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Abstract

This paper proposes a simple model for multiple second-price auctions which run

parallel to each other, in the sense that though they might not begin or end at the same

time, they have certain periods of overlap. We characterize the equilibrium bidding

strategy of the buyers and the equilibrium price of each auction. Last-minute bids

arise naturally in the equilibrium. We show that, except for the last auction, the

maximum price a buyer is willing to pay is less than his valuation, and that the ex

ante expected transaction prices are identical for all auctions. A simple empirical test

is also performed to verify the theoretical implication of the model.
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1 Introduction

A recent surge in the importance of online auctions has given rise to much academic interest

in their theoretical investigation. Research on online auctions calls for its own theoretical

modeling, rather than relying on traditional auction theory, not only because they have

different rules regulating bidding behavior and price determination, but also because the

environments in which online auctions are conducted are often different from that of tra-

ditional auctions. One of the differences is that in traditional auctions the buyers usually

participate in only one auction at any given time, while in online auctions buyers can almost

costlessly switch between auctions selling identical items. Consequently, there is the possi-

bility of cross-bidding behavior. That is, buyers may switch between auctions to arbitrage

the difference in expected payoffs.

The purpose of the paper is to propose a theoretical model for what we call “parallel

auctions” which, though not necessarily beginning or ending at the same time, have overlap

in certain periods. We characterize buyers’ bidding behavior, together with the equilibrium

prices in all auctions. It is shown that although the buyers can participate in more than

one auction at any time, in the equilibrium they will never cross-bid. Instead, they will only

compete in the auction which ends first among all the auctions and, if they lose, then enter

the auction which ends first among remaining auctions. The implication for this is that the

standing price of an auction will start to rise only after it becomes the one that will end

first among all auctions. Moreover, in each auction (except for the last one), since a bidder

has the option to buy the item in latter auctions, the maximum amount he is willing to pay
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is strictly less than his valuation, and depends on the number of future auctions. We also

show that buyers will fully take into consideration the option value of participating in future

auctions so that, although the expected valuation of active buyers decreases over auctions,

the expected transaction prices are identical for all auctions.

An important implication of our model is that, when the arrival of new auctions is

stochastic, buyers will wait until the last moment of an auction to submit their bids. This

gives a rationale for the “last-minute-bid” behavior which is well-recorded in the online

auction literature. Most of the literature explaining this behavior relies on correlation of the

bidders’ valuations (so that delay of bid avoids early revelation of private information) or

the coordination of bidders.1 Our result suggests that correlation or coordination are not

necessarily the reasons for last-minute bid: As long as there are parallel auctions, last-minute-

bid behavior arises even if valuations are independent, and without bidders’ coordination.

We collect online auction data from eBay to verify the implication of the theoretical

model. Specifically, we observe the standing prices of 187 parallel auctions selling an identical

object, and test (a) whether the standing price of an auction rises significantly only after it

becomes the first auction to end; and (b) whether the rate of increases in standing price is

particularly large at the last moment of an auction. Our empirical results strongly support

the theoretical prediction.

Our theoretical model is closely related to the sequential auctions model (Milgrom and

Weber, 2000; Wang, 2006), where auctions are held sequentially and one object is sold in

each auction. Our model is different from the sequential auction model in two main aspects.

1 See, for example, Roth and Ockenfels (2002), Stryszowska (2004), Bajari and Hortaçsu (2004), Ockenfels
and Roth (2006), Ockenfels, Reiley and Sadrieh (2006) and Wang (2006).
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First, in the sequential auction model, all buyers are present from the first auction and stay

until they win one object and leave. In our model the buyers enter sequentially. This is a

better approximation of online auctions. Second, in the sequential auction model, an auction

starts only after the previous one is ended, and at any time there is only one active auction

so that there is no room for cross-bidding. In our model the auctions overlap in time. Our

model is also related to the literature on competing auctions (Peters and Severinov, 1997,

2006), where multiple auctions are held simultaneously, with each auction selling an identical

object. Their model differs from ours in that, first, since all auctions start and end at the

same time, buyers will necessarily cross-bid. (Our result implies that the bidders never

cross-bid even if they are allowed to.) Second, since all bidders are present at the time when

the auctions begin, and stay until the winner in every auction is known, there is no issue of

entry and exit.

2 The Model

In this section, we present a model which is a simplified version of eBay auctions. Our

purpose is to characterize the bidder’s strategy and the implied equilibrium prices of each

auction. The equilibrium is derived via backward induction. That is, we first derive the

equilibrium in the final period, then the equilibrium at any earlier period.
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Figure 1: Timing of Auctions

2.1 The Environment

We model eBay auctions as ascending auctions.2 Assume that T English auctions, each

with one identical object to be sold, will start sequentially but with overlaps. Every auction

lasts for two periods, with auction i starting at the beginning of period t = i and ending at

t = i + 1. (i=1, · · · , T .) Therefore, auction i has a one-period overlap with auctions i − 1

(in period t = i) and i + 1 (in period t = i + 1), respectively, and in each period there are

only two active auctions. The timing of auctions is illustrated in Figure 1.

One buyer enters in each period. The valuation of the object to a buyer, v, is his

private information, but is drawn from [0, v̄] independently according to the commonly known

density function f(v), which is assumed to be non-degenerate. Let F (v) be the distribution

function of f(v). We use v
(2)
t to denote the second-highest valuation among the buyers in

period t. Every buyer is risk-neutral and needs only one object. It is costless to bid. There is

2 Zeithammer and Adams (2006) empirically test the bidding behavior on eBay and find the data are
better described by ascending auctions rather than real-bid auctions.
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no discount between periods. A buyer’s payoff is his valuation less the transaction price if he

wins the object, and is zero otherwise. The buyers’ objective is to maximize their expected

payoffs. Since all buyers have inelastic unit demand, the winning bidder leaves.

Auctions are conducted in the following way. At the beginning of a period, the standing

price of the new auction is at zero, while the standing price of the auction which began in

the previous period is its standing price at the end of the previous period. A buyer can

choose to bid on both auctions, one of the auctions, or none of them. According to eBay’s

price determination rule, the standing price is set to be the minimum for the highest bidder

to win, and is essentially a second-price auction. The standing price of an auction remains

at zero until one of the buyers place bids. Thus a good scenario for the bidder’s strategy and

price determination is that in each period, the bidder decides whether to bid in an auction

and, if yes, indicates the maximum he is willing to bid in the auction. Standing price in that

auction for that period is the second highest among all bids. When no active buyers chooses

to submit a new bid on any auction, the period ends.

Our goal is to derive the equilibrium prices of every auction in the two periods it stays

active. Let pi
t denote the equilibrium standing price of auction i at the end of period t.3

Since auction t − 1 ends in period t, pt
t−1 is its final transaction price. In addition, let

πi
t(v, pt−1

t , pt
t) denote the expected payoff of the highest bidder (whose valuation of the

object is v) in auction i at the end of period t, when the standing prices of auctions t − 1

and t are pt−1
t and pt

t, respectively.

Obviously, in every auction there must be a bidder who wins the auction and leaves.

3 Note that since an auction lasts for only two periods, given any t the value of i can only be t − 1 or t.
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For if in any equilibrium no one places any bid, a bidder must find it profitable to bid the

minimum increment. Since in every period t ≥ 2, one bidder wins (and leaves) and one

bidder arrives, it must be that in every period t ≥ 2, there are only two bidders.

2.2 Equilibrium in Period T + 1

The price of auction T at the beginning of period T + 1 is its standing price at the end of

period T , pT
T . Since there is only one auction, the environment is identical to an English

auction with starting price pT
T . Both bidders will bid up to their valuations of the object,

and therefore the equilibrium transaction price for auction T is pT
T+1 = max(pT

T , v
(2)
T+1). The

winner of auction T is the buyer with the higher valuation in period T + 1.

2.3 Equilibrium in Period T

We begin our analysis by computing the expected payoffs of the two active auctions in period

T . Since, at the end of period T , the highest bidder in auction T − 1 will win the auction

for sure,

πT−1
T (v, pT−1

T , pT
T ) = v − pT−1

T .

The expected payoff of the highest bidder in auction T at the end of period T , πT
T (v, pT−1

T , pT
T ),

is more involved. It depends on the realization probabilities of the following three events.

First, the entrant in period T + 1 has a higher valuation than his. In that case he loses

and has zero payoff. This occur with probability
∫ v̄

v
f(x)dx. Second, the entrant in period

T + 1 has a valuation lying between 0 and pT
T . In that case pT

T+1 = pT
T , and his payoff is
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v − pT
T . This occurs with probability

∫ pT
T

0
f(x)dx. Finally, the entrant of period T + 1 has a

valuation lying between pT
T and v. In that case he will win with a price equal to the entrant’s

valuation. This occurs with probability
∫ v

pT
T

f(x)dx. As a result,

πT
T (v, pT−1

T , pT
T ) =

∫ pT
T

0

f(x)(v − pT
T )dx +

∫ v

pT
T

f(x)(v − x)dx =

∫ v

pT
T

F (x)dx. (1)

The second equality in (1) is by integration by parts.

Active buyers in period T can bid in both auction T − 1 and auction T . However, we

will show that in equilibrium the bidders choose to bid only in auction T . This can be seen

by observing that (1) is a decreasing function of pT
T . That is, bidding up the price of auction

T in period T only decreases a buyer’s expected payoff in that auction. Since the price of

auction T rises only if some bidders chooses to bid in it, this implies that refraining from

bidding in auction T is a dominant strategy for every bidder in period T , which in turns

implies that pT
T = 0 in equilibrium. In fact, this result holds not only in period T , but also

in every other period:

Lemma 1. In any period t, it is a dominant strategy for all buyers only to place bids in

auction t − 1 (or in the case when t = 1, not to bid at all), and the equilibrium price of

auction t in period t, pt
t, is 0.

Proof. Suppose pt
t = p̄ > 0 and bidder B is the highest bidder in auction t at the end of

period t. Note that if B is the highest bidder in auction t, then (since a bidder only needs

one item) he is not bidding in auction t− 1, and therefore will lose auction t− 1 and enters

period t + 1. (Remember that auction t ends in period t + 1, not period t.) Let us consider

the following alternative bidding strategy: Instead of bidding in auction t in period t, bidder
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B waits until period t + 1 to bid p̄ in auction t. There are two possibilities. First, if the

period-(t+1) entrant bids above p̄ in auction t, then B loses under both the original strategy

and the alternative strategy. That means the two strategies give the same payoff to B in

this case. Second, if the maximal price that period-(t + 1) entrant is willing to bid is lower

than p̄, then (because the starting price of auction t in period t + 1 is its standing price at

the end of period t) under the original strategy bidder B will win by paying p̄. However,

under the alternative strategy bidder B will win by paying the entrant’s bid, which is lower

than p̄. That is, bidder B’s payoff will be strictly higher than the original strategy in this

case. Combining the two cases, we know that the alternative strategy will yield the same

payoff (namely, zero) as the original strategy if B loses in period t + 1, and strictly higher

payoff if he wins. We thus show that any strategy which results in a strictly positive value of

pt
t is dominated by one which refrains from bidding in auction t in period t. Consequently,

in any period t the bidders only compete in auction t − 1, and pt
t = 0.

The intuition for the result is clear: In period t, being the highest bidder in auction t

does not have any advantage. This is because, as long as the standing price pt
t is less than his

valuation v, whether one will win auction t in period t + 1 depends solely on the valuation

of the entrant in period t + 1, which is independent of pt
t. Moreover, bidding up the value of

pt
t in order to be the highest bidder of auction t in period t has its disadvantage. It increases

the expected price he needs to pay if he wins in the next period. In other words, bidding up

pt
t only increases the expected price a bidder needs to pay in period t + 1 if he wins, without

increasing the probability that he will win in that period. Thus refraining from bidding in

auction t is a dominant strategy for any bidder in period t.
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According to Lemma 1, the equilibrium price of auction t is zero in period t. The expected

payoff of bidding in auction t in period t is thus equal to the expected payoff of being the

highest bidder in the next period at price zero. Moreover, this expected payoff is not affected

by the price of auction t− 1. Consequently, πt
t(·) depends neither on pt

t nor on pt−1
t , and we

can denote the bidder’s expected payoff of auction t in period t as

St(v) ≡ πt
t(v, pt−1

t , 0),

which depends only on the bidder’s own valuation of the object.

Given the value of pT−1
T and that pT

T = 0, a bidder’s decision of whether to bid in auction

T −1 or auction T is simple: He should bid in auction T −1 if and only if πT−1
T (v, pT−1

T , 0) >

πT
T (v, pT−1

T , 0). Note that

∂
(
πT−1

T (v, pT−1
T , pT

T ) − πT
T (v, pT−1

T , pT
T )

)

∂v
= 1 − F (v) > 0. (2)

The expected payoff of auction T −1 relative to that of auction T is increasing in the buyer’s

valuation. This implies that, given the values of pT−1
T and pT

T , the higher a buyer’s valuation,

the more he prefers auction T − 1 relative to auction T . Together with Lemma 1, we know

that the winner of auction T − 1 must be the highest-valuation bidder in period T . In order

that he wins, pT−1
T must rise to a level so that the second-highest-valuation bidder is just

indifferent between auctions T − 1 and T , and forced to enter the latter. The standing price

of auction T at the end of period T − 1, pT−1
T , therefore must satisfy

πT−1
T (v

(2)
T , pT−1

T , 0) = πT
T (v

(2)
T , pT−1

T , 0); i.e.,

pT−1
T = v

(2)
T −

∫ v
(2)
T

0

F (x)dx.
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Note that pT−1
T (v

(2)
T ) = v

(2)
T −

∫ v
(2)
T

0
F (x)dx is a function which maps the second-highest

valuation of buyers in period T to the equilibrium standing price of auction T − 1. The

equilibrium standing price of auction T−1 is thus a function of only the highest losing bidder’s

valuation at period T . Moreover, since a buyer keeps bidding on auction T − 1 until he is

indifferent between the two active auctions, the function pT (v) ≡ v−
∫ v

0
F (x)dx = v−ST (v)

is actually a buyer’s bidding function. That is, given a bidder’s valuation v, the maximum

he is willing to pay for auction T − 1 is pT (v). Finally, since F (·) is non-degenerate, it must

be that pT−1
T < v

(2)
T . We thus have the following lemma.

Lemma 2. The equilibrium transaction price of auction T − 1, pT−1
T , depends only on the

highest-losing bidder’s valuation, v
(2)
T , and that pT−1

T < v
(2)
T .

In a standard English auction, the equilibrium price is the valuation of the second-highest

bidder. Lemma 2 shows that, when the bidders have the option to buy the same item in

another auction that follows, the equilibrium price is strictly lower than that in a standard

English auction, by an amount exactly equal to the expected payoff of participating in the

latter auction. The equilibrium in period T is summarized in Proposition 1.

Proposition 1. In period T , buyers only place bids in auction T − 1, and thus pT
T = 0. A

buyer with valuation v is willing to pay up to pT (v) = v −
∫ v

0
F (x)dx. The buyer with the

higher valuation wins auction T − 1 with price pT−1
T = pT (v

(2)
T ).
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2.4 Equilibrium in Period t < T

Given the bidding function pT (v) and the expected payoff of the future auction ST (v) in

period T , we can proceed to derive the equilibrium in the previous periods. First we derive

equilibrium in period T − 1.

2.4.1 Period T − 1

By Proposition 1, a buyer’s expected payoff of entering future auctions at the end of period

T − 1, ST−1(v), consists of two components. First, if the period-T entrant has a valuation

lower than his, then he will win auction T − 1 with a price pT−1
T , which depends on the

entrant’s valuation. Second, if the period-T entrant has a higher valuation, he will lose and

enters period T + 1, whose expected payoff is ST (v). Consequently,

ST−1(v) =

∫ v

0

(
v − pT−1

T (x)
)
f(x)dx +

∫ v̄

v

ST (v)f(x)dx. (3)

The first term on the right-hand-side of (3) is the expected payoff of the bidder when he

wins auction T − 1. The second term is his expected payoff when he loses auction T − 1 in

period T and therefore enters period T +1. Substituting the price function pT−1
T (v) into (3),

and using integration by parts, we have

ST−1(v) =
[
v − pT−1

T (x)
]
F (x)

∣∣∣
v

0
+

∫ v

0

F (x)
dpT−1

T (x)

dx
+ ST (v)

[
1 − F (v)

]

=

[ ∫ v

0

F (x)dx

]
· F (v) +

∫ v

0

F (x)
[
1 − F (x)

]
dx +

∫ v

0

F (x)dx
[
1 − F (v)

]

=

∫ v

0

F (x)
(
2 − F (x)

)
dx. (4)
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Since auction T−2 ends in period T−1, the payoff of being the highest bidder in this auction

is πT−2
T−1(v, pT−2

T−1, pT−1
T−1) = v − pT−2

T−1. Again, since ( by Lemma 1) pT−1
T−1 = 0 in equilibrium, we

can see that πT−2
T−1(v, pT−2

T−1, 0) − πT−1
T−1(v, pT−2

T−1, 0) is an increasing function of v. Similar to

the reasoning for auction T − 1 in Section 2.3, the winner of auction T − 2 is the buyer with

the highest valuation in period T − 1, and its standing price pT−2
T−1 must rise to the level at

which the second-highest-valuation buyer is indifferent between getting the item by paying

pT−2
T−1 and entering the next auction. Thus the equilibrium price is

pT−2
T−1

(
v

(2)
T−1

)
= v

(2)
T−1 − ST−1

(
v

(2)
T−1

)
= v

(2)
T−1 −

∫ v
(2)
T−1

0

F (x)
(
2 − F (x)

)
dx.

2.4.2 The General Case

In general, using induction on i we can show that

ST−i(v) =

∫ v

0

(
v − pT−i

T−i+1(x)
)
f(x)dx +

(
1 − F (v)

)
ST−i+1(v)

=

[
v − pT−i

T−i+1(x)

]
F (x)

∣∣∣∣∣

v

0

+

∫ v

0

{
F (x)

dpT−i
t−i+1(x)

dx

}
dx +

(
1 − F (v)

)
ST−i+1(v)

= ST−i+1(v) +

∫ v

0

F (x)

[
1 − dST−i+1(x)

dx

]
dx.

We can further substitute ST−i+1(v) with ST−i+2(v), which can in turn be written in terms

of ST−i+3(v), and so on. Eventually, ST−i(v) can be written only in terms of ST−1(v) which,

by (4), is
∫ v

0
F (x)

(
2 − F (x)

)
dx. After some algebra, we have

ST−i(v) =
i∑

j=0

∫ v

0

F (x)
[
1 − F (x)

]j

dx =

∫ v

0

[
1 −

(
1 − F (x)

)i+1]
dx.

Note that ST−i(v) > ST−i+1(v) for all i=1, · · · , T − 1. That is, expected payoff of entering

future auctions is lower.
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Similar to the case in Section 2.4.1, it is easy to see that the expected payoff of the

current auction relative to that of entering future auctions is an increasing function of a

buyer’s valuation. (That is, πt−1
t − πt

t is increasing in v.) This implies that in any period

t, the highest valuation buyer will outbid the other bidder and wins auction t − 1. The

transaction price of auction t−1 must rise to the level so that buyer with the second highest

valuation is just indifferent between bidding on the current auction and entering future

auctions. Consequently, the equilibrium price of auction t − 1 at the end of period t must

satisfy

pT−i−1
T−i

(
v

(2)
T−i

)
= v

(2)
T−i − ST−i

(
v

(2)
T−i

)
= v

(2)
T−i −

∫ v
(2)
T−i

0

[
1 −

(
1 − F (x)

)i+1]
dx, (5)

which depends only on the valuation of the loser.

The ex post transaction price of an auction given in equation (5) depends on the random

draw of the buyers’ valuations. However, we can compute the ex ante expected transaction

price for every auction. Since in any period t, it is always the buyer with higher valuation to

win auction t − 1 and the buyer with lower valuation to lose and enter auction t, v
(2)
t is not

only the value of the lower-valuation bidder in period t, but is actually the lowest valuation

of all buyers entering from period 1 to t. This fact makes it easy to calculate the distribution

function of v
(2)
t , and the ex-ante expected transaction price of auction T − i − 1 is

E
(
pT−i−1

T−i

)
=

∫ v̄

0

(
v

(2)
T−i − ST−i

(
v

(2)
T−i

))
g
(
v

(2)
T−i

)
dv

(2)
T−i

=G
(
v

(2)
T−i

)(
v

(2)
T−i − ST−i(v

(2)
T−i)

)∣∣∣
v̄

0
−

∫ v̄

0

(
1 − S′

T−i(v
(2)
T−i)

)
G

(
v

(2)
T−i

)
dv

(2)
T−i; (6)

where g(·) and G(·) are the density and distribution functions of the order-statistic of the

lowest valuation among T − i bidders, respectively.
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Since

ST−i(v) =

∫ v

0

[
1 −

(
1 − F (x)

)i+1]
dx,

we know that

S′
T−i(v) = 1 −

(
1 − F (v)

)i+1

.

Also, the distribution function of the order-statistic of the lowest valuation among T − i

bidders is

G
(
v

(2)
T−i

)
= 1 −

(
1 − F (v

(2)
T−i)

)T−i

.

Equation (6) therefore becomes

E
(
pT−i−1

T−i

)
=v̄ − ST−i(v̄) −

∫ v̄

0

[
1 − F

(
v

(2)
T−i

)]i+1

·
[
1 −

(
1 − F (v

(2)
T−i)

)T−i
]

dv
(2)
T−i.

=v̄ −
∫ v̄

0

[
1 −

(
1 − F (v)

)i+1

+
(
1 − F (v)

)i+1

−
(
1 − F (v)

)T+1
]

dv

=v̄ −
∫ v̄

0

[
1 −

(
1 − F (v)

)T+1
]

dv

=

∫ v̄

0

(
1 − F (v)

)T+1

dv. (7)

The expected transaction price of auction T − i − 1, E(pT−i−1
T−i ), is thus independent of i,

implying that the expected transaction price of every auction is the same. There is no

tendency for the transaction price either to rise or fall across auctions. Also note that the

maximum value a bidder is willing to bid for auction t (i.e., his bidding function) in period

t + 1 is

pt+1(v) = v − St+1(v). (8)

Since St(v) is an decreasing function of t, we know from (8) that pt+1(v) is increasing in t.

That is, a buyer is willing to bid higher, all else equal, in later auctions.
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Theorem 1. The dominant bidding strategy of a buyer with valuation v in period t is to

only bid in auction t− 1, so that pt
t(v) = 0 for 1 ≤ t ≤ T . The bidding strategy of the bidder

is pt(v) = v − St(v) for 2 ≤ t ≤ T ; where

St(v) =

∫ v

0

[
1 −

(
1 − F (x)

)T−t+1]
dx.

In each period t (2 ≤ t ≤ T ), the buyer with higher valuation wins auction t − 1 with a

price pt

(
v

(2)
t

)
= v

(2)
t −St

(
v

(2)
t

)
. The lower-valuation buyer loses in auction t− 1 and enters

auction t. Then expected transaction price of every auction is
∫ v̄

0

(
1 − F (v)

)T+1

dv.

2.5 Properties of the Equilibrium

There are several properties implied by Theorem 1. First, the auction is efficient in the sense

that the items are sold to the T highest-valuation bidders.

Second, the equilibrium price is not the second-highest-valuation of bidders, as is the case

for the standard English auction. This is because the auctions that end later carry a positive

option value. Buyers are thus not willing to bid up to their valuations (as in the English

auction) for the item. Rather, the maximum a bidder is willing to pay is his valuation minus

the option value of participating in future auctions. The existence of other auctions selling

the same items decreases the expected payoff of the seller. In our model, the number (and

order) of auctions is fixed throughout. However, in reality, new auctions might open at any

moment which end earlier than any existing auctions. If the arrival of a new auction is

stochastic rather than deterministic as in our model, a buyer would like to wait until the last

minute of an auction before submitting a bid because he wants to wait for more information
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on the number of future auctions. This gives a rationale for the last-minute bid behavior in

online auctions.

Third, even if two auctions have certain overlap, they run like sequential auctions: Buyers

first compete in the auction that ends earlier, and enter the auction which ends next only

when they lose in the earlier auction. As a result, the price of the auction which ends in

later period will always stay at zero, and will start to rise only when it becomes the auction

which ends first. Moreover, by our result in the previous paragraph this tendency of rising

price is stronger, the closer the auction moves towards its end.

Fourth, although buyers in the parallel auctions bid in a way as if the auctions were held

sequentially, the two auction formats are not equivalent. In particular, the bidding strategies

are different. We will compare the two types of auctions in more detail in Section 3.

3 Comparison to Sequential Auctions

The main difference between our model and the sequential auction model is that, in the

latter model, all bidders are present right from the beginning, with the winner in each

auction exiting sequentially. Those who do not win will participate in subsequent auctions.

Since bidders observe equilibrium price for each completed auction, they will learn more

about other bidders’ valuations after each auction is completed. An important issue in the

sequential auctions is thus information revelation over auctions. In our model, the bidders

enter sequentially. Every time an entrant enters, nothing beyond the common prior is known

about his valuation. Expected payoff of future auctions only depends on future entrants, not
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on any of the current rival buyers. Information update is thus not an issue because the two

competing bidders in an auction will never meet again later (one of them wins and exits).

Even when informational update is not an issue, the bidding strategy of the bidders is

different between sequential and parallel auctions. For example, consider the case of two

auctions and three buyers. Suppose the valuations of the bidders are independently drawn

from [0, 1] uniformly. Then from (8), the bidding strategy of the bidder in our parallel auction

model for auction 1 (in period 2) is p(v) = v − v2/2; while in the sequential auction model,

the bidding strategy is p(v) = v/2. (See Proposition 15.3 and Example 15.2 of Krishna,

2002.)

Despite the difference in strategy, qualitatively our results are similar to the sequential

auctions. First, the price a bidder is willing to pay is higher in later auction: In our model,

it is easy to see that pt
t+1(v) > pt−1

t (v) for all t=1, · · · , T −1 and for all v. This property also

holds for sequential auctions. Second, the expected transaction prices are the same across

auctions for both sequential and parallel auctions.4 Third, the expected transaction price in

our model is actually identical to the ex ante expected transaction price of the sequential

auctions with T objects and T + 1 bidders. The proof is straightforward: In both models

the expected transaction price for the last auction is the expected valuation of the losing

bidder. Since the expected transaction prices in both models are identical across auctions,

the expected transaction prices are the same for both types of auction.5

4 For proof of this fact in the sequential auction, see Section 15.1.3 of Krishna (2002).
5 Note that this is true only for ex ante expected transaction price. Since there is informational update

in the sequential auction, the expected transaction price of an object when some objects have already been
sold (and whose prices are known) will depend on the realized transaction prices of sold objects.
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4 Empirical Evidence

One important implication of our theoretical model is that the buyers start to bid in an

auction only when it becomes the first auction to end. This in turn implies that the standing

price of an auction starts to rise only when it becomes the auction which ends first. Moreover,

when new auctions arrive randomly as in the case of eBay auctions, buyers tend to wait until

the last moment (to make sure that the auction in which he bids is indeed the one to end

first) of an auction to submit their bids. In this section, we perform a simple empirical test

to verify these implications.

4.1 Regression Equation

Consider an auction i, which lasts for a duration of Ti days. (All time lengths are measured

in the unit of days in this section.) Use pit to denote its standing price at t days since the

begin of the auction (t ∈ [0, Ti]). Auction i becomes the first auction to end at time Fi

(Fi ∈ [0, Ti]). We would like to test whether the rate of increase in auction i’s standing

prices varies before and after time Fi. In addition, we test for the existence of bidding at the

last moment ∆. For example, a last-minute bid is one which is submitted when t > Ti − ∆,

where in our regression ∆ is either 1 hour or one minute or one second.

The regression equation is

pit = β1t + β2[t − Fi]+ + β3[t − (Ti − ∆)]+ + ξi + εit, (9)

where [t−Fi]+ ≡ max{t−Fi, 0} is the time since the auction becomes the first-to-end auction;

[t − (Ti − ∆)]+ ≡ max{t − (Ti − ∆), 0} is the time in the last moment of an auction; ξi is
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Figure 2: Regression Equation

the fixed effect of an auction, which captures any effect which may influence the willingness

to pay for the items, such as the shipping term, seller’s reputation, starting bid, the number

of other auctions conducted at the same time, etc.. Figure 2 demonstrates a possible shape

of the regression equation.

By our theoretical model, a buyer places a bid in auction i only for t ∈ (Fi, Ti]. Therefore,

we expect β1 = 0 and β2 > 0. Moreover, since the arrival of a new auction is stochastic in

eBay, buyers do not know the option value of future auctions exactly. They therefore delay

submitting their bids in order to obtain more information on the number of future auctions.

Consequently, we expect β3 > 0.6

6 We view our regression as a test for the signs of β1, β2, and β3. We do not consider heterogeneity of
these parameter as in a random coefficient model.
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4.2 Data

The data are collected from U.S. eBay auctions between January 1 and September 17, 2007.

We collect the bidding history for all auctions selling an identical item: Casio G-Shock World

Time Data Memory Watch G2900F. In the estimation, we only include auctions which are

shipped from the U.S. because shipping costs are much higher for cross-border transactions,

and buyers probably do not treat a watch shipped from the U.S. the same as one shipped

from a different country. Nine auctions ended by Buy-It-Now rather by bidding, and are

excluded in our regression.

There are 178 auctions that remain during our research period. The average duration

of an auction is 4.38 days. We observe a total of 892 submitted bids. On average, an

auction receives 5.01 bids. The maximal number of bids in an auction is 19, while 26.4% of

auctions receive no bid. We also record the standing prices at the beginning and the end

of an auction. Consequently, we observe 1248 standing prices in total. See Table 1 for the

descriptive statistics of the data.

4.3 Results

The estimation results are presented in Table 2. Specification (A) only tests the effect of

being a first-to-end auction. In the other three specifications (B) – (D), we also estimate the

effect of bidding at the last moment. We consider three different lengths of the last moment:

∆ equals “one hour”, “one minute”, or “one second”.

These estimation results are consistent with our theoretical predictions. The estimates
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Table 1: Descriptive statistics of the data

Variable Mean Standard Deviation Minimum Maximum

pit 18.00 15.38 0.00 66.00

t 2.48 1.72 0.00 10.00

[t − Fi]+ 0.98 1.14 0.00 8.92

Notes: The number of observations is 1248.

Table 2: Regression results

Specification A Specification B Specification C Specification D

Parameter ∆=1 hour ∆= 1 minute ∆= 1 second

β1 0.129 -0.680 -0.477 -0.253

(0.426) (0.432) (0.437) (0.442)

β2 10.245∗ 8.956∗ 9.720∗ 10.072∗

(0.910) (0.863) (0.873) (0.893)

β3 190.254∗ 8889.009∗ 341423∗

(19.232) (1001.725) (44105)

within-R2 0.389 0.452 0.423 0.402

Notes: Huber-White robust standard errors are in parentheses. The superscript ∗ represents

significance at 1% level.
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of β1 and β2 are robust to the inclusion of last-moment-bidding effects. We find β1 to be

insignificantly different from zero in all four specifications, suggesting that buyers do not

submit bids when an auction is not the first-to-end auction. On the contrary, the estimates

of β2 are significantly positive. The standing prices of an auction start to grow when it

becomes the first one to end. Note that β2 remains significantly positive after we control

for last-minute bids in specifications (B) – (D). This strongly indicates that the reason the

price of an auction starts to rise is that it has become the first auction to end, not because

it is about to end.

The ascending rate of standing prices increases drastically (β̂3 > 0) at the last moment.

Comparing the estimates of β3 in Specifications (B), (C), and (D), we find the rising rate of

standing prices to accelerate as the closing time of an auction approaches. Since the arrival

of new auctions in eBay is stochastic, our result indicates that many buyers wait until the

final moment of an auction to determine how much to bid (i.e., to determine how much is

the value of St(v)).

5 Conclusion and Extension

In this paper, we propose a theoretical model of parallel auctions, and characterize the

equilibrium bidding strategy and price in each auction. Last-minute bidding is shown to be

consistent with equilibrium behavior because of the uncertainty about future auctions. Data

collected from eBay confirm our theoretical implications.

A strong assumption we impose on the model is that only one bidder enters in every
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period. If, more generally, more than one entrant enters, informational update will become

an important issue. Moreover, the informational updating process will be substantially more

complicated in our model than in the sequential auctions. This is because the identity of

the winner will matter. For example, suppose a buyer in period 5 faces two other buyers

in an auction. The information he possesses, when the other two buyers were entrants

of periods 2 and 3, will be different to when they were, say, entrants of periods 2 and 4.

This is because the period-3 entrant has lost twice while the period-4 entrant only once.

More information is therefore revealed in the former case. Since the identity of buyers has

to be taken into consideration when more than two buyers are active in each period, the

informational updating process will be very complicated.

If we assume that the new entrants can observe all the past bids, as they sometimes do

in the online auctions, then our results will extend to the case with more than one entrant.

We can easily show that it is still a dominant strategy for a bidder to refrain from bidding

on auction t in period t. Moreover, since all bidders have the same information of past bids,

the bidding function in (8) will become

pt+1 = v − E
[
St+1(v)

∣∣∣ Ωt+1

]
;

where Ωt+1 is the commonly available information in period t + 1, revealed by past bids.

However, since in every period only one bidder wins and leaves but more than one bidder

enters, the number of bidders will increase over auctions, as will the expected transaction

prices.

When the new entrants cannot observe past bids, then the information they possess will
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be different from the bidders who lost in previous auctions. In that case it is difficult to

characterize the bidding function and, therefore, equilibrium prices. While we believe that

the key results in this paper remain true in the more general setting, rigorous proof awaits

future research.
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