set”

are used to describe the similar idea of narrowing choice alternatives from many to few, see Alba

and Chattopadhyay (1985) and Roberts and Lattin (1991).
2Haübl and Trifts (2000) conceptualize a recommendation agent (RA) as an interactive decision
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shopping environment with respect to their individual preferences and budgets. Since

the amount of time and effort spending on decision making is substantially reduced,

the usage of online decision aids is inevitable and increasingly popular.

Returning to our customer, note that even if she decides to buy x, she may not

have compared x against all attainable houses in the market. This is because the web

site displays only properties that satisfy her criteria. Choice of her criteria depends

not only on her budget but also on the properties of the house under consideration.

Hence comparison is made within those properties which might actually be a strict

subset of all attainable houses. That is why our model offers a better alternative to

the standard utility maximization paradigm may not be able to accommodate her

choice behavior.

On the other hand, if she discards a house, let’s say y, she must have found at least

one house which dominates y within the list provided by the web site. Even if she

had compared house y against all other houses within her budget (without using the

list), it would have been discarded anyway. Therefore, each elimination is perfectly

rationalizable.

The aim of this paper is to provide a characterization of the choice behavior in

which decision making is implemented by elimination in the restrictive fashion as

exemplified above. Formally speaking, for a subset, S, of all alternatives set, X, we

propose the following characterization:

C(E,Ω)(S) = {x ∈ S| @ y ∈ Ω(x, S) such that yEx}. (1)

where E is an elimination order3 on X and comparable sets Ω. The set Ω(x, S)

represents the set of alternatives which are comparable to x in some respect within

S, i.e., Ω(x, S) ⊂ S.4

aid that assists consumers in the initial screening of the alternatives that are available in an online

store.
3An elimination order is both asymmetric and negatively transitive. If one defines (x, y) ∈ E∗

if (y, x) /∈ E. Then E is asymmetric and negatively transitive if and only if E∗ is complete and

transitive. Therefore, E is mathematically equivalent to a strict preference relation.
4In our model, both E and Ω will be endogenously derived from the decision maker choice
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While the elimination order is context-free, Ω(x, S) depends on the budget set S,

in other words it is context-dependent. One interpretation is that each elimination

is made by the decision maker while the set Ω(x, S) is exogenously provided by the

web site. As we mention above, comparables are a good example for Ω. If there is

no house comparable to house x given S, then the house x will be chosen within S.

If there are some comparable alternatives, Ω(x, S) 6= ∅, the decision maker looks for

an element only within Ω(x, S) which eliminates x. If she finds such an element y i.e.

y ∈ Ω(x, S) and yEx, she discards x. Otherwise, x will be in the choice set, or is an

acceptable recommedation (“choosable”).

Since the suggested model is context-dependent (the set of comparables depends

not only on x but also on the budget set S), it seems any given choice correspondence

can be characterized by (1). The following example illustrates that this claim is false.

Hence, the general view “everything goes with context-dependent model” is not quite

right.

Example 1 (Strict Choice Cycle) Let X := {x, y, z} and C({x, y}) = {x}, C({x, z}) =

{z}, and C({y, z}) = {y}. Assume that decision maker’s choice behavior can be rep-

resented by (1). Then y /∈ C({x, y}) reveals that x eliminates y. Therefore, x must be

in Ω(y, {x, y}) and xEy. Similarly we have xEyEzEx which contradicts that E is an

asymmetric and negatively transitive order. Therefore, this choice behavior cannot

be characterized by (1). Thus this type of cyclical choice behavior is ruled out by the

representation.

To avoid any confusion, we need to clarify that yEx doesn’t mean that y always

eliminates x. yEx should be interpreted as y may eliminate x. That is, she eliminates

x because of y if and only if y is comparable to x, i.e., y ∈ Ω(x, S). One might wonder

behavior. However, the questions regarding the determinants and/or source of Ω are beyond of this

paper. Ω might be obtained through external aids or it is just a psychological constraint in the mind

of the decision maker. See Awad et al (2004) for attempts to answer these questions in marketing

literature.
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whether an elimination order is simply a strict preference ordering. However, there

might be a distinction between an elimination order and an usual preference ordering.

To inquire whether this is the case, we will use another example which can be

modeled as in (1) even though it looks different from house search. Consider an

individual who would like to impress his friend by his choice of wine. He always

selects wine whose price is at least the median in the wine list of a restaurant. For

example, there are three types of wine: Chteau Mouton (m, expensive), Jaboulet La

Chapelle (j, moderate), and House wine (h, cheap). If all of them are available, then

he picks either m or j, i.e., C({m, j, h}) = {m, j}. If the house wine is not in the

menu, he will order only m, i.e., C({m, j}) = {m}. The revealed-preference approach

dictates that the former reveals that m and j are indifferent. But the latter reveals

that m is strictly preferred to j. So there is no preference ordering which is consistent

with this choice behavior. However, in our interpretation, the latter implies that

mEj. Note that mEj doesn’t mean that m will eliminate j whenever m is available.5

As long as m is not comparable to j when h is available, i.e. m /∈ Ω(j, {m, j, h}), j

will be chosen from {m, j, h}. Notice that his choice behavior can be summarized as

discarding wine whose price is below the median in the menu.6

Indeed, revealed preference suggests that if we have x ∈ C(S) but y /∈ C(S) for

some budget set S, then this means that x is strictly preferred to y. However, in our

representation, it is possible that {x} = C({x, y}) and y ∈ C(T ) but x /∈ C(T ) for

some budget set T including x. Hence it is impossible to have a preference ordering

that represents such a behavior. That is why we interpret xEy as x may eliminate

y (and y never eliminates x). Therefore, we call this representation as choice by

elimination; an alternative that cannot be eliminated by any of its comparables will

be chosen.

As we have seen above that our heroine on the housing market behaves perfectly

5mEj implies that j never eliminates m.
6In this example with three different type of wine, the decision maker uses price as a guide to

quality of wines and follows the old adage “you shouldn’t buy the cheapest wine on the menu.” This

reflects the idea that the cheapest wine on the menu is not drinkable.

5



rational as she is eliminating alternatives (there is always a good reason to eliminate).

However, she might not discard as many alternatives as the classical choice theory

would predict. When Ω(x, S) is a strict subset of S, x might not be eliminated even

though there exists element y ∈ S and yEx. Note that if Ω(x, S) = S for all x and

S, this is nothing but the classical choice theory.

In the “wine” example above, the individual’s choices are not in concert even

with “Independence of Irrelevant Alternative (IIA).” That is, if one alternative is

chosen from a set, S, it must also be chosen from any subset of S including x. Sen

(1971) gives the following example to illustrate the axiom. If the world champion

in a particular discipline is a Pakistani, he must also be a Pakistani champion (Sen,

1971). This is the very least condition which we impose on choice behavior before

we call them rational. Hence, this condition has often been treated as the minimum

rationality requirement. The “thin” theory of rationality of Elster (1983) is based on

this assumption.7

Even though “wine” and the house search examples violate the normatively ap-

pealing axiom IIA, it is hard to claim that the reasoning used in those examples

is irrational. We believe that there is room and need for a theory of this type of

“bounded” rationality in which any elimination made by these two decision makers

is perfectly rationalizable. Here we provide a theory of elimination based upon a

proposal of minimal rationality conditions which we propose. This condition that we

identify as “Axiom of Choice by Elimination” (ACE), resembles IIA but is weaker:

for every set, S,

there exists a chosen element from S which must be selected whenever it

is available in any subset of S.

On the other hand, IIA requires

7However, May (1954), Tversky (1969), Tversky, Slovic, and Kahneman (1990), and Kahneman

(2002) show that a startlingly broad range of choice behavior escapes the evaluative net of the thin

theory. Especially, the evidence for intransitivity is usually observed either in a multi-dimensional

context, in group decision making, or in the face of dynamic complications.
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any chosen element from S must be selected whenever it is available in

any subset of S.

ACE requires that consistency asked in IIA should hold only for some elements in

C(S). Even though this axiom doesn’t impose as much as rationality IIA does, it

still has a similar flavor to it. Here, for each choice problem, S, there is at least one

“top” element which is never eliminated from S or any subset of S. Therefore, this

axiom doesn’t allow strict choice cycles as in Example 1. Indeed, ACE is not only a

sufficient but also a necessary condition to rule out any strict choice cycles. Therefore,

the decision maker whose choice behavior satisfies ACE is immune to “money pump”

type of arguments that are often used against nontransitive preferences. That is why

this axiom can be interpreted as “minimum requirement” for rationality. In other

words, this is a minimal consistency in the sense of retaining IIA for at least one

chosen element. We will prove that ACE is also the necessary and sufficient condition

to have the representation as indicated by (1).

There are other examples in which a decision maker is perfectly rational, but her

choice correspondence can violate the weak axiom of revealed preference (even IIA).

For example, assume that a decision maker plays a non-cooperative game and discards

all non-rationalizable strategies. If we can only observe her set of strategies and her

choice, it is possible that her observed choice behavior violates IIA. However, almost

all rationalizability satisfies ACE. Our approach is in line with Simon’s “procedural

rationality” or “bounded rationality.” As Simon pointed out that there is a distinction

between “standard” rationality (maximization paradigm) and “bounded rationality.”

Here, we are seeking a model in which decision makers have bounded rationality but

do not exhibit strict choice cycles.8

Models of bounded rationality are introduced to capture the limitations of human

8There are some choice procedures which lie outside of our model, (1) such as the (u, v) procedure

(Kalai, Rubinstein, and Spiegler (2002), the “second-best” procedure (Baigent and Gaertner (1996))

and the “median” procedure (Gaertner and Xu (1999)). The reason is that they all allow strict cycles

which isn’t permitted in our model.

7



minds. Ironically, these models are usually so complicated that people who follow

those models should have essentially unlimited time and knowledge. As Todd and

Gigerenzer (2000) pointed out that these models let the idea of perfect rationality

to sneak in through the back door. However, the source of bounded rationality in

our model may come from the use of e-commerce sites for instance. Since the set

of comparables is provided by those sites, a consumer does not need to spend time

and knowledge to figure out what to put in it. Unlike models referred in Todd and

Gigerenzer (2000), our model exhibits bounded rationality without imposing extra

cognitive load on the decision maker.

The outline of this paper is as follows: (i) we introduce the basic notations and

definitions, (ii) discuss ACE and characterization of our representation, (iii) provide

a characterization for IIA, (iv) cover Simon’s Satisficing by introducing a new de-

scriptive postulate, (v) elaborate on the relation between our model and preference

modeling, (vi) show that our model can be interpret as endogenous formation of

reference point, and finally (vii) conclude the paper. In appendix, we extend the

model for cases where the domain is countable infinite, and state some of widely used

consistency conditions, point out relationships between them.

2 Model

2.1 Notations

Throughout this paper X will stand for an arbitrary non-empty finite set and ΘX will

stand for all subset of 2X\{∅}. A binary relation, R, on a set X is a set of ordered

pairs (x, y) with x ∈ X and y ∈ X. If (x, x) belongs to R for all x ∈ X, we say that

R is reflexive. A binary relation R is transitive if for all x, y, z ∈ X, xRy and yRz

implies that xRz, and is complete if for all x, y ∈ X, either xRy or yRx (or both).

We call any binary relation which is complete and transitive as preference relation

and denote by % . A binary relation, R, asymmetric if xRy implies not yRx for all

x, y ∈ X and is negatively transitive if not xRy and not yRz implies not xRz for all
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x, y, z ∈ X. IR and PR denote the symmetric and asymmetric parts of any reflexive

binary relation R, respectively. We define an elimination order as follows:

Definition 1 A binary relation E on X is called an elimination order if it is

asymmetric and negatively transitive.

A choice or plan assigns a chosen set to every non-empty feasible set. This choice

can be represented by a choice correspondence on ΘX , C : ΘX → ΘX , such

that ∅ 6= C(S) ⊂ S for every S ∈ ΘX . The set C(S) is called the choice set of

the individual for the problem S ∈ ΘX . We tend to interpret x ∈ C(S) as “x is

revealed to be at least as good as all other alternatives in S ” in the classical theory

of revealed preference. Here, as we mentioned before, it is possible that the decision

maker does not have any preference ordering. Sen (1993) says that “... it may be

useful to interpret C(S) as the set of “choosable” elements - the alternatives that can

be chosen.” We believe that this is the right interpretation for our paper. At the

same token, x, y ∈ C(S) doesn’t necessarily imply that x is indifferent to y, it simply

means that both x and y are choosable.

Finally, for elimination order E, we denote the set of E-maximal elements of S by

CE(S) = {x ∈ S| @y ∈ S yEx}. (2)

2.2 Axiom of Choice by Elimination

In the introduction, we have provided two examples in which the choice behavior

cannot be rationalizable by any binary relation. To elaborate on this, we would like

to present another example from game theory. First, consider the notion of iterative

eliminations of strictly dominated strategies. Suppose, there is a decision maker who

decides among three strategies, say u, m, and d. However, we can only observe her

choice of strategy even though she is playing a game against another player who has

two only two strategies, l, r. The payoffs are given below, the first number in each
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box referring to DM’s payoff which are also not observable to us.

l r

u 4, 2 1, 0

m 1, 2 4, 0

d 3, 0 3, 2

If all the strategies are available to DM, since there is no strict domination, all of

them are choosable. However, if u and m are the only available strategies, r strictly

dominates l for the second player in the game. Therefore, she will choose u when

u and m are available, i.e. {u} = C({u, m}). Her choice of m from {u, m, d} and

of only u from {u, m} violates IIA, which is a weaker consistency requirement than

WARP. Note that there is no elimination for two other pairs. Hence, the only time

she eliminates something is when only u and m are available. Since u eliminates m

when S = {u, m}, we should impose uEm so that C({u, m}) = CE({u, m}). Then we

have

{u, m, d} = C({u, m, d}) 6= CE({u, m, d}) = {u, d}.

Therefore, it cannot be represented as in (2).9

Lets consider the case where IIA is violated in the above example, C({u, m, d}) =

{u, m, d} and C({u, m}) = {u}. Even though the normatively appealing axiom IIA

is not satisfied, is there any kind of consistency within her choice behavior? Note

that u is always choosable whenever it is available in any subset of {u, m, d}. Of

course, having only one alternative is not enough to satisfy IIA which dictates that

for all choosable alternative should be choosable from any smaller choice problem

whenever they are available. We claim that if we are interested in modeling bounded

rationality, IIA is too restrictive. Therefore, we offer a minimal consistency in the

sense of retaining IIA for at least one choosable element.

9In general, for given game, G(S1, S2, u1, u2), if, for any S′
1 ⊂ S1, G(S′

1, S2, u1, u2) has a pure

nash equilibrium, then player 1’s choice correspondence induced by iterative eliminations os strictly

dominated strategies satisfies ACE.
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Axiom of Choice by Elimination (ACE): For any S ∈ ΘX ,

there exists an element, x ∈ C(S) such that if x ∈ T ⊂ S then x ∈ C(T ).

Even though this axiom doesn’t impose as much as rationality IIA does, it still

has a similar flavor IIA has. Here, for each choice problem, S, there is at least one

“top” element which is never eliminated from S or any subset of S. Having such

alternative does not allow strict choice cycles as in Example 1, i.e C({x, y}) = {x},
C({x, z}) = {z}, and C({y, z}) = {y}. If we write the negation of ACE, it says that

there exists some subset of X, say S, such that for all x ∈ S there exists Tx ⊂ S,

x /∈ C(Tx) even though x ∈ Tx. If we have such S, we can create a strict cycle by

using {Tx}x∈S.

In the literature, there are some arguments against having strict choice cycle.

Money pump is one of the most convincing arguments. If ACE is violated then one

can argue that money pump is possible by using elements of S. When the decision

maker currently owns x ∈ S, being offered Tx ⊂ S she is willing to pay a small

amount of her wealth to discard x because x /∈ C(Tx). Whichever element y ∈ C(Tx)

she exchanges with x, she is still willing to pay a small amount to discard y when she is

offered Ty ⊂ S. Given the cycle we have above, it is possible that a decision maker find

herself where she was to begin with, but poorer. Of course, this can conceivably be

repeated. Given sufficiently many iterations, we can extract everything the decision

maker owns.

However, ACE does not allow such money pumping. To see this, assume one who

tries to make money pumping from her by using elements of some subset of X, say

S. ACE implies that there exists at least one top element of S, say x. Whenever x

is available, the decision maker may pick x after which she is never willing to pay to

switch from it because x is choosable from any subset of S. Therefore, x should not

be included in any offer of money pumping. Given that, only elements of S \ {x} can

be used to extract money from her. However, ACE guarantees that there is a top

element of S \ {x}, which cannot be used for money pumping for the same reason
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above. Then recursively, the decision maker cannot be a victim of money pumping.10

Before we will prove that ACE is also the necessary and sufficient condition to

have the representation as (1), we would like to define the set comparables.

Definition 2 For x ∈ S ∈ ΘX , Ω(x, S) ⊂ S is called the comparable set (of x

under choice problem S).

Theorem 1 A choice correspondence, C on ΘX satisfies ACE if, and only if, there

exists an elimination order, E on X and comparable sets Ω such that

C(S) = {x ∈ S| @ y ∈ Ω(x, S) such that yEx}.

The representation is consistent with the house search example discussed in the

introduction. The decision maker discards x from choice problem S if and only if she

finds another available element y, from the comparable set of x, which eliminates x.

Otherwise, x is in the choice set, or is choosable.

Our frame work suggests that decision maker uses two-stage processes to reach

her decision. Consider the case where x ∈ C(S). First Ω(x, S) has been constructed.

Since she might have used the help of an external (or online) decision aid, this stage

is almost costless for her. At the second stage, she has performed detailed binary

comparisons between the alternative under consideration and alternatives which are

comparable to it. Since x ∈ C(S), there was no alternative which dominates x with

respect to the context-free elimination order, E.

Note that the bigger the set Ω(x, S) is, the more likely the elimination happens.

However, elimination takes place only in the second stage. First stage makes harder

to discard an alternative since it restricts the comparable set.

10Here, it is allowed to money pump for finite round. The decision maker may choose something

other than the top element of S when the cardinality of choice set is bigger than one. However if

the decision maker never chooses the top element, this is observatively to equivalent to the violation

of ACE, i.e., there is no top element.
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We can also interpret this representation as an equilibrium argument or an ex-

post reasoning. If x is discarded from the budget set S, then she can rationalize her

decision by claiming that she found an alternative that eliminates x within the set of

comparables to x. In other words, if there exists y ∈ Ω(x, S) with yEx, then, she is

aware of a dominating alternative so she will never stay with x. Hence not choosing

x is perfectly rational. On the other hand, she keeps x if there is no dominating

alternative which is comparable to x.

As we mentioned before, E may not be a preference ordering. That is why we

cannot concentrate only on the binary comparisons for the construction of E. Assume

the decision maker chooses only x from {x, y, z} and everything from any strict subset

of {x, y, z}. Then focusing on binary comparisons results in no elimination relation-

ships at all which cannot explain the choice of singleton x from {x, y, z}. Therefore,

binary comparison does not work for our representation.

However ACE guarantees the existence of “top” element in any choice problem,

particularly X. Since top element(s) is never eliminated, it is natural to put them on

the top of the elimination order. Then in the next step, we will extract all the top

elements of X from X. Now consider the top element(s) of this strictly smaller set.

These second top elements may be eliminated only by the top element of X. This

idea is formally illustrated next. We recursively define E starting from the grand set,

X and construct a partition of X. Define X = X0 and

I0 = {x ∈ X0| x ∈ C(T ) for all T s.t. x ∈ T ⊂ X0}.

Note that I0 is the set of top elements of X0. ACE implies that I0 is non-empty.

Define X1 = X0 \ I0. If it is non-empty, define

I1 = {x ∈ X1| x ∈ C(T ) for all T s.t. x ∈ T ⊂ X1}.

ACE also implies that I1 is non-empty. Then define recursively,

Ik = {x ∈ Xk| x ∈ C(T ) for all T s.t. x ∈ T ⊂ Xk}
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where Xk = Xk−1 \ Ik−1 until ∪Ik = X. Note that {In} is a partition of X, and Xn’s

are nested. Given the partition {In}, we can define E

xEy if x ∈ Ik, y ∈ In and k < n.

Since X is finite, this recursive process will end in finite time.11 Given the construc-

tion, E is asymmetric and negatively transitive.

Proof of Theorem 1: Let E and Ω be as introduced in (1). To show that C then

satisfies ACE, take any S ∈ ΘX . Since S is finite and E is an elimination order, there

exists x such that there is no yEx in S. Therefore, for any T ⊂ S with x ∈ T ,

x ∈ C(T ). Therefore, C satisfies ACE.

Now, we show that any C satisfying ACE has a represenation in (1). We will use

the elimination order constructed as above.

Claim: If y /∈ C(S) then ∃ x ∈ S such that xEy.

Proof: Suppose y ∈ Xk. Then, by construction, y ∈ C(T ) for any T ⊂ Xk with

y ∈ T . Therefore, there exists x ∈ S such that x /∈ Xk. By construction, xEy.

Now, we define also the comparable sets as follows:

Ω(x, S) =

 S if x /∈ C(S)

Xk ∩ S if x ∈ C(S)

where x ∈ Ik. Then when x /∈ C(S), by the previous claim, Ω(x, S)(= S) contains

some element yEx. When x ∈ C(S), Ω(x, S) does not include any yEx by construc-

tion. Therefore, the pair of (E, Ω) represents C.

2.3 Independence of Irrelevant Alternatives

The following example from game theory satisfies IIA. Again, the decision maker is

playing a game with another player but we can observe only her set of strategies and

11We will discuss for infinite case later.
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choices. Here, she discards only dominated strategies (without iterative eliminations).

Consider the following game (player 2’s payoffs are omitted):

l r

u 10 0

m 0 10

d 4 4

Then, she eliminates no strategy except when all of u, m, d are available. In this

case, d is discarded because it is strictly dominated by (1/2)u + (1/2)m. It is routine

to verify IIA for this example. Indeed, this procedure satisfies IIA for any given game.

Since ACE is weaker than Independence of Irrelevant Alternatives (IIA), one may

wonder how the characterization provided in Theorem 1 changes when IIA is assumed.

The following theorem provides a characterization for IIA.12

Theorem 2 A choice correspondence, C on ΘX satisfies IIA if, and only if, there

exists an elimination order, E on X and comparable sets Ω such that

C(S) = {x ∈ S| @ y ∈ Ω(x, S) such that yEx}.

and if T ⊂ S then Ω(x, T ) ⊂ Ω(x, S).

Remember the house choice problem. If the website, given a fixed criteria (i.e.

house x), provides more houses when her budget increases, then her choice behavior

satisfies IIA. Then theorem B implies it because the comparable set created by the

website satisfies the monotonicity condition: Ω(x, T ) ⊂ Ω(x, S) when T ⊂ S.

Proof of Theorem 2: Suppose C has a representation given in the theorem. If

x /∈ C(T ) for some T 3 x, then there exists yEx within Ω(x, T ). Therefore for any

S ⊃ T , y ∈ Ω(x, S) so x /∈ C(S), which proves IIA.

12For another characterization see Ok (2004).
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Now suppose C satisfies IIA. Let us construct E and Ω exactly in the same manner

as in Theorem 1. Since IIA is stronger than ACE, this pair represents C by Theorem

1. Thus, we only need to show the monotonicity of Ω in S.

Take any x ∈ T ⊂ S. If x ∈ C(S), then IIA implies x ∈ C(T ) so Ω(x, T ) =

Xk ∩ T ⊂ Xk ∩ S = Ω(x, S). If x /∈ C(S), then by the construction of Ω, Ω(x, S) =

S ⊃ T ⊃ Ω(x, T ).�

3 Choice by Satisfaction

“...(D)ecision makers can satisfice either by finding optimum solutions for

a simplified world, or by finding satisfactory solutions for a more realistic

world.” Simon’s Nobel Prize Lecture, (1978)13

The idea of satisficing is to choose alternatives which exceeds some level of satis-

faction, which might depend on the choice problem under consideration. This can be

interpreted as elimination by dissatisfaction. This leads us the following representa-

tion where the comparable set is independent of the alternative under consideration.

C(S) = {x ∈ S| @ y ∈ Ω̄(S) such that yEx}

where Ω̄(S) is the comparable set, which is a subset of S. One of E-best elements,

say xS, in Ω̄(S) can be considered as the minimum level of satisficing level for choice

problem S. Any alternative strictly below xS with respect to E will be eliminated.

Here, given our interpretation, E can be called satisfaction order. The following

axiom is the necessary and sufficient for the representation.

Axiom of Choice by Satisfaction (ACS) : For any S ∈ ΘX , there

exists x ∈ C(S) such that for all y ∈ S and T 3 x, y ∈ C(T ) implies

x ∈ C(T ).

13Simon (1955) coined the term “satisficing” which is a combination of “satisfy” and “suffice.” It

means that a decision maker will take an alternative, which is “good” enough, instead of searching

for the best element.
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Notice that ACS imposes that for each S there exists at least one element, say

x, which serves as a most frequently satisficing element. x is still most frequently

satisficing one in any smaller choice problem, so it must be chosen. Actually, any top

element also satisfies this property, i.e., most frequently satisficing element is always a

top element. However, unlike top elements, most frequently satisficing elements have

one more property. That is, if x is discarded some other choice problem (must not

be a subset of S), any other elements in S must be also eliminated from the choice

set because they are less satisficing than x. Therefore, ACS implies ACE. However,

being top element does not imply being most frequently satisficing because of the

additional requirement. ACS requires the existence of such element in any choice

problem. Therefore, ACS is stronger axiom than ACE.14

The “wine” example discussed in the introduction satisfies ACS. Any choice be-

havior choosing any alternative weakly above median with respect to the elimination

order (average, if alternatives have numerical scores) for instance also meets the re-

quirement of ACS.

One of examples satisfying ACE but not ACS is a choice by iterative eliminations

of strictly dominated strategies discussed in the section of ACE.

Another example, which is similar to the wine example is the following: There

are three red wines r1, r2, r3 and three white wine w1, w2, w3 where r1 (w1) is the

most expensive red (white) wine and r3 (w3) is the cheapest red (white) wine. The

decision maker discards the cheapest red wine and white wine. It is easy to see

that this choice behavior satisfies ACE. However, it violates ACS. To illustrate this,

consider S = {r2, w2}. Neither of them satisfies the condition in ACS because

C({r1, r2, w2}) = {r1, w2} but C({r2, w1, w2}) = {r2, w1}.

Before we provide the proof of the theorem, we would like to point out that the

construction we used for the elimination order does not work in general. To illustrate

14ACE can be thought as a contraction axiom as IIA but ACS is not only contraction but also

expansion.
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that assume X := {x, y, z} and

C({x, y, z}) = {x, z}, C({x, y}) = {x}, C({y, z}) = {y, z}, C({x, z}) = {x}.

If we follow top element construction, we have xEy and xEz. This means that neither

y eliminates x nor x eliminates y. Hence, given the satisfaction level, either both of

them are satificising or none of them. Therefore, the choice of C({x, y, z}) = {x, z}
cannot be explained by satisfaction with E. However, if we assume xEzEy (instead

of xEy and xEz) then the choice behavior is in line with the satisfaction story.

ACS hints that E can be constructed through binary comparisons, namely

xEy iff y ∈ C(S) ⇒ x ∈ C(S).

Unfortunately, this does not work either.15 Instead, we construct E here based on

most frequently satisficing element as follows:

Define X = Y0 and

J0 = {x ∈ Y0|∀ y ∈ Y0 and ∀ T 3 {x, y}, y ∈ C(S) ⇒ x ∈ C(S)}.

Here J0 is the set of most frequently satisficing elements of Y0. ACS implies that I0

is non-empty. Define Y1 = Y0 \ J0. If it is non-empty, define

J1 = {x ∈ Y1|∀ y ∈ Y1 and ∀ T 3 {x, y}, y ∈ C(S) ⇒ x ∈ C(S)}.

ACS also implies that J1 is non-empty. Then define recursively,

Jk = {x ∈ Yk|∀ y ∈ Yk and ∀ T 3 {x, y}, y ∈ C(S) ⇒ x ∈ C(S)}

where Yk = Yk−1 \ Jk−1 until
⋃

Jk = X. Note that {Jn} is a partition of X, and Yn’s

are nested. Given the partition {Jn}, we can define E,

xEy if x ∈ Jk, y ∈ Jn and k < n.

15Here is the example: C({α, x, y, z}) = {α}, C({α, x, y}) = {α, x, y}, C({α, y, z}) = {α, y},
C({α, x, z}) = {α, z}, C({x, y, z}) = {x, y, z}, C({x, y}) = {x, y}, C({y, z}) = {y}, C({x, z}) =

{x, z}.
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Since X is finite, this recursive process will end in finite time. Given the construction,

E is asymmetric and negatively transitive.

Theorem 3 A choice correspondence, C on ΘX satisfies ACS if, and only if, there

exists an elimination order, E on X and comparable sets Ω̄, which is independent of

x such that

C(S) = {x ∈ S| @ y ∈ Ω̄(S) such that yEx}.

Proof of Theorem 3: The proof of the “if” part is left to readers. Now suppose

C satisfies ACS. The elimination order is constructed by using the most frequently

satisficing elements as described above, so we only need to define Ω(S).

For each S, define

kS = max{k | C(S) ∩ Jk 6= ∅}

and

Ω̄(S) = C(S) ∩ JkS .

Now we show that the pair of E and Ω̄ represents C. Take any x ∈ Jk. If x ∈ C(S)

then by construction of kS, k ≤ kS so there is no y ∈ Ω̄(S) which eliminates x.

Suppose x /∈ C(S). By definition of Jk, x is one of most frequently satisficing

elements of Yk. Therefore, for any k′ ≥ k and any y ∈ Jk′ , CAS requires y /∈ C(S).

Since C is always non-empty, there must exists k′′ < k such that z ∈ Jk′′ and z ∈ C(S).

Therefore, we conclude that kS < k so Ω̄(S) has an element a ∈ S such that aEx.�

4 Context-free Comparable Set and Preferences

In the above section, we provide two characterization theorems in which the compa-

rable sets depend on both the alternative under consideration and the budget set.
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In other words, the comparable set is context dependent, Ω(x, S). In this section,

we will investigate under what conditions the comparable set is context free, i.e.

Ω(x, S) = Ω∗(x) ∩ S.

The classical choice theory assumes that a decision maker behaves in an internally

consistent way: if the agent is willing to choose x in some budget set in which x and

y are offered, then, in any other budget set also containing x and y, if the agent

is willing to choose y, he must also be willing to choose x. This is so-called “Weak

Axiom of Revealed Preference (WARP).” This axiom guarantees that choice behavior

can be characterized by maximization of a well defined preference ordering. Let us

state the contrapositive of WARP here, which will make it easy to compare WARP

with other axioms discussed later.

Weak Axiom of Revealed Preference (WARP): For any S ∈ ΘX

with y ∈ S, if y /∈ C(S), then for any x ∈ C(S), x ∈ T implies y /∈ C(T ).

It is well known that WARP is the necessary and sufficient condition for the

decision maker to maximize a preference relation, which is complete and transitive.

Obviously, WARP is a special case of ACE, which leads a representation in (1)

with Ω(x, S) = S or Ω∗(x) = X.

WARP suggests that whenever y is discarded from S, the availability of any chosen

elements from S eliminates y. This means any chosen element from S eliminates y

from any choice problem not limited to S. To see how strong WARP actually is,

consider the following example: Let x = (3, 1), y = (2, 0), and z = (1, 3) and

C({x, y, z}) = {x, z}, C({x, y}) = {x}, C({y, z}) = {y, z}, C({x, z}) = {x, z}

Note that she discards y whenever x is available since x dominates y in both compo-

nents. However, there is no direct comparison between y and z. Although she discards

y and picks z from {x, y, z}, the availability of z does not eliminate y. Therefore, her

choice behavior violates WARP even though her reasoning makes sense.
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In this example, only one of the chosen element from {x, y, z}, which is x, elimi-

nates y. This suggest the following axiom, which is weaker than WARP:

Weak Axiom of Revealed Non-Inferiority (WARNI) : For any

S ∈ ΘX with y ∈ S, if y /∈ C(S), then there exists x ∈ C(S), x ∈ T

implies y /∈ C(T ).

Bandyopadhyay and Sengupta (1991) showed that WARNI16 is equivalent to max-

imization of an incomplete but transitive preference.17

WARNI claims that whenever y is eliminated from S, at least one of chosen

element always eliminates y. However, the following example suggests that y can be

eliminated only by an unchosen element.

C({x, y, z}) = {x}, C({x, y}) = {x, y}, C({y, z}) = {z}, C({x, z}) = {x}

Although y is eliminated from {x, y, z}, the unique chosen element x does not elim-

inate y in the smaller set. but the other unchosen element z eliminates y whenever

both of them are available. Such a choice behavior sounds awkward but is generated

by the following story. “There are three houses located in the order of x, z, y. House

x is the best and y is the worst. The decision maker compares only houses next to

the one under consideration (possibly because the real estate broker shows only the

immediate neighborhoods). She discards a house if there is a affordable better house

in its neighborhood.” The following axiom accommodates the choice behavior above.

Strong Axiom of Choice by Elimination (SACE) : For any S ∈
ΘX with y ∈ S, if y /∈ C(S), then there exists x ∈ S, x ∈ T implies

y /∈ C(T ).

16It is named by Eliaz and OK (2006).
17The incomplete preference is first axiomatized by Sen(1971) by using three different conditions.

Jamison and Lau (1973), Plott (1973), Fishburn (1975) and Schwartz (1976) propose different set

of axioms to characterize the imcomplete preference. By relaxing finiteness assumption, Eliaz and

Ok (2006) is made the theorem applicable to many choice situations.
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Bandyopadhyay and Sengupta (1991) also showed that SACE is equivalent to

maximization of an acyclical preference, possibly intransitive.18

In the above story, the decision maker is aware of next houses to the one she

is contemplating regardless of her budget set (even though they are not affordable).

This suggests the comparable set is independent of her budget. The following theorem

makes this reasoning clearer.

Theorem 4 A choice correspondence, C on ΘX satisfies SACE if, and only if, there

exists an elimination order, E on X and comparable sets Ω∗, which is independent of

S such that

C(S) = {x ∈ S| @ y ∈ Ω∗(x) ∩ S such that yEx}.

With WARNI, which is stronger than SACE, we provide the characterization as

in Theorem 4 with the condition: if x ∈ Ω∗(y) then Ω∗(x) ⊂ Ω∗(y).

Theorem 5 A choice correspondence, C on ΘX satisfies WARNI if, and only if, there

exists an elimination order, E on X and comparable sets Ω∗, which is independent of

S such that

C(S) = {x ∈ S| @ y ∈ Ω∗(x) ∩ S such that yEx}.

Furthermore, if x ∈ Ω∗(y) then Ω∗(x) ⊂ Ω∗(y).

Proofs of Theorem 4 and 5: The proofs of the “if” parts are left to reader. Now

suppose C satisfies SACE. The elimination order is constructed as before. Define

Ω∗(x) as follows:

Ω∗(x) = {y ∈ X| x /∈ C({x, y})}.

Suppose if x ∈ C(S) then we argue that SACE implies that Ω∗(x) ∩ S = ∅. To see

this, if there exists y ∈ Ω∗(x) ∩ S, then x /∈ C({x, y}). This contradicts to IIA which

is a weaker condition than SACE.

18The acyclical preference is also axiomatized by Sen(1971), Jamison and Lau (1973), and Schwartz

(1976) with different sets of axioms.
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If x /∈ C(S) then SACE implies that ∃y ∈ S such that x /∈ C({x, y}). Hence

y ∈ Ω∗(x)∩ S. Now we need to show yEx. Suppose that y ∈ Ik. By SACE, x /∈ C(T )

if y ∈ T. Therefore x /∈ C(Xk′) for any k′ ≤ k. By construction of E, yEx which

completes the proof of Theorem 4.

Since WARNI is stronger than SACE, we only need to verify the condition, y ∈
Ω(x) implies Ω(y) ⊂ Ω(x), to prove Theorem 5. If y ∈ Ω(x) then by definition

{y} = C({x, y}). Assume that there exists an element z ∈ X such that z ∈ Ω(y)\Ω(x)

which implies x ∈ C({x, z}) and {z} = C({y, z}). Consider the set {x, y, z}. Since

x /∈ C({x, y}) and y /∈ C({y, z}), IIA implies C({x, y, z}) = {z}. This contradicts the

fact that c satisfies WARNI since x ∈ c({x, z}) and C({x, y, z}) = {z}. �

5 Endogenous Reference-Dependent Choice

In this section, we illustrate that our model can be interpreted as endogenous forma-

tion of reference points. To do this, we discuss two reference-dependent models which

are provided in Masatlioglu and Ok (2005) and Kösezgi and Rabin (2006).

Kösezgi and Rabin (2006) propose a model of reference-dependent in which refer-

ence point is determined endogenously. To do this, they define a personal equilibrium

as follows:

PEU(S) = {x ∈ S| U(x|x) ≥ U(y|x) for all y ∈ S}

where U(x|y) is the reference-dependent utility, that is, the utility of x when the

reference point is y. In this model, x will be discarded if there is another alternative

within the budget set which has a higher utility than x when x itself is the reference

point. In other words, if the a decision maker expects to choose an alternative, say

x, (x becomes her reference point) and she is willing to choose x given that x is

her reference point, then indeed x will be chosen. It basically means that x is a

self-fulfilling plan. Therefore, PEU(S) is the set of self-fulfilling plans.

To make the connection with our model, assume that x /∈ PEU(S).19 It must be

19Under certain condition, the non-emptiness could be guaranteed.
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the case that there exists an alternative y such that U(y|x) > U(x|x). Then it is clear

that the presence of y always eliminates x. Therefore, PEU satisfies SACE.20 Since

it satisfies SACE, it can be written as in Theorem 4, that is,

PEU(S) = {x ∈ S| @ y ∈ Ω∗(x) ∩ S such that yEx}.

where Ω∗(x) = {y ∈ X| U(y|x) > U(x|x)} and E is constructed as in Theorem 1.

Another closely related reference-dependent model is provided in Masatlioglu and

Ok (2005). Their main concern is to investigate the notion of status quo bias when

status quo point is observable. In other words, unlike Kösezgi and Rabin (2006), the

reference point is exogenously given. In this model, for each status quo, in the first

stage decision maker eliminates alternatives which does not dominate the status quo

according to a partial order, and she uses a complete preference ordering to finalize

her decision at the second stage. Their model can be summarized as follows:

CMO(S, x) = {y ∈ Ω∗(x) ∩ S| @ z ∈ Ω∗(x) ∩ S such that zEy}21

where if x ∈ Ω∗(y) then Ω∗(x) ⊂ Ω∗(y). In this model, Ω∗(x) is interpreted as the

psychological constraint imposed by the status quo point x and E is the material

preference or preference without status quo.22

There are two main important differences between our model and the model of

Masatlioglu and Ok (2005). First, unlike our model, the status quo point is exoge-

nously given in their model, i.e., CMO(S, x). Indeed, our model can be also interpreted

as the endogenous formation of reference point in their setup. As in Kösezgi and Ra-

bin (2006), if the a decision maker expects to choose an alternative, say x, (x becomes

her status quo) and she is willing to choose x given that x is her status quo, then

indeed x will be one of the “choosable” alternatives in our model;

x ∈ CMO(S, x) if, and only if, x ∈ C(E,Ω)(S).

20See Proposition 1 in Gul and Pesendorfer (2006) for the formal proof.
21CMO denotes the choice correspondence defined in Masatlioglu and Ok (2005).
22The same authors also provide another model of reference-dependent choice in which the first

stage involves several rounds (Masatlioglu and Ok (2006)).
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It is possible that if she expects to choose x from the choice problem S, she chooses

x and, if she expects to choose y from the choice problem S, she chooses y. In other

words, both x and y are choosable depending on the decision maker expectations. This

formulation is in line with the personal equilibrium of Kosezgi and Rabin (2006). If

you expect to choose an element and actually choose it, your actual choice fulfills

rational expectation, and the set of all choosable elements consists of such elements.

Note that Theorem 5 implies that the endogenous reference-dependent choice in the

sense of Masatlioglu and Ok (2005) satisfies WARNI.

While our model can capture endogenous formation of reference point in their

setup, it allows more general framework in which the phycological constraint depends

not only status quo x but also the choice problem. To see this, we need define a

general model of reference-dependent choice by

CRDC(S, x) = {y ∈ Ω(x, S)| @ z ∈ Ω(x, S) such that zEy}.

Here the psychological constraint depends on both the reference point and the budget

set. Then the endogenous reference-dependent choice is defined by

x ∈ C(E,Ω)(S) if, and only if, x ∈ CRDC(S, x).

Therefore, if a choice correspondence satisfies ACE, it can be interpret as the endoge-

nous reference-dependent choices: any element of C(E,Ω)(S) is a self-fulfilling plan

with S.

6 Concluding Remarks

Motivated by real life decision problem, we provide a descriptive model of choice by

elimination in which decision procedure involves elimination rather than selecting an

alternative. In this model, bounded rationality is captured by idea that an alterna-

tive under consideration might not be compared by all available alternatives in the

budget set. The comparison takes place in a subset of the budget due to, for exam-

ple, the complexity of the problem, the limitation an time and cognitive ability, or
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the usage of some particular e-commerce site. Of course, this decreases the cognitive

load on the decision maker. While the elimination is based on a context free order-

ing, the comparison set might depends on the budget set and the alternative under

consideration.

On the normative ground, we provide a necessary and sufficient condition for the

model. The “axiom of choice by elimination” (ACE) assumes that the decision maker

has at least one alternative for each budget set which is always choosable whenever

it is available from a subset of the original budget set. As in the representation, this

reflects the idea of bounded rationality. This condition is also normatively appealing

since it is immune to money pump type of arguments despite the fact that it is weaker

than the independent of irrelevant alternative (IIA).

The richness of our framework allows to provide a characterization for IIA which

is impossible to represented by any binary relation. Moreover, our model delivers a

unifying structure for existing different kind of preference representations. Finally,

we present a model for Simon’s satisficing in which the decision maker picking an

alternative if it is above a certain level depending on the budget set. This model lies

also outside of preference modeling.

We would like to end by discussing the model of Manzini and Mariotti (2007).

They have proposed a model in which the decision maker uses two rationales (possibly

more) to make decision. In the first step, she shortlists the non-dominated alternatives

using the first rationale. In the second step, she considers only this shortlist and

select the non-dominated alternatives using a second rationale. Unlike our model,

their model allows strict choice cycles even when the choice correspondence is single

valued.23 This is because of the interaction of two rationales. However, our model is

not a special case of theirs. For example, the following choice behavior,

C({x, y, z}) = {x, y, z}, C({x, y}) = {x}, C({y, z}) = {y}, C({x, z}) = {x},

satisfies ACE. However, no matter how many rationales we use, it cannot be captured

23Note that if we work with choice function instead of choice correspondence, our weakest axiom,

ACE, is equivalent to the standard preference maximization.
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by the model of Manzini and Mariotti (2007). Therefore, neither of these two models

imply each other.

On the other hand, one can wonder whether the model of Choice by Satisfaction

is a special case of their model if we use the first rationale to construct Ω̄(S) for each

choice problem. Since the above example also satisfies ACS, there is no implication

between these models. Even though our model shares a similar procedural feature,

they are completely different. The reason is that the first stage is used as a filtration

(or another level of elimination) in their model. However, the first stage of our model

just describes the set of comparables without eliminating any alternatives.

7 Appendix

7.1 Countable Domain

Our construction of the elimination order E heavily depends on the finiteness as-

sumption of the domain, X. Here, we extend our results to the case where X is

countable.

In this section, we assume that X is a countably infinite set and a choice corre-

spondence C is defined over the collection of all finite subsets of X, which is denoted

by ΘX .

Theorem 6 Theorem 1-5 hold when X is a countably infinite set and ΩX is a col-

lection of all finite subsets of X.

Proof of Theorem 6: Let

X = {x1, x2, x3, . . .}

For each

Xn = {x1, x2, . . . , xn}
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define an elimination order over Xn, denoted by En as we did for the case of finitely

many elements and let

un(xm) =
∑

i≤n and xmEnxi

(
1

2

)i

for m ≤ n.

Since un(xm) ∈ [0, 1], for each xm, we can define

un(xm) = lim sup
n→∞

un(xm)

and define E, which is an asymmetric and negatively transitive order on X as

xmEx′mif and only if u(xm) > u(x′m)

Then, we argue that whenever xi /∈ C(S), there exists an element within S which

eliminates xi. That is, x∗Exi for some x∗ ∈ S. To see this, consider large n so that all

elements in S are included in Xn. Since En is the elimination order which represents

C (with an appropriate Ω function) with Xn being a grand set, there exists x ∈ S

such that xEnxi. Notice that x may depend on n.

Therefore, for each n, we have

max
x∈S

un(x) ≥ un(xi) +
1

2i

Since S is a finite set, we have

max
x∈S

lim sup
n→∞

un(x) ≥ lim sup
n→∞

un(x)

Given E, we can construct Ω exactly in the same manner as when X is finite.

7.2 Minimal Consistency

A consistency condition is a postulate which is imposed on choice correspondences

to rule out some type of irrational choice behavior (at least it seems irrational). In

the literature, some of these consistency conditions are perceived weaker then others,
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namely IIA, Sugden’s Minimal Consistency, Fishburn’s A5, and Sen’s α(−). We

will discuss relationship between ACE and those. In a nutshell, the common feature

of consistency conditions which are weaker then our axiom is to allow strict cyclical

choice behavior. We will elaborate on this. We first start describing Sugden’s Minimal

consistency axiom.

Sugden’s Minimal consistency: If {x} = C({x, y}) then for all feasible

sets S = {x, y, . . . }, {y} 6= C(S).

This axiom argues that if one chooses uniquely x from a set limited to x and y,

y should not be equal to her choice set from a larger set including x, y and some

other elements. Sugden (1985) illustrates his point with the case of regret in which

we observe cyclical choice behavior as in example 1. Therefore, This axiom doesn’t

imply ACE. On other hand, ACE implies this axiom.

Sen’s α(−): For each S, for some x ∈ c(S), x is in C({x, y}) for all y ∈ S.

In words, every chosen set C(S) must contain at least one element x such that

x ∈ C({x, y}) is true for all y ∈ S. It is routine to verify that ACE implies Sen’s α(−),

but not the other way around. The latter can be seen in the example: X = {x, y, z, t}
and C(S) = S except {x} = C({x, y, z, t}) and {y} = C({x, y, z}), which satisfies

α(−) but not ACE. Note that for this example, the money pump argument can be

implemented by offering {y, z} when the decision maker has x and {x, z, t} when she

owns y. Also note that Sugden’s minimal consistency is weaker than IIA, Sen’s α(−),

and ACE.

Fishburn’s (A5): If S contains more than two alternatives and x is in C(S),

then x is in C({x, y}) for some y 6= x in S.

Note that neither does α(−) imply Fishburn’s A5, nor does the latter imply

α(−). The former is seen by considering the example: {x} = C({x, y}), {y} =

C({y, z}), {x} = C({x, z}), and {x, z} = C({x, y, z}) which satisfies α(−) but

not Fishburn’s A5. The latter is seen in the example: {x} = C({x, y}), {y} =
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C({y, z}), {z} = C({x, z}), and {x} = C({x, y, z}), which satisfies Fishburn’s A5

but not α(−). These examples also suggest that neither does ACE imply Fishburn’s

A5, nor does the latter imply α(−).

Independence of Irrelevant Alternatives (IIA): For any S ∈ ΘX

and any x ∈ C(S), if x ∈ T ⊂ S then x ∈ C(T ).

If x is chosen from a set containing only x and y, then introducing a third alterna-

tive z, thus expanding the choice set to {x, y, z}, must not make y a chosen element.

In other words, whether x is going to be chosen should not depend on the availability

an alternative which is irrelevant.

Plott’s Path Independence: For all S, T, C(C(T ) ∪ C(S)) = C(T ∪ S).

For the best description of this axiom, we refer to Plott (1973):

“The alternatives are split up into smaller sets, a choice is made over

each of these sets, the chosen elements are collected, and then a choice is

made from them. Path independence, in this case, would mean that the

final result would be independent of the way the alternatives were initially

divided up for consideration”

It is easily checked that Plott’s path independence implies IIA. Indeed, Parks

(1974) shows that IIA is equivalent to a part of path independence, C(T ∪ S) ⊂
C(C(T ) ∪ C(S)).
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