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Abstract

A waste disposal facility has to be sited in one of several districts that
produce different amounts of wastes. The construction cost of the facility
depends on where it is sited. When a district accepts the facility, it bears a
disutility. The problem here is to choose a siting district and to share the
construction cost with considering fair compensation to the siting district. We
provide an axiomatic framework to normatively analyze this problem and seek
for desirable decision rules. A fair pricing rule is a rule that selects a district
so as to minimize the social loss, puts a negative price to wastes according to
the loss, and gives a full compensation to the siting district. We show that this
rule is the unique rule that satisfies certain efficiency, fairness, and robustness
to strategic transfers of wastes. We also establish the nearly robustness of this
rule to misrepresentation of disutility information.
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1 Introduction

Consider a situation where a waste disposal facility (or any locally undesirable land
use facility) has to be sited in one of several districts that produce different amounts
of wastes. The construction cost of the facility depends on where it is sited. When
a district accepts the facility, it bears a disutility. The problem here is to choose a
siting district and to share the construction cost with considering fair compensation
to the siting district. Following the terminology in environmental studies, we call
this problem the “NIMBY” (Not in my backyard) problem. 1 The purpose of this
paper is to develop a framework that normatively analyzes the NIMBY problem and
to find allocation rules that solve the problem.

The NIMBY problem shares some aspects of existing fair allocation problems.
First, it is a problem of allocating one indivisible object (the facility) among dis-
tricts when monetary transfers are possible (Tadenuma and Thomson, 1993; Sakai,
2007). 2 Second, it is a problem of sharing cost (Moulin and Shenker, 1992). 3 Third,
it is a problem of choosing one public alternative (a district) with monetary transfers
(Moulin, 1985a,b). Finally, it is a traditional Pigouvian problem of fair compensa-
tion to the victims from negative externalities. We shall develop a model so as to
incorporate these aspects. In our model, each district is characterized by a triplet:
the amount of wastes it produces; a disutility function; a cost function. There, a rule
is a function that determines the siting district and appropriate monetary transfers
among districts, given the profile of the triplets. Our approach is axiomatic: we
first define normatively desirable properties of rules and then seek for rules satisfying
them. 4

Our main theorem recommends to put a price to the dispose of wastes, so that the
full compensation for the disutility of the siting district is possible. This rule is called
a fair pricing rule. Under this rule, a siting district is chosen so as to minimize the
social loss (the sum of the construction cost and the disutility of the siting district);
the social loss is divided by the amount of total wastes, and the value so obtained is
the price of disposing wastes; each non-siting district pays the multiplication of the
price and the amount of its wastes; the siting district also pays in the same manner
but it also receives the full compensation for its disutility; overall, each district’s final
utility level is equal to the multiplication of the price and the amount of its wastes.
All fair pricing rules are equivalent in welfare in that they always yield the same utility
allocations. In this sense, this recommendation is unique. Any fair pricing rule always
chooses an allocation that belongs to the core. It is monotonic to any improvement
of environments and is robust to strategic transfers of wastes. Furthermore, any rule

1For surveys of various NIMBY problems, we refer to Brion (1991), Rabe (1994), and Lesbirel
(1998).

2A survey is provided by Thomson (Ch.10, 2005).
3Moulin (2002) offers a survey.
4There are some studies of auctioning an undesirable facility (Kunreuther and Kleindorfer, 1986;

Kunreuther, Kleindorfer, Knez, and Yaksick, 1987; Kleindorfer and Sertel, 1994; Minehart and
Neeman, 2002). Our model is much more structured than theirs, in that we deal with not only
disutility, but also construction cost and the amounts of wastes. Our model is rather similar to
Moulin’s (1985b) quasi-linear social choice model than those auction models.
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satisfying these properties is necessarily a fair pricing rule. Since the calculation of
the price is quite simple, this axiomatization gives us a practical way to solve the
NIMBY problem.

Although a fair pricing rule is not perfectly robust to misrepresentation of disutil-
ity information, it is nearly robust in the following senses: any manipulated outcome
still belongs to the core; the welfare condition under manipulation is close to the
welfare condition under true information. This nearly robustness result much con-
trasts with various existing impossibility results on implementability conditions such
as strategy-proofness or Nash implementability.

This paper is organized as follows. Section 2 introduces the model. Section 3
defines axioms of rules. Section 4 studies fair pricing rules. Section 5 discusses
our modeling and future works. Section 6 concludes the discussion. All proofs are
relegated to the Appendix.

2 The model

Let N ≡ {1, 2, . . . , n} be the set of districts. Each i ∈ N needs a waste disposal
facility (or simply, a facility) for the amount of wastes wi ≥ 0. Let w ≡ (wi)i∈N

be the profile of waste parameters. For each S ⊆ N , let WS ≡ ∑
i∈S wi. Also,

let W ≡ WN , i.e., W ≡ ∑
i∈N wi. Since we are not interested in the case with no

wastes, we assume that W > 0. Let W ≡ {w ∈ RN
+ : W > 0} be the set of waste

distributions.
The construction cost of the facility at i ∈ N that deals with the amount of wastes

W is ci(W ) ≥ 0. We assume that ci : R+ → R+ is a weakly concave and strongly
increasing function such that ci(0) = 0. 5 We call it a cost function. Let C be the set
of cost functions.

When a waste disposal facility whose scale is to deal with W amount of wastes
is sited at i ∈ N , i bears a disutility vi(W ) ≥ 0; otherwise, i bears no disutility. 6

We assume that vi : R+ → R+ is a weakly concave and strongly increasing function
such that vi(0) = 0. 7 We call it a disutility function. Let V be the set of disutility
functions. 8

5Weak concavity means that the cost of constructing one big facility is weakly less than the cost
of constructing some small facilities that together have the same disposal ability to the big facility.
This fact is often pointed out in the literature of environmental policies. See, for example, “1997
New Guideline for Waste Disposal” by the Ministry of Health and Welfare in Japan (now called the
Ministry of Health, Labor, and Welfare).

6This “local undesirability” assumption is supported by some empirical evidences on the distri-
butions of disutilities, which observe that people do not bear a disutility if a waste disposal facility
is sited outside of their houses by about 3 miles (Hirshfeld, Vesilind, and Pas, 1992; Sasao, 2002).

7The weak concavity assumption is based on the following intuition: if a district does not have
a facility, it bears a big disutility when it accepts a facility. However, when the district already
has a facility, its disutility does not grow very much when the size of the facility becomes bigger.
Minehart and Neeman (2002) also impose the same assumption in a simpler model.

8Our discussions and proofs hold without any substantial change even if cost-disutility functions
are restricted to be strongly concave and/or weakly increasing and/or continuous. This issue is
discussed in Section 5.4.
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Each i’s preference over waste-money pairs, R+ × R, is represented by the quasi-
linear function ui : R+ × R → R such that for each (W,mi) ∈ R+ × R,

ui(W,mi) ≡ −vi(W ) +mi.

Here, vi(W ) is i’s disutility when a facility that deals with W amount of wastes is
sited at i, and mi is i’s net monetary transfer. 9 Note that ui(0, mi) = mi.

Thus, each district i ∈ N is characterized by a triplet (wi, vi, ci) ∈ R+ × V × C.
Let (w, v, c) ≡ (wi, vi, ci)i∈N ∈ D ≡ W × VN × CN be the profile of these triplets.

An assignment function is a mapping σ : N → {0, 1} such that |σ−1(1)| = 1.
Let A be the set of assignment functions. Given i ∈ N , when σ(i) = 1, the facility is
assigned to i; otherwise, the facility is not assigned to i. Given a waste distribution
and a profile of cost functions (w, c) ∈ W ×CN , an allocation for (w, c) is a triplet of
the amount of total wastes W =

∑
i∈N wi, an assignment function σ, and a monetary

transfer vector m that covers the construction cost, namely,

(W,σ,m) ∈ {W} × A × RN

such that 10

∑

i∈N

mi = −cσ−1(1)(W ).

Let X(w, c) be the set of allocations for (w, c). Note that, for two w,w′ with
W = W ′, we have X(w, c) = X(w′, c). Given (W,σ,m) ∈ X(w, c), every i ∈ N
obtains a bundle

(σ(i) ·W,mi) ∈ R+ × R.

Note that

ui(σ(i) ·W,mi) = ui(W,mi) = −vi(W ) +mi if σ(i) = 1,

ui(σ(i) ·W,mi) = ui(0, mi) = mi if σ(i) = 0.

We write x = (W,σ,m) and xi = (σ(i) ·W,mi) for each i ∈ N . Given (w, v, c) ∈ D
and x ∈ X(w, c), let u(x) ≡ (ui(xi))i∈N ∈ RN .

A rule is a function ψ that associates with each profile (w, v, c) ∈ D an allo-
cation for (w, c), ψ(w, v, c) ∈ X(w, c). Given x = ψ(w, v, c) and i ∈ N , we write
xi = ψi(w, v, c). Two rules ψ and φ are welfare equivalent if for each (w, v, c) ∈ D,
u(ψ(w, v, c)) = u(φ(w, v, c)).

Given a rule ψ and (w, v, c) ∈ D, when (W,σ,m) = ψ(w, v, c) and j = σ−1(1), we
say that j is the ψ(w, v, c)-accepter.

9Thus, i pays mi if mi ≤ 0, and receives mi if mi ≥ 0.
10Note that the disutility part vσ−1(1)(W ) does not appear in the budget balancedness. This

is natural, since this balancedness is about monetary transfers and is not about utility transfers.
The same budget balancedness is introduced by Moulin (1985b) in the context of quasi-linear social
choice with cost functions.
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3 Axioms

Given (w, v, c) ∈ D, an allocation x ∈ X(w, c) is (Pareto) efficient for (w, v, c) if
there exists no y ∈ X(w, c) such that for each i ∈ N , ui(yi) ≥ ui(xi), with strict
inequality holding for at least one i. For each (W,σ,m) ∈ X(w, c) with j = σ−1(1),
since

∑

i∈N

ui(σ(i) ·W,mi) = −vj(W ) +mj +
∑

i�=j

mi = −(vj(W ) + cj(W )),

(W,σ,m) is efficient for (w, v, c) if and only if j ∈ arg mini∈N (vi(W )+ ci(W )). When
j ∈ arg mini∈N(vi(W ) + ci(W )), we say that j is an efficient district at (w, v, c). Let
P (w, v, c) be the set of efficient allocations for (w, v, c).

Efficiency: For each (w, v, c) ∈ D, ψ(w, v, c) ∈ P (w, v, c).

Given (w, v, c) ∈ D, an allocation x ∈ X(w, c) is individually rational for (w, v, c)
if for each i ∈ N , ui(xi) ≥ −(vi(wi) + ci(wi)). Let I(w, v, c) be the set of individually
rational allocations for (w, v, c).

Individual rationality: For each (w, v, c) ∈ D, ψ(w, v, c) ∈ I(w, v, c).

Given (w, v, c) ∈ D, a coalition S ⊆ N , and an allocation x ∈ X(w, c), S can block
x at (w, v, c) if the members of S can be made simultaneously better off by deviating
from x, i.e., there exists (σ′, m′) ∈ A× RS such that for some j ∈ S,

σ(j) = 1,∑

i∈S

m′
i = −cj(WS),

ui(xi) < ui(σ(i) ·WS, m
′
i) for each i ∈ S.

Equivalently, we can state that S can block x at (w, v, c) if
∑

i∈S

ui(xi) < −min
j∈S

(vj(WS) + cj(WS)).

Let C(w, v, c) be the set of allocations that cannot be blocked by any coalition at
(w, v, c). We refer to C as the core.

Core property: For each (w, v, c) ∈ D, ψ(w, v, c) ∈ C(w, v, c).

Obviously, the core property implies efficiency and individual rationality. When
an economist recommends a core allocation, no group of districts can propose a devi-
ation plan against the recommendation. Thus, besides its appeal as a distributional
requirement, the core property is quite important for a recommended allocation to
be accepted.

The next is a weak monotonicity axiom with respect to improvements of cost-
disutility functions. It states that, when the cost and disutility at a district decreased
at every level of wastes and the change can lead Pareto improvement, then all districts
should weakly gain.
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Monotonicity: Let (w, v, c) ∈ D and j ∈ N . If c′j ∈ C and v′j ∈ V are such that for
each q > 0, c′j(q) < cj(q) and v′j(q) < vj(q), and v′j(W ) + c′j(W ) < mini∈N (vi(W ) +
ci(W )), then

uj(ψj(w, v, c)) ≤ u′j(ψj(w, v
′
j, v−j , c

′
j, c−j)),

ui(ψi(w, v, c)) ≤ ui(ψi(w, v
′
j, v−j, c

′
j, c−j)) for each i 	= j.

In the definition of monotonicity, we compare utility levels of different utility
functions, uj(ψj(w, v, c)) and u′j(ψj(w, v

′
j, v−j, c)). This makes sense, since under

quasi-linearity, these values mean i’s happiness evaluated in terms of money.
Since wastes are usually tradable, a group of districts may gain by strategically

transferring their wastes among the group through side-payments. The next axiom
states that no such a manipulation is possible. 11 Alternately, it says that social
choice should be based on the true information on the distribution of wastes.

Reallocation-proofness: For each (w, v, c) ∈ D and each S ⊆ N , if w′ ∈ W is such
that W ′

S = WS and for each i ∈ N \ S, wi = w′
i, then

∑

i∈S

ui(ψi(w, v, c)) =
∑

i∈S

ui(ψi(w
′, v, c)). (1)

Consider the case that (1) does not hold with
∑

i∈S ui(ψi(w, v, c)) <
∑

i∈S ui(ψi(w
′, v, c)).

In this case, when w is the true waste distribution, by realizing w′ through trans-
fers of wastes, group S can increase its group benefit from

∑
i∈S ui(ψi(w, v, c)) to∑

i∈S ui(ψi(w
′, v, c)). And then, by appropriate side-payments among S, all members

of S can increase its welfare. The parallel comment applies to the case with the
opposite inequality. Reallocation-proofness excludes such strategic manipulation.

Reallocation-proofness is important even if transfers of wastes are prohibited. To
check if districts do not transfer wastes, the government has to collect the correct
information on the amounts of wastes for all districts, which usually costs a lot.
However, when a rule is designed to be reallocation-proof, such a monitoring activity
is not necessary. According to this aspect, reallocation-proofness can be interpreted
as a cost-efficiency axiom.

4 Fair waste pricing

A natural way of solving the NIMBY problem is to put a price to disposing wastes. A
problem is how to determine an appropriate price. For instance, consider an “unfair”
pricing rule ψ such that for each (w, v, c) ∈ D, whenever (W,σ,m) ≡ ψ(w, v, c) and
j ≡ σ−1(1), it holds that

j ∈ arg min
i∈N

(vi(W ) + ci(W )),

mi = −wi · cj(W )

W
for each i ∈ N.

11This axiom is introduced by Moulin (1985) in the context of quasi-linear social choice. He calls
it “no advantageous reallocation”. Our naming is due to Ju, Miyagawa, and Sakai (2007), who
extensively study this axiom in a general setting of resource allocation problems.
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Here,
cj(W )

W
can be read as the price of disposing wastes. This rule selects an efficient

district j as the siting district, and allocates the construction cost cj(W ) propor-

tionally to wastes. However, since uj(ψj(w, v, c)) = −vj(W ) − wj
cj(W )

W
, not only j

pays wj
cj(W )

W
, but also it bears the disutility vj(W ). That is, this rule does not give

any compensation to the disutility of the siting district, and it violates individual
rationality.

We next consider a rule that calculates a “fair” price, so that the full compensation
for the disutility of the siting district is possible. A rule ψ is a fair pricing rule if for
each (w, v, c) ∈ D, whenever (W,σ,m) ≡ ψ(w, v, c) and j ≡ σ−1(1), it holds that

j ∈ arg min
i∈N

(vi(W ) + ci(W )),

mj = −wj · vj(W ) + cj(W )

W
+ vj(W ),

mi = −wi · vj(W ) + cj(W )

W
for each i 	= j.

Then, for each i ∈ N ,

ui(ψi(w, v, c)) = −wi · vj(W ) + cj(W )

W
.

The fair price at (w, v, c) is then defined by

p(w, v, c) ≡ mini∈N(vi(W ) + ci(W ))

W
> 0.

Thus, to calculate the fair price, this rule takes into account not only the construction
cost, but also the disutility of the siting district. All fair pricing rules are welfare
equivalent. In fact, whenever there is only one efficient district, all fair pricing rules
select the same allocation. They satisfy all the axioms defined in the last section.
Furthermore, whenever there are at least three districts, they are the only rules
satisfying the axioms:

Theorem 1. Any fair pricing rule satisfies the core property, monotonicity, and
reallocation-proofness.

Conversely, when n ≥ 3, if a solution satisfies individual rationality, monotonicity,
and reallocation-proofness, then it is a fair pricing rule.

Proof. See the Appendix.

The three axioms in the characterization, individual rationality, monotonicity,
and reallocation-proofness, are independent. Examples of rules satisfying the three
axioms except for each one are offered in the Appendix C.

In applying a rule to solve real-life problems, we need to collect information on
the amount of wastes, the construction cost, and the disutility of each district. The
information on the amount of wastes and the construction cost can be usually checked
or estimated, but disutility information is not so. So, we need to somehow obtain the
disutility information. However, a general impossibility result by Holmstrom (1979)
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implies in this model that no efficient rule is strategy-proof. 12 Since a fair pricing rule
is efficient, it is not strategy-proof. Also, since a fair pricing rule violates Maskin’s
monotonicity condition that is necessary for Nash implementation (Maskin, 1999),
it is not Nash implementable. 13 However, these negative results do not mention
anything about the degree of manipulability of a fair pricing rule. To analyze this
issue, we consider the direct revelation game for a fair pricing rule.

Let ψ be a fair pricing rule. Given (w, v, c) ∈ D, v′ ∈ VN is a Nash equilibrium of
the direct revelation game for ψ at (w, v, c) if for each i ∈ N and each v′′i ∈ V,

ui(ψi(w, v
′, c)) ≥ ui(ψi(w, v

′′
i , v

′
−i, c)).

Let N (ψ,w, v, c) be the set of Nash equilibria of the direct revelation game for ψ
at (w, v, c). 14 We shall investigate what happens in Nash equilibrium. The next
theorem is positive. It states that the fair price under any possible manipulation is
higher than the fair price under truthful revelation but the difference is not significant;
any allocation attainable through Nash equilibrium still belongs to the core.

Theorem 2. Let ψ be a fair pricing rule. For each (w, v, c) ∈ D and each v′ ∈
N (ψ,w, v, c), whenever v1(W ) + c1(W ) ≥ v2(W ) + c2(W ) ≥ · · · ≥ vn(W ) + cn(W ),

(i) p(w, v, c) =
vn(W ) + cn(W )

W
≤ p(w, v′, c) ≤ vn−1(W ) + cn−1(W )

W
,

(ii) ψ(w, v′, c) ∈ C(w, v, c).

Proof. See the Appendix.

Note that the above game is easy to play for districts by virtue of the simple
definition of a fair pricing rule. Indeed, since a fair pricing rule ψ does not depend on
details of disutility functions, each district i only needs to report a real-value v′i(W )
instead of the entire form of v′i. Also, since ψ itself is the outcome function in the
game, calculating the outcome is easy.

Theorem 2 implies the following welfare conditions in Nash equilibria:

Corollary 1. Let ψ be a fair pricing rule. For each (w, v, c) ∈ D and each v′ ∈
N (ψ,w, v, c), whenever v1(W ) + c1(W ) ≥ v2(W ) + c2(W ) ≥ · · · ≥ vn(W ) + cn(W )
and j is the ψ(w, v′, c)-accepter,

(i) vj(W ) + cj(W ) = vn(W ) + cn(W ),

(ii) uj(ψj(w, v, c)) ≤ uj(ψj(w, v
′, c)) and

uj(ψj(w, v
′, c)) − uj(ψj(w, v, c)) ≤

(
(vn−1(W ) + cn−1(W )) − ((vn(W ) + cn(W ))

)(
1 − wj

W

)
,

(iii) −wi · vn−1(W ) + cn−1(W ))

W
≤ ui(ψi(w, v

′, c)) ≤ −wi · vn(W ) + cn(W )

W
= ui(ψi(w, v, c)).

12Strategy-proofness says that truth telling is always a dominant strategy. Ohseto (2000, The-
orem 1) points out that Holmstrom’s impossibility result works in economies with one indivisible
object and money.

13Fujinaka and Sakai (2007a) observe that any standard fairness notion is incompatible with Nash
implementation in various problems of indivisible goods allocation.

14We examine the existence of equilibria in Section 5.1.
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Proof. Condition (i) states that ψ(w, v′, c) is efficient at (w, v, c). This holds, since
by Theorem 2, ψ(w, v′, c) ∈ C(w, v, c).

Condition (i) and the possible range of p(w, v′, c) specified in Theorem 2 imply
Conditions (ii) and (iii).

The message from Corollary 1 is clear: only an efficient district can gain by
manipulation, the gain is not significant, and any other district may lose but the loss
is not significant. Summarizing the discussions on strategic manipulation, we can
conclude that a fair pricing rule is nearly robust to strategic manipulation, though
it is not perfectly robust. Any manipulated fair price is close to the true fair price,
the allocation attained by the manipulated price even belongs to the core, and the
welfare condition at the allocation is close to the welfare condition at the true fair
pricing allocation.

5 Discussions

5.1 Existence of equilibria

The set N (ψ,w, v, c) can be empty for some fair pricing rule ψ and (w, v, c) ∈ D.
The reason is that, in some situations, a district has a non-compact set of “better”
strategies at any strategy profile and it cannot find the best response. The following
is an intuitive sketch of this story. Consider the case that N = {1, 2}, v1(W ) > v2(W )
and c1(W ) = c2(W ). Also, assume that district 1 has a priority to accept the facility
in the case of ties. Whenever district 1’s strategy v′1 is such that v′1(W ) > v2(W ),
district 2 can gain more as v′2(W ) becomes larger with keeping

v′1(W ) > v′2(W ) > v2(W ). (2)

This is because, whenever inequality (2) is kept, district 2 can accept the facility
and receive a higher compensation for its disutlity by reporting higher disutilities.
However, district 2 cannot find the best response here, since for every v′2 with v′1(W ) >
v′2(W ), there is v′′2 such that v′1(W ) > v′′2(W ) > v′2(W ). However, fortunately, there
exists a fair pricing rule whose associated game always has a Nash equilibrium.

Proposition 1. There exists a fair pricing rule ψ such that for each (w, v, c) ∈ D,
N (ψ,w, v, c) 	= ∅.
Proof. See the Appendix B.

An alternative approach to establish the existence of equilibrium is to slightly
relax Nash equilibrium to ε-Nash equilibrium. Fujinaka and Sakai (2006) consider
allocations that can be supported by ε-Nash equilibrium for arbitrary small ε > 0 and
call those allocations most realizable. They establish the existence of most realizable
allocations in a simpler model. By the same approach as Fujinaka and Sakai, we can
show that, for arbitrary fair pricing rule, most realizable allocations exist and all of
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them have the same desirable properties of Nash equilibrium allocations established
by Theorem 2. Interested readers are invited to see Fujinaka and Sakai (2006). 15

5.2 Transferable utility game

An alternative way of defining solutions for our problem is to invoke the tools of
cooperative game theory. There is a natural way of defining the worth of a coalition.
Let a ≡ (w, v, c) ∈ D and S ⊆ N . The worth of S at a, ga(S), is defined as the
minimal social loss to deal with WS among the coalition, that is,

ga(S) ≡ −min
i∈S

(vi(WS) + ci(WS)).

We call ga a game at a. By routine calculation, one can check that ga is convex, that
is, for each S, T ⊆ N , ga(S) + ga(T ) ≤ ga(S ∪ T ) + ga(S ∩ T ). It is known that any
convex games has a non-empty core and there are some interesting core selections
such as the Shapley value (Shapley, 1953). 16 In fact, the solution that associates with
each problem the utility allocation calculated by the Shapley value satisfies the core
property. It also satisfies monotonicity, but not reallocation-proofness. Further prop-
erties of this solution and other solutions defined by the cooperative game approach
are still unknown.

5.3 More than one facilities and a globally unwanted facility

One may wish to consider the problem of siting (possibly) more than one facility.
This can be done by naturally generalizing our definition of allocations so that more
than one facility can be built and the sum of monetary transfers equals the sum of
all construction costs. However, under the concavity of cost-disutility functions, for
each allocation that associates more than one facility, there exists an allocation that
associates only one facility and weakly Pareto dominates the allocation. In this sense,
under the concavity conditions, the assumption to construct only one facility does
not lose generality. Studying the case with non-concave cases is left to the future
research.

Another possible approach is to deal with a “globally unwanted” facility (e.g., a
nuclear power plant). In this case, it would be natural to assume that people have a
“single-dipped” preference over districts whose dip is the place they live in. 17 Dealing
with this case is also left to the future research.

15Tadenuma and Thomson (1995) and Fujinaka and Sakai (2007b) analyze manipulation games
of envy-free rules in the same model as Fujinaka and Sakai (2006) with the help of an assumption
that implies the existence of Nash-like equilibria.

16For properties of convex games and other core selections, see Moulin (1988).
17For the definition of single-dippedness, see Ehlers (2002). He studies probabilistic resource

allocation with single-dipped preferences.
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6 Conclusion

We have formulated an axiomatic model to analyze the NIMBY problem. We in-
troduced a fair pricing rule and showed that it is the unique rule satisfying a set of
various desirable axioms. We also showed that this rule is nearly robust to strategic
manipulation in revelation of disutility information. These results ensure significant
advantages of a fair pricing rule to solve the NIMBY problem.

Besides its importance as a real-life problem, the NIMBY problem is a quite in-
teresting topic to apply our knowledge and techniques of social choice theory and
implementation theory in economic environments. As suggested in the previous sec-
tion, there are still many things to be resolved by future works.
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Appendix

A. Proofs of Theorems

Proof of Theorem 1

Lemma 1. Any fair pricing rule satisfies the core property, monotonicity, and reallocation-
proofness.

Proof. Let ψ be a fair pricing rule. We only show that it satisfies the core property,
since other properties are obvious.

Let (w, v, c) ∈ D and S ⊆ N . Let k ∈ arg mini∈S(vi(WS) + ci(WS)) and j ∈
arg mini∈N(vi(W ) + ci(W )). Then,

∑

i∈S

ui(ψi(w, v, c)) = −WS · (vj(W ) + cj(W ))

W
.

It suffices to show that

WS · vj(W ) + cj(W )

W
≤ vk(WS) + ck(WS).

This equality is equivalent to

WS

W
≤ vk(WS) + ck(WS)

vj(W ) + cj(W )
,

which is true by concavity of those functions. Thus, ψ satisfies the core property.

The following somewhat technical condition, introduced by Ju, Miyagawa, and
Sakai (2007), states that transfers of wastes do not change utilities unboundedly:

One-sided boundedness: For each (w, v, c) ∈ D, there exists i ∈ N such that
ui(ψi( · , v, c)) is bounded below or above on the set {w′ ∈ RN

+ : W ′ = W}.
Ju, Miyagawa, and Sakai (2007, Theorem 2) characterize the class of rules sat-

isfying reallocation-proofness and one-sided boundedness in a general setting. Their
result implies in our model that:

Lemma 2. Assume n ≥ 3. If a rule ψ satisfies reallocation-proofness and one-sided
boundedness, then there exist functions

A : R+ × CN × VN → R,

B : R+ × CN × VN → RN

such that for each (w, v, c) ∈ D and each i ∈ N ,

ui(ψi(w, v, c)) = wiA(W, v, c) +Bi(W, v, c).

13



Lemma 3. Individual rationality implies one-sided boundedness.

Proof. Let ψi be an individually rational rule. Let (w, v, c) ∈ D and W(w) ≡ {w′ ∈
RN

+ : W = W ′}. For each i ∈ N and each w′ ∈ W(w), since

−(ci(W ) + vi(W )) ≤ −(ci(w
′
i) + vi(w

′
i)),

by individual rationality,

−(ci(W ) + vi(W )) ≤ ui(ψi(w
′, v, c)).

Thus, for each i ∈ N , ui(ψi( · , v, c)) is bounded from below by −(ci(W )+ vi(W )) on
W(w). Hence, ψ satisfies one-sided boundedness.

Lemma 4. Assume n ≥ 3. Individual rationality, monotonicity, and reallocation-
proofness together imply efficiency.

Proof. Let ψ be a rule satisfying the three properties and let A,B be its associated
functions. Let (w, v, c) ∈ D and k ∈ N be the ψ(w, v, c)-accepter. We shall show
that k ∈ arg mini∈N(vi(W ) + ci(W )).

We first show that, for each i ∈ N , Bi(W, v, c) ≥ 0. Otherwise, there exists i ∈ N
such that Bi(W, v, c) < 0. Let w′ ∈ RN be such that w′

i = 0 and W ′ = W . Then

ui(ψi(w
′, v, c)) = Bi(W

′, v, c) = Bi(W, v, c) < 0 = −(vi(w
′
i) + ci(w

′
i)).

This contradicts individual rationality.
Let j ∈ arg mini∈N(vi(W ) + ci(W )) and w′′ ∈ RN

+ be such that w′′
j = W ′′ = W .

By reallocation-proofness,

∑

i∈N

ui(ψi(w
′′, v, c)) =

∑

i∈N

ui(ψi(w, v, c)) = −(vk(W ) + ck(W )). (3)

Then,

−(vj(W ) + cj(W )) ≤ uj(ψj(w
′′, v, c)) = −(vk(W ) + ck(W )) −

∑

i�=j

ui(ψi(w
′′, v, c))

= −(vk(W ) + ck(W )) −
∑

i�=j

Bi(W, v, c) ≤ −(vk(W ) + ck(W )),

where the first weak inequality follows from individual rationality, the first equality
follows from (3), the second equality follows from the definitions of A,B, and the
second weak inequality follows from the non-negativity of each Bi established in the
last paragraph. Hence,

vk(W ) + ck(W ) ≤ vj(W ) + cj(W ). (4)

Since j ∈ arg mini∈N(vi(W ) + ci(W )), by (4), k ∈ arg mini∈N(vi(W ) + ci(W )). Thus
ψ is efficient.
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Lemma 5. Assume n ≥ 3. If a rule satisfies individual rationality, monotonicity,
and reallocation-proofness, then it is a fair pricing rule.

Proof. Let ψ be a rule satisfying the three axioms and let A,B be its associated
functions. By Lemma 4, ψ is efficient.

Step 1: B is constantly zero. Let (w, v, c) ∈ D and j ∈ N . We shall show
that Bj(W, v, c) = 0. Let k 	= j and let w′ ∈ W be such that w′

k = W ′ = W . Since
W = W ′ and w′

j = 0, by Lemma 2,

uj(ψj(w
′, v, c)) = Bj(W, v, c).

Thus, to prove Bj(W, v, c) = 0, it suffices to show that uj(ψj(w
′, v, c)) = 0. Since

w′
j = 0, by individual rationality, uj(ψj(w

′, v, c)) ≥ 0. Suppose, by contradiction,
that uj(ψj(w

′, v, c)) > 0.
Let β ∈ (0, 1) be such that

β · (vk(W ) + ck(W )) < min
i∈N

(vi(W ) + ci(W )).

Define v′k, c
′
k by

v′k(q) ≡ β · vk(q) for each q ≥ 0,

c′k(q) ≡ β · ck(q) for each q ≥ 0.

Since the change from (w′, v, c) to (w′, v′k, v−k, c
′
k, c−k) satisfies the hypothesis of mono-

tonicity, by monotonicity,

uj(ψj(w
′, v′k, v−k, c

′
k, c−k)) ≥ uj(ψj(w

′, v, c)) > 0. (5)

For each i ∈ N \ {j, k}, since w′
i = 0, by individual rationality,

ui(ψi(w
′, v′k, v−k, c

′
k, c−k)) ≥ 0. (6)

Since w′
k = W , by individual rationality,

u′k(ψk(w
′, v′k, v−k, c

′
k, c−k)) ≥ −(v′k(W ) + c′k(W )). (7)

By the construction of v′k and c′k and efficiency, k is the ψ(w′, v′k, v−k, c
′
k, c−k)-accepter.

Hence,

u′k(ψk(w
′, v′k, v−k, c

′
k, c−k)) +

∑

i�=k

ui(ψi(w
′, v′k, v−k, c

′
k, c−k)) = −(v′k(W ) + c′k(W )).

However, by (5), (6), and (7),

u′k(ψk(w
′, v′k, v−k, c

′
k, c−k)) +

∑

i�=k

ui(ψi(w
′, v′k, v−k, c

′
k, c−k)) > −(v′k(W ) + c′k(W )).

This is a contradiction.
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Step 2: Concluding. Let (w, v, c) ∈ D. By Step 1, for each i ∈ N ,

ui(ψi(w, v, c)) = wiA(W, v, c).

By efficiency,

A(W, v, c) = −mink∈N(vk(W ) + ck(W ))

W
.

Hence,

ui(ψi(w, v, c)) = −wi · mink∈N(vk(W ) + ck(W ))

W
.

Thus, when j is the ψ(w, v, c)-accepter, mj = vj(W )−wj · mink∈N (vk(W )+ck(W ))
W

and for

each i 	= j, mi = −wi · mink∈N (vk(W )+ck(W ))
W

.

Lemmas 1 and 5 together completes the proof of Theorem 1.

Proof of Theorem 2

Proof of Theorem 2: Consider any fair pricing rule ψ. Let (w, v, c) ∈ D and v′ ∈
N (ψ,w, v, c). We only deal with cases such that for each i ∈ N , wi < W . The case
such that for some i ∈ N , wi = W can be dealt with by a much simpler way, so we
omit it.

For each i ∈ N , let Vi ≡ vi(W ), Ci ≡ ci(W ), V ′
i ≡ v′i(W ), and C ′

i ≡ c′i(W ). Also,
we write V ′′ ≡ v′′i (W ) for each v′′i ∈ V. Without loss of generality, we assume that
V1 + C1 ≥ V2 + C2 ≥ · · · ≥ Vn + Cn. Let (W,σ,m) ≡ ψ(v′, c) and j ≡ σ−1(1). Note
that j ∈ arg mini∈N(V ′

i + Ci).

Claim 1. There is k �= j such that V �

�
+ C� = V �

�
+ C�: Suppose that

the claim is not true. Then, since j ∈ arg mini∈N (V ′
i + Ci), we have for each i 	= j,

V ′
i + Ci > V ′

j + Cj. Let v′′j be such that

min
i�=j

(V ′
i + Ci) > V ′′

j + Cj > V ′
j + Cj.

Since W > wj and V ′′
j > V ′

j ,

ui(ψi(w, v
′′
j , v

′
−j, c)) = −Vj + V ′′

j (1 − wj

W
) > −Vj + V ′

j (1 − wj

W
) = ui(ψi(w, v

′, c)).

Thus, j could gain by reporting v′′j , a contradiction.

Claim 2. V �

�
≥ V�: Suppose, by contradiction, that V ′

j < Vj. Then,

uj(ψj(w, v
′, c)) = −Vj + V ′

j −
wj

W
(V ′

j + Cj) < −wj

W
(V ′

j + Cj). (8)

By Claim 1, we have j, k ∈ arg mini∈N(V ′
i + Ci). Hence, for any v′′j with V ′′

j > V ′
j ,

uj(ψj(w, v
′′
j , v

′
−j, c)) = −wj

W
(V ′

k + Ck) = −wj

W
(V ′

j + Cj). (9)
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Since (8) and (9) together imply that j could gain by reporting v′′j , this is a
contradiction.

Claim 3. For each i ∈ N,u�(ψ�(w, v
�, c)) ≥ −��

�
(V� + C�): By Claim 2,

uj(ψj(w, v
′, c)) = −Vj + V ′

j −
wj

W
(V ′

j + Cj)

= −wj

W
(Vj + Cj) + (V ′

j − Vj)(1 − wj

W
) ≥ −wj

W
(Vj + Cj).

Suppose, by contradiction, that there exists i 	= j such that

−wi

W
(V ′

j + Cj) = ui(ψi(v
′, c)) < −wi

W
(Vi + Ci).

This implies that V ′
j + Cj > Vi + Ci. Hence, i could gain by truthfully reporting vi,

since

ui(ψi(vj, v
′
−j , c)) = −wi

W
(Vi + Ci).

This is a contradiction.

Claim 4. j ∈ arg min���(V� + C�) and

u�(ψ�(w, v
�, c)) ≥ −w�

W
(V��1 + C��1) for each i ∈ N :

By Claim 3,

un−1(ψn−1(w, v
′, c)) ≥ −wn−1

W
(Vn−1 + Cn−1) (10)

and

un(ψn(w, v′, c)) ≥ −wn

W
(Vn + Cn). (11)

Consider the case n = j. By definition, j ∈ arg mini∈N (vi+ci). Since un−1(ψn−1(w, v
′, c)) =

−wn−1

W
(V ′

j + Cj), by the definition of a fair pricing rule and (10),

V ′
j + Cj ≤ Vn−1 + Cn−1.

Hence, for each i 	= j,

ui(ψi(w, v
′, c)) = −wi

W
(V ′

j + Cj) ≥ −wi

W
(Vn−1 + Cn−1).

This and (11) together establish the claim in this case.

Next, consider the case n 	= j. Since

−wn

W
(Vn + Cn) ≤ un(ψn(w, v′, c)) = −wn

W
(V ′

j + Cj),
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Vn +Cn ≥ V ′
j +Cj . By Claim 2, V ′

j +Cj ≥ Vj +Cj. By definition, Vj +Cj ≥ Vn +Cn,
so

Vj + Cj = V ′
j + Cj = Vn + Cn.

Therefore, j ∈ arg mini∈N (Vi + Ci), and for each i ∈ N ,

ui(ψi(w, v
′, c)) = −wi

W
(Vn + Cn) ≥ −wi

W
(Vn−1 + Cn−1).

Claim 5. ��+	�

�
≤ p(w, v�, c) ≤ ���1+	��1

�
: Claim 4 implies p(w, v′, c) ≤

Vn−1+Cn−1

W
. By Claims 2 and 4, V ′

j +Cj ≥ Vj+Cj = Vn+Cn. Thus, Vn+Cn

W
≤ p(w, v′, c).

Claim 6. ψ(w, v�, c) ∈ C(w, v, c): We shall show that no S ⊆ N can block
ψ(w, v′, c) at (w, v, c). Let S ⊆ N . Since Claim 4 implies ψ(w, v′, c) ∈ P (w, v, c), it
suffices to consider the case that S � N .

Case 6-1. j ∈ S: Since

∑

i∈S\{j}
ui(ψi(w, v

′, c)) = −
∑

i∈S\{j}
wi

v′j(W ) + cj(W )

W

and

uj(ψj(w, v
′, c)) = −vj(W ) + v′j(W ) − wj

v′j(W ) + cj(W )

W
,

we have

∑

i∈S

ui(ψi(w, v
′, c)) = −WS

v′j(W ) + cj(W )

W
− vj(W ) + v′j(W ).

Since v′j(W ) ≥ vj(W ) by Claim 2,

∑

i∈S

ui(ψi(w, v
′, c)) ≥ −WS

vj(W ) + cj(W )

W
. (12)

Since j ∈ arg mini∈S(vi(WS) + ci(WS)), the highest attainable utility of the coali-
tion S is

−(vj(WS) + cj(WS)).

By concavity of vj and cj ,

vj(W ) + cj(W )

W
≤ vj(WS) + cj(WS)

WS
. (13)

By (12) and (13),
∑

i∈S

ui(ψi(w, v
′, c)) ≥ −(vj(WS) + cj(WS)). (14)
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Thus, S cannot block (w, v′, c) at (w, v, c).

Case 6-2. j ∈ N \ S: Let k ∈ arg mini∈S(vi(WS) + ci(WS)). Then, the highest
attainable utility of the coalition S is

−(vk(WS) + ck(WS)).

By Claim 4,

∑

i∈S

ui(ψi(w, v
′, c)) ≥ −WS

vn−1(W ) + cn−1(W )

W
. (15)

Since j /∈ S,

vn−1(W ) + cn−1(W ) ≤ vk(W ) + ck(W ),

and

vn−1(W ) + cn−1(W )

W
≤ vk(W ) + ck(W )

W
. (16)

By concavity,

vk(W ) + ck(W )

W
≤ vk(WS) + ck(WS)

WS
. (17)

Hence, by (16) and (17),

WS
vn−1(W ) + cn−1(W )

W
≤ vk(WS) + ck(WS).

Thus, by (15),

∑

i∈S

ui(ψi(w, v
′, c)) ≥ −(vk(WS) + ck(WS)).

Therefore, S cannot block (w, v′, c) at (w, v, c).

Claims 3 and 6 together completes the proof Theorem 2.

B. Proof of Proposition 1

Proof of Proposition 1. The proof is constructive. We will define a rule that deter-
mines tie-breaking very randomly. Let (H1, H2, . . . , Hn) be a partition of R such that
for each i ∈ N , Hi is dense in R. This partition is fixed throughout. Let ψ be the
fair pricing rule that breaks a tie for each (w, v, c) ∈ D by the following manner:

Let

M(w, v, c) ≡ {i ∈ N : i ∈ arg min
i∈N

(vi(W ) + ci(W )) and vi(W ) + ci(W ) ∈ Hi}.
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Case 1: If M(w, v, c) = ∅, then the district having the largest index among
arg mini∈N(vi(W ) + ci(W )) is chosen as the ψ(w, v, c)-accepter. That is, the district
j ∈ arg mini∈N(vi(W ) + ci(W )) satisfying

j > i for each i ∈ arg min
i∈N

(vi(W ) + ci(W )) \ {j}

accepts the facility.

Case 2: If M(w, v, c) 	= ∅, then the district having the largest index among M
is chosen as the ψ(w, v, c)-accepter. That is, j ∈M(w, v, c) such that

j > i for each i ∈M(w, v, c) \ {j}
accepts the facility.

Obviously, ψ is well-defined. We shall show that, given (w, v, c) ∈ D, N(ψ,w, v, c) 	=
∅. The proof is constructive. Without loss of generality, assume that

v1(W ) + c1(W ) ≥ v2(W ) + c2(W ) ≥ . . . ≥ vn(W ) + cn(W ).

If vn−1(W )+cn−1(W ) = vn(W )+cn(W ), then one can check that the truth teling,
v, is a Nash equilibrium of the game.

Next, consider the case that vn−1(W ) + cn−1(W ) < vn(W ) + cn(W ). Since Hn is
dense in R, there exists v′n ∈ V such that

vn−1(W ) + cn−1(W ) ≤ v′n(W ) + cn(W ) ≤ vn(W ) + cn(W ),

v′n(W ) + cn(W ) ∈ Hn.

Let v′n−1 be such that

v′n−1(W ) + cn−1(W ) = vn(W ) + cn(W ),

and for each i < n − 1, let v′i ≡ vi. It is easy to see that v′ is a Nash equilibrium of
the game.

C. Independence of axioms

We shall establish the independence of individual rationality, monotonicity, and
reallocation-proofness. We omit easy proofs to show that rules provided below satisfy
all the axioms except for one.

Example 1. Dropping individual rationality: For each (w, v, c) ∈ D, define
(σ,m) = ψ(w, v, c) by, letting j ≡ σ−1(1),

j ∈ arg min
i∈N

(vi(W ) + ci(W )),

mj ≡ vj(W ) − vj(W ) + cj(W )

n
,

mi = −vj(W ) + cj(W )

n
for each i 	= j.
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Example 2. Dropping monotonicity: For each (w, v, c) ∈ D, define (σ,m) =
ψ(w, v, c) by, letting j ≡ σ−1(1) and k ∈ arg mini�=j(vi(W ) + cj(W )),

j ∈ arg min
i∈N

(vi(W ) + ci(W )),

mj ≡ vj(W ) − wi · vk(W ) + ck(W )

W
+ (vk(W ) + ck(W ) − vj(W ) − cj(W )),

mi ≡ −wi · vk(W ) + ck(W )

W
for each i 	= j.

Example 3. Dropping reallocation-proofness : For each (w, v, c) ∈ D, define
(σ,m) = ψ(w, v, c) by, letting j ≡ σ−1(1),

mj ≡ vj(W ) − (vj(wj) + cj(wj)) +

∑
k∈N(vk(wk) + ck(wk)) − (vj(W ) + cj(W ))

n
,

mi = −(vj(wj) + cj(wj)) +

∑
k∈N(vk(wk) + ck(wk)) − (vj(W ) + cj(W ))

n
for each i 	= j.

Note that the term
�

k∈N (vk(wk)+ck(wk))−(vj (W )+cj(W ))

n
is non-negative by concavity of

disutility-cost functions.
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