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Competitive Burnout: Theory and Experimental Evidence 

 

Abstract  
 

We examine equilibrium selection in a two-stage sequential elimination contest in which 

contestants compete for a single prize. This game has a continuum of equilibria, only one of 

which satisfies the Coalition-Proof Nash Equilibrium (CPNE) refinement. That equilibrium 

involves “burning out” by using all of one’s resources in the first stage. It is Pareto-dominated by 

many other equilibria. We find that CPNE predicts well when four people compete, but not when 

eight people compete for two second-stage spots. Using a cognitive hierarchy (CH) framework, 

we show that when the number of players and the mean number of thinking steps are large, the 

CH prediction involves burning out. This provides a partial explanation of our results. We also 

develop a formal argument as to why CPNE logic is more compelling with more players. We 

conclude that more competition leads to higher bids, and that burning out is indeed a competitive 

phenonemon. 

 

 

 

Keywords: all-pay auction, burning out, cognitive hierarchy, coalition-proof Nash equilibrium, 
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Introduction 

Contests are an important fact and pervasive aspect of economic life. A contest is a game 

in which players compete over a prize by making irreversible outlays. Election campaigns, rent-

seeking games, R & D races, competition for monopolies, litigation, wars, and sports are all 

examples of contests.  

A common feature of contests is that they involve multiple stages where the set of 

contestants is narrowed in successive stages of the contest until a winner is finally chosen. 

Another feature of contests is that the players may be constrained in terms of how much effort or 

outlay they can expend (e.g., Che and Gale, 1997; 1998; Gavious et al., 2002). In a sequential 

elimination contest with such a constraint, it may be rational for contestants to expend all their 

efforts in earlier stages, thus burning out and having nothing left to offer in subsequent stages. 

Amegashie (2004) shows that under certain conditions burning out in this manner may be 

equilibrium-consistent rational behavior even though the ultimate prize is won only if a 

contestant is successful in all stages including the final one. 

However, in this setting the burning-out equilibrium is not the only equilibrium. There are 

also equilibria in which the players do not burn out. Indeed, there is a continuum of equilibria, 

many of which are Pareto-rankable. The presence of multiple Pareto-rankable equilibria suggests 

that it is desirable for the players to coordinate on Pareto-dominant equilibria. Since the burning-

out equilibrium is always Pareto-dominated by many other equilibria, it is never Pareto optimal 

to burn out.  

Similar kinds of coordination problems are common in many economic contexts. A 

frequently-cited example is the case of team production. If low effort on the part of one worker 

reduces the marginal products of other team members, it may not be optimal for a particular 

worker to exert high effort when the efforts of another are low. In this case, the team may be 

stuck in a low-effort equilibrium even though all team members would be better off in a high-

effort equilibrium.  

Economists and game theorists have proposed solutions to equilibrium selection in such 
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games. Some of these include focal points (Schelling, 1960), belief-learning (Camerer and Ho, 

1999), and Pareto dominance (Harsanyi and Selten, 1988). A growing area of research examines 

coordination games experimentally in order to shed light on the issue of equilibrium selection 

(e.g., Van Huyck et al., 1990, 1991; Camerer and Knez, 1994; Van Huyck et al., 2001; Anderson 

et al., 2001; Berninghaus et al., 2002).1 Generally, this literature finds that smaller groups reach 

more efficient equilibria than larger groups, especially when play is repeated with a fixed group 

of participants. 

This paper contributes to this line of research by examining equilibrium selection in a two-

stage sequential elimination contest in which a group of contestants competes to win a single 

prize. Only a subset of the participants survives the first stage. In the second stage, the survivors 

compete once more, with the winner taking home the prize. Like the weak-link team-production 

coordination game described above, the sequential elimination game has a continuum of Nash 

equilibria. In contrast to the weak-link coordination game, which has a continuum of Pareto-

rankable equilibria, many but not necessarily all of the equilibria in the sequential elimination 

game are Pareto-rankable. A more significant contrast between the two games is that the main 

point of a sequential elimination contest is not cooperation to produce a high return for the 

group, but competition to win a single valuable prize. Thus, in the sequential elimination game, 

the equilibrium selected through some process of coordination by group members affects the 

earnings of the group as a whole even as its members compete for the ultimate prize. Is 

cooperation to maximize group welfare possible in such a competitive context? 

A refinement of Nash equilibrium, in particular the Coaliton-Proof Nash Equilibrium 

(CPNE) concept (Bernheim et al., 1987), suggests that the answer to this question is no. Garratt 

et al. (in press) find that CPNE has considerable predictive power when it exists in a game of 

coalition government formation. Gillette et al. (2003; 2004), however, find only limited support 

for the predictive power of CPNE when compared to that of an equilibrium that is strictly 

                                                 
1 Chapter 7 of Camerer (2003) provides an excellent summary of this literature. 
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preferred by all agents. The unique CPNE in our game involves the exertion of maximum effort 

to the point of complete burnout during the first stage of the game, leaving no resources to utilize 

during the second stage. From the perspective of the competing participants, the burning-out 

CPNE is Pareto-dominated by many other equilibria in the game. Since the CPNE refinement is 

Pareto-dominated by many other equilibria, this is a challenging context in which to assess the 

predictive power of the refinement. 

The burning-out equilibrium is somewhat puzzling because of its counter-intuitive 

prediction that active contestants expend all their energies or resources in stage one, get burned-

out, and thus have nothing left to offer in stage two. Recently, Parco et al. (in press) and 

Amaldoss and Rapoport  (2005) both ran experiments based on an interesting, but rather 

different two-stage game.2 In their game, no equilibrium predicts burning out. However, they 

nonetheless found that their contestants overspent in stage one relative to the equilibrium 

prediction. In our framework, it is consistent with equilibrium behavior for contestants to go 

much further and use up all of their resources in the first stage of a two-stage contest. Under 

what circumstances will we observe the behavior predicted by such an equilibrium, despite its 

inefficiency and seemingly myopic nature?  

Our experimental results show little evidence of cooperation to maximize group welfare. 

Furthermore, they indicate that the predicted burning-out result is more likely to emerge when 

there are more rather than fewer players. This contrasts with the CPNE prediction of burning-out 

regardless of the number of players. We examine this puzzle using a cognitive hierarchy (CH) 

model, recently developed by Camerer et al. (2004). In that model, players engage in differing 

numbers of thinking steps, while overconfidently believing that other players engage in fewer 

thinking steps. We show that when the number of players and the mean number of thinking steps 
                                                 
2 The main differences between the model examined by both Parco et al (in press) and Amaldoss and Rapoport 
(2005) compared with the model tested here are: (a) they do not use an all-pay auction; (b) they use identical 
contestants, while our contestants have different valuations; (c) their players compete with only a subset of the 
contestants in stage one, meeting the other winners of the stage one contests in stage two, while ours meet all the 
contestants in stage one, playing the subset of players who are successful at stage one in stage two; (d) their game 
has neither a burnout equilibrium nor an equilibrium at which each player bids zero in stage one; and (e) their game 
does not have multiple equilibria.  
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are both sufficiently large, the CH prediction involves burning out by using all of one’s resources 

in the first stage.  

We estimate the mean number of thinking steps based on the experimental data from the 

first two periods of each session of our eight-period experimental game. We find that it is very 

close to 0 in the initial period for both four-player and eight-player treatments. In the eight-player 

case, it is substantially higher in the second period. After the first two periods, the CH model is 

less relevant because players learn about the behavior and beliefs of others as they experience 

more periods of play. Indeed, the predictions of the CH model are often inconsistent with the 

results of later periods. 

In the later periods, CPNE is not a good predictor of behavior when four people compete 

for two second-stage spots, but it does predict well when eight people compete for the two 

available spots. We provide an analysis of this result, arguing that the logic of CPNE is more 

likely to affect equilibrium selection when the number of players is large since there is more 

chance that two or more players will deviate from a lower to a higher bid.  

In the next section, we describe and analyze the two-stage sequential elimination game. 

Section 3 presents the experimental design and section 4 discusses the results. Section 5 uses the 

cognitive hierarchy model of Camerer et al. (2004) to examine the relationship between the level 

of bids and the number of players in the early periods of the game. Section 6 presents a formal 

discussion based on CPNE of why burning-out occurs when there are eight players, but not when 

there are four players. Section 7 concludes the paper. 

 

2. A Two-Stage Sequential Elimination Game 

In Amegashie (2004), the following game is presented. Consider N ≥ 3 risk-neutral agents 

contesting for a prize with valuations commonly known to be V1 ≥ V2 ≥ … VN-1 ≥ VN > 0, where 

Vi is the valuation of the i-th contestant, i = 1, 2, …, N-1, N. The contest is divided into two 

stages. In the first stage, the F contestants with the highest bids or effort levels are chosen to 

compete in a second stage from which the ultimate winner is chosen, where 2 ≤ F < N. Ties are 
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broken randomly in each stage. Formally, the contest success function in stage one is: 
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where P 1i = the probability of advancing from stage one to stage two and ei = the effort 

level of player i. In stage two, the contestant with the highest bid wins. Note that the contest in 

each stage is an all-pay auction.3 

Following Che and Gale (1997; 1998) and Gavious et al. (2002), suppose all contestants 

face a common budgetary or effort constraint or cap, B > 0. These papers give examples of caps 

in contests: caps on campaign contributions, salary caps in US professional sports4, and caps on 

how fast Formula 1 racing cars can move. Also, a cap on effort arises because human beings 

naturally have a limit on how much effort they can expend.  

Suppose B can be allocated between the two stages. Let ei and xi be the bid or effort levels 

of the i-th contestant in stages 1 and 2 respectively, where ei + xi ≤ B. We assume that ei and xi 

also represent the cost of expending effort, i.e. the cost function of effort is linear. In each stage, 

the contestants move simultaneously. 

Let ),...,,()~( 2111 Nii eeePeP =  and ),...,,()~( 2122 Fii xxxPxP = be the success probabilities of 

the i-th contestant in stages 1 and 2 respectively. Denote the equilibrium success probabilities 
by  and  for the i-th contestant.  ) )~( **

2 xP i
~( **

1 eP i

In stage two, the equilibrium expected payoff of the i-th contestant, conditional on making 
it to that stage, is . Focusing on a subgame perfect Nash equilibrium and 

applying backward induction, the equilibrium payoff to the i-th contestant in stage one is 
. 

***
2
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The solution to this game is summarized in the following proposition:  

                                                 
3 See Baye et. al. (1996) and Clark and Riis (1998) for analyses of all-pay auctions. 
4 As noted by Gavious et al. (2002), in the year 2000, NFL teams faced a salary cap of $62,172,000. This was a cap 
on the aggregate amount they could spend on their top 51 salaried players. 
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Proposition 1: Consider a two-stage contest where the contest in each stage is an all-pay 

auction and the contestants have valuations commonly known to be V1 ≥ V2 ≥ … VN-1 ≥ VN. If F ≥ 

2 contestants are chosen in the first stage to compete in the second stage and all the contestants 

face a common budget (effort) constraint, B, which can be allocated between the two stages, then 

a given equilibrium effort allocation (e*, B-e*) between the two stages induces a corresponding 

equilibrium number of active contestants, K, such that  = (F/K)[(1/F)V*
iΠ i – (B-e*)] – e* ≥ 0 for 

e* ∈[0, B], i = 1, 2, …, K-1, K and  = (F/(K+1))[(1/F)V*
iΠ i – (B-e*)] – e* < 0 for e* ∈[0, B], i 

= K+1, K+2,…, N-1, N and F < K ≤ N. In any equilibrium, the active contestants i = 1, 2, …, K-

1, K bid e* in stage one and B-e* in stage two, while the rest bid zero in each stage.5 

Proof:  In any equilibrium the expected payoff for the i-th active player is  = 

(F/K)[(1/F)V

*
iΠ

i – (B-e*)] – e* ≥ 0, i = 1, 2, …, K-1, K. If F ≥ 3, a player who deviates from this 

equilibrium by bidding marginally more than e* in stage one guarantees entry to stage two, but 

will then lose in stage two with certainty since he/she will be joined by, at least two players who, 

having bid e* in stage one, have bigger caps in stage two. There exists a pure-strategy 

equilibrium in the stage-two subgame in which the players with the bigger cap in stage two will 

bid their cap. This will yield an expected payoff lower than the equilibrium expected payoff for 

the player who deviated. If F = 2, a player who deviates by bidding marginally more than e* in 

stage one guarantees entry to stage two, but will be joined by a player who bid e* in stage one 

and hence has a bigger cap in stage two. In this case, there is no equilibrium in pure-strategies in 

the stage-two subgame. However, in any mixed-strategy equilibrium in stage two, the player 

with the smaller cap will get a zero expected payoff, 6 which is less than the expected payoff in 

the symmetric equilibrium in which everyone bids e* in stage one. Hence, it is not profitable for 

any player to deviate by bidding more than e* if F = 2. A player who bids less than e* in stage 

                                                 
5 Equilibria may also exist in which a player with a lower valuation is active (i.e., bids a positive amount in at least 
one of the stages) while a player with a higher valuation bids nothing in either stage. The existence of such an 
equilibrium requires that the difference in valuations between these two players be sufficiently small. We do not 
focus on such equilibria. Note also that we assume that if a player is indifferent between participating in the contest 
and staying out, he will participate. 
6 See appendix A for a proof of this result, adapted with slight modifications from Amegashie (2004). 
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one will lose with certainty in that stage, yielding an expected payoff lower than the equilibrium 

expected payoff. Hence there is no profitable deviation from the equilibrium stated in the 

proposition for an active player. The players i = K +1,…, N-1, N, have no incentive to participate 

if [F/(K+1)][(1/F)Vi – (B-e*)] – e* < 0 for e* ∈[0, B].Q.E.D. 

According to proposition 1, different values of e* may induce different numbers of active 

contestants, K. If K and e* vary simultaneously, a Pareto ranking of the different equilibria is not 

straightforward. For the sake of exposition, we initially investigate the Pareto ranking of 

equilibria that share a common number of active participants, K. For a given K, all such 

equilibria can be ranked by noting that δΠ /δe* = F/K – 1 < 0. Hence the equilibrium with the 

lowest e* gives the highest expected payoff and the equilibrium with the highest e* gives the 

lowest expected payoff for i = 1, 2,…, K-1, K. This of course implies that the burning-out 

equilibrium in which e* = B, the highest possible e*, is Pareto-dominated by all other equilibria 

with the same number of active participants, K, since each of those equilibria has an e* < B. 

*
i

As indicated above, a general Pareto ranking of the different equilibria is less 

straightforward when comparing equilibria with different K’s. When equilibria with different K’s 

exist, the burning-out equilibrium may not be Pareto-dominated by all other equilibria. To see 

this, consider a burning-out equilibrium with K1 active contestants and N-K1 passive contestants. 

Then there can be no equilibrium with less than K1 contestants. The reason is that any contestant 

in the burning-out equilibrium that has K1 contestants will want to participate actively in any 

hypothetical equilibrium with less than K1 contestants, given our assumption that a player who is 

indifferent between participating in the contest and staying out will participate. It follows that 

only K1 contestants can sustain a burning-out equilibrium. The remaining equilibria are those 

with K1 or more players. Hence the burning-out equilibrium has the lowest number of players. It 

is possible that some players are better off in the burning-out equilibrium than in some other 

equilibrium with more active players and hence less chance of winning the prize. We construct 

an example in Appendix B1 showing that the burning-out equilibrium can weakly Pareto-

dominate another equilibrium with a larger number of active participants. However, there will 
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always be many equilibria, including all of those with the same number of participants as the 

burning-out equilibrium, that will Pareto-dominate burning out. For the parameters used in our 

experimental treatments, all equilibria Pareto-dominate burning out. 

If we apply the Coalition-Proof Nash Equilibrium (CPNE) refinement,7 which allows for 

joint deviations, the burning-out equilibrium, in which e* = B, is the only surviving pure-strategy 

equilibrium. To see this, consider an equilibrium in which all the contestants in stage one bid e* 

< B. Suppose a group of M contestants deviate by bidding marginally more than e* in stage one.8 
If M = F ≥ 2, then they are all guaranteed entry to stage two. Their payoff will be  = (1/F)Vd

iΠ i – 

B > 0. It is easy to show that Π  >Π  as long as (1/F)Vd
i

*
i i – (B-e*) > 0 which is true for all active 

players. Note that such a deviation by the M = F players is immune to further deviations by sub-

coalitions of this deviating group, since each coalition member’s probability of success in stage 

one is already at a maximum (i.e., 1). Hence, there exists a profitable joint deviation from any 

equilibrium where e* < B.9 Neither a single nor joint deviation is feasible at e* = B. Thus, e* = B 

is the unique pure-strategy CPNE. This leads to the following proposition: 

Proposition 2: Consider a two-stage contest where the contest in each stage is an all-pay 

auction and the contestants have valuations commonly known to be V1 ≥ V2 ≥ … VN-1 ≥ VN. If  F 

≥ 2  contestants are chosen in the first stage to compete in the second stage and all the 

contestants face a common budget (effort) constraint, B, which can be allocated between the two 

stages, then there exists a continuum of symmetric pure-strategy Nash equilibria in which each 

active contestant bids e* ∈ [0, B] in stage one and B – e* in stage two but e* = B is the only 

coalition-proof Nash equilibrium. 

We experimentally investigate the following issues. First, how does the value of the prize 
                                                 
7 See Bernheim et. al (1987) for a discussion of CPNE.    
8 In the experiment, only integer bids were permitted. Thus, in our experimental context, a bid marginally more than 
e* may be interpreted as a bid of e* + 1. 
9 Notice that a deviation by M > F players to bid more than e* is not immune to further deviations by a sub-coalition 
of F players. A deviation is also not profitable for M < F players because they will be joined by, at least, one player 
who has a bigger cap in stage two. In any case, to show that any equilibrium with e* < B is not CPNE, we only need 
to show that there exists a coalition size which can deviate profitably. 
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affect the effort or bid level? Given K active contestants bidding e = e* with e* ∈  [0, B], a risk 

neutral player i should bid e* in stage one and B-e* in stage two if (F/(K+1))[(1/F)Vi – (B-e*)] – 

e* ≥ 0 and should bid zero in both stages if (F/(K+1))[(1/F)Vi – (B-e*)] – e* < 0. Actual players 

need not be risk-neutral. Nonetheless, for each player there should be a critical valuation level 

consistent with his/her level of risk aversion that would induce a bid of e* rather than zero. 

Second, do we observe Pareto-preferred equilibria, or do we find the burning out predicted 

by the CPNE refinement, despite the fact that this unique CPNE is Pareto-dominated by other 

pure-strategy Nash equilibria? Under what if any circumstances will players allocate all their 

efforts to stage one when there is another stage ahead? Will there be a process of convergence to 

the burning-out CPNE over the rounds of a finite repeated game?   

Third, will the feedback received between rounds make a difference to the convergence 

process? Whether or not winning bids are announced at the end of each stage makes no 

difference to Nash equilibrium predictions. Nash equilibria are based on consistent beliefs, 

beliefs that are simply confirmed with announcements of winning bids. However, a number of 

recent papers have suggested that the type of feedback provided between periods of play can 

significantly affect bids in first-price sealed bid auctions despite having no effect on Nash 

predictions (e.g., Neugebauer and Selten, 2003; Ockenfels and Selten, 2005). In particular, 

Neugebauer and Selten (2003) found that bids were significantly higher when winning bids were 

revealed to participants than when they were told only whether they had won the auction or 

not.10 They attributed this result to an asymmetry that arises when only winning bids are 

revealed.  Losers receive a clear signal about how much more they should have bid to win the 

auction. However, winners do not receive an analogous signal about how much less they could 

have bid without losing the auction. Neugebauer and Selten (2003) argue that this asymmetric 

revelation of winning bids pushes bids upward over repeated rounds of play. Similarly, we 

                                                 
10 In contrast, Dufwenberg and Gneezy (2002) found that when the entire vector of bids was annouced, this feedback 
affected behavior in the lab. However, announcing only the winning bid did not affect behavior relative to 
announcing nothing between periods of play. 
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hypothesize that announcing successful bids might promote higher stage-one bids as our two-

stage all-pay auction unfolds, leading to faster convergence to the burning-out CPNE. 

Fourth, how does the number of players affect the equilibrium. Earlier experimental studies 

of coordination games have shown that coordination on Pareto-superior outcomes is harder to 

sustain with more players. For example, Camerer and Knez (1994) argue that coordination on 

Pareto-superior outcomes in their minimum-effort coordination game was difficult to sustain for 

more than two players because forming beliefs about the behavior of other players becomes more 

complex with larger numbers. While two players only have to worry about each other’s beliefs, 

the introduction of additional players forces everyone to think about the beliefs that each player 

has about the others in order to predict behavior. In the above analysis the uniqueness of the 

burning-out CPNE is independent of the number of players. However, the predictive power of 

the burning-out CPNE may depend on the number of players, since the higher the number of 

players, the more likely it is that some coalition of F ≥ 2 players will deviate from a non burning-

out equilibrium, as discussed more formally in our theoretical analysis of the results in section 6. 

 

3. Experimental Design 

We ran twelve sessions with participants who were undergraduate students at the 

University of Guelph. They were recruited in the University Centre. A thirteenth session was run 

using economics professors at the University of Guelph. Participants received a $3.00 Canadian 

show-up fee. The rest of their earnings depended on their performance in the game. Average 

earnings were $13.20 Canadian, equal to about $10.00 US, inclusive of the show-up fee. The 

sessions lasted about one hour.  

Upon entering the room, participants were asked to take a seat and were assigned a player 

number. Written instructions were distributed.11 The instructions were then read aloud while 

participants followed along on their own copies. The experiment lasted for eight periods, each of 

                                                 
11 A copy of the instructions is attached as Appendix C. 
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which was divided into two stages. At the beginning of each period, each participant was asked 

to draw an envelope containing an information slip from a box held by the experimenter. The 

randomly selected information slip told each participant his/her potential prize value. There were 

four different prize values. Participants were also told the prize values assigned to the other 

players. The potential prize values determined the monetary payoff of each participant if he/she 

won the prize at the end of stage two. The information slip also indicated that each participant 

had an endowment of 50 tokens, some or all of which could be used to place bids in stages one 

and two. Each token was worth two cents Canadian. Any tokens that were not used in either 

stage could be cashed in at the end of the game. 

In stage one, participants were given the opportunity to bid any integer amount of tokens 

between zero and their budgetary caps of 50. After writing their bids in the designated space on 

their information slips, participants raised their hands and the experimenter collected the slips. 

Participants understood that once bids were placed, the amount bid would not be returned, 

regardless of whether or not they won the prize. The two participants with the highest bids were 

then privately informed that they would move on to stage two. Ties were broken randomly by a 

draw. Other participants were informed privately that they would not be moving on. Their 

earnings for the period were 50 tokens minus their stage-one bids. 

The two participants who reached stage two were then given the opportunity to bid any 

amount of tokens from zero up to whatever number of tokens remained after their stage-one bids 

by writing the desired amount in the designated space on their information slips. The participants 

who had not reached stage two were asked to write zero in the designated space so that it would 

not be obvious which two players were still in the game. The person who placed the highest 

stage-two bid was then privately informed that he/she had won the prize, which was worth the 

amount that had been indicated on his/her information slip. As in stage one, a random draw was 

used to determine the final winner if both participants bid the same amount. 

At the end of each period, the information slips were returned to each participant, 

indicating his/her earnings for the period. Earnings were equal to the 50-token endowment plus 
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the payoff from playing the game. Thus, the earnings of the final winner consisted of the 50-

token endowment, minus the tokens bid in stages one and two, plus the prize value drawn at the 

beginning of the period. The earnings of the other participants consisted of the 50-token 

endowment, minus the bid or bids placed during the period. 

At the beginning of a new period, each participant drew a new information slip at random 

containing a new prize value. Tokens from earlier periods could not be used in the new period. 

Each participant began each period with exactly 50 tokens. 

We ran four treatments, which are summarized in Table 1.  

Treatment 1 - Four persons, no announcement of winning bids: In the first treatment, 

four persons participated in the game. Participants were informed at the end of stage one whether 

or not they would advance to stage two. However, they were not given any information about the 

level of the successful bids. Similarly, at the end of stage two, continuing participants were 

informed whether or not they had won the prize. However, they were not told the level of the 

winning bid. 

Treatment 2 - Four persons, announcement of winning bids: Once again in treatment 2, 

four persons participated in the game. However, in this treatment, the two stage-one bids of those 

moving on to stage two were publicly announced after stage one and the stage-two bid of the 

final winner was publicly announced after stage two. 

Treatment 3 - Eight persons, no announcement of winning bids:  In treatment 3, eight 

persons participated in the game. As in treatment 1, successful wins were not announced. 

Treatment 4 - Eight persons, announcement of winning bids:  In treatment 4, eight 

persons participated in the game. As in treatment 2, successful bids were announced. 

In treatments 1 and 2, the prize values assigned randomly to the four participants were set 

at 100, 170, 230 and 300 tokens. Consider a risk-neutral participant who believed the other three 

participants would also behave as if they were risk-neutral. If such a participant drew the 

possibility of winning the 100-token prize, proposition 1 indicates that he/she would bid zero in 

both stages for all non-zero equilibria since (F/K+1)[(1/F)Vi – (B-e*)] – e* < 0, for e* ∈(0, B] in 
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this case. If e* = 0, then (F/K+1)[(1/F)Vi – (B-e*)] – e* = 0. Given the assumption that a player 

who is indifferent between participating in the contest and staying out will participate, the risk-

neutral player with a valuation of 100 tokens would bid zero in stage one and B = 50 in stage 

two. However, if such a risk-neutral participant drew the possibility of winning one of the other 

three prizes, proposition 1 indicates that he/she would bid 0 ≤ e* ≤ B in equilibrium in stage one 

and x* = B – e* in stage two since (F/K+1)[(1/F)Vi – (B-e*)] – e* > 0 in these cases. The 

available equilibria for the two treatments with four participants are summarized in the top half 

of Table 2. In appendix B2 we show that the burning-out CPNE in which K = 3 and e* = B = 50 

is the worst equilibrium in the sense that it is Pareto-dominated by all of the other Nash 

equilibria in the four-player case. We also demonstrate that e* = 1 and K = 3 is the Pareto-

optimal equilibrium in this case.  

In treatments 3 and 4, the prize values were doubled relative to treatments 1 and 2 in order 

to hold expected earnings constant across the four- and eight-person treatments. The prize values 

were accordingly set at 200, 340, 460 and 600 tokens. Each of these prize values was randomly 

assigned to two of the eight participants. Employing the same reasoning as above, risk neutrality 

implies a bid of zero for those drawing the 200-token prize in stages one and two when 20 < e* ≤ 

B. When 16.667 < e* ≤ 20, the equilibrium calls for one of the players with the 200-token 

valuation to bid e* in stage one and B – e* in stage two, while the other bids zero in both stages. 

Both of the players with the 200-token valuations will bid e* in stage one and B – e* in stage two 

in any equilibrium in which 0 ≤ e* ≤ 16.667. Those drawing any of the other prize values will 

place a bid of 0 ≤ e* ≤ B in equilibrium in stage one and x* = B – e* in stage two. The available 

equilibria for the two treatments with eight participants are summarized in the bottom half of 

Table 2. In appendix B3, we show that the burning-out CPNE in which K = 6 and e* = B = 50 is 

the worst equilibrium in the sense that it is dominated by all other equilibria in the eight-player 

case. In appendix B4, we demonstrate that there are two Pareto-optimal Nash equilibria that are 

not themselves Pareto-rankable in the eight-person case: K = 8, e* = 0 and K = 6, e* = 21.  

Three sessions of each treatment were run using undergraduate student participants and 
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were analyzed in a two-by-two factorial design framework. One session of treatment 2 was run 

using economics professors. As discussed above, we hypothesized that both announcements of 

the winning bids and larger numbers of players might facilitate convergence to the burning-out 

CPNE. In the case of announcements, we conjectured that if everyone learned how much those 

moving on to stage two had bid in stage one, it might encourage attempts to bid even higher. In 

the case of eight-person versus four-person competitions, we reasoned that more competitors 

would increase the likelihood of coalition formation and defection, pushing bids higher. 

 

4. Results 

We focus our analysis on the stage-one bids. The CPNE refinement calls for all 

participants for whom the prize value is sufficiently large to burn out by bidding their entire 50-

token endowment in the first stage. Participants for whom the prize value is not large enough to 

justify bidding withdraw from the contest by bidding zero. Of course, any outcome in which all 

active participants bid a common amount in stage one is consistent with a Nash equilibrium. The 

CPNE is Pareto inferior to all of the other pure-strategy Nash equilibria in both the four- and 

eight-person treatments. 

Figures 1 to 5 present representative results from five of the 13 experimental sessions, one 

from each of the student treatments as well as the one session with economics professors as 

participants. The bars in the figures indicate the bids placed by the individual participants in the 

first stage of each period. The bars are ordered by prize value from lowest to highest in each 

period. The participant numbers appear beneath the figure. Asterisks indicate bids of zero.  

Table 3 reports the mean bids and bid standard deviations for active players in the final 

period of each session.12 The Pareto-optimal equilibria (e* = 1, K= 3 in the four-person 

treatments; e* = 0, K = 8 or e* = 21, K = 6 in the eight-person treatments) were not achieved in 

                                                 
12 We defined active players as those bidding more than one. There were three instances of players bidding one in 
the last period of a session. None of these three players bid zero in any of the other periods. Thus, it is possible that 
they did not understand that they were permitted to bid zero, and thus bid one rather than zero when they did not 
want to compete for the prize. 
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any of the experimental sessions. The economics professors playing the four-person 

announcement treatment, illustrated in Figure 3, came closest, converging to a bid of about e* = 

20, K=3, which was nonetheless still a whopping 19 tokens above the Pareto-optimal equilibrium 

bid for the four-person case  

Mean active bids in the final period of the eight-person sessions were all within 3.5 tokens 

of the CPNE burning-out equililbrium. Standard deviations were less than one in all but one 

eight-person session. While eight-person sessions converged to a bid very close to the CPNE, 

four-person sessions did not. Mean bids were dramatically lower in all but one four-person 

session. Standard deviations of active bids were greater than one in four of the six four-person 

student sessions, indicating less convergence to one of the Nash equilibria.  

The figures also indicate that some participants placed a bid of zero. However, only in the 

case of the economics professors did the bidding behavior suggest reasonably consistent risk 

neutrality. In every period with the exception of period 2, the economics professor who drew the 

lowest prize value of 100 bid zero. In both periods 2 and 8, the professor who drew the second-

lowest prize value of 170 also placed a zero bid, showing some risk aversion. In the student 

sessions, some participants who drew low prize values bid positive amounts, while some who 

drew higher prize values bid zero. Thus, there is evidence of both risk-averse and risk-loving 

behavior. 

If participants had different attitudes toward risk, the prize value required to produce a 

level of expected earnings high enough to warrant a positive bid at a given e* would differ from 

person to person. However, one would nonetheless expect the overall probability of a positive 

bid to be higher, the higher the prize value drawn. In fact, those drawing the lowest prize bid 

zero 30% of the time, those drawing the second lowest prize bid zero 15% of the time, those 

drawing the second highest prize bid zero 6% of the time, and those drawing the highest prize 

bid zero just 4% of the time. These observations indeed suggest a positive relationship between 

the probability of a positive bid and the prize value drawn. To examine this issue more formally, 

we employ a three-level hierarchical logit model and estimate it using the data from the twelve 
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student sessions.13 The binary dependent variable is equal to one if a positive bid is placed and 

zero if a zero bid is placed. We hypothesize that the probability of a positive bid will be 

positively related to the prize value drawn, while controlling for the period of play, possible 

treatment effects, and random effects related to both individual participants and particular 

sessions. 

Level 1 is a logit model, defined for each individual participant ‘i’ in every session ‘s’over 

the eight periods of play ‘t’: 

log[Ptis/(1-Ptis)] = π0is + π 1is(PERt) + π 2is(NVtis),                                                       (1) 

where Ptis is the probability of a positive bid in period ‘t’ for individual ‘i’ in session ‘s’, 

PERt is the period number minus eight in period ‘t’, NVtis is the normalized prize value in period 

‘t’ for individual ‘i’ in session ‘s’, and the π’s are individual–level coefficients. Subtracting eight 

from the period number allows the effect of treatment variables that may interact with the period 

of play to be tested during the last period of the game when convergence to an equilibrium is 

most likely to have occurred. The prize value is normalized to correspond with the expected 

earnings it represents by dividing prize values by the number of participants in the session, either 

four or eight. 

The level-2 model takes account of possible individual-specific random effects on the 

level-1 coefficients: 

π0is = β00s + η0is 

π1is = β10s + η1is                                                                                                                                                               (2) 

π2is = β20s + η2is, 

where the β’s are session-level coefficients and the η’s represent individual-specific 

random effects. 

The level-3 model takes account of possible session-specific treatment and random effects 

                                                 
 
13 Raudenbush and Bryk (2002), and Snijders and Bosker (1999) both provide excellent discussions of  
hierarchical linear and logit models (also called mixed models or random-effects models) incorporating both fixed 
and random effects. 
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on the level-2 coefficients: 

β00s = γ000 + γ001(NAs) + γ002(8Ps) + µ00s 

β10s = γ100 + γ101(NAs) + γ102(8Ps) + µ 10s                                                                  (3) 

β20s = γ200 + γ201(NAs) + γ202(8Ps) + µ 20s, 

where the γ’s are level-3 coefficients and the µ’s represent possible session-specific 

random effects. The treatment dummy variable NAs is equal to 0 for sessions in which the 

winning bids are announced and 1 if they are not announced. The treatment dummy variable 8Ps 

is equal to 0 for the four-person treatments and 1 for the eight-person treatments. Combining the 

three sets of equations, we estimate: 

log[Ptis/(1-Ptis)] = γ000 + γ001(NAs) + γ002(8Ps) + γ100(PERt) + γ101(PERt×NAs) +  

γ102(PERt×8Ps) + γ200(NVtis) + γ201(NVtis×NAs) + γ202(NVtis×8Ps) + η0is              (4) 

+ η1is(PERt) + η2is(NVtis) + µ00s + µ10s(PERt) + µ20s(NVtis). 

Table 4 reports the results. The prize value is positively related to the probability of a 

positive bid as hypothesized, rejecting the null hypothesis with a two-tailed p-value of 0.076, 

which corresponds to a one-tailed p-value of 0.038. We can thus reject the null in the direction of 

the hypothesized positive relationship. Neither the period variable nor either of the treatment 

variables or their interactions is significantly related to the probability of a positive bid. Thus, the 

positive relationship between prize value and the probability of a positive bid appears to be 

invariant to both the period in which the prize is drawn and the four treatments. If we drop all of 

the insignificant variables, maintaining only NV and the individual-specific and session-specific 

random effects, the two-tailed p-value on NV falls to 0.001, strongly supporting the hypothesized 

relationship.14 

We are primarily interested in how close participants came to the burning-out CPNE in the 

various treatments. The CPNE is consistent with some participants bidding zero in stage one if 

                                                 
14 If the data from the professor treatment is added to the estimation of equation 4, the two-tailed p-value becomes 
0.019 and all the other variables remain insignificant. When the insignificant variables are dropped the two-tailed p-
value becomes 0.000.  
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they determine that the expected gains from bidding are not worth the cost. Of course, if 

everyone bid zero in stage one, they would be playing a different Nash equilibrium. Nothing 

close to this ever happened in any period of any session. In the CPNE, while some participants 

may bid zero, many others burn out by bidding their entire 50-token endowment in stage one of 

the game. Since a bid of either zero or 50 is consistent with the burning-out CPNE, we define 

EQDIST = Min(50-Bid, Bid-0) as the dependent variable in a three-level hierarchical linear 

model. 

The level-1 model is defined over time ‘t’ for each individual participant ‘i’ in each session 

‘s’ to account for convergence over the course of the game as: 

EQDISTtis = π0is + π1is(PERt) + εtis,                                                                           (5) 

where εtis is an observation-specific disturbance term. The level-2 model takes into account 

the possibility of individual-level random effects: 

π0is = β00s + η0is 

π1is = β10s + η1is,                                                                                                                                                              (6) 

The level-3 model introduces the session-specific treatment effects, which are now our 

primary focus of interest, as well as session-specific random effects: 

β00s = γ000 + γ001(NAs) + γ002(8Ps) + µ00s 

β10s = γ100 + γ101(NAs) + γ102(8Ps) + µ10s.                                                                (7) 

Initially, we included interaction effects between NA, the no-announcement dummy, and 

8P, the eight-person dummy at level 3. These effects were very far from significance and 

therefore dropped from the model. Combining equations (5), (6), and (7), we estimate: 

EQDISTtis = γ000 + γ001(NAs) + γ002(8Ps) + γ100(PERt) + γ101(PERt×NAs) +  

γ102(PERt×8Ps) + η0is + η1is(PERt) + µ00s + µ10s(PERt) + εtis.                                   (8) 

Table 5 outlines the results. It is important to remember that there are eight periods in the 

game and that PER is defined as the period number minus eight. Thus, the estimated intercept 

and coefficients on both NA and 8P are calculated with respect to the last period. The intercept is 

equal to about 14.5 and highly significant (p = 0.000), indicating that in the last period of the 
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four-person sessions with announcements, bids were about 14.5 tokens away from the burning-

out CPNE. NA is insignificant, implying that whether or not there was an announcement made 

no difference to the distance from the burning-out CPNE in the last period. The insignificance of 

the interaction between PER and NA indicates that whether or not there was an announcement 

did not affect the speed of convergence to the CPNE either. 

This result is in hindsight not particularly surprising.  For example, suppose it is announced 

that the winning bids in stage one were 39 and 40. Then in the next period of play, we might 

expect the losers to bid very close to 39 and 40. The winners might maintain their bids or even 

reduce them. However, there is no compelling reason why announcements should induce the 

players to bid close to B = 50 in the next period.  Notice that in a one-stage auction, the losers 

might bid more than 40 in the next period, if they were informed that the winning bid was 40 in 

the previous period. In our game, this would be a very risky strategy, since bidding too high in 

stage one could leave one with too few resources to win the prize in stage two.  

In contrast, 8P is negative and highly significant (p = 0.000), indicating that more players 

push participants significantly closer to the CPNE. The sum of γ000 + γ002, which represents an 

estimate of the distance from the CPNE in the last period of the eight-person sessions, is 

insignificant, indicating that bids were very close to the burning-out CPNE in the eight-person 

case.  

The coefficient on PER is not significant, implying that in the four-person games, there is 

no significant movement towards or away from the CPNE. However, the interaction between 

PER and 8P is negative and highly significant (p=0.009), indicating that in the eight-person 

sessions the period-to-period movement towards the CPNE was significantly higher than in the 

four-person case. The sum of γ100 + γ102, which represents that movement, is significant (p = 

0.001) and equal to about –1.41, indicating that from period to period, bids moved about 1.41 

tokens closer to the burning-out CPNE in the eight-person case. 

How did participants behave in stage two? Table 6 summarizes stage-two bids in the 

student sessions. In all of the pure-strategy Nash equilibria, both participants who reach stage 
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two after bidding identical amounts as required by all the pure-strategy equilibria in stage one, 

should bid all of their remaining endowments in the second stage. In 16 out of the 17 cases in 

which the announcement indicated that the two players entering stage two were tied in stage one, 

both players did in fact bid all of their remaining endowments in stage two as predicted. The 

professors did so in four out of four tied cases. 

There were cases, however, in which the announcement revealed that the two participants 

entering stage two bid different amounts in stage one, despite the fact that such behavior is not 

part of a pure-strategy Nash equilibrium. Since in these cases the participants in the stage-two 

subgame have unequal caps, there is no pure-strategy equilibrium for the subgame, but only an 

equilibrium in mixed strategies (Che and Gale, 1997). While we did not set out to test the mixed-

strategy equilibria of the one-stage all-pay auction in Che and Gale (1997), 15 we nevertheless 

wish to make a few comments on the stage-two experimental evidence. The mixed-strategy 

equilibrium in Che and Gale (1997) has the property that when two players face different caps, 

the player with the larger cap puts a positive mass on the smaller cap and distributes the 

remainder uniformly on (0, B2), where B2 is the smaller cap. The other player puts a positive 

mass on zero and distributes the remainder uniformly on (0, B2). An immediate implication is 

that it is not part of a mixed-strategy equilibrium for both players to bid their caps in stage two, 

given that they are different. However, we found that of the 15 instances in which the announced 

winning stage-one bids differed by one token, both players bid the rest of their endowments nine 

out of 15 times. Out of the 16 instances in which the announced winning stage-one bids differed 

by more than one token, both players bid the rest of their endowments five out of 16 times. These 

results seem inconsistent with the mixed-strategy equilibrium in the stage-two subgame.  

In the treatments where the successful bids were not announced, a participant moving on to 

stage two would only know his own stage-one bid and whether there had been zero, one, or two 

random draws. Since such draws were used only in the event of a tie for one or both of the two 

                                                 
15 Rapoport and Amaldoss (2004) experimentally test a mixed-strategy equilibrium in a discrete all-pay auction.  
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winning positions, the following inferences could be drawn. If there were two draws, three or 

more players must have been tied, requiring two draws to choose the two players who would 

advance to stage two. Thus, in this case, the two advancing players could determine that they 

must have bid identical amounts in stage one and thus have identical caps in stage two. This is of 

course consistent with all of the pure-strategy equilibria of the game, each of which requires the 

advancing players to bid the rest of their endowments in stage two. This actually occurred in six 

out of the eight cases in which there were two draws. Behavior in the lab when there were fewer 

than two draws is summarized in the last two rows of Table 6. Note that stage-two behavior in 

this treatment cannot generally be tested based on the mixed-strategy equilibrium in Che and 

Gale (1997). This is because the size of a player’s cap in stage two remains private information 

when there are no announcements, while in Che and Gale (1997), a player’s cap is common 

knowledge. With no knowledge of the other person’s cap, both players bid their caps in 28 out of 

the 40 such cases. 

 

5. A cognitive hierarchy (CH) analysis16  

In this section, we analyze the outcome of our game using a recently developed model of 

decision-making by boundedly rational agents due to Camerer et al. (2004). The model, which is 

based on a cognitive hierarchy, relaxes one key assumption of Nash equilibrium:  the mutual 

consistency of beliefs, which requires that beliefs be true in equilibrium. Consistency of beliefs is 

unlikely in complex games where players do not have sufficient time, ability, or incentive to 

move beyond boundedly-rational beliefs. The model in Camerer et al (2004) is an extension of 

models in Nagel (1995), Stahl and Wilson (1995), Ho et al.(1998), and Costa-Gomes et al. 

(2001). We shall use the CH model to show how the number of players can affect bids in stage 

one, and compare its predictions to the data from our experiment, concentrating on the earlier 

periods in which consistency of beliefs is least likely to pertain. 

                                                 
16 We thank an associate editor for suggesting this line of research. 
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5.1 Analysis 

As in Camerer et  al (2004), we assume that players think in steps. This captures the 

empirical fact that human beings have limited thinking capacities (e.g., Stahl, 1998). Also, as 

shown by Camerer et al. (2004), this idea explains some experimental data very well.  

Suppose all players solve the game in k steps, where k = 0, 1, …, J. If k = 0, then a player 

does no thinking and hence does not behave strategically. As in Camerer et al. (2004), we 

assume that such players make their decisions by randomizing uniformly on some support. In our 

case, we assume that in stage one, such players randomize uniformly on [0, b], where 0 < < 

B.

b
17 Each player who does k steps of thinking assumes that all other players do less than k steps 

of thinking. Hence each player is overconfident, and thinks that he/she is smarter than everyone 

else.18  

As in Camerer et al. (2002; 2004), we assume that the actual distribution of thinking steps 

follows a Poisson distribution with a mean number, τ, of thinking steps. However, we do not use 

the Camerer et al. (2002; 2004) assumption that a k-step thinker believes that other players do 0 

to k-1 steps of thinking according to a normalized Poisson distribution. Instead, we follow Nagel 

(1995), Stahl and Wilson (1995), and Ho et al. (1998) by assuming that a k-step thinker believes 

that all other players do exactly k-1 steps of thinking.19 Players hold false beliefs. However, best 

response functions are correct, given these false beliefs. In quantal response equilibrium models 

developed by McKelvey and Palfrey (1995), beliefs are correct but best responses are not 

necessarily correct. 

Consider a 0-step thinker in stage one. He will randomize uniformly on [0, b]. Now 

                                                 
17Shortly, the need for b < B will be obvious. 
18 Camerer et al. (2004) make a number of arguments in support of this overconfidence assumption. See also 
Binmore (1988) and Selten (1998). 
19 Using the normalized Poisson distribution of beliefs in Camerer et al. (2002; 2004) produces results identical to 
the ones derived here with a minor exception noted in footnote 24. The analysis under this assumption is available at 
http://www.uoguelph.ca/~jamegash/CH_normalized_poisson.pdf, or from the authors upon request. Camerer et al. 
(2002, fn 13) note that the k-1 assumption used here is “… easy to work with theoretically because the sequence of 
predicted choices can be computed by working up the hierarchy without using any information about the true 
distribution …” We adopt it because it leads to empirically indistinguishable predictions, and enormously simplifies 
the exposition. 
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consider a 1-step thinker who believes that all other players are 0-step thinkers. Then when he 

bids e in stage one his probability of successfully moving on to stage two, given F = 2, is  
2N1N

1 b
e

b
eb)1N(

b
e −−


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
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
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−+

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

=ρ . The first term is the probability that each of the 

other N-1 players bid less than e, and the second term is the probability that, out of  

N-1 players, N-2 players bid less than e and one player bids more than e.20 Clearly, it could 

be argued that there is more than one step of thinking in computing the probability above. So 

while we refer to this as 1-step thinking, we do so only in the sense that a higher-step thinker 

goes through more thinking steps than a 1-step thinker, or that a 1-step thinker best responds to 

the 0-step thinkers. Indeed, a 1-step thinker does even more strategic thinking by looking ahead 

to the outcome of the game in stage two. We assume that a 1-step thinker believes that his 

opponent, if he makes it to stage two, is a 0-step thinker who randomizes uniformly on the 

support [0, B ],ˆ 21 where = B – e is his opponent’s cap in stage two. To find as stage one 

commences, a 1-step thinker must compute the conditional density function that his eventual 

opponent in stage two will have emerged as the winner from the (N-2) other 0-step thinkers by 

bidding 

B̂ B̂

e~ . This is the density of e~ , conditional on success in stage one. Denote this conditional 

density by f( )se~ , where “s” denotes “success in stage one”. This conditional density function is 

the density function of the largest order statistic of the (N-1) random variables. This gives 
.b/e~))se~(f 12N−= 1−N( N−   

Recall that a 1-step thinker believes that his opponent, if he makes it to stage two, is a 0-

step thinker who randomizes uniformly on the support [0, B- e~ ]. From the standpoint of stage 

one, a 1-step thinker computes his success probability when he bids x in stage two as ρ2 ( e~ ) = x / 

(B- e~ ). Since a player who is burnt out in stage two cannot randomize over any support, the only 

belief by a 1-step thinker and higher-step thinkers consistent with the belief that 0-step thinkers 

                                                 
20 Note that a uniform distribution has no mass points, so the probability of a tie is zero. 
21 This is consistent with Camerer et al (2004, p. 892) that “… extending the model to extensive-form games is easy 
by assuming that 0-step thinkers randomize independently at each information set, and higher-level types choose 
best responses at information sets using backward induction.” 
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randomize in both stages is b < B. In what follows, we set b =  49.99. Hence the expected payoff 

of a 1-step thinker in stage two with valuation Vi is  
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 By setting N ∈  and b = 49.99, we use the math software, Maple V, to compute the 

integral in (9). We find that the term in brackets is positive, given the values of V

}8,4{

i ≥ 100 and 

N }∈  used in our experiments and b = 49.99. Hence the optimal bid for a 1-step thinker in 

stage two is  = B – e. This gives 
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Therefore, in stage one, a 1-step thinker chooses e to maximize  Let the 

optimal value be e = (N, V

.eˆ 211 −Πρ=Π

,4{

ê

ˆ ê i). In our analysis, we find that 0 < e  < B (i.e., an interior solution) 

and is increasing in N and V

ˆ

i. We obtain these results for B = 50, Vi ≥ 100 and N∈ . We 

check that second-order conditions for a local maximum hold.

}8

23 We also look at graphical plots 

of , where e ranges over the interval [0, B]. We find that  is a unique global maximum. 

Since, we allow only integer values in our experiments, we ask the reader to think of  as an 

integer. The results are summarized in Table 7. 

1Π ê

 Given 1N2N b/e~)1N()se~( −−−=f , the expected highest bid among the (N-1) 

randomizers in stage one, from the standpoint of a 1-step thinker, is )se~(E = [(N-1)/N]b. Notice 

that )se~(E → b as N → ∞. Also, the expected second-highest bid among the  

(N-1) randomizers can be shown to be )se~(Ê  = [(N-2)/N]b. Again, )se~(Ê → b as  

N → ∞. Hence, when N is large, a 1-step thinker requires a bid very close to b in stage one 

to be successful. Therefore, (N, V) → b as N → ∞. Since b = 49.99 ê ≈  B, it follows that the 

players almost burn out when N is very large. 

We summarize our analysis in the following proposition: 
                                                 
22 For notational convenience, we suppress the i subscripts on the bids. 
23 There are three solutions to the first-order condition for an interior solution. Only one solution satisfies the 
second-order condition for a local maximum. Of the two remaining solutions, one solution is a minimum and the 
other solution violates the budget constraint (i.e., e > B). 

 25



Proposition 3: Consider a two–stage contest in which the contest in each stage is an all-

pay auction where the i-th contestant has  valuation, Vi, contestants have a common budget 

constraint, B, and behave according to the cognitive hierarchy (CH) step model of thinking , i = 

1, 2, …, N. Then (i) there exists a pure-strategy CH outcome  in which a player with valuation Vi  

bids e  = e (N, Vˆ ˆ i) ≤ B in stage one and  = B –  in stage two , where  is increasing in N and 

V

x̂ ê ê

i, and (ii) e (N, Vˆ i) → B as N → ∞.  

We wish to emphasize that the predicted CH bid e  is increasing in the number of players, 

N, as indicated in Table 7. This is not the case in all-pay auctions with non-boundedly rational 

players (Baye et al, 1996; Che and Gale, 1997). This result is however consistent with Anderson 

et al. (1998) who, using a quantal response equilibrium model in which players choose best 

response functions stochastically, show that aggregate expenditure is increasing in the number of 

players in a one-stage all-pay auction. Moldovanu and Sela (2001; in press) also obtain a similar 

result in an all-pay auction where a player’s ability is private information and is assumed by his 

opponents to be a random variable that is drawn from some distribution. It is interesting to note 

that the number of players has no effect on individual or aggregate bids in all-pay auctions with 

complete information, mutually consistent beliefs, and unboundedly rational players. This 

suggests that some exogenous randomness either in the bidding behavior of the players as in the 

present paper and Anderson et al. (1998), or in some player-specific parameter (e.g., ability or 

valuation) as in Moldovanu and Sela (2001; in press) is required to obtain a relationship between 

the number of players and bids in all-pay auctions. Similarly, using the CH model, Camerer et al. 

(2004) also find a group size effect in the predicted outcome of the “stag hunt” game consistent 

with experimental evidence, while Nash equilibrium makes no such prediction. 

ˆ

 We shall now consider thinking steps beyond step 1. Consider a 2-step thinker. Note that 

a 2-step thinker knows that a 1-step thinker bids e  in stage one and B-  in stage two. In general, 

as indicated above,  increases with V

ˆ ê

ê i, and should thus differ among 1-step thinkers with 

different valuations. However, as indicated in Table 7, the predicted differences are so small as 

to be inconsequential in our experiments where only integer bids were permitted. When N = 4,  ê
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rounds off to 29 for all valuations, while for N = 8, it rounds off to 40 for all valuations. We will 

use e  to refer to these predicted integer bids for 1-step thinkers in what follows. Since a 2-step 

thinker believes that all other players are 1-step thinkers, his optimal response is also to bid  in 

stage one and B- e  in stage two.

ˆ

ˆ

ê

ˆ

ˆ

24 Similarly, all higher-step thinkers will bid  in stage one. 

Given a Poisson distribution of thinking types, the probability mass function of k-step thinkers is 

g

ê

k = τkexp(-τ) /k!. Restricting bids to integer amounts and given the Poisson CH model, we 

predict that a proportion, g0 = 1/exp(τ), of the players will randomize on [0, 49] and the rest will 

bid e .  

An important observation is that our claim that players almost burn out when N is 

sufficiently large holds when a sufficiently high proportion of the players are non-0-step 

thinkers. That is, τ must be sufficiently high. It is the 1-step and higher-step thinkers who burn 

out when N is sufficiently high, while 0-step thinkers choose their bids randomly. 

Note that the normalized Poisson belief assumption in Camerer et al. (2004) is equivalent 

to the “k-1” assumption as τ → ∞. An interesting theoretical result is that as τ → ∞, the 

prediction of the Poisson CH model in Camerer et al. (2004) will converge to one of the Nash 

equilibria. This is because as τ → ∞, k-step thinkers act as if almost all other thinkers are one 

step below them (see Camerer et al, 2004, p. 868). Hence a 2-step thinker will act as if he will 

meet a 1-step thinker with certainty in stage two. Therefore, he bids e . Similarly, a 3-step 

thinker will bid e , since he expects to meet a 2-step thinker in stage two with a probability close 

to one and so on. Thus, almost everyone bids . This convergence to Nash equilibrium when τ is 

very large is obtained in Camerer et al. (2004) as a general result in games where a Nash 

equilibrium is reached by finitely many iterated deletions of weakly dominant strategies. It is 

interesting to note that we obtained this result although the Nash equilibria in our game are not 

reached by iterated deletions of weakly dominant strategies. 

ˆ

ê

                                                 
24 If τ is sufficiently high, for example τ ≥ 0.4 for N = 8 we can show that, using the normalized Poisson distribution 
of beliefs in Camerer et al. (2004), a 2-step thinker will bid + 1 and all other higher-step thinker will bid likewise. 
The proof is available at http://www.uoguelph.ca/~jamegash/CH_normalized_poisson.pdf. 

ê
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5.2 Estimation and Model Comparison 

Since our game has a multiplicity of strategies available to the players, estimating τ to fit 

the data by maximum likelihood would be inefficient (Camerer et al, 2002, pp 23 – 26). 

Therefore, we follow Camerer et al. (2002; 2004) in choosing τ such that the predicted mean bid 

is close to the actual mean bid in the data. For N = 8, the predicted mean is 8e = 24.5exp(-τ) + 

40(1-exp(-τ)). For N = 4, the predicted mean is 4e = 24.5exp(-τ) + 29(1-exp(-τ)).  

 To fit the data, we focus our analysis on the first two periods of each treatment. This 

allows us to abstract from possible learning effects that may take place as players receive 

feedback between periods. Note that our CH analysis does not take account of learning. The 

development of a dynamic CH-learning model is beyond the scope of this paper. We will 

however show that many of the results from the later periods are inconsistent with the 

predictions of the simple CH model, suggesting that it is less relevant as more learning about the 

behavior and hence the beliefs of other participants takes place.  

The τ estimates for the first period are presented in Table 8. In two out of ten cases in our 

sample, the mean bid was greater than . However, as τ approaches infinity, the mean bid 

predicted by the CH model approaches e from below. Since there is no τ that predicts the 

observed mean bids in these cases, we did not provide a τ estimate.

ê

ˆ
25 In 10 out of 12 cases, the 

estimated τ∈(0,1).26 These results imply that the mean number of thinking steps in period one 

was very low. Most players were apparently 0-step thinkers. This is not surprising in a dynamic 

game like ours where the players have to figure out the equilibrium via backward induction.27 

The average of the sample means for N = 4 and N= 8 were 25.04 and 24.77 respectively. This is 

not surprising because most of the players were randomizing in this period, and hence the 

                                                 
25 If τ were really close to infinite in these cases, implying belief consistency, we would expect the standard 
deviations of the bids to be close to zero. However, they were not. Two similar cases arise in period two. In the N=8 
case (session 11), the standard deviation is quite low and the distribution of bids appears very close to a Nash 
equilibrium. 
26 We do not fit the CH model to the professor treatment because we believe the Nash equilibrium is more 
applicable to the behavior of the professors. They were not randomizing. Zero bids were almost all associated with 
low prize values, and non-zero bids were almost all close to 20. 
27 See Johnson et al. (2002). 
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average bid should be very close to 24.5 regardless of sample size. Camerer et al. (2004) also 

obtained very low estimates of τ in beauty contest games. As in Camerer et al. (2004, table II), 

the predicted standard deviations were not very far away from the actual standard deviations, 

although the τ’s were not chosen to match the standard deviations.  

The τ estimates for the second period are presented in Table 9. The average of sample 

means for N = 4 is 24.54, while it is 33.52 for N = 8. In four of six cases, the estimated τ for N = 

4 is 0. In four out of six cases, the estimated τ for N = 8 is at least 0.60. It would seem that 

greater competition when N = 8 than when N = 4 motivates players to think harder, resulting in a 

more sophisticated understanding of the beliefs and expected behavior in the former case after 

one period of play. The higher level of τ , together with the higher  in the eight-person 

treatments, lifts the bids in these treatments above those in the four-person treatments.  

ê

In subsequent periods, as indicated in the statistical results reported earlier, active bids 

moved progressively higher in the eight-person treatments relative to the four-person treatments. 

Although this may be partially explained by both higher τ’s and a higher  in the eight-person 

treatments, the CH model cannot fully explain the mean bid levels that result. From period three 

through period eight, the mean bid for active players

ê

ê28 was greater than  = 40 in the eight-

person treatments fully 94.4% of the time, validating our decision not to apply the CH model and 

estimate τ in the these periods. For the four-person treatments the corresponding percentage of 

mean active bids above  = 29 was 61.1%. Some players bid zero or one in these latter periods. 

As previously discussed, such bids were significantly more common when low valuations were 

drawn. Thus, they likely represent situations were the expected payoff was not high enough to 

compensate for the risk of bidding as opposed to randomly-chosen bids by 0-step thinkers.  

ê

Standard deviations of active bids generally fell as the game progressed, particularly in the 

eight-person treatments as exemplified in the multi-period results displayed in figures 1 to 5 and 

                                                 
28 As explained in footnote 12, we defined active players as those bidding more than one. If active players are 
defined more stringently as those who bid more than zero, the percentage of mean bids above becomes 88.9% in 
the eight-person treatments and remains at 61.1% in the four-person treatments. 

ê
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the final period mean bids and standard deviations for active players reported in Table 3. In five 

of the six eight-person cases, the standard deviation was less than one. In two of the three eight-

person sessions with announcements, all active players burned out by bidding exactly 50. Thus, 

in many of our samples, randomizing behavior seems much reduced and convergence towards a 

Nash equilibrium with consistency of beliefs seems to be occurring by the end of the game. 

Although the CH model predicts burning out as the number of players becomes very large, it 

does not do so for N = 8, where is predicted to be 40. However, the basic idea that more 

players imply a higher probability that at least two players might randomly choose a high bid is 

very likely an important motivation for strategic thinkers, with some perhaps limited 

understanding of this likelihood, choosing higher bids in the eight-person than in the four-person 

treatments. 

ê

 

6. Burning-out in the eight-player treatment: a formal CPNE explanation 

As argued above, we believe that the CH model is applicable to period one and perhaps 

period two of each treatment, but has less applicability in later periods. Since burning out in the 

lab was observed in later periods, we shall examine the difference in behavior for N = 8 and N = 

4 by returning to the CPNE model. We do so in this section. 

The effect of the number of players on the likelihood of burning out does not support the 

CPNE predictions, since these equilibria are independent of the number of players. In this 

section, we shall show how the number of players might affect the equilibria which are non-

CPNE, and why burning out is more likely to occur with eight players than with four players as 

players converge toward Nash outcomes. 

Consider any Nash equilibrium that is not a CPNE. These are the non-burning out 

equilibria. Suppose p is a player’s subjective probability that an opponent in stage one   

will deviate to a higher bid.29 We assume that a player holds this subjective belief at any 

                                                 
29 Notice that it does not make sense to deviate to a lower bid. 

 30



non-burning-out equilibrium. Let d be the number of deviators. Then, of the N-1 other players, 

the probability that d players will deviate is d1Nd )p1(p
)!d1N(!d

)!1N()d(prob −−−
−−

−
= . If d ≥ 2, the 

probability that a non-deviating player will advance to stage two is zero, given F = 2. If d < 2, the 

probability that a non-deviating player will advance to stage two is (F-d)/(N-d) = (2-d)/(N-d). 

Therefore, the probability that a non-deviating player will advance to stage two is 

∑
=

−−−
−−

−
−
−

=
1

0d

d1Nd )p1(p
)!d1N(!d

)!1N(
dN
d2)adv(prob . Now suppose that each player believes 

that there is a 50-50 chance that a randomly chosen opponent will deviate. That is, p = 0.5. 
Then .18750)5.0p,4Nadv(prob ===  and 00977.0)5.0p,8Nadv(prob === . So, when N = 8, 

a player has a very small chance (i.e., 0.977%) of advancing to the next stage if he does not 

deviate to a higher bid. In contrast, when N = 4, a player has a much higher chance (i.e., 18.75%) 

of advancing if he does not deviate to a higher bid. Note that these probabilities are the same at 

any non-burning out equilibrium and are independent of a player’s valuation. Since these 

probabilities are the same at any non-burning-out equilibrium and a player does not know by 

how much others have increased their bids by deviating, it is reasonable that if a player decides 

to deviate, he should deviate to the burning-out equilibrium. Since, if a player does not deviate, 

the probability of advancing when N = 8 is almost 1/20 of the probability of advancing when N = 

4,30 it is reasonable to argue that a player is much more likely to deviate from any non-burning 

out equilibrium, when N = 8 than when N = 4. The intuition is simple. The higher is N, the 

higher is the probability that two or more of the other players will deviate to a higher bid. With 

only two slots and eight contestants, a player feels that he has to bid more to get to stage two 

when he has to beat six out of seven other players rather than two out of three players. This urge 

to bid more may stem from a player’s belief that deviations to higher bids are more likely with 

more players than with fewer players.  

                                                 
30 This ratio is even smaller than 1/20 for 0.5 < p < 1. Indeed, holding N fixed at 4 and 8, we find that the probability 
of advancing is decreasing in p. Note that if one were to assume that p = p(N) where p is an increasing function of 
N, this will strengthen our result since p(8) > p(4). 
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7. Conclusion 

 We have examined a two-stage sequential elimination game with a continuum of 

equilibria in the first stage. Many of these equilibria can be ranked according to the Pareto 

criterion. A set of such rankable equilibria resembles the continuum of Pareto-rankable equilibria 

in the weak-link coordination game. In that game, groups of two and to a lesser extent three are 

better able than larger groups to maintain a Pareto-dominant equilibrium over a series of periods 

in which the game is repeated in a partner protocol. Our game differs from such weak-link games 

in that the main point is not to cooperate, but to win the prize. In addition, in our game but not in 

weak-link games, the Coalition-Proof Nash Equilibrium refinement rules out all equilibria but 

the one in which everyone who chooses to bid burns out by bidding all of their resources in stage 

one. In all of our treatments, this is the least efficient pure-strategy equilibrium in the sense that 

it is Pareto-dominated by all of the other equilibria. 

 Our first finding is that some players withdraw from the game by bidding zero, while 

others bid substantial amounts. This is reminiscent of a laboratory result that emerged 

unexpectedly in Muller and Schotter’s (2003) recent experimental examination of a model 

developed by Moldovanu and Sela (2001) in which players had different costs of effort. 

Although Moldovanu and Sela’s theoretical model predicted that the amount of effort exerted 

should be a continuous inverse function of cost, the laboratory results indicated a discontinuity: 

higher-cost players generally gave up, expending little effort, while lower-cost players generally 

tried hard, exerting a lot of effort. In the Amegashie (2004) model, the cost of effort is identical 

for all players, but prize valuations can differ.31 The specific version of the Amegashie model 

adopted in this paper predicts that players with lower valuations will withdraw from the contest 

by bidding zero, while players with higher valuations will compete for the prize by bidding 

                                                 
31 However, as shown by Baye et. al (1996) and Clark and Riis (1998), a contest where the players have different 
valuations but a common cost of effort is analytically equivalent to a contest where the players have common 
valuations but different costs of effort. 
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positive amounts in the first stage of a two-stage game, a prediction that is corroborated by the 

data. 

Our second finding is that a Pareto-dominant equilibrium is never attained in any of our 

sessions. In addition, our experimental results show that bids are higher with more players and 

that burning out, which is Pareto-dominated by all other equilibria in our treatments, is more 

likely to occur with more than with fewer players. This somewhat parallels a recent experimental 

finding in Amaldoss and Rapoport (2005), where in a quite different context, bids are higher 

when there are more players and hence more competition in the first stage of a two-stage game. 

However, in Amaldoss and Rapoport (2005), such behavior is not consistent with any 

equilibrium, and first-stage bids are higher than predicted by Nash both with smaller and larger 

numbers of players in the first stage. The puzzle in Amaldoss and Rapoport (2005) is that bids 

are higher than predicted in both of their treatments. In contrast, our puzzle is that bids are lower 

than predicted by CPNE in our four-person treatment. Amaldoss and Rapoport (2005) propose 

that people get non-pecuniary utility, increasing with the number of competing players, from 

winning an auction, and show that this can explain much of the behavior they observe. In our 

framework, such an explanation would require unrealistically high levels of such utility to 

explain the differences in our four-person and eight-person results. 

Using a recent cognitive hierarchy (CH) model developed by Camerer et al. (2004), which 

is based on steps of thinking by players, we show that when both the number of players and the 

mean number of thinking steps are large, the CH prediction involves burning out by using all of 

one’s resources in the first stage. For the four-person treatments, it predicts that strategic players, 

for whom the number of thinking steps is greater than zero, will bid = 29. For the eight-person 

treatments, the corresponding number is = 40. Thus, it does not predict burning out in either of 

our treatments. We estimate the mean number of thinking steps to fit our experimental data and 

find that it is very close to 0 in the initial period but substantially higher in the second period for 

the eight-person treatments. It thus provides some support for the higher mean bids observed in 

the eight-person treatments in the second period. However, the CH model does not predict well 

ê

ê
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in subsequent periods as players learn about each other’s behavior and beliefs, and as many bids 

rise above the level predicted by CH, especially in the eight-person case where players burn out. 

Nonetheless, the idea emanating from the CH analysis that more players competing for the same 

number of spots means a higher probability of randomizers choosing very high bids, which in 

turn causes the bids of strategic players to be higher, is likely a driving force behind our burning-

out results. In addition, our results suggest that with more competition for spots, people learn 

more quickly to think in a more sophisticated manner. Camerer (2004) argues that high stakes 

encourage more sophisticated thinking. Apparently, more competition does as well. 

The CPNE is not a good predictor of behavior when four people compete for two second-

stage spots, but it does predict well when eight people compete for the two available spots. 

Allowing for joint deviations, we provide a formal analysis and intuition as to why the CPNE is 

likely to have more predictive power in the eight-person case. With more players, there is a 

higher probability that two will deviate to a higher bid, leading to the breakdown of any 

equilibrium that is not coalition-proof, and convergence towards the unique CPNE burning-out 

equilibrium.  

More competing players imply:  a higher probability that two randomly-chosen high bids 

will be placed by 0-step thinkers; more strategic-thinking motivated by more competition leading 

to higher τ’s; and a higher probability that two competitors might deviate to a higher bid. All of 

these factors suggest that more competition leads to higher bids, and that burning out is indeed a 

competitive phenonemon as observed in the laboratory.  
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Table 1 
Summary of Treatments  

 
 4-person group 8-person group 

Without 
announcement 
(eight periods) 

3 sessions with students 3 sessions with 
students 

With announcement 
(eight periods) 

3 sessions with students 
1 session with economics professors (excluded from 

statistical analysis) 

3 sessions with 
students 

 
Table 2 

Summary of the Complete Set of Nash Equilibria 
 

Total Number of 
players, N 

Number of active 
players, K 

 Symmetric bids of active 
players in stage one 

Identity of non-
active players 
 

4 4 e* = 0 None 
4 3 0 < e* ≤ 50 Player 4 
    
8 8 0 ≤ e* ≤ 16.667 None 
8 7 16.667 < e* ≤ 20 Player 7 or 8 but 

not both 
8 6 20 < e* ≤ 50 Players 7 and 8 
The stage-two bid x* = B – e* for all active players. 
 

Table 3 
Period Eight Mean Bids and Standard Deviations in Various Samples 

 
Sample Winning Bids Announced Sample 

Size 
Mean Active Bid
in Period Eight 
 

Active Bid Std Dev in 
Period Eight 
 

1 No 4 32.00 2.00 
2 No 4 27.75 16.52 
3 No 4 32.33 1.53 
4 Yes 4 25.25 0.50 
5 Yes 4 45.67 0.58 
6 Yes 4 35.50 5.26 
7 No 8 48.83 0.41 
8 No 8 46.71 2.69 
9 No 8 48.57 0.52 
10 Yes 8 50.00 0.00 
11 Yes 8 50.00 0.00 
12 Yes 8 48.38 0.92 
 Econ. Profs Yes 4 20.00 0.00 
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Table 4 

Positive versus Zero Bid Results 
 

Repeated Measures Three-level Hierarchical Logit Model with Random Effects on Intercept, 
Period and Normalized Valuation, using Full PQL (Penalized Quasi-Likelihood) Estimation.  
 
Equation estimated:  log[Ptis/(1-Ptis)] = γ000 + γ001(NAs) + γ002(8Ps) + γ100(PERt) + 
γ101(PERt×NAs) + γ102(PERt×8Ps) + γ200(NVtis) + γ201(NVtis×NAs) + γ202(NVtis×8Ps) + η0is               
+ η1is(PERt) + η2is(NVtis) + µ00s + µ10s(PERt) + µ20s(NVtis) 
 

Independent Variables Estimate t value Pr > |t| 
Intercept 0.004332 0.004 0.997 
No Announcement (NA) -0.635910 -0.516 0.618 
8 Participants (8P) -0.980644 -0.762 0.465 
Adjusted Period (PER) 0.008298 0.059 0.954 
NA H PER 0.045866 0.331 0.748 
8P H PER -0.191543 -1.272 0.236 
Normalized Valuation (NV) 0.052823 1.999 0.076 
NA H NV 0.037350 1.262 0.239 
8P H NV -0.009759 -0.320 0.756 

 
Table 5 

Distance from Burning-out CPNE Results 
 

Repeated Measures Three-level Hierarchical Linear Model with Random Effect on Intercept and 
Adjusted Period using Full Maximum Likelihood.  
 
Equation estimated:  EQDISTtis = γ000 + γ001(NAs) + γ002(8Ps) + γ100(PERt) + γ101(PERt×NAs) + 
γ102(PERt×8Ps) + η0is + η1is(PERt) + µ00s + µ10s(PERt) + εtis 
 

Independent Variables Estimate t value Pr > |t| 
Intercept [γ000] 14.544341 6.053 0.000 
No Announcement (NA) [γ001] 0.425206 0.155 0.881 
8 Participants (8P) [γ002] -15.001736 -5.464 0.000 
Adjusted Period (PER) [γ100] -0.159603 -0.474 0.646 
PER×NA [γ101] -0.227421 -0.615 0.553 
PER×8P  [γ102] -1.254216 -3.347 0.009 

 
Other Hypothesis Tests    
γ000 + γ002  -0.457395 -0.195 0.850 
γ100 + γ102  -1.413819 -4.577 0.001 
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Table 6 
Summary of Stage-Two Behavior in Student Sessions 

 
 

Announce-
ment 

Stage One 
Winning Bids 

Both spend 
rest of 

Endowment 

One spends rest 
of Endowment 

None spend 
rest of 

Endowment 

Total

Yes Tie 16 1 0 17 
Yes Difference = 1 9 5 1 15 
Yes Difference >1 5 8 3 16 
No Two chosen 

randomly 
6 1 1 8 

No One chosen 
randomly 

5 1 0 6 

No No random 
draw 

23 9 2 34 

 

 

Table 7 
Values for , given B = 50, N = 4 or 8, and various values of V ê

 
V ê (N= 4)  ê (N = 8)  
100 28.5562 39.5947 
120 28.6188 39.6166 
150 28.6808 39.6382 
170 28.7097 39.6484 
200 28.7422 39.6597 
230 28.7661 39.6681 
270 28.7896 39.6764 
300 28.8031 39.6811 
400 28.8333 39.6918 
500 28.8514 39.6981 
600 28.8634 39.7024 
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Table 8 
Period One Data and CH Estimates of τ in Various Samples 

 
Sample Winning bids 

announced 
Sample  
size 

Sample 
mean in 
period one 

Sample 
Std Dev 
Period 
one 
 

Estimated
τ 

Predicted 
mean from 
CH model 

CH 
Std 
Dev 

1 No 4 24.75 11.5 0.06 24.75 13.79 
2 No 4 33.50 5.80 N/A N/A N/A 
3 No 4 26.50 14.34 0.59 26.50 10.78 
4 Yes 4 20.50 4.20 0.00 24.50 14.14 
5 Yes 4 33.25 7.89 N/A N/A N/A 
6 Yes 4 11.75 6.24 0.00 24.50 14.14 
7 No 8 32.25 13.19 0.69 32.25 12.65 
8 No 8 25.13 13.53 0.04 25.13 14.18 
9 No 8 26.63 4.37 0.15 26.63 14.17 
10 Yes 8 15.75 16.45 0.00 24.50 14.14 
11 Yes 8 28.00 17.70 0.26 28.00 14.02 
12 Yes 8 20.88 14.53 0.00 24.50 14.14 
        

The predicted variances = 222
1

2
0

2
0 )e())ê())(exp(/11())e())(exp(/1( −+στ−++στ

2
1σ

, where  

= (49-0)

2
0σ

2/12 is the variance of the bid of a 0-step thinker, = 0 is the variance of the bids of all 
higher-step thinkers, 0e is the predicted mean bid of 0-step thinkers, and e  is the predicted mean 
bid for all players. N/A indicates that the mean bid fell above e , which is inconsistent with any τ. ˆ
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Table 9 
Period Two Data and CH Estimates of τ in Various Samples 

 
Sample Winning Bids 

Announced 
Sample  
Size 

Sample 
Mean in 
Period Two 

Sample 
Std Dev 
Period 
Two 
 

Estimated
τ 

Predicted 
Mean from 
CH Model 

CH 
Std 
Dev 

1 No 4 20.00 13.88 0.00 24.50 14.14 
2 No 4 27.75 13.55 1.28 27.75 7.72 
3 No 4 21.00 14.31 0.00 24.50 14.14 
4 Yes 4 22.75 1.89 0.00 24.50 14.14 
5 Yes 4 36.00 4.69 N/A N/A N/A 
6 Yes 4 19.75 3.40 0.00 24.50 14.14 
7 No 8 34.88 18.15 1.12 34.88 10.92 
8 No 8 31.50 14.8 0.60 31.50 13.01 
9 No 8 32.00 13.46 0.66 32.00 12.77 
10 Yes 8 21.13 19.35 0.00 24.50 14.14 
11 Yes 8 47.63 1.41 N/A N/A N/A 
12 Yes 8 33.88 14.44 0.93 33.88 11.68 
        

See the notes to Table 8
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Figure 2
Four Persons with Announcement
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Appendix A: Proof that in an all-pay auction with two players who have different caps, the 

player with the smaller cap gets a zero expected surplus if the cap is sufficiently small 

Consider stage two of the game (an all-pay auction) where there are two active players 

with different caps. For the sake of argument, suppose the players are 1 and 2, with valuations V1 

and V2 and caps B1 and B2, where B2 < B1 ≤ B and V1 > V2 > B2. Note that V2 > B2 since (1/F)Vi 

– B > 0, for all active players. We follow the proof in Che and Gale (1997), although in their 

model the players have different caps but the same valuations.  

 If B2 = 0, then the only equilibrium is in pure strategies in which player 2 bids zero and 

player 1 bids a small but positive amount. 

 Now suppose B2 > 0. First, there is no equilibrium in pure strategies. The proof is 

straightforward, so it is omitted. There is an equilibrium in mixed strategies (Che and Gale, 

1997). Second, no player has a mass point at any bid x ∈(0, B2) in stage two. Without loss of 

generality, suppose the contrary that player 1 has a mass point at  

x ∈(0, B2), say at x1. Then the probability that player 2 wins rises discontinuously as a 

function of his bid at . Hence there is some ε > 0 such that player 2 will bid on the interval 

[ x - ε, x ] with zero probability. But then player 1 is better off bidding - ε instead of  

since his probability of winning is the same. This contradicts the hypothesis that putting a mass 

point at x ∈(0, B

1x

1 1 1x 1x

2) is an equilibrium strategy. Third, only one player can receive a strictly 

positive expected surplus. Suppose instead that both players receive positive expected surpluses. 

Then both players must have the same infimum bid. If not, the player with the strictly lower 

infimum would lose with probability one when he bids below the other player’s infimum bid, so 

his expected surplus cannot be strictly positive, since every bid in the support of his equilibrium 

mixed strategy must yield the same expected surplus. If both players have the same infimum bid, 

x > 0, then in order for each of them to win with positive probability when bidding x , they must 

both have mass points at x . But this is not possible since no player puts a positive mass at x ∈(0, 

B2) and B2 cannot be either player’s lowest bid since there is no pure-strategy equilibrium. 

Hence, only one player can have a strictly positive expected surplus. Finally, the player with the 
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bigger cap (i.e., player 1) gets a positive expected surplus and therefore player 2’s expected 

surplus is zero. To see this, note that player 1 can guarantee himself a positive expected surplus 

by submitting a bid above B2. Since there exists a bid that guarantees player 1 a positive 

expected surplus, this player cannot make a zero expected surplus in a mixed-strategy 

equilibrium. Hence player 2 (i.e., the player with the smaller cap) gets a zero expected surplus. 

QED. 

 

Appendix B 

B1: An example to show that a burning-out equilibrium can weakly Pareto-dominate a 

non-burning-out equilibrium with higher K. 

 Consider N players with valuations, V1 = 600, V2 = 600, V3 = 460, V4 = 460, V5 = 340, 

V6 = 340, Vi = 100 for i = 7, 8, …, N. The cap is B = 50 and F = 2. 

 Then K= 6 and e* = B is an equilibrium because (1/6)Vi – B > 0 for i = 1, 2,, …, 6. If 

players 7 to N bid B = 50 they will each get a negative payoff. However, K = N, e* = 0 is also an 

equilibrium because (2/N)(Vi/2 – 50) ≥ 0 for i = 1, 2, …, N. The players indexed 7 to N are 

neither better off nor worse off in this equilibrium than in the six-player burning-out equilibrium, 

since expected payoffs equal zero in both cases. For the burning-out equilibrium to Pareto-

dominate K = N, e* = 0, we require (2/N)(Vi/2 – 50) ≥ (1/6)Vi – 50, or equivalently, if N ≥ 6(Vi 

– 100)/(Vi – 300) for i = 1, 2,, …, 6 with strict inequality for at least one i. Given the players’ 

valuations above, this is true if N ≥ 36. QED. 

 

B2: (i) Proof that K = 3 and e* = B = 50 is dominated by all other pure-strategy equililbria 

in the four-player case, and (ii) Proof that e* = 1 and K = 3 dominates all other pure-

strategy equilibra in the four-player case 

There are four players with valuations V1 = 300, V2 = 230, V3 = 170, and V4 = 100. The 

cap is B = 50 and F = 2.  

 Part (i): First, K = 3 and e* = B = 50 is an equilibrium because (1/3)Vi – B > 0 for i = 1, 
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2, 3. If player 4 bids B = 50 given K = 3, his payoff is negative because 100/4 – 50 < 0. Given K 

= 3, we know from the discussion in the text that all other equilibria for which K = 3 (i.e., 0 < e* 

< 50) Pareto-dominate K = 3, e* = B = 50. 

 Note that there is no equilibrium with K < 3 players since any player who participated in 

the three-player burning-out equilibrium would also participate in any hypothetical equilibrium 

having less than three players. Hence we only need to compare the equilibria with K = 4 to the 

three-player burning-out equilibrium.  

 For K = 4 to be an equilibrium, we require that (2/4)[(1/2)Vi – (50-e*)] – e* ≥ 0 for i = 1, 

2, 3, 4. This holds so long as e* ≤ (1/2)Vi – 50 or, substituting the lowest valuation for  Vi , e* ≤ 

0. Hence, the only equilibrium is e* = 0 given K = 4. Note that player 4 gets a zero expected 

payoff whether K = 3 or K = 4. Now the equilibrium in which K = 4 and e* = 0 Pareto-

dominates the three-player burning-out equilibrium if (2/4)[(1/2)Vi – 50] ≥ (1/3)Vi – 50, with 

strict inequality for at least one i, i = 1, 2, 3. This holds if Vi ≤ 300 with strict inequality for Vi < 

300. Hence players 2 and 3 are better off in the equilibrium with K = 4 and e* = 0 and players 1 

and 4 are no worse off. Hence K = 3, e* = B is the worst equilibrium. QED. 

 Part (ii): First, recall that player 4 gets a zero expected payoff whether K = 3 or 4. Given 

K = 3, the equilibrium which gives the highest payoff is the equilibrium with the lowest effort, 

e*, in stage one. Since we only allow integer bids in our experiments, the lowest such bid in 

stage one consistent with K=3 is e* = 1. Hence to show that K = 3, e* = 1 is the best equilibrium, 

we need to compare this equilibrium to K = 4, e* = 0. To do this, we need to show that 

(2/3)[(1/2)Vi – (50 – 1)] – 1 ≥ (2/4)[(1/2)Vi – 50], for i = 1, 2, 3, with strict inequality for, at 

least, one i. This holds if Vi ≥ 104, with strict inequality for at least one i. This is true, given V1 = 

300, V2 = 230, and V3 = 170. QED. 

 

B3: Proof that K = 6 and e* = B = 50 is Pareto-dominated by all other pure-strategy 

equilibria in the eight-player case. 

 There are eight players with valuations, V1 = 600, V2 = 600, V3 = 460, V4 = 460, V5 = 
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340, V6 = 340, V7 = 200, and V8 = 200. The cap is B = 50 and F = 2. 

 First, K= 6 and e* = B, is an equilibrium because (1/6)Vi – B > 0 for i = 1, 2,, …, 6. If 

either player 7 or player 8 bids B = 50, he/she will each get a negative expected payoff. Given K 

= 6, we know from the text that all other equilibria (i.e., 0 ≤ e* < 50), if they exist, Pareto-

dominate K = 6, e* = B = 50.  

 Note that there is no equilibrium with K < 6 players since any player who participated in 

the six-player burning-out equilibrium would also participate in any hypothetical equilibrium 

having less than six players. Hence we only need to compare the equilibria with K = 7 and K = 8 

to the six-player burning-out equilibrium.  

 We now need to show that in any equilibrium with K = 7 or K = 8, players 7 and 8 get an 

expected payoff greater than or equal to zero and players 1 to 6 get expected payoffs greater than 

or equal to (1/6)Vi – B with strict inequality for at least one player. Since players 7 and 8 get a 

zero payoff in the six-player equilibrium and cannot be forced to choose a negative expected 

payoff in any other possible equilibrium, we focus primarily on players 1 to 6 unless otherwise 

indicated. 

Any equilibrium with K = 7, 8 Pareto dominates the six-player burning-out equilibrium if 

(F/K)[(1/F)Vi – (B-e*)] – e* ≥ (1/6)Vi – B, with strict inequality for at least one i, i = 1, 2, 3,…, 

6. Solving for e*, gives 

e* ≤ B + 







−
−

FK
6/K1

iV ,        (B3-1) 

i = 1, 2,…,5, 6. 

 If (B3-1) holds for V1 = V2 = 600, then it holds for lower Vi with strict inequality. 

Substituting K = 8, Vi = 600, F = 2, and B = 50 into (B3-1) gives e* ≤ 16.667 as the required 

condition. Now for K = 8 to be an equilibrium, we require that (F/K)[(1/F)Vi – (B-e*)] – e* ≥ 0 

for i = 7 and 8. This will also be true as long as e* ≤ 16.667. It follows that when an equilibrium 

exists for K = 8, it satisfies the inequality in (B3-1) and thus Pareto-dominates the six-player 

burning-out equilibrium. 
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 We now compare equilibria with K = 7 to the six-player burning-out equilibrium.  

Substituting K = 7, Vi = 600, F = 2, and B = 50 into (B3-1) gives e* ≤ 30 as the required 

condition for Pareto dominance. For K = 7 to be an equilibrium, we require that (F/K)[(1/F)Vi – 

(B-e*)] – e* ≥ 0 for either i = 7 or 8 and [F/(K+1)][(1/F)Vi – (B-e*)] – e* < 0 for either i = 7 or 

8. Substituting into these two expressions yields 16.667 < e* ≤ 20. It follows that if players 1 to 7 

bid e* ∈  (16.667, 20], then player 8 will stay out of the contest.32 Hence equilibria with K = 7 

exist for e* ∈  (16.667, 20].33 Since e* ∈  (16.667, 20] satisfies e* ≤ 30, it follows that when an 

equilibrium exists for K = 7, it satisfies the inequality in (B3-1) and thus Pareto-dominates the 

six-player burning-out equilibrium. 

 We have therefore proven that any pure-strategy equilibrium Pareto-dominates the six-

player burning-out equilibrium. QED. 

 

B4: Proof that (K = 8, e* = 0) and (K = 6, e* = 21) are the only pure-strategy equilibria that 

are not Pareto-dominated 

 Recall that equilibria with K = 7 exist for e* ∈  (16.667, 20]. Hence the best equilibrium 

when K = 7 has e* ≈ 16.667. However, since in our experiments, we allow only integer bids, the 

best equilibrium for K = 7 is at e* = 17. Call this equilibrium (K =7, e* = 17). 

 When K = 8, the best equilibrium has e* = 0. Call this (K = 8, e* = 0). To find the best 

equilibrium for K = 6, we need to find the lowest value of e* for which K = 6 is an equilibrium. 

When K = 6, then players 7 and 8 will stay out of the contest if  

(2/7)[200/2 – (50 – e*)] – e* < 0. This gives e* > 20. Hence the best equilibrium for K = 6 

is at e* = 21, given that we allow only integer bids in our experiments. Call this (K = 6, e* = 21). 

                                                 
32 By symmetry, the roles of players 7 and 8 are interchangeable.  
33 For K = 7, there is no equilibrium in which the players with valuations Vi = 200, are active players but one of the 
other players is not. As shown above, for player 7 or 8 to be an active player for K = 7, we require that e* ≤ 20. Then 
for one of the other players to be non-active, we require that (F/(K+1))[(1/F)Vi – (B-e*)] – e* < 0 or (2/8)[(Vi/2 – 
(50 –e*)] – e* < 0. This gives e* > 40 for Vi = 340. Since e* ≤ 20 and e* > 40 cannot simultaneously hold, it follows 
that there is no equilibrium with K = 7 where the players with Vi = 340 are non-active and the players with Vi = 200 
are active. There is also no such equilibrium with K < 7. A similar argument holds for the players with Vi = 460, 
600. 
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 First, let’s compare (K = 8, e* = 0) and (K = 7, e* = 17). The payoff of a player with 

valuation, Vi, when K = 8 and e* = 0, is ∏8i = (1/8)Vi – 12.5. The payoff of a player with 

valuation, Vi, when K = 7 and e* = 17, is ∏7i = (1/7)(Vi – 185). Therefore, ∏8i - ∏7i = 

13.92857143- 0.0178571429Vi > 0 for Vi ∈  [200, 600]. Hence, (K = 8, e* = 0) Pareto-dominates 

(K = 7, e* = 17). 

 We now compare (K = 8, e* = 0) and (K = 6, e* = 21). The payoff of a player with 

valuation, Vi, when K = 6 and e* = 21, is ∏6i = (1/6)Vi – 92/3. Therefore, 

∏8i - ∏6i = 18.66667 - 0.04167Vi. Now ∏8i - ∏6i > 0 for Vi = 340 but ∏8i - ∏6i < 0 for Vi = 

460 and 600. Hence, (K = 8, e* = 0) and (K = 6, e* = 21) cannot be ranked according to the 

Pareto criterion. QED. 

 

Appendix C:  Experimental Instructions 

This is an experiment in the economics of decision making. The Social Sciences and 

Humanities Research Council of Canada has provided funds for this research. The instructions 

are simple and if you follow them carefully, you may make money in this experiment. This 

money along with a $3.00 participation fee will be paid to you by cheque at the end of the 

session. 

The session will last for eight periods and each period consists of two stages. You will be 

playing with three other persons. Your total earnings will depend on your decisions together with 

the decisions of the other players and your luck during the sessions. You should not 

communicate with anyone else in the room during the session.  

The game uses a fictional currency called tokens. All game transactions are denominated in 

this fictional currency. Your information slip contains the rate that allows you to convert the 

tokens that you earn in the experiment into Canadian dollars. The total amount of money you 

earn in all of the rounds will determine your dollar payoff at the end of the game.  

At the beginning of each period, you will be asked to draw an information slip from a box 

held by the experimenter. On each slip you should enter the date, your assigned player number, 
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and the period number.  

At the end of stage two, one of the four persons will be awarded a monetary prize. The 

value of the prize for you and for the other members of your group will be specified on your 

information slip. Your prize value may differ from the prize value for the other members of your 

group. Each information slip will also indicate that you have 50 tokens that you may either keep 

or use in order to bid for the prize. 

In stage one of each period, you will be given the opportunity to bid any amount of money 

from zero up to 50 tokens. You are not allowed to bid more than 50 tokens. Enter the value of 

your bid in the designated space on the information slip. Once you make your decision, please 

raise your hand and your information slip will be collected by the experimenters. The person 

who places the highest bid and the person who places the second-highest bid will move on to 

stage two. The other two players will earn 50 tokens minus their bids in that period. If two 

players choose the same bid and it is the highest bid, they will both move on to stage two. If 

more than two players choose the same bid, and it is the highest bid, a random draw will be used 

to determine which two will move on to stage two. Finally, if one player places the highest bid 

and two or more players place the same bid and it is the second-highest bid, a random draw will 

be used to determine which one of the latter will move on to stage two. 

If you reach stage two, you will be given the opportunity to bid any amount of money from 

zero up to whatever amount of money remains after your stage-1 bid. The person who places the 

highest bid will receive the prize. Its value will be as specified on that person’s information slip. 

If both players choose the same bid, a random draw will be used to determine which of the two 

will receive the prize. 

If you receive the prize, your total earnings will simply be 50 tokens, minus the tokens you 

bid in both stages, plus the prize value you drew at the beginning of the game. If you do not 

receive the prize, your total earnings for each period will just be 50 tokens, minus your bid or 

bids in the period. 

At the end of each period, the amount you have earned in tokens will be indicated by the 
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experimenter on your information slip, which will then be returned to you. Please note that you 

will have 50 tokens allocated to you at the beginning of each period. You may not use your 

earnings from an earlier period to make bids in a later period.  

At the end of the session, you will be called up one at a time and paid by cheque the total 

amount that you earned for all periods in the sessions. All slips used in the session should be 

returned at that time.  
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