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University of Pittsburgh



1 Introduction

• Transplantation is the preferred treatment for the
most serious forms of kidney disease.

• More than 60,000 patients on the waitlist for de-
ceased donor kidneys in the U.S., about 15,000 wait-

ing more than 3 years. In 2004 about 3,800 patients

died while on the waitlist while only 14,500 patients

received a transplant form deceased (about 8,500) or

live donors (about 6,000).

• Buying and selling a body part is illegal in many coun-
tries in the world including the U.S. Donation is the

only source of kidneys in many countries.



Sources of Donation:

1. Deceased Donors: In the U.S. and Europe a cen-

tralized priority mechanism is used for the allocation

of deceased donor kidneys, which are considered na-

tional treasure.

2. Living Donors: Live donations have been the increas-

ing source of donations in the last decade. Two

types:

(a) Directed donation: Generally friends or relatives

of a patient specifically want to donate their kid-

ney to their loved ones.

(b) Undirected donation: “Good Samaritans” (GS)

who anonymously donate one of their kidneys.

Usually GS kidney is treated as a deceased donor

kidney and is transplanted to the highest priority

patient in the deceased donor waiting list.



2 Donations and Live Donor Exchanges

• There are two tests that a donor should pass before
she is deemed compatible with the patient:

— Blood compatibility test: O type kidneys com-

patible with all patients; A type kidneys compat-

ible with A and AB type patients; B type kidneys

compatible with B and AB type patients; AB type

kidneys compatible with AB type patients.

— Tissue compatibility test (crossmatch test): HLA

proteins play two roles (1) determine tissue rejec-

tion or compatibility and (2) how close the tissue

match is.

• If either test fails, the patient remains on the de-
ceased donor waiting list. If the donor is a directed

donor, she goes home unutilized.

• Medical community has already come up with a way
of utilizing these “unused” directed donors.



• A paired exchange involves two incompatible patient-
donor couples such that the patient in each couple

feasibly receives a transplant from the donor in the

other couple. This pair of patients exchange donated

kidneys.

 

Donor 1   Patient 1

Patient 2   Donor 2

• Larger exchanges can also be utilized (Two 3-way
exchanges have been utilized in Johns Hopkins Uni-

versity Transplant Center)



3 Kidney Exchange Developments

• Kidney exchange mechanisms were proposed by

Roth, Sönmez and Ünver QJE (2004), JET (2005)

(also see AER-P&P (2005), NBER wp (2005))

• New England Kidney Exchange (NEPKE) was estab-
lished by the proposals of by Alvin Roth, Drs. Francis

Delmonico Susan Saidman, and us in 2004

• A national exchange program is being proposed.



4 Integrating GS Donations with Paired

Exchanges

In May 2005, surgeons at Johns Hopkins performed an ex-
change between a Good Samaritan donor, two incompat-
ible patient-donor pairs, and a patient on the deceased-
donor priority list.

• In the recent exchange at Johns Hopkins,

— the kidney from the GS-donor is transplanted to
the patient of the first incompatible pair,

— the kidney from the first incompatible pair is trans-
planted to the patient of the second incompatible
pair, and

— the kidney from the second incompatible pair is
transplanted to the highest priority patient on the
deceased-donor priority list.

• What are plausible mechanisms to integrate GS do-
nations with paired exchanges?



5 Other Related Literature

• Shapley and Scarf JME (1974) - housing market

• Roth EL (1982) - strategy-proofness of core as a
mechanism in housing markets

• Ma IJGT (1994) - characterization of core in housing
markets

• Svensson SCW (1999) - characterization of serial

dictatorships in house allocation

• Abdulkadiroğlu and Sönmez JET (1999) - house al-

location problem with existing tenants

• Ergin JME (2000) - another characterization of serial
dictatorships in house allocation



6 The Model

• I : a finite set of patients

• D : a finite set of donors such that |D| ≥ |I|.

• Each patient i ∈ I has a paired-donor di ∈ D and

has strict preferences Pi on all donors in D.

— Let Ri denote the weak preference relation in-

duced by Ri and

— For any D ⊂ D, let R(D) denote the set of all
strict preferences over D.



A kidney exchange problem with good samaritan donors,

or simply a problem, is a triple hI,D,Ri where:

• I ⊆ I is any set of patients,

• D ⊆ D is any set of donors such that di ∈ D for any

i ∈ I, and,

• R = (Ri)i∈I ∈ [R(D)]|I| is a preference profile.

Given a problem hI,D,Ri, the set of “unattached” donors
D \ {di}i∈I is referred as Good Samaritan donors (or in
short GS-donors).

• Paired-donor dj of a patient j is formally a GS-donor
in a problem hI,D,Ri if dj ∈ D although j 6∈ I.



• Given I ⊆ I and D ⊆ D, a matching is a mapping
μ : I → D such that

∀i, j ∈ I, i 6= j ⇒ μ (i) 6= μ (j) .

• We denote a problem hI,D,Ri simply by its prefer-
ence profile R

• A mechanism is a systematic procedure that selects

a matching for each problem.



7 Axioms

7.1 Individual Rationality, Pareto Efficiency and

Strategy Proofness

Fixed population axioms:

• A matching is individually rational if no patient is

assigned a donor worse than her paired-donor.

— A mechanism is individually rational if it always

selects an individually rational matching.

• A matching is Pareto efficient if there is no other

matching that makes every patient weakly better off

and some patient strictly better off.

— A mechanism is Pareto efficient if it always selects

a Pareto efficient matching.



• A mechanism is strategy-proof if no patient can ever

benefit by misrepresenting her preferences.

7.2 Weak Neutrality and Consistency

Variable population axioms:

• A mechanism is weakly neutral if labeling of GS-

donors has no affect on the outcome of the mecha-

nism.



Let for any i ∈ I, Ri ∈ R (D) for D ⊂ D and I ⊂ D.

For any J ⊂ I and C ⊂ D, let RCJ = (RCi )i∈J be the
restriction of profile R to patients in J and donors in C.

We refer
D
J,C,RCJ

E
as the restriction of problem hI,D,Ri

to patients in J and donors in C. The triple
D
J,C,RCJ

E
itself is a well-defined reduced problem if whenever a pa-

tient is in J then her paired-donor is in C.

Given a problem hI,D,Ri, the removal of a set of pa-
tients J ⊂ I together with their assignments φ[R](J)

under φ and a set of unassigned donors C ⊂ D under φ

results in a well-defined reduced problem¿
I \ J, D \ (φ[R](J) ∪ C), R−φ[R](J)∪C−J

À
if

(φ[R](J) ∪ C) ∩ {di}i∈I\J = ∅.



• A mechanism is consistent if the removal of

— a set of patients,

— their assignments, and

— some unassigned donors

does not affect the assignments of remaining patients

provided that the removal results in a well-defined

reduced problem.

• Once a mechanism finds a matching, actual oper-

ations can be done months apart in different ex-

changes. Moreover, some unassigned donors (who

are either GS-donors or donors of patients who al-

ready received a transplant) may be assigned to the

deceased donor waiting list in the mean time. There-

fore, consistency of the mechanism ensures that once

the operations in an exchange are done and some

unassigned donors become unavailable, there is no

need to renege the determined matching, since the

mechanism will determine the same matching in the

reduced problem.



8 You Request My Donor-I Get Your

Turn Mechanism

• Abdulkadiroğlu and Sönmez JET (1999) introduced

in the context of house allocation with existing ten-

ants(see also Chen and Sönmez JET (2006) and

Sönmez and Ünver GEB (2005)

• A (priority) ordering f : f(1) indicates the patient

with the highest priority in I, f(2) indicates the pa-
tient with the second highest priority in I, and so
on.

• Given a set of patients J ∈ I, the restriction of f to
J is an ordering fJ of the patients in J which orders

them as they are ordered in f .

• Each ordering f ∈ F defines a YRMD-IGYT mecha-

nism.



— For any problem hI,D,Ri, let ψf [R] denote the
outcome of YRMD-IGYT mechanism induced by

ordering f .

— Let ψf [RCJ ] denote the outcome of the YRMD-

IGYT mechanism induced by ordering fJ for prob-

lem
D
J,C,RCJ

E
.



For any problem hI,D,Ri, matching ψf [R] is obtained

with the following YRMD-IGYT algorithm in several rounds.

Round 1(a): Construct a graph in which each patient and

each donor is a node. In this graph:

• each patient “points to” her top choice donor (i.e.
there is a directed link from each patient to her top

choice donor),

• each paired-donor di ∈ D points to her paired-patient

i in case i ∈ I, and to the highest priority patient in
I otherwise,

• and each GS-donor points to the patient with the
highest priority in I.



Define: a cycle is an ordered list (c1, j1, . . . , ck, jk) of

donors and patients where donor c1 points to patient

j1, patient j1 points to donor c2, donor c2 points to

patient j2, . . ., donor ck points to patient jk, and

patient jk points to donor c1.

  c1        j1 

c2 

 
 
j2 

jk 

 
 
ck 

… 



Since there is a finite number of patients and donors,

there is at least one cycle. If there is no cycle without a

GS-donor then skip to Round 1(b). Otherwise consider

each cycle without a GS-donor. (Observe that if there is

more than one such cycle, they do not intersect.) Assign

each patient in such a cycle the donor she points to and

remove each such cycle from the graph. Construct a new

graph with the remaining patients and donors such that

• each remaining patient points to her first choice among
the remaining donors,

• each remaining paired-donor di ∈ D points to her

paired-patient i in case her paired patient i remains

in the problem, and to the highest priority remaining

patient otherwise,

• and each GS-donor points to the highest priority re-
maining patient.



There is a cycle. If there is no cycle without a GS-donor

then skip to Round 1(b); otherwise carry out the implied

exchange in each such cycle and proceed similarly until

either no patient is left or there exists no cycle without a

GS-donor.

Round 1(b): There is a unique cycle in the graph, and it

includes both the highest priority patient among remain-

ing patients and a GS-donor. Assign each patient in such

a cycle the donor she points to and remove each such

cycle from the graph. Proceed with Round 2.



In general, at

Round t(a): Construct a new graph with the remaining

patients and donors such that

• each remaining patient points to her first choice among
the remaining donors,

• each remaining paired-donor di ∈ D points to her

paired-patient i in case her paired patient i remains

in the problem, and to the highest priority remaining

patient otherwise,

• and each remaining GS-donor points to the highest
priority remaining patient.



There is a cycle. If the only remaining cycle includes ei-

ther a GS-donor or a paired-donor whose paired-patient

has left, then skip to Round t(b); otherwise carry out the

implied exchange in each such cycle and proceed simi-

larly until either no patient is left or the only remaining

cycle includes either a GS-donor or a paired-donor whose

paired-patient has left.

Round t(b): There is a unique cycle in the graph, and

it includes the highest priority patient among remaining

patients and either a GS-donor or a paired-donor whose

paired-patient has left. Assign each patient in such a

cycle the donor she points to and remove each such cycle

from the graph. Proceed with Round t+1.

The algorithm terminates when there is no patient left in

the graph.



9 Characterization of the YRMD-IGYT

Mechanisms

Our main result is a characterization of the YRMD-IGYT

mechanism:

Theorem 1: A mechanism is Pareto efficient, individually

rational, strategy-proof, weakly neutral, and consistent if

and only if it is a YRMD-IGYT mechanism.



We present our main result through two propositions:

Proposition 1: For any ordering f ∈ F , the induced
YRMD-IGYT mechanism ψf is Pareto efficient, individ-

ually rational, strategy-proof, weakly neutral and consis-

tent.

Proposition 2: Let φ be a Pareto efficient, individually

rational, strategy-proof, weakly neutral, and consistent

mechanism. Then φ = ψf for some f ∈ F .



Sketch of Proof of Proposition 2:

• Construct f as follows: Let dgs ∈ D be a GS-donor.

— Construct R1 as follows

R11 R12 · · · · · · R1n
dgs dgs dgs
d1 d2 dn
... ... ...

Pareto efficiency of φ⇒ for some i, φ
h
R1
i
(i) =

dgs. Let f(1) = i.

— Construct R2 as follows:

R2f(1) R21 R22 · · · R2n
df(1) dgs dgs dgs
... d1 d2 dn

... ... ...

Individual rationality of φ ⇒ φ
h
R2
i
(f (1)) =

dgs.

Pareto efficiency of φ ⇒ for some i 6= f (1) ,

φ
h
R2
i
(i) = dgs. Let f(2) = i.



— similarly construct R3 by changing f(2)’s prefer-

ences so that only df(2) is acceptable. We con-

tinue similarly... This gives a unique ordering f .



• Let R ∈ R (D)|I| for I ⊆ I and D ⊆ D. We will
prove that ψf [R] = φ [R] .

• To prove this result we construct an interim prefer-

ence profile R0 using R. Use YRMD-IGYT algorithm
to construct ψf [R] .

— Let At be the patients removed in round t(a) for

any t.

— Let Bt be the patients removed in round t(b) for

any t.

• R0i is constructed in two different ways for a patient
i ∈ I depending on how she leaves the algorithm.

Suppose she leaves the algorithm in round t Two

cases are possible: She leaves

1. (i) in round t(a) or (ii) in round t(b) and she is

not the highest priority patient in this cycle.

2. in round t(b) and she is the highest priority pa-

tient in this cycle
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Figure 1: Construction of Preference R′
i for Case 1
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Figure 2: Construction of Preference R′
i for Case 2 when ψf [R] (Bt) =

{
ψf [R] (i) , c, c′

}
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By construction, ψf
£
R0
¤
= ψf [R]. We will prove four

claims that will facilitate the proof of Proposition 2.

We consider the patients in A1 in the first two claims.

Claim 1: For any R̂−A1 ∈ R|I\A
1| and i ∈ A1, we have

φ
h
R0
A1
, R̂−A1

i
(i) = ψf [R] (i) .

The proof uses individual rationality and Pareto efficiency

of φ.

Claim 2: For any R̂−A1 ∈ R|I\A
1|, and any i ∈ A1, we

have φ
h
RA1, R̂−A1

i
(i) = ψf [R] (i).

The proof uses Claim 1, strategy-proofness in addition to

individual rationality and Pareto efficiency of φ.



We consider the patients in B1 in the next two claims.

Claim 3: φ
h
R0
B1
, R−B1

i
(i) = ψf [R] (i) for all i ∈ B1.

The proof uses Claim 2, consistency and weak neutral-

ity in addition to strategy-proofness, individual rationality

and Pareto efficiency of φ.

Claim 4: φ [R] (i) = ψf [R] (i) for all i ∈ B1.

The proof uses Claims 2 and 3, strategy-proofness, con-

sistency, and individual rationality of φ.



For the rest of the patients, we use consistency of φ and

the above 4 claims.

By Claim 2 and Claim 4,

φ [R] (i) = ψf [R] (i) for all i ∈ A1 ∪B1.

By invoking consistency, we can remove patients in A1∪
B1 and their assigned donors and we can similarly prove

φ [R] (i) = ψf [R] (i) for all i ∈ A2 ∪B2.

Iteratively we continue to prove that

φ [R] = ψf [R] .



10 Independence of the Axioms

The following examples establish the independence of the

axioms.

Example 1: Individually rational, strategy-proof , weakly

neutral and consistent but not Pareto efficient mecha-

nism: Let mechanism φ assign each patient i ∈ I her

paired-donor di for each problem hI,D,Ri.

Example 2: Pareto efficient, strategy-proof , weakly neu-

tral and consistent but not individually rational mecha-

nism: Fix an ordering f ∈ F and let mechanism φ be the

serial dictatorship induced by f .



Example 3: Pareto efficient, individually rational, weakly

neutral and consistent but not strategy-proof mecha-

nism: Fix an ordering f ∈ F . Let g ∈ F be constructed

from f by demoting patient f(1) to the very end of the

ordering. For any problem hI,D,Ri, let

φ[R] =

(
ψg[R] if dRidf(1) for all i ∈ I and d ∈ D,
ψf [R] if otherwise.



Example 4: Pareto efficient, individually rational , strategy-

proof , and consistent but not weakly neutral mechanism:

Let I,D be such that |I| ≥ 2 and |D| ≥ |I| + 2. Let
i1, i2 ∈ I and d∗ ∈ D \ {di}i∈I. Let f, g ∈ F be such

that f(1) = g(2) = i1, f(2) = g(1) = i2 and f(i) = g(i)

for all i ∈ I \ {i1, i2}. For any problem hI,D,Ri, let

φ[R] =

⎧⎪⎨⎪⎩ ψf [R]
if i1 ∈ I, d∗ ∈ D and
d∗Ri1d for all d ∈ D \ {di}i∈I

ψg[R] if otherwise.



Example 5: Pareto efficient, individually rational , strategy-

proof , and weakly neutral but not consistent mechanism:

Let f, g ∈ F be such that f 6= g. For any problem

hI,D,Ri, let

φ[R] =

(
ψf [R] if there are odd number of GS-donors,
ψg[R] if there are even number of GS-donors.



11 Conclusions

• The result can be generalized to a setting in which
the deceased donor waiting patients (without any

paired donors) are also explicitly modeled. (A similar

domain with house allocation existing tenants prob-

lem).

• New England Program for Kidney Exchange (NEPKE)
has started to integrate GS donations with paired ex-

changes.


