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Abstract

The paper analyzes incentives and stability in two-sided matching
markets when the number of participants is large and the length of
the preference list is finite. Building on and extending Immorlica and
Mahdian (2005), we first investigate the scope for manipulation in a
many-to-one market. When preference lists are drawn from an arbi-
trary distribution for one side of the market and under a mild indepen-
dence assumption on the distribution for the other side, we establish
that the fraction of participants who can profitably misrepresent their
preferences via truncation is small. Moreover, the scope of manipula-
tions via capacities and pre-arranged matches approaches zero as the
size of the market becomes large. With an additional bounded distri-
bution assumption, truthful reporting is an approximate equilibrium,
implying efficiency of the resulting matching.
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1 Introduction

The theory of two-sided matching is one of the most elegant and well-
developed areas of game theory. A central notion is stability: there is no
individual agent or pair of agents who prefer to be assigned to each other
than their allocation in a matching. Matching theory also has real-world ap-
plications in entry-level labor markets, where new physicians seek positions
in hospitals as residents1 and the mechanisms inspire solutions in related
contexts such as student assignment.2 In these contexts, stable mechanisms
often succeed whereas unstable ones are likely to fail.
Although stable mechanisms have a number of virtues, they are not im-

mune to various types of strategic behavior before and during the match.
Dubins and Freedman (1981) and Roth (1982) show that any stable mecha-
nism is manipulable via preference lists: reporting a preference list that does
not reflect the true underlying preferences may be a best response for some
participants. In many-to-one markets, Sönmez (1997a) and Sönmez (1999)
shows that there are also other strategic concerns. First, any stable mecha-
nism is manipulable via capacities so that colleges may sometimes benefit by
underreporting their quotas. Second, any stable mechanism is manipulable
via pre-arranged matches so that a college and a student may benefit by
agreeing to match before receiving their allocation from the match.
Concerns about the potential for these types of manipulation are often

present in real world markets. For instance, in New York City where the De-
partment of Education has recently adopted a stable mechanism, the Deputy
Chancellor of Schools described principals concealing capacity as a major is-
sue with their previous system (New York Times (11/19/04)):

“Before you might have a situation where a school was going
to take 100 new children for 9th grade, they might have declared
only 40 seats, and then placed the other 60 outside of the process.

Roth and Rothblum (1999) discuss similar anecdotes about preference ma-
nipulation from the National Resident Matching Program (NRMP).
The aim of this paper is to understand why despite these negative results

many stable mechanisms appear to work well in practice. In the real-world
two-sided matching markets, there are often a large number of participants,
and each participant submits a rank order list whose length is a small fraction
of the market size. For instance, in the NRMP, the length of the applicant

1See Roth (1984a) and Roth and Peranson (1999).
2See for example Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu, Pathak, Roth,

and Sonmez (2005) and Abdulkadiroğlu, Pathak, and Roth (2005).
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preference list is about 15, while the number of positions is on the order of
20,000 per year. In New York City, the maximal length of the preference
list is 12, and there are over 90,000 participants per year. As a result, our
focus is on understanding what happens in the limit in environments as the
number of participants grows, but the length of the preference lists does not.
Our results show that the size of the market makes the mechanism im-

mune to various kinds of manipulations. Specifically, we consider many-
to-one matching markets with the student-optimal stable mechanism, where
colleges have arbitrary preferences such that every student is acceptable, and
students have random preferences of fixed length drawn iteratively from an
arbitrary distribution. We show that the expected proportion of colleges that
can manipulate via truncating preferences or capacity or pre-arrangement
converges to zero as the number of colleges approaches infinity. The key in-
tuition comes from a lemma on the vanishing market power of colleges. Under
our assumptions, the lemma shows that the likelihood that the sequence of
chain reactions caused when a college rejects students it was assigned from
the student-optimal stable matching leads to another student applying to
that college is small.
We also conduct equilibrium analysis in the large market. Immorlica and

Mahdian (2005) claim that with the same set of assumptions, truth-telling
is an approximate equilibrium. We present an example to show that this
is not the case. We next define a condition on the distribution of prefer-
ences as allowing no superstar if there are no extremely popular colleges
and no extremely unpopular colleges. Under this assumption, truth-telling
is an approximate equilibria in games of preference truncation and capacity
reporting. Furthermore, not engaging in pre-arrangement is approximately
optimal for each college when the size of the market is large.
Our paper is most closely related to Roth and Peranson (1999) and Im-

morlica and Mahdian (2005). Roth and Peranson (1999) conduct a series of
simulations on data from the NRMP and on randomly generated data and
first suggested considering situations where the size of the market is large in
comparison to the length of preference lists. Based on randomly generated
data, their simulations showed that very few students and hospitals could
have benefitted by submitting false preference lists or by manipulating ca-
pacity. These simulations led them to conjecture that the fraction of people
in a two-sided market with random preference lists of limited length who can
manipulate tends to zero as the size of the market grows.
Immorlica and Mahdian (2005), which this paper builds heavily upon,

was one of the first theoretical attempts to understand these results. They
consider one-to-one matching markets where each college has only one posi-
tion and show that as the size of the market becomes large, the proportion of
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colleges that are matched with different students in different stable match-
ings becomes small. Since a college can manipulate via preference lists if
and only if there is more than one student in a stable matching, this result
implies that most colleges cannot manipulate preference lists.
While our techniques are similar, our focus in this paper is on many-to-

one markets like the NRMP, where this implication no longer holds. Even
if there is only one stable matching, colleges can sometimes manipulate via
preference lists. Moreover, in many-to-one markets there exists the additional
possibility of capacity manipulation and manipulation via pre-arrangement
which are not present in a one-to-one market. As a result, having only one
set of stable partners in the limit is not sufficient to explain the lack of
manipulability in many-to-one markets. We argue instead that the results
follow from vanishing market power of colleges in the limit. This paper thus
complements and extends Immorlica and Mahdian (2005) to a many-to-one
market and considers an expanded set of manipulations. Such an exercise is of
theoretical interest given the widespread nature of many-to-one markets. In
addition, it is necessary to understand simulation evidence on manipulations
presented by Roth and Peranson (1999).
The use of large society arguments like our approach here is common

in the mechanism design literature. For instance, Rustichini, Satterthwaite,
and Williams (1994) establish that in a k-double auction where n buyers
and sellers draw private values independently and identically distributed,
the symmetric, increasing differentiable equilibria are in the limit efficient
and convergence is fast.3 The proofs of these results rely on a symmetric
distribution of values. In our paper, we will allow for an arbitrary distribution
of values for colleges provided each student is acceptable, and independent
and identically distributed values for students, allowing colleges to be ex-ante
asymmetric. There is also a related literature on the asymptotic analysis
of auctions including Pesendorfer and Swinkels (2000) and Swinkels (2001).
Most recently, Cripps and Swinkels (2005) relax independence and establish
the asymptotic efficiency of large double auctions with private values.
Finally, there is a literature that analyzes the consequences of manip-

ulations via preference lists and capacities in complete information finite
economies. See Roth (1984b), Roth (1985) and Sönmez (1997a) for games
involving preference manipulation and Konishi and Ünver (2005) and Kojima
(2005) for games of capacity manipulations.
The next section presents the model, and the following section presents

the main lemma on vanishing market power used to derive the main results.

3There are a number of related papers including Gresik and Satterthwaite (1989) and
Fudenberg, Mobius, and Szeidl (2003).
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Section 4 then analyzes the fraction of colleges who can manipulate, while
section 5 conducts equilibrium analysis. Section 6 examines some impli-
cations of our result for another two-sided matching mechanism. The last
section concludes.

2 Model

A market is tuple Γ = (S,C, (Ps)s∈S, (Âc)c∈C). S and C are finite and disjoint
sets of students and colleges. Assume that students in S are ordered in an
arbitrarily fixed manner.4 For each student s ∈ S, Ps is a strict preference
relation over C and being unmatched (being unmatched is denoted by s).
For each college, Âc is a strict preference relation over the set of subsets of
students. If s Âc ∅, then s is said to be acceptable to c. Similarly, c is
acceptable to s if cPs∅. Non-strict counterparts of Ps and Âc are denoted by
Rs and ºc, respectively. Since rankings of only acceptable mates matter, we
often write only acceptable mates to denote preferences. For example,

s1 : c1, c2,

means that s1 prefers c1 most, then c2, and c1 and c2 are the only acceptable
colleges.
For each college c ∈ C and any positive integer qc, its preference relation

Âc is responsive with quota qc if (i) for any s, s0 Âc ∅, and any S 0 Âc ∅
with s, s0 /∈ S 0, |S 0| < qc we have s∪S 0 ºc s0∪S 0 ⇔ s ºi s0, (ii) for any s ∈ S
and any S0 Âc ∅ with s /∈ S 0 and |S 0| < qc, we have s∪S0 ºc S0 ⇔ s ºc ∅, and
(iii) for any S0 ⊆ S with |S0| > qc we have ∅ Âc S 0 (Roth 1985). That is, the
ranking of a student is independent of her colleagues, and any set of students
exceeding quota is unacceptable. Let Pc be the corresponding preference
list of college c, which is the preference relation over singleton sets and
the empty set. The non-strict counterpart is denoted by Rc. Sometimes
only the preference list structure and quotas are relevant for the analysis.
We therefore denote by Γ = (S,C, P, q) an arbitrary game in which the
preferences induce preference lists P = (Pi)i∈S∪C and quotas q = (qc)c∈C .
We also use the following notation; P−i = (Pj)j∈S∪C\i, q−c = (qc0)c0∈C\c, PC =
(Pc)c∈C , PC−c = (Pc0)c0∈C,c0 6=c and so on.
A matching µ is a mapping from S to C ∪ S, such that for every s,

µ(s) ∈ C ∪ {s}. We define µ(c) = {s ∈ S|µ(s) = c} for any c ∈ C. For any
matchings µ and µ0, we write µ ºc µ0 if and only if µ(c) Âc µ0(c) for any
c ∈ C, and µPsµ0 if and only if µ(s)Psµ0(s).

4The order on C will be given later in this section.
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Given a matching µ, we say that it is blocked by (c, s) if s prefers c to
µ(s) and either (i) c prefers s to some s0 ∈ µ(c) or (ii) |µ(c)| < qc and s is
acceptable to c. A matching µ is individually rational if for each student
s ∈ S∪C, µ(s)Rs∅ and for each c ∈ C and each s ∈ µ(c), s Âc ∅. A matching
µ is stable if it is individually rational and is not blocked. A mechanism is
a systematic way of assigning students to colleges. A stable mechanism is
a mechanism that gives a stable matching for any market. A generic stable
mechanism is denoted by ψ.
We consider the procedure, called the student optimal stable mech-

anism (SOSM), and denoted by φ, which is analyzed by Gale and Shapley
(1962).5

• Step 1: Each student applies to her first choice college. Each college
rejects the lowest-ranking students in excess of its capacity and all
unacceptable students among those who applied to it, keeping the rest
of students temporarily (so students not rejected at this step may be
rejected in later steps.)

In general,

• Step t: Each student who was rejected in Step (t-1) applies to her next
highest choice. Each college considers these students and students who
are temporarily held from the previous step together, and rejects the
lowest-ranking students in excess of its capacity and all unacceptable
students, keeping the rest of students temporarily (so students not
rejected at this step may be rejected in later steps.)

The algorithm terminates either when every student is matched to a col-
lege or every unmatched student has been rejected by every acceptable col-
lege. The algorithm always terminates in a finite step. Gale and Shapley
(1962) show that the resulting matching is stable. It is also known that the
outcome is the same for different markets Γ = (S,C, (Ps)s∈S, (Âc)c∈C) and
Γ0 = (S,C, (Ps)s∈S, (Â0c)c∈C) as long as they induce the same pair of prefer-
ence list orders and quotas of colleges P and q. Thus we sometimes write
the resulting matching by

φ(S,C, (Ps)s∈S, (Pc)c∈C , (qc)c∈C), or φ(S,C, P, q).

Similarly, in this paper we assume that matchings produced by mechanism
ψ depend only on (S,C, P, q), so we will use notation such as ψ(S,C, P, q).

5SOSM is known to produce a stable matching that is unanimously most preferred by
every agent in S.
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φ(S,C, P, q)(i) is the assignment given to i ∈ S ∪ C under matching
φ(S,C, P, q).
For the rest of the paper, we consider a family of college admission prob-

lems (Γ1,Γ2, . . . ) with fixed positive integers q̄, k ∈ N. For each n ∈ N, there
are n colleges in Γn. The capacity of college c ∈ C is a positive integer
qc ∈ {1, . . . , q̄} for any Γn (so q̄ is a uniform upper bound of quotas across
colleges and problems.) The number of students is N ≤ q̄n in Γn.6

Constructing Preference lists

We assume that c ∈ C has arbitrary responsive preferences with quota qc
with one restriction: every student is acceptable to every college. That is,
colleges would rather admit any student than keep their positions vacant.
For students, we construct random preferences following Immorlica and

Mahdian (2005). Let Dn be an arbitrary fixed distribution over the set of
colleges, corresponding to Γn. Suppose that the probability of each college
in Dn, denoted by pnc , is nonzero.7 Having a high probability in Dn means
that the college is popular. For each Γn and each student, we construct
preferences of students over colleges as follows:

• Step 1: Select a college c(1) independently according to Dn; add this
college as the top ranked college for student s.

In general,

• Step t: Select college c(t) independently according to Dn until a college
is drawn that has not been previously drawn in steps 1 through t− 1.
Add this c(t) to the end of the preference list for student s.

Let As be the unordered set of colleges in this procedure at each step,
suppressing superscript t. In other words, Step t draws colleges repeatedly
until a college c /∈ As is drawn. Ps is constructed by the above procedure,
namely,

s : c(1), c(2), . . . , c(k).

Note that the length of the preference list is a fixed number k. In other
words, only k colleges are acceptable. One justification for this assumption
is that in many real markets, it is costly to form a complete preference list

6This assumption can be relaxed easily to the following: there exists r such that N ≤ rn
for any n. We adopt N ≤ q̄n just for simplicity.

7We impose this assumption to compare our analysis and especially examples with
existing literature. All our analyses remain unchanged when one allows for probabilities
to be zero.
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for participants. For example, medical school students in the U.S. have to
interview to be considered by residency programs, and financial and time
constraints can limit the number of interviews.
Let It(k,Dn) be the distribution over lists of size k produced by this

process. If Dn is the uniform distribution, then It(k,Dn) is the uniform
distribution over the set of all lists of size k of colleges. Without loss of gen-
erality, we assume the set of colleges C are ordered in decreasing popularity:
if c0 < c, then pnc0 ≥ pnc in distribution Dn. With abuse of notation, we write
c = m, c > m and c < m for m ∈ N to mean, respectively, that c is the
mth college, c is ordered after mth and c is ordered before m. We sometimes
write pnm, which is the probability associated with mth college in distribution
Dn.

3 Vanishing “market power” in large markets

This section presents a lemma which plays a crucial role in most of our results.
We consider the following hypothetical question: Suppose that the student-
optimal stable matching is reached and then a college c ∈ C rejects all the
students assigned to c. Suppose that these students apply to other colleges,
which may accept them and reject some of students originally matched to
them, and so on. What is the probability that such chain-reactions caused
by the rejected students will at some point come back to c (that is, a student
rejected during this chain reaction proposes to c)? If this does not happen,
then strategically rejecting a student has no positive effect to the college.
Thus the above probability is indicative of “market power” of college c, by
which we mean the prospect of affecting the market to benefit itself.
To answer the above question, we use the principle of deferred deci-

sions: the result of the following algorithms from a randomly drawn prefer-
ence lists is the same as the result when preferences are drawn one at a time,
when it is needed.
Consider the following algorithm, which is a stochastic variant of the

SOSM.8

Algorithm 1. Stochastic S-Optimal Gale-Shapley Algorithm

(1) Initialization: Let l = 1. For every s ∈ S, let As = ∅.
(2) Choosing the applicant:

8To be more precise this is a stochastic version of the algorithm proposed by McVitie
and Wilson (1970), which they show is equivalent to the original SOSM proposed by Gale
and Shapley (1962).
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(a) If l ≤ N , then let s be the l’th student and increment l by one.9
(b) If not, then terminate the algorithm.

(3) Choosing the applied:

(a) If |As| ≥ k, then return to Step 2.
(b) If not, select c randomly from distribution Dn until c /∈ As, and

add c to As.

(4) Acceptance and/or rejection:

(a) If c prefers each of her current mates to s and there is no vacant
position, then c rejects s. Go back to Step 3.

(b) If c has a vacant position or it prefers s to one of its current mates,
then c accepts s. Now if c had no vacant position before accepting
b, then c rejects the least preferred student among those who were
matched to c. Let this student be s and go back to Step 3. If c
had a vacant position, then go back to Step 2.

In the above algorithm, the principle of deferred decisions implies that for
a student to make an offer to her tth most preferred college, her preferences
after (t+ 1)th choice on does not matter at all. By the principle of deferred
decisions, the above algorithm terminates, producing the student-optimal
stable matching of any realized preference profile which would follow from
completing the draws for random preferences. Let µ be the student-optimal
stable matching obtained by the above algorithm. Now suppose that a fixed
college c ∈ C rejects all the students in µ(c). More precisely, consider the
following algorithm, beginning at the final state of the above algorithm.

Algorithm 2. Stochastic Rejection Chains

(1) Initialization:

(a) Keep all the preference lists generated in Algorithm 1, that is, for
each s ∈ S, let As be the one generated at the end of Algorithm
1. Let the student-optimal match µ be the initial match of the
algorithm. Let i = 0.

(b) Let B1c = µ(c).

(2) Increment i by one.

9Recall that students are ordered in an arbitrarily fixed manner.
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(a) If Bic = ∅, then terminate the algorithm.
(b) If not, let s be the least preferred student by c among Bic, and let

Bi+1c = Bic \ s.
(c) Iterate the following steps (call this iteration “Round i”.)

i. Choosing the applied:

A. If |As| ≥ k, then finish the iteration and go back to the
beginning of Step 2.

B. If not, select c0 randomly from distribution Dn until c0 /∈
As, and add c

0 to As. If c is selected, terminate the algo-
rithm.

ii. Acceptance and/or rejection:

A. If c0 prefers each of its current mates to s and there is no
vacant position, then c0 rejects s; go back to the beginning
of Step 2c.

B. If c0 has a vacant position or it prefers s to one of its
current mates, then c0 accepts s. Now if c0 had no va-
cant position before accepting s, then c0 rejects the least
preferred student among who were matched to c. Let this
rejected student be s and go back to the beginning of Step
2c. If c0 had a vacant position, then finish the iteration
and go back to the beginning of Step 2.

Algorithm 2 terminates either at Step 2a or at Step 2(c)iB. We are in-
terested in how often the algorithm ends at Step 2(c)iB, as a student draws
c from distribution Dn. If the algorithm terminates at Step 2a rather than
Step 2(c)iB, then Algorithm 2 is guaranteed to have no effect on the students
matched to c, except for that it lost students in µ(c) by rejecting them at
the beginning of the algorithm. Let πc be the probability that Algorithm 2
terminates at Step 2(c)iB. Let c∗(n) = 16q̄nk/ ln(q̄n). The following lemma10

gives an upper bound for πc.
11

Lemma 1 (Vanishing market power). For any sufficiently large n and
any c > c∗(n), we have

πc ≤ (q̄ + 1) ln(q̄n)
2k
√
q̄n

.

10Proofs of all results are contained in the appendix.
11Lemma 1 generalizes a technique developed by Immorlica and Mahdian (2005). One

difference is that we consider an algorithm general enough to be applied to analysis of
various kinds of manipulation. Another difference is that we consider cases with multiple
quotas and multiple rejections.
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The lemma shows that πc is small except for very popular colleges when
the size of the market is large. Observe that πc → 0 as n→∞ for c > c∗(n).
Note also c > c∗(n) holds for “most” colleges for large n, since c∗(n)/n =
16q̄k/ ln(q̄n) → 0 as n → ∞. Lemma 1 suggests that, for most colleges,
strategically rejecting students, even all the students, has no positive indirect
effect on that college when the size of the market is large.
The intuition of Lemma 1 follows from the fact that there are many

colleges that have some vacant positions in large markets. Therefore, it is
very likely that a rejected student during the algorithm makes an offer to one
of these colleges. Because every college treats a student as acceptable, such
a college admits the student and it does not reject any student previously
assigned to it, thus terminating the chain reactions before another student
makes an offer to college that initiated the chain.

4 Proportion of colleges that can manipulate

The literature on two-sided matching has focused on three types of manipu-
lations: (1) manipulation via preference lists, (2) manipulation via capacity,
and (3) manipulation via pre-arranged matches.
We show that these manipulations are likely to be rare in large markets.

More specifically, we show that the expected proportion of colleges that can
profitably manipulate approaches zero as the size of the market approaches
infinity, assuming that others behave truthfully. Note that this is not an
equilibrium analysis: we count the number of possible deviators when others
are truthful, which may or may not be in their interest. Equilibrium behavior
is analyzed in Section 5.

4.1 Manipulation via preference lists

First we consider manipulation via preference lists. Mechanism ψ is manip-
ulable via preference lists if there exist a market (S,C, (Pi)i∈S∪C , (qc)c∈C),
i ∈ S ∪ C and some P 0i such that

ψ(S,C, P 0i , P−i, q) Âi ψ(S,C, P, q).

Dubins and Freedman (1981) show that the SOSM φ is manipulable via
preference lists. Roth (1982) further shows that any stable mechanism is ma-
nipulable in this way. Despite these negative results, Dubins and Freedman
(1981) and Roth (1982) show that students cannot manipulate the SOSM φ.
Thus it is colleges that can potentially manipulate φ.
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We consider a particular class of manipulation via preferences. A prefer-
ence list P 0c is a truncation of Pc if there is a student sPc∅ such that

s0, s00Rcs⇒ [s0P 0cs
00 ⇐⇒ s0Pcs00], and

sPcs
0 ⇒ ∅P 0cs0.

In words, a truncation agrees with the original preference lists up to student
s, but renders every student less preferred to s under Pc unacceptable. A
college c ∈ C can manipulate φ via truncating preference lists if there
exists a truncation P 0c such that

φ(S,C, P 0c, P−c, q) Âc φ(S,C, P, q).
When colleges have multiple positions, truncation may not be “exhaus-

tive”, in the sense that there may be other instances where preference ma-
nipulation is profitable even though truncation is not. We nevertheless focus
on truncation strategies because they are a plausible starting place for types
of preference manipulation. For instance, in their simulation study of ran-
domly generated data, Roth and Peranson (1999) only consider truncation
strategies. Moreover, truncation is known to be exhaustive when the colleges
have only one position (Roth and Vande Vate 1991).
The following theorem shows that the expected proportion of colleges

that can manipulate the market in this way converges to zero as the size of
the market becomes large if others behave truthfully.

Theorem 1. Let αk(n) be the expected number of colleges that can manipu-
late via truncating preference lists in Γn under φ when others report prefer-
ence lists truthfully. We have

lim
n→∞

αk(n)/n = 0.

If truncating a preference list does not reject anyone who would not be re-
jected under the original preference list, then it has no effect on the matching.
If truncation results in rejecting some students in µ(c), this rejection creates
a chain reaction of applications, acceptances and rejections, which may give
c a better offer from a student who was rejected elsewhere. The algorithm
is, however, similar to Algorithm 2 that probability of such an instance is
bounded by πc. Because of the vanishing market power of colleges (Lemma
1), the probability that the additional rejections have preferable effects on c
can be shown to be small for most colleges when the size of the market is
large.
Consider the one-to-one market where each college has only one position.

The following is a corollary of Theorem 1.
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Corollary 1 (Theorem 3.1 of Immorlica and Mahdian (2005)). Let qc =
1 for any c ∈ C. Then the expected proportion of colleges who can manipu-
late via preference lists converges to zero as the size of the market approaches
infinity.

Roth and Peranson (1999) analyzed NRMP data and argued that of the
3,000-4,000 participating programs, less than one percent could benefit by
truncating preference lists. They also conduct simulations using randomly
generated data in one-to-one matching, and observe that αk(n) quickly ap-
proaches zero as n becomes large. The first theoretical account is given by
Immorlica and Mahdian (2005) (who show Corollary 1). The result in The-
orem 1 is a simple extension to many-to-one markets such as the NRMP.
The assumption that students have a fixed length k of preference list can

be relaxed to some extent: if each student has a preference list of length k or
less, all the theorems in our paper holds. On the other hand, if every student
has a preference list of full length so that every college is acceptable, then
the conclusion of Theorem 1 does not hold. When all colleges and students
have random preferences drawn from a uniform distribution Knuth, Motwani,
and Pittel (1990) show that the proportion of colleges that can manipulate
approaches one if every college is acceptable to every student. This pattern
is confirmed by the Roth and Peranson (1999) simulations on random data.

4.2 Manipulation via capacities

When colleges have quotas of more than one, there are other types of manipu-
lations to consider. Sönmez (1997b) formally introduced the idea of capacity
manipulation. A mechanism ψ ismanipulable via capacities if there exist
(S,C, P, q), c ∈ C and some q0c such that

ψ(S,C, P, (q0c, q−c)) Âc ψ(S,C, P, q).

It is easy to show that such q0c should be smaller than qc. Sönmez (1997b)
shows that any stable mechanism is manipulable via capacities.
The following theorem asserts that the expected number of colleges that

benefit from manipulation via capacities becomes small as the size of the
market increases for fixed k.

Theorem 2. Let βk(n) be the expected number of colleges that can manipu-
late via capacities in Γn under φ when others report truthfully. We have

lim
n→∞

βk(n)/n = 0.
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The proof of Theorem 2 is again based on Lemma 1. The reason that
reducing capacity might benefit c is that a chain of applications, acceptances
and/or rejections caused by the rejection of a student due to capacity reduc-
tion may result in more offers from desirable students to remaining positions
of c. This is formally known as the “vacancy chain dynamics” (Blum, Roth,
and Rothblum 1997). The process is similar to Algorithm 2 and the probabil-
ity that at least one desirable student is matched to c is bounded by πc. The
argument requires defining a modification to Algorithm 2, which is presented
in the appendix.
In the Roth and Peranson (1999) simulations, less than one percent of

programs in the NRMP could manipulate via capacities, assuming that the
preference data are truthful. Theorem 2 explains their observations by the
fact that NRMP market is quite large, involving 3,000 to 4,000 programs.

4.3 Manipulation via pre-arranged matches

When colleges seek more than one student, there is yet another source of
manipulations. Sönmez (1999) introduced the idea of manipulation via pre-
arranged matches. Suppose that c and s arrange a match before the central
matching mechanism is executed. Then s does not participate in the central-
ized matching mechanism and c participates in the centralized mechanism
with the number of positions reduced by one. A mechanism ψ is manipula-
ble via pre-arranged matches, or manipulable via pre-arrangement,
if for some market (S,C, P, q), college c ∈ C and student s ∈ S we have

ψ(S \ s, C, P−s, qc − 1, q−c) ∪ s Âc ψ(S,C, P, q), and
c ºs ψ(S,C, P, q).

The mechanism is manipulable via pre-arrangement if both parties that
engage in pre-arrangement have incentive to do so: the student should be
at least as well off in pre-arrangement as when she is matched through the
centralized mechanism, and the college should strictly prefer s and the assign-
ment of the centralized mechanism to those without pre-arrangement. Note
that this manipulation may be possible even if matching outside of the match
is prohibited under an alternative interpretation: if pre-arranged student and
college list each other on the top of their preference lists, then they will be
matched for sure in most mechanisms, so “pre-arrangement” can actually be
implemented within the centralized matching mechanism.12 Sönmez (1999)
shows that any stable mechanism is manipulable via pre-arrangement.
12The last remark is true for φ. There are some mechanisms that do not satisfy this

property. The so-called linear programming matching mechanism, used to match interns
in some British hospitals, is one such example.
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However, we have the following positive result in large markets.

Theorem 3. Let γk(n) be the expected number of colleges that can manipu-
late via pre-arrangement in Γn under φ when others do not pre-arrange. We
have

lim
n→∞

γk(n)/n = 0.

Intuition is similar to those for Theorems 1 and 2. It can be shown that
any student in pre-arrangement under the SOSM is strictly less preferred by c
to any student who would be matched in the absence of the pre-arrangement
(Lemma 9 in the Appendix.) Therefore, in order to profitably manipulate, c
should be matched to a better set of students in the central matching. Now,
by a similar reasoning to those for Theorems 1 and 2, the probability of being
matched to better students in the centralized mechanism is bounded by πc.
Taken together, Theorems 2 and 3 provide justification to the assertion

that the student-optimal stable mechanism is immune to capacity manipu-
lation and manipulation via pre-arrangement and may help understand why
there is limited evidence of both in real matching markets using stable mech-
anisms.

Remark This section analyzed scope for different types of manipulations
separately. In the real matching market, colleges may be able to use combi-
nations of these manipulations. It is a tedious but a straightforward exercise
to show that the proportion of colleges that can profitably manipulate by
using combinations of these manipulations approaches zero as the market
size grows.

5 Equilibrium analysis

Theorems 1, 2 and 3 show that the expected proportion of colleges who can
profitably manipulate the market becomes small as the market becomes large,
assuming that others behave truthfully. This section investigates equilibrium
behavior of colleges in large markets.
To investigate equilibrium behavior, we first define a normal-form game

as follows. Assume that each college c ∈ C has an additive utility functions
uc : 2

S → R on sets of students. More specifically, we assume that there
exists ûc : S → R such that

uc(S
0) =

(P
s∈S0 û(s) if |S0| ≤ qc,

−∞ otherwise.
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We have that sPcs
0 ⇐⇒ ûc(s) > ûc(s

0). If s is acceptable to c, ûc(s) > 0.
If s is unacceptable, ûc(s) = −∞. Further suppose that supΓn,s∈S û(s) is
finite. A game of preference truncations is a market Γn coupled with utility
functions (uc)c∈C , where the set of players is C, the strategy set of player
c is all truncations and the outcome is the assignment specified by φ under
reported preference lists.13

Given ε > 0, a profile of truncated preference lists P 0 = (P 0c)c∈C is ε-Nash
equilibrium if there is no c ∈ C and P 00c such that

Euc(φ(S,C, PS, P
00
c , P

0
C−c, q)) > Euc(φ(S,C, PS, P

0
C , q)) + ε,

where the expectation is taken with respect to random preference lists of
students. A truncated preference list P 0c is ε-dominant if for any P

0
C−c there

is no other truncation P 00c such that

Euc(φ(S,C, PS, P
00
c , P

0
−c, q)) > Euc(φ(S,C, PS, P

0
C , q)) + ε.

ε-Nash equilibrium and ε-dominant strategies are defined in analogous
manners in games of capacity manipulaion and pre-arrangement.
With the above setup, Immorlica and Mahdian (2005) claim the following,

attributing their argument to Corollary 1.14

Claim 1 (Corollary 3.1 of Immorlica and Mahdian (2005)). Let qc =
1 for any c ∈ C. Then, for any c ∈ C, the probability that c can manipulate
via truncating preference lists converges to zero as n→∞.
Claim 2 (Corollary 3.3 of Immorlica and Mahdian (2005)). Let qc =
1 for any c ∈ C. Then, for any ε > 0, there exists n0 such that truth-telling
PC is an ε-Nash equilibrium for any game with n > n0.

The following example shows that Claims 1 and 2 are not correct.

13We assume that students are passive players and always submit their preferences
truthfully since truthful reporting is weakly dominant for students under φ (Dubins and
Freedman 1981, Roth 1982).
14They consider multiplicative approximate equilibrium as opposed to additive approx-

imate equilibrium, that is, there is no other strategy yielding a better utility by a multi-
plicative factor. However the analysis is essentially the same and our result can be stated
in terms of multiplicative approximate equilibrium. Also we use the term approximate
Nash equilibrium while Immorlica and Mahdian (2005) use the term “approximate Bayes-
Nash equilibrium” in a game with incomplete information, since the game can be thought
of as a game of complete information where only colleges are active players and students
are passive agents.
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Example 1. Consider the following market Γn for any n. |C| = |S| = n.
qc = 1 for each c ∈ C. Preference lists of c1 and c2 are given as follows:15

c1 : s2, s1, . . . ,

c2 : s1, s2, . . . .

Suppose that pnc1 = pnc2 = 1/3 and pnc = 1/3(n − 2) for any n ≥ 3 and
each c 6= c1, c2. With probability [pnc1pnc2/(1−pnc1)]× [pnc1pnc2/(1−pnc2)] = 1/36,
preferences of s1 and s2 are given by

s1 : c1, c2, . . . ,

s2 : c2, c1, . . . .

Under the student-optimal matching µ, we have µ(c1) = s1 and µ(c2) =
s2. Now, suppose that c1 submits the following preference list:

c1 : s2.

Then, under the new matching µ0, c1 is matched to µ0(c1) = s2, which is
preferred to µ(c1) = s1. Since the probability of preference profiles where
this occurs is 1/36 > 0, regardless of n ≥ 3, the opportunity of preference
manipulation for c1 does not vanish even when n becomes large. It is also
clear that truth-telling is not an ε-Nash equilibrium if ε > 0 is sufficiently
small, as c1 has an incentive to deviate.

The above example shows that, while the proportion of colleges who can
manipulate via preferences becomes small, for each college the opportunity
of such manipulation may remain large.
The next example shows that, under the same assumptions, manipu-

lations via capacities or pre-arrangement may also be benefitial for some
colleges even in a large market.

Example 2. Consider the following market Γn for any n. |C| = |S| = n.
qc1 = 2 and qc = 1 for each c 6= c1. c1’s preference list is

c1 : s1, s2, s3, s4, . . . ,

and s1 Âc1 {s2, s3}.
c2’s preferences are

c2 : s3, s1, s2, . . . .

15“. . . ” in a preference list means that the rest of the preference list is arbitrary after
those written explicitly.
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Further suppose that pnc1 = p
n
c2
= 1/3 and pnc = 1/3(n− 2) for any n and

each c 6= c1, c2.
With the above setup, with probability [pnc1p

n
c2
/(1 − pnc1)] × [pnc1pnc2/(1 −

pnc2)]
3 = 1/64, students preferences are given by

s1 : c2, c1, . . . ,

s2 : c1, c2, . . . ,

s3 : c1, c2, . . . ,

s4 : c1, c2, . . . .

If everyone is truthful, then c1 is matched to {s2, s3}. Now
(1) Suppose that c1 reports a quota of one. Then c1 is matched to s1, which

is preferred to {s2, s3}.
(2) Suppose that c1 pre-arranges a match with s4. Then c1 is matched to

{s1, s4}, which is preferred to {s2, s3}.
Since the probability of preference profiles where this occurs is 1/64 > 0

regardless of n ≥ 3, the opportunity of manipulations via capacities or pre-
arrangement for c1 does not vanish even when n becomes large.

16

A natural question is under what conditions one can expect a positive
result. Consider the following condition for the popularity of colleges. Let
(Dn)∞n=1 be a sequence of distributions, where Dn is a distribution over col-
leges in Γn.

Definition. A sequence of distributions (Dn)n allows no superstar if there
exists T ∈ R such that

pn1
pnn
< T,

for any n.
This assumption rules out extremely popular colleges.17 Note that distri-

butions in Examples 1 and 2 allow superstars, since pn1/p
n
n = n− 2→ ∞ as

n→∞.
16Manipulation via preference list is also possible in this example. Suppose c1 reports

preferences
c1 : s4, s1, . . . .

Then c1 is matched to {s1, s4}, which is preferred to {s2, s3}.
17Actually we can relax this assumption to some extent. First, it is enough for the

inequality to be true for each sufficiently large n. Second, the condition can relaxed
to cases in which some colleges are so unpopular that the inequality is violated, if the
proportion of such colleges are not too large. For example, for all theorems below to hold,
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We have a variant of Lemma 1 under the above assumption, which plays
a crucial role in what follows.

Lemma 2 (Uniform Vanishing Market Power). Suppose that (Dn)n al-
lows no superstar. For any sufficiently large n and any c ∈ C, we have

πc ≤ 8(T q̄ + 1)e
8q̄k

n
.

The key difference between Lemma 2 and Lemma 1 is that the former
gives an upper bound for every college, while the latter gives an upper bound
only for unpopular colleges. With Lemma 2, we can obtain the following
results.

Theorem 4. Suppose that (Dn)n allows no superstar. Consider the SOSM
φ.

(1) For any c ∈ C, the probability that c can manipulate via preferences
converges to zero as n→∞.

(2) For any ε > 0, there exists n0 such that truth-telling of preference lists
is an ε-Nash equilibrium of a preference truncation game for any Γn
with n > n0.

Theorem 4 implies that the conclusions of Claims 1 and 2 are correct with
the additional assumption that (Dn)n allows no superstar.
For games of capacity manipulations, we can obtain a stronger result.

Truth-telling is an ε-dominant strategy. Let the strategy set of c ∈ C be
{1, . . . , qc}.18

Theorem 5. Suppose that (Dn)n allows no superstar. Consider the S-optimal
stable mechanism φ.

(1) For any c ∈ C, the probability that c can manipulate via capacities
converges to zero as n→∞.

(2) For any ε > 0, there exists n0 such that for any c ∈ C, truth-telling
of capacities is an ε-dominant strategy of a capacity reporting game for
any Γn with n > n0.

it is enough that
pn1
pn[an]

< T,

for some a ∈ (0, 1), which is independent of n, where [x] denotes the largest integer less
than or equal to x.
18We restrict our attention to strictly positive capacity less than or equal to qc. Note

that reporting q0c = 0 and q
0
c > qc are weakly dominated if one includes these strategies.
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Finally pre-arrangement is investigated.

Theorem 6. Suppose that (Dn)n allows no superstar. Consider the SOSM
phi. Then, for any c ∈ C, the probability that c can manipulate via pre-
arrangement converges to zero as n→∞.
The three theorems rely on the no superstar condition to ensure that

uniformly no college wields too much market power as the size of the market
grows. Since a stable matching is efficient, we can state that an efficient
matching is an approximate equilibrium in a large market.

6 Discussion

The idea that a large markets solve many inefficiency and incentive problems
appears throughout economics. Examples include auction markets, exchange
economy, insurance markets among others. In two-sided matching markets,
it is not true, however, that a large market is sufficient to promote these
virtues irrespective of the mechanism. The design of the market mechanism
can matter even in large markets. To see this point, consider the so-called
Boston mechanism (Abdulkadiroğlu and Sönmez 2003), which is often used
for real-life matching markets. The Boston mechanism is a priority matching
mechanism, where school priorities are interpreted as preferences.19 When
colleges are asked to rank students, in a two-sided context, the mechanism
proceeds as follows:

• Step 1: Each student applies to her first choice college. Each col-
lege rejects the lowest-ranking students in excess of its capacity and
all unacceptable students. Students who are not rejected are guaran-
teed positions; the match of these students and colleges are permanent
rather than temporary, unlike in the S-optimal stable mechanism.

In general,

• Step t: Each student who was rejected in the last step proposes to
her next highest choice. Each college considers these students, only
as long as there are vacant positions not filled by students who are
already matched by the previous steps, and rejects the lowest- ranking
students in excess of its capacity and all unacceptable students. Stu-
dents who are not rejected are guaranteed positions; the match of these

19With slight abuse of notation we will refer to this class of priority mechanisms where
colleges rank students as the Boston mechanism even though the Boston mechanism was
introduced as a one-sided matching mechanism.
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students and colleges are permanent rather than temporary, unlike in
the student-optimal stable mechanism.

The algorithm terminates either when every student is matched to a col-
lege or every unmatched student has been rejected by every acceptable col-
lege. The algorithm always terminates in a finite step.
In Boston mechanism, it turns out that colleges have no incentive to

manipulate via preferences nor via capacity even in a small market with an
arbitrary preference profile. More specifically,

Remark. Suppose that the Boston mechanism is employed, and preferences
are drawn arbitrarily. Then, for any n, we have the following.

(1) No college can manipulate via preferences. Therefore truthtelling is an
(exact) Nash equilibrium in dominant strategies in games of preference
manipulations both under perfect and imperfect information about stu-
dents preferences.

(2) No college can manipulate via capacities. Therefore truthtelling is an
(exact) Nash equilibrium in dominant strategies in games of capac-
ity manipulations both under perfect and imperfect information about
students preferences.

(1) is first shown by Ergin and Sonmez (2005). While colleges have in-
centives to behave truthfully, we argue that this mechanism performs badly
both in small and large markets. The problem lies in the student side and
there is evidence that some participants react to these incentives (Abdulka-
diroğlu, Pathak, Roth, and Sönmez 2005). The following example shows that
students have incentives to behave dishonestly even in large markets.

Example 3. Consider markets (Γn)n, where |S| = |C| = n for each Γn.
qc = 1 for every c ∈ C. Preference lists are common among colleges and
given by

c : s1, s2, . . . , sn,

for every c ∈ C.
pnc1 = (1/2)

1/n, pnc2 = (1−(1/2)1/n)(1/2)1/n, and pnc = (1−pnc1−pnc2)/(n−2)
for each c 6= c1, c2. Then, with probability [pnc1pnc2/(1− pnc1)]n = 1/4, students
preferences are

s : c1, c2, . . . ,

for each s ∈ S. s1 and s2 are matched to c1 and s2, respectively, and other
students are matched to their third or less preferred choices. If s 6= s1, s2
reports preference list

s : c2, . . . ,
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then s is matched to her second choice c2, which is preferred to the match
under truth-telling. This occurs with probability of at least 1/4, and every
student except s1 and s2 has an incentive not to be truth-telling.
Pre-arrangement remains profitable to many participants even when the

size of the market is large as well. It is easy to construct a similar example
for pre-arrangement.

7 Conclusion

The paper establishes conditions under which the fraction of participants
who can profitably manipulate a large two-sided matching market is small
and identified an additional distributional assumption under which truthful
reporting is an approximate equilibrium, implying efficiency of the resulting
matching.
There are several dimensions in which our results could be potentially

generalized, which we are currently pursuing. First, there are other types of
preference manipulations than truncation that are feasible in a many-to-one
market. While truncation strategies are a natural class of manipulations to
consider, colleges can sometimes profitably employ non-truncation strategies
even when they cannot benefit by truncation.
Second, we are exploring how much and in what directions our distribu-

tional assumptions can be weakened. While college preferences are arbitrary,
student preferences are generated identically and independently and students
agree on the ordering of school popularity. Fully exploring the sufficiency of
our distributional assumptions will be critical to understanding under which
domains we can expect large markets to resolve incentive problems and rem-
edy inefficiencies.
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Appendix: Proofs

Proof of Lemma 1

Let

Xc = {c0 ∈ C|c0 ≤ c, c0 /∈ As for every s ∈ S at the end of Algorithm 1}, and
Yc = |Xc|.
Lemma 3. For any c > 4k, we have

E[Yc] ≥ c

2
e−

8q̄nk
c .

Proof. Let Q =
Pk

c=1 pc. Then the probability that c
0 is not a student’s i’th

choice given her first (i− 1) choices c(1), . . . , c(i−1) is bounded as follows;
1− pc0

1−Pi−1
j=1 pc(j)

≥ 1− pc0

1−Q.

Let Ec0 be the event that c
0 /∈ As for every s ∈ S. From the above argument,

we have
Pr(Ec0) ≥ (1− pc0

1−Q)
q̄nk.

Now if c0 > 2k we have

pc0 ≤ 1−Q
c0 − k .

Therefore for any c0 > 2k we have

Pr(Ec0) ≥ (1− 1

c0 − k )
q̄nk

≥ e−2qnk/(c0−k)

≥ e− 4q̄nk
c0 .

Combining these inequalities, for any c > 4k, we have

E[Yc] ≥
cX

c0=1

Pr(Ec0)

≥
cX

c0=2k

e−
4q̄nk
c0

≥
cX

c0=c/2

e−
8q̄nk
c

=
c

2
e−

8q̄nk
c .
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Let π∗c = Pr[Algorithm 2 terminates at Step 2(c)iB|Yc > EYc/2].
Lemma 4. Suppose that 2kn− ln(q̄n)√q̄n ≥ 0 and c > c∗(n). Then we have

π∗c ≤
4q̄

EYc
.

Proof. Consider Round 1, beginning with the least preferred student s of
B1c = µ(c). Since pc0 ≥ pc for any c0 ∈ Xc, Round 1 ends at 2(c)iiB, as a stu-
dent applies to some college with vacant positions, at least with probability
1− 1

EYc/2+1
.

Now assume that all Rounds 1, . . . , i ends at Step 2(c)iiB. Conditional
on this assumption Round (i + 1), initiated by the (i + 1)st least preferred
student in µ(c), that is the least preferred one in Bi+1c , ends at Step 2(c)iiB
with probability of at least 1− 1

EYc/2−i+1 (at most i colleges in Xc have had

their positions filled at Rounds 1, . . . , i.) Therefore Algorithm 2 finishes at
Step 2a with probability of at least

qcY
i=1

(1− 1

EYc/2− (i− 1) + 1) ≥ (1−
1

EYc/2− q̄ + 2)
qc

≥ (1− 1

EYc/4
)q̄,

where the last inequality holds since we have qc ≤ q̄ by assumption, and
EYc/2 − q̄ ≥ EYc/4 > 0 by Lemma 3, 2nk − ln(q̄n)√q̄n ≥ 0 and c ≥ c∗(n).
Therefore we have that

π∗c ≤ 1− (1−
1

EYc/4
)q̄

≤ 4q̄

EYc
,

where the last inequality holds since 1− (1− x)y ≤ yx for any x ∈ (0, 1) and
y ≥ 1.

Now we prove Lemma 1. We state without proof the following lemma (this
is a straightforward generalization of Lemma 4.4 of Immorlica and Mahdian).

Lemma 5. For every c, we have V ar(Yc) ≤ E[Yc].

24



By the Chebychev inequality, Lemma 5 and the fact that any probability
is less than or equal to one, we have

Pr[Yc ≤ EYc
2
] ≤ Pr [|Yc − E[Yc]| ≥ E[Yc]/2]

≤ V ar(Yc)

(E[Yc]/2)2

≤ 4

E[Yc]
.

By the above inequality and Lemma 4,

πc ≤ Pr[Yc ≤ EYc/2] + Pr[Yc > EYc/2]π∗c
≤ 4

EYc
+ π∗c

≤ 4(q̄ + 1)
EYc

.

Applying Lemma 3 and noting that EYc is increasing in c so EYc∗(n) ≤
EYc for any c > c

∗(n), we complete the proof.20

Proof of Theorem 1

Suppose that the S-optimal stable matching is reached through Algorithm 1.
Now consider the following algorithm:

Algorithm 3. Stochastic Preference Manipulation Chains
Fix an arbitrary truncation P 0c of Pc. This algorithm is the same as

Algorithm 2 except for Steps 1b and 2(c)iB. Replace Steps 1b and 2(c)iB of
Algorithm 2 with the following:

1b’ Let B1c = {s ∈ S|s ∈ µ(c) ∧ ∅P 0cs}.
2(c)iB’ If not, select c0 randomly from distribution Dn until c0 /∈ As, and

add c0 to As. If c0 = c and ∅P 0cs, then go back to the beginning of Step
2c. If not, proceed to the next step.

Lemma 6. If P 0c ≤ P sc , then the resulting matching of Algorithm 3 associated
with P 0c is stable under (S,C, P

0
c, P−c, q).

20Note that Lemma 3 can be applied since for sufficiently large n and c ≥ c∗(n), we
have c > 4k.
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Proof. By construction, the set I ≡ C ∪ S \ B1c satisfies, under the market
(S,C, P 0c, P−c, q), that

(1) The restriction of µ on I is stable in a market restricted to I.

(2) No agent in I have partners outside of I.

Algorithm 3 is a stochastic variant of the algorithm proposed by Roth and
Vande Vate (1990). Roth and Vande Vate (1990) show that the algorithm
terminates and the resulting matching is stable under conditions (1) and (2),
completing the proof.

Result 1 (Gale and Shapley (1962)). Let (S,C, P, q) be a market and µ0

be a stable matching of (S,C, P, q). Then for any c ∈ C, we have
µ0 ºc φ(S,C, P, q).

Lemma 7.

Pr
£
φ(S,C, P 0c, P−c, q) Âc µ(c) \B1c for some P 0c ≤ Pc

¤ ≤ πc.

Proof. Compare Algorithms 2 and 3 for (S,C, P 0c, P−c, q). Whenever Algo-
rithm 2 terminates at Step 2a, Algorithm 3 terminates while no new offer
is given to c for any P 0c ≤ Pc. In such a case the resulting matching of Al-
gorithm 3 is µ(c) \ B1c , which is stable by Lemma 6. By Result 1, we have
µ(c) ºc µ(c) \ B1c ºc φ(S,C, P 0c, P−c, q), completing the proof.
Now we prove Theorem 1. By Lemma 7, the probability that some trun-

cation is profitable for c ∈ C is at most πc. Using Lemma 1, we obtain
αk(n) ≤

X
c∈C

Pr[c manipulates via preference lists]

≤ c∗(n) +
nX

c≥c∗(n)
πc

≤ 16q̄nk
ln(q̄n)

+
(q̄ + 1) ln(q̄n)

√
q̄n

2q̄k

= o(n),

completing the proof.
Proof of Corollary 1

Proof. When qc0 = 1 for every c0 ∈ C, for any preference list profile P−c
there is a truncation of Pc that is a best response to P−c (Theorem 2 of Roth
and Vande Vate (1991).) This observation and Theorem 1 completes the
proof.
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Proof of Theorem 2

Let B0c(q
0
c) be the q

0
c most preferred students in µ(c). Suppose that the S-

optimal stable matching is reached through Algorithm 1. Now consider the
following algorithm:

Algorithm 4. Stochastic Vacancy Chains
The algorithm is the same as Algorithm 2 except for the following changes.

Use q0c < qc as the capacity of c in Step 2(c)ii. Also, replace Steps 1b and 2a
of Algorithm 2 with Steps 1b” and 2a” described below.

1b” Let B1c = µ(c) \ B0c(q0c).
2a” If not, select c0 randomly from distribution D until c0 /∈ Ab, and add c0

to Ab.

Let the resulting matching be denoted by φ0(q0c). The above algorithm is
a stochastic version of the vacancy chain dynamics analyzed by Blum, Roth,
and Rothblum (1997). They show that the algorithm terminates at a stable
matching in the new market with the reduced positions. More specifically,

Result 2 (Theorem 4.3 of Blum, Roth, and Rothblum (1997)). φ0(q0c)
is stable in (S,C, P, q0c, q−c).

Lemma 8. For any (S,C, P, q),

Pr [φ0(q0c) 6= B0c(q0c) for some q0c < qc] ≤ πc.

Proof. Compare Algorithms 2 and 4 for (S,C, P, q). Whenever Algorithm 2
terminates at Step 2a, Algorithm 4 terminates while no new offer is given to
c for any q0c < qc. In such a case we have φ

0(q0c)(c) = B
0
c(q

0
c) by definition of

Algorithm 4.

Now we prove Theorem 2. By Results 1 and 2 we have that

φ0(q0c) ºc φ(S,C, P, q0c, q−c),

for any q0c ≤ qc.
By Lemma 8, with probability of at least 1− πc we have that

φ0(q0c) = B
0
c(q

0
c),

for any q0c ≤ qc, which is less preferred to φ(S,C, P, q). In such a case we
have

φ(S,C, P, q) ºc φ(S,C, P, q0c, q−c).
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Using Lemma 1, we obtain

βk(n) ≤ 16q̄nk
ln(q̄n)

+
(q̄ + 1) ln(q̄n)

√
q̄n

2q̄k

= o(n),

completing the proof.

Proof of Theorem 3

Lemma 9. If c ∈ C can manipulate via pre-arrangement with s ∈ S, then

s0 Âc s for every s0 ∈ φ(S,C, P, q)(c).

Proof. First it is well known that if c can manipulate via pre-arrangement
with student s, then either s ∈ φ(c) or s0 Âc s for every s0 ∈ φ(S,C, P, q)(c)
(Theorem 2 of Sönmez (1999).)21 Suppose s ∈ µ(c). Then it is easy to see
that the matching µ0 given by

µ0(c0) =

(
µ(c) \ s if c0 = c,

µ(c0) otherwise,

is stable in (S \ s, C, P−s, qc − 1, q−c). Therefore by Result 1 and responsive-
ness,

φ(S,C, P, q) = µ0(c0) ∪ s
ºc φ(S \ s, C, P−s, qc − 1, q−c) ∪ s.

Therefore c cannot manipulate, which completes the proof.

Therefore, in order to profitably manipulate, a college has to pre-arrange
a match with a strictly less preferred student and then compensate it by
matching to a better set of students in the centralized matching procedure
after pre-arrangement.

Result 3 (Gale and Sotomayor (1985)). Let (S,C, P, q) be a market. For
any student s ∈ S and c ∈ C, we have

φ(S,C, P, q) ºc φ(S \ s, C, P−s, q).

21This conclusion holds for any stable mechanism. See Sönmez (1999).
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Now we prove Theorem 3.
By Result 3, we have

φ(S,C, P, qc − 1, q−c) ºc φ(S \ s, C, P−s, qc − 1, q−c).

By Lemma 8 we have

φ(S,C, P, qc − 1, q−c) =
(
φ(S,C, P, q), or

φ(S,C, P, q) \ argminPc φ(S,C, P, q),

with probability of at least 1−πc. In the former case it is clear that c cannot
manipulate. In the latter case we have

φ(S,C, P, q) = φ(S,C, P, qc − 1, q−c) ∪ argmin
Pc

φ(S,C, P, q)

ºc φ(S \ s, C, P−s, qc − 1, q−c) ∪ s,

where the last comparison holds by responsiveness, Result 3 and Lemma 9.
Therefore the probability that c benefits via pre-arrangement is at most πc.
Finally, by an argument similar to those for Theorems 1 and 2 we complete
the proof.

Proof of Lemma 2

Let π∗∗c = Pr[Algorithm 2 terminates at Step 2a|Yn > EYn/2]. By an argu-
ment analogous to the one in the proof of Lemma 1, we obtain

π∗∗c ≤
4T q̄

EYn
,

for any c. Therefore we have

πc ≤ Pr[Yn ≤ EYn/2] + Pr[Yn > EYn/2]π∗∗c
≤ 4

EYn
+ π∗∗c

≤ 4(T q̄ + 1)
EYc

.

Applying Lemma 3 for c = n, we complete the proof.
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Proof of Theorem 4

(1) Consider an arbitrary c ∈ C. As in the proof of Theorem 1, the proba-
bility that c profitably manipulates via truncating preference is at most
πc. By Lemma 2 we have πc → 0 as n→∞, completing the proof.

(2) Suppose that colleges other than c are truth-telling, that is, P 0−c = P−c.
By (1) for any ε > 0 there exists n0 such that for any market Γn with
n > n0, we have

Pr [u(φ(S,C, P 0c, P−c, q)(c)) > u(φ(S,C, P, q)(c))] <
ε

qc supΓn,s∈S û(s)
.

Such n0 can be chosen independent of c ∈ C, which implies that PC is
an ε-Nash equilibrium.

Proof of Theorem 5

(1) Consider an arbitrary c ∈ C. As in the proof of Theorem 2, the prob-
ability that c profitably manipulates via capacity is at most πc. By
Lemma 2 we have πc → 0 as n→∞, completing the proof.

(2) Suppose that colleges other than c are reporting q0−c. By (1) for any
ε > 0 there exists n0 such that for any market Γn with n > n0, we have

Pr
£
u(φ(S,C, P, q0c, q

0
−c)(c)) > u(φ(S,C, P, qc, q−c)(c))

¤
<

ε

supΓn,s∈S û(s)
.

Therefore qc is an ε-dominant strategy. Note that n0 can be chosen
independent of c ∈ C.

Proof of Theorem 6

Consider an arbitrary c ∈ C. As in the proof of Theorem 3, the probability
that c profitably manipulates via pre-arrangement is at most πc. By Lemma
2 we have πc → 0 as n→∞, completing the proof.

30



References
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