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Abstract

We show that for every collection of strictly increasing risk-sharing rules and every strictly

increasing and strictly concave expected utility function, there exists a collection of strictly

increasing and strictly concave expected utility functions for which the given risk-sharing

rules are efficient and the given utility function coincides with the corresponding represen-

tative consumer’s utility function. This result shows that the efficiency property imposes

no restriction on the risk-sharing rules beyond the comonotonicity, or on the state-pricing

rule beyond the positivity and antimonotonicity. We also obtain contrasting results when

the individual consumers are assumed to exhibit hyperbolic absolute risk aversion.
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1 Introduction

We consider an exchange economy under uncertainty with a single good and a single consump-

tion period, consisting of consumers who all have expected utility functions with respect to

a homogeneous probabilistic belief but their expected utility functions may exhibit heteroge-

nous risk attitudes. As usual, we assume that all individual consumers prefer more to less and

are averse to risk, which means that their utility functions are strictly increasing and strictly
∗Email: hara@kier.kyoto-u.ac.jp
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concave. Then, a Pareto-efficient allocation can be described by a collection of efficient risk-

sharing rules, one for each consumer, and its supporting (or, decentralizing) price system can

be represented by the expected utility function for the representative consumer. Specifically, an

individual consumer’s risk-sharing rule is a deterministic function that maps realized aggregate

consumption levels to realized individual consumption levels; and the representative consumer’s

marginal utility at a given aggregate consumption level is the price for unit consumption in the

event that the realized aggregate consumption equals the given level, divided by the probability

of that event.

A couple of properties are well known for risk-sharing rules and the representative consumer’s

utility function. First, every individual consumer’s efficient risk-sharing rule is a strictly increas-

ing function. This property is called the comonotonicity because it is equivalent to the property

that the consumers’ consumption levels are monotonically increasing functions of one another.

Also, the representative consumer’s utility function is strictly increasing and strictly concave.

Since his marginal utility function gives a state-price deflator, these properties are equivalent

to the property that the price for unit consumption in the event that the realized aggregate

consumption is at any given level is positive and, once divided by the probability of the event, a

decreasing function of aggregate consumption levels. We shall therefore call them the positivity

and antimonotonicity of the state-pricing rule.

In some special cases, more can be said of risk-sharing and state-pricing rules. For example,

if all individual consumers have a common constant relative risk aversion, then their efficient

risk-sharing rules are all linear and the representative consumer also has the same constant

relative risk aversion. Hara, Huang, and Kuzmics (2005) closely investigated the case in which

the individual consumers exhibit hyperbolic absolute risk aversion but the cautiousness (which

is the derivative of the reciprocal of absolute risk aversion and is therefore constant) differ

across them. They found, in this case, that no individual consumer’s efficient risk sharing rule

is linear and the representative consumer’s cautiousness is strictly increasing with aggregate

consumption levels. Other than these special cases, little is known on the general properties of

efficient risk-sharing rules and the representative consumer’s risk attitudes.

In this paper, we show (Theorem 2 and Corollary 5) that the efficiency implies no property

other than that the comonotonicity of the risk-sharing rules the positivity and antimonotonicity
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of the state-pricing rule. More specifically, for every collection of strictly increasing risk-sharing

rules, one for each consumer, there exists a collection of strictly increasing and strictly concave

utility functions, one for each consumer, for which the given risk-sharing rules are efficient. We

moreover show that these efficient risk-sharing rules can be coupled with an arbitrary positive

and antimonotone state-pricing rule. That is, for every collection of strictly increasing risk-

sharing rules and every strictly increasing and strictly concave utility function, there exists

a collection of strictly increasing and strictly concave utility functions for which the given

risk-sharing rules are efficient and the given utility function coincides with the corresponding

representative consumer’s utility function. We also show that once a collection of risk-sharing

rules and a positive and antimonotone state-pricing rule is given, each individual consumer’s

utility function are essentially uniquely determined.

What can we learn from this result? First, it shows the comonotonicity of risk-sharing rules

and the positivity and antimonotonicity of the state-pricing rule exhaust all the implications of

efficiency, when the consumers have expected utility functions with respect to a homogeneous

probabilistic belief but no other condition is imposed on their utility functions. Our result also

clarifies the degree of freedom in the choice of individual utility functions generating the given

risk-sharing rules and the state-pricing rule.

Second, it shows that the joint assumption of complete asset markets and expected utility

functions with a homogeneous probabilistic belief imposes no restriction on equilibrium asset

prices and transaction volumes. To see this point, recall first that the first and second welfare

theorems hold for complete asset markets, that any arbitrage-free asset prices correspond to a

unique state-pricing rule, and that any asset allocation gives rise to a risk-sharing rule, one for

each consumer. Hence, the arbitrariness of the state-pricing rule implies the arbitrariness of the

equilibrium asset prices, and the arbitrariness of the risk-sharing rules implies the arbitrariness of

the equilibrium transaction volumes. Regarding viable restrictions on equilibrium state prices,

Kreps (1981) established (his Theorem 1) necessary and sufficient conditions for consistency

with a preference-maximizing consumer in a much more general setting than ours, but our

result, in spirit, refines his Theorem 1 in two respects. One is that we ask, and solves, the

question of consistency in a more demanding setting of expected utility functions exhibiting

risk aversion. The other is that by allowing for multiple consumers, we can show that any
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choice of arbitrary-free asset prices is viable at equilibrium with any patterns of transaction

volumes.

Third, our result shows that if there is any value added to the use of non-expected utility

functions and incomplete asset markets (including the presence of transaction costs) to improve

the prediction of equilibrium asset prices, it must be because there is some a priori class of

expected utility functions that are regarded as being reasonable, for whatever reason. The

best example for the type of quest for a better prediction of equilibrium asset prices based

on “reasonable” utility functions is the equity premium puzzle, first proposed by Mehra and

Prescott (1985). As has been well documented in Kocherlakota (1996), the subsequent literature

has indeed been well aware that the issue here is whether it is possible to reproduce empirically

observed equity premium by utility functions exhibiting reasonable risk aversion, not just by

any expected utility functions. Our result justifies this approach of pursuing reasonable risk

aversion, by showing that if no such restriction is imposed, any arbitrage-free asset prices may

emerge. But it also suggests a weakness of this approach: since the criterion for reasonable utility

function is often ad hoc and ambiguous, and since any arbitrage-free asset prices are in principle

viable at equilibrium, the virtue of any model incorporating non-expected utility functions or

incomplete markets hinges critically on whether the criterion employed is appropriate.

Let us now turn to the related literature. The problem of characterizing efficient risk-sharing

rules the representative consumer’s risk attitudes is classical. A pioneering work is Wilson

(1968), who related the individual consumers’ risk attitudes to the representative consumer’s

counterpart and their efficient risk-sharing rules. His analysis started with a given set of utility

functions for the individual consumers and did not explicitly exhaust all the possible implications

of efficiency on risk-sharing rules. Hara, Huang, and Kuzmics (2005) obtained some interesting

properties of efficient risk-sharing rules allowing for significant heterogeneity in the individual

consumers’ risk attitudes. However, their analysis also started with a given set of risk-sharing

rules and did not try to construct utility functions for a given set of risk-sharing rules.

The most closely related paper is Dana and Meilijson (2003). They also constructed a collec-

tion of increasing and concave utility functions for which the given risk-sharing rules are efficient

and the given utility function coincides with the corresponding representative consumer’s utility

function. There are two additional properties for the utility functions that they did not guaran-
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tee, which nonetheless we do by employing a rather different proof method and imposing extra

conditions. The first one is the Inada condition, which says that the marginal utility spans from

zero to infinity. The second condition is the differentiability of arbitrarily many times. The

Inada condition is obtained by assuming that the risk-sharing rule is an onto function, covering

the entire domain of the utility function for the consumer. The differentiability is obtained by

assuming that the risk-sharing rule and the utility function given for the representative con-

sumer are appropriately many times differentiable. Extra conditions as they are, it is worth

imposing them to guarantee the two properties. Although the existence of an interior optimal

consumption is crucial for many applications, it would not be guaranteed without the Inada

condition. Many interesting properties of the curvature of risk-sharing rules, such as those in

Hara, Huang, and Kuzmics (2005), cannot be established without four times differentiability of

utility functions.

A related strand of literature is on the empirical testing of the full insurance hypothesis. As

our result indicates, if no restriction is imposed on the utility functions other than the strict

increasingness and strict concavity, then for any consumption allocation generated by a collec-

tion strictly increasing risk-sharing rules, we do not reject the hypothesis that the allocation is

efficient. This appears to be too lenient a test for efficiency. The existing literature therefore

imposed additional conditions on utility function to derive more restrictions on risk-sharing

rules. Townsend (1994), Mace (1991), and Kohara, Ohtake, and Saito (2002) conducted tests

for efficiency for the cases where all consumers have the same utility function that exhibits

either constant absolute risk aversion or constant relative risk aversion. In this case, all the

efficient risk-sharing rules are linear, and hence the hypothesis of an efficient allocation is re-

jected whenever the observed data set is inconsistent with linearity. This apparently provides a

rather stringent test for efficiency; and the hypothesis that the observed consumption allocation

is efficient is often rejected in the literature. The tests of Ogaki and Zhang (2001) relaxed the

assumption of the common constant relative risk aversion. In this case, the hypothesis of an

efficient allocation is often not rejected. In the face of this type of evidence, the literature tends

to conclude that consumers are likely to have non-constant (decreasing, specifically), rather

than constant, relative risk aversion.

The result of this paper shows that the linearity versus non-linearity of the risk-sharing
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rules does not really matter for the nature of utility functions. Recall that our result is that for

every collection of strictly increasing risk-sharing rules and every strictly increasing and strictly

concave utility function, there exists a collection of strictly increasing and strictly concave

utility functions for which the given risk-sharing rules are efficient and the given utility function

coincides with the corresponding representative consumer’s utility function. Just with a small

trick, we can also show (Corollary 3) that for every collection of strictly increasing risk-sharing

rules and every strictly increasing and strictly concave utility function, there exists a collection

of strictly increasing and strictly concave utility functions for which the given risk-sharing rules

are efficient and the given utility function coincides with one, say the first, individual consumer’s

(rather than the representative consumer’s) utility function. In short, any observed consumption

allocation in no way restricts one individual consumer’s utility function.

As can be seen from reviewing the literature on the empirical testing of the full insurance

hypothesis, in most applications all individual consumers are assumed to exhibit hyperbolic

absolute risk aversion. We identify (Theorems 4 and 5) the nature of the risk-sharing rules

and the state-pricing rule in such an environment by characterizing a class of utility functions

that is closed under aggregation. What should be contrasted with the result (Theorem 2) for

the general case is Proposition 4, which claims that the risk-sharing rule is essentially uniquely

determined by the state-pricing rule, or, equivalently, the utility function for the representative

consumer. The risk-sharing rules, one for each consumer, can be completely recovered from the

state-pricing rule in such an environment.

This paper is organized as following. Section 2 lays out the setting of this paper and

formulates our problem. Section 3 states and proves the main result (Theorem 2) of this paper,

and its corollaries are presented in Section 4. Section 5 deals with the special but commonly

used case in which individual consumers exhibit hyperbolic absolute risk aversion. Section 6

gives analytical examples of implications of the main result. Section 7 gives concluding remarks

and suggestion directions of future research.

2 Setting

There are I consumers, i ∈ {1, . . . , I}. Consumer i has a von-Neumann Morgenstern (also

known as Bernoulli) utility function ui : Di → R, where Di is a nonempty open interval of R,
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which may or may not be bounded from below or above. We assume that ui is of class Cr with

r ≥ 2 and satisfies u′i(xi) > 0 and u′′i (xi) < 0 for every xi ∈ Di. We also assume that ui satisfies

the Inada condition, that is, u′i (xi) →∞ as xi → inf Di and u′i (xi) → 0 as xi → supDi.

For each λ = (λ1, . . . , λI) ∈ RI
++ and each x ∈ ∑

i Di, consider the following maximization

problem:

max
(x1,...,xI)∈D1×···×DI

∑
λiui(xi),

subject to
∑

xi = x.

(1)

By the strict concavity and the Inada condition, for each x, there exists exactly one solution to

this problem, which we denote by fλ(x) = (fλ1(x), . . . , fλI(x)). Then, for every λ, the mapping

fλ :
∑

i Di → D1 × · · · × DI is well defined. It follows from the first-order condition and the

implicit function theorem that fλ is of class Cr−1, and that f ′λi(x) > 0 for every x ∈ ∑
j Dj ,

fλi(x) → inf Di as x → inf
∑

j Dj , and fλi(x) → supDi as x → sup
∑

j Dj , for every i. Define

uλ :
∑

i Di → R as the value function of this problem that is, uλ(x) =
∑

i λiui (fλi(x)). By

the envelope theorem, u′λ(x) = λiu
′
i(fλi(x)) for every i and every x ∈ ∑

j Dj . This shows that

u′λ(x) > 0, uλ satisfies the Inada condition, and u′λ is of class Cr−1. Hence uλ is of class Cr and

u′′λ(x) = λiu
′′
i (fλi(x))f ′λi(x) < 0.

The importance of fλ and uλ lies in the following fact, subject to appropriate integrabil-

ity conditions:1 In an economy under uncertainty described by the probability measure space

Ω with the aggregate endowment e, which is a random variable defined on Ω, an allocation

c = (c1, . . . , cI) of random variables is a Pareto-efficient allocation of e if and only if c = fλ(e)

for some λ ∈ RI
++. Moreover, then, the linear functional on L 2(Ω) whose Riesz representation

is u′λ(e) is the unique price system, modulo strictly positive scalar multiplications, that decen-

tralizes c. In other words, fλ tells us how the aggregate consumption level is distributed across

consumers and uλ tells us how to price assets whose payoffs are determined by the aggregate

consumption levels.

The argument so far can be more formally summarized as follows.

Denote by D the set of all nonempty open intervals of R. For each r ∈ Z++ with r ≥ 2

and each Di ∈ D , let U r
Di

be the set of all functions ui : Di → R that satisfy the following four

conditions:
1It can be traced back to Borch (1962, p. 428) and Wilson (1968), and is nicely explained in Kreps (1990,

Section 5.4).
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Cr ui is of class Cr

INC u′i(xi) > 0 for every xi ∈ Di

CONC u′′i (xi) < 0 for every xi ∈ Di

INADA u′i(xi) →∞ as xi → inf Di and u′i(xi) → 0 as xi → supDi

Write D = (D1, . . . , DI) ∈ DI and define U r
D = U r

D1
× · · · × U r

DI
. Then, specifying a list of

consumers is equivalent to specifying an I ∈ Z++, a D ∈ DI , and a (u1, . . . , uI) ∈ U 2
D.

For each r ∈ Z++ with r ≥ 2, each integer I ∈ Z++, and each D = (D1, . . . , DI) ∈ DI , let

F r−1
D as the set of all functions f = (f1, . . . , fI) :

∑
j Dj → D1×· · ·×DI , with fi :

∑
j Dj → Di

for every i, that satisfy the following four conditions:

Cr`1 fi is of class Cr−1 for every i

COMONO f ′i(x) > 0 for every i and every x ∈ ∑
i Di

ONTO fi(x) → inf Di as x → inf
∑

j Dj and fi(x) → supDi as x → sup
∑

j Dj for every i.

SUM
∑

i fi(x) = x for every x ∈ ∑
i Di

What we have stated above can then be restated as follows:

Theorem 1 For every I ∈ Z++, every D = (D1, . . . , DI) ∈ DI , every r ∈ Z++ with r ≥ 2,

every (u1, . . . , uI) ∈ U r
D, and every λ ∈ RI

++, if fλ :
∑

i Di → D1× · · ·×DI is the solution and

uλ :
∑

i Di → R is the value function of (1), then fλ ∈ F r−1
D and uλ ∈ U rP

i Di
.

3 Main Result

The main result of this paper is the converse of Theorem 1:

Theorem 2 For every I ∈ Z++, every D = (D1, . . . , DI) ∈ DI , every r ∈ Z++ with r ≥ 2,

every λ ∈ RI
++, every f ∈ F r−1

D , and every u ∈ U rP
i Di

, there exists a (u1, . . . , uI) ∈ U r
D such

that if fλ :
∑

i Di → D1 × · · · ×DI is the solution and uλ :
∑

i Di → R is the value function of

(1), then f = fλ and u = uλ. Moreover, for every (v1, . . . , vI) ∈ U r
D, (v1, . . . , vI) has the same

property as this (u1, . . . , uI) if and only if ui− vi is constant for every i and
∑

i λi(ui− vi) = 0.
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The first part of this theorem is the converse of Theorem 1, which establishes the existence

of the profile (u1, . . . , uI) ∈ U r
D of utility functions satisfying fλ = f and uλ = u. The second

part is the uniqueness of the profile up to constants. We do not have the degree of freedom with

respect to the scalar multiplication, because we require the identity u = uλ, which is cardinal

in nature. Since the constants are relevant for the risk attitudes, this theorem implies that f

and u uniquely determines each individual consumer’s risk attitudes.

Proof of Theorem 2 As in the statement of this theorem, let r ∈ Z++ with r ≥ 2, I ∈ Z++,

D ∈ DI , λ ∈ RI
++, f ∈ F r−1

D , and u ∈ U rP
i Di

. Let d ∈ ∑
i Di. For each i, define ui : Di → R

by

ui(xi) =
1
λi

(∫ xi

fi(d)
u′

(
f−1

i (zi)
)

dzi +
u(d)

I

)
(2)

for every xi ∈ Di. This is indeed well defined by Conditions COMONO and ONTO. We shall

prove that (u1, . . . , uI) is what we want.

Since u′ ◦ f−1
i is of class Cr−1, ui is of class Cr. Since

u′i(xi) =
1
λi

u′
(
f−1

i (xi)
)

(3)

for every xi ∈ Di, ui satisfies Conditions INC and INADA. Hence

u′′i (xi) = − 1
λi

u′′
(
f−1

i (xi)
) 1

f ′i
(
f−1

i (xi)
) < 0 (4)

for every xi ∈ Di. Thus ui satisfies Condition CONC, and (u1, . . . , uI) ∈ U r
D.

By (3), λu′1(f1(x)) = · · · = λu′I(fI(x)). Thus, the first-order condition for the solution of

(1) is satisfied by f(x) for every x ∈ ∑
i Di. By Condition SUM, f = fλ.

This implies that uλ(x) =
∑

i λiui (fλi(x)) for every x ∈ ∑
i Di. By (3),

u′λ(x) =
∑

i

λiu
′
i (fλi(x)) f ′i(x) =

∑

i

λi
1
λi

u′
(
f−1

i (fλi(x))
)
f ′i(x) = u′(x).

Thus uλ(x)− u(x) does not depend on x. Moreover,

uλ(d) =
∑

i

λi
1
λi

(
0 +

u(d)
I

)
= u(d).
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Hence u = uλ. This completes the existence part of this theorem.

To prove the second part, let (v1, . . . , vI) ∈ U r
D. Suppose first that for every i, there is a

constant κi such that ui(xi)− vi(xi) = κi for every xi ∈ Di and
∑

i λiκi = 0. Then

λiu
′
i (fi(x)) = λiv

′
i (fi(x))

for every x ∈ ∑
j Dj and hence f is the solution to (1) when the ui are replaced by the vi.

Denote the corresponding value function by vλ, then

vλ(x) =
∑

i

λivi (fi(x)) =
∑

i

λiui (fi(x)) +
∑

i

λi (vi (fi(x))− ui (fi(x)))

=
∑

i

λiui (fi(x))−
∑

i

λiκi = uλ(x)

for every x ∈ ∑
i Di. Thus (v1, . . . , vI) ∈ U r

D has the same property as (u1, . . . , uI).

Suppose conversely that (v1, . . . , vI) ∈ U r
D has the same property as (u1, . . . , uI). Then, by

the envelope theorem,

λiu
′
i (fi(x)) = u′(x) = λiv

′
i (fi(x))

for every i and x ∈ Di. By λi > 0, u′i (fλi(x)) = v′i (fλi(x)) for every i and x ∈ D. By Condition

ONTO, this implies that u′i (xi) = v′i (xi) for every i and xi ∈ Di. Thus ui − vi is constant.

Moreover

∑

i

λiui (fi(x)) = uλ(x) =
∑

i

λivi (fi(x))

=
∑

i

λiui (fi(x)) +
∑

i

λi (vi (fi(x))− ui (fi(x))) .

Thus
∑

i λi (vi − ui) = 0. ///

4 Corollaries of Theorem 2

In this section, we present corollaries of Theorem 2 in various directions.
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4.1 Infinitely Many Times Differentiability

Define U ∞
Di

=
⋂∞

r=2 U r
Di

and F∞
D =

⋂∞
r=2 F r−1

D . Then these sets consist of infinitely many

times differentiable utility functions and risk-sharing rules. By applying Theorems 1 and 2 for

all r ∈ Z++ with r ≥ 2, we obtain the following corollaries:

Corollary 1 For every I ∈ Z++, every D = (D1, . . . , DI) ∈ DI , every (u1, . . . , uI) ∈ U ∞
D ,

and every λ ∈ RI
++, if fλ :

∑
i Di → D1 × · · · ×DI is the solution and uλ :

∑
i Di → R is the

value function of (1), then fλ ∈ F∞
D and uλ ∈ U ∞P

i Di
.

Corollary 2 For every I ∈ Z++, every D = (D1, . . . , DI) ∈ DI , every λ ∈ RI
++, every

f ∈ F∞
D , and every u ∈ U ∞P

i Di
, there exists a (u1, . . . , uI) ∈ U ∞

D such that if fλ :
∑

i Di →
D1 × · · · × DI is the solution and uλ :

∑
i Di → R is the value function of (1), then f = fλ

and u = uλ. Moreover, for every (v1, . . . , vI) ∈ U ∞
D , (v1, . . . , vI) has the same property as this

(u1, . . . , uI) if and only if ui − vi is constant for every i and
∑

i λi(ui − vi) = 0.

4.2 Utility Function for an Individual Consumer

The following corollary shows that the utility function of one individual consumer, rather than

the representative consumer, can be chosen arbitrarily.

Corollary 3 For every I ∈ Z++ with I ≥ 2, every D = (D1, . . . , DI) ∈ DI , every r ∈ Z++

with r ≥ 2, every λ ∈ RI
++, every f ∈ F r−1

D , and every u1 ∈ U r
D1

, there exists a (u2, . . . , uI) ∈
U r

(D2,...,DI) such that if fλ :
∑

i Di → D1×· · ·×DI is the solution of (1), then f = fλ. Moreover,

for every (v2, . . . , vI) ∈ U r
(D2,...,DI), (v2, . . . , vI) has the same property as this (u2, . . . , uI) if and

only if ui − vi is constant for every i ≥ 2.

The second part of this corollary establishes the essential uniqueness of the other consumers’

utility functions. The corollary, as a whole, says that although one consumer’s utility function

cannot at all be specified by the efficient risk-sharing rules, once it is specified, the other con-

sumers’ utility functions can be identified up to a scalar addition, which is completely irrelevant

for the consumer choice.

Proof of Corollary 3 As in the statement of this corollary, let I ∈ Z++ with I ≥ 2, r ∈ Z++

with r ≥ 2, D ∈ DI , λ ∈ RI
++, f ∈ F r−1

D , and u1 ∈ U r
D1

. Let d ∈ ∑
i Di. Define u :

∑
i Di → R
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by

u(x) = λ1

∫ x

d
u′1 (f1(z)) dz (5)

for every x ∈ ∑
i Di. Since u′1 ◦ f1 is of class Cr−1, u is of class Cr. Since

u′(x) = λ1u
′
1 (f1(x)) (6)

for every x ∈ ∑
i Di, u1 satisfies Conditions INC and INADA, and f1 satisfies Conditions

COMONO and ONTO, u satisfies Conditions INC and INADA. Moreover,

u′′(x) = λ1u
′′
1 (f1(x)) f ′ (x) < 0 (7)

for every x ∈ ∑
i Di. Thus u satisfies Condition CONC, and u ∈ U rP

i Di
.

By Theorem 2, therefore, there exists a (û1, . . . , ûI) ∈ U r
D such that if f̂λ :

∑
i Di →

D1 × · · · ×DI is the solution and ûλ :
∑

i Di → D1 × · · · ×DI is the value function of (1) with

the ui replaced by the ûi, then f = f̂λ and u = ûλ.

By the envelope theorem and (5),

λ1û
′
1 (f1(x)) = u′(x) = λ1u

′
1 (f1(x))

for every x ∈ ∑
i Di. Since λ1 > 0 and f1 satisfies ONTO, this implies that u1− û1 is constant.

Denote this value by α. For each i ≥ 2, define ui : Di → R by

ui(xi) = ûi(xi)− λ1

λi

α

I − 1

for every xi ∈ Di. Then ui − ûi is constant for every i and
∑

i≥1 λi (ui − ûi) = 0. By Theorem

2, therefore, if fλ :
∑

i Di → D1 × · · · × DI is the solution and uλ :
∑

i Di → R is the value

function of (1) with this (u1, u2, . . . , uI), then fλ = f̂λ = f and uλ = ûλ = u.

The If-Part of the second part of this corollary follows from the fact that the solution to (1)

is unaffected by any scalar addition to ui. As for its Only-If part, assume that (v2, . . . , vI) has

the same property as (u2, . . . , uI). Denote by vλ :
∑

i Di → R the value function of (1) with
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(u2, . . . , uI) replaced by (v2, . . . , vI). Then, by the envelope theorem and (5),

vλ(x) = λ1u
′
1 (f1(x)) = u′λ(x)

for every x ∈ ∑
i Di. Thus uλ − vλ is constant. Again by the envelope theorem,

v′i (fi(x))− u′i (fi(x)) =
1
λi

(
v′λ(x)− u′λ(x)

)
= 0

for every i ≥ 2 and x ∈ ∑
i Di. Since fi satisfies Condition ONTO, this implies that ui − vi is

constant. ///

Corollary 3 can of course be modified for the case of f ∈ F∞
D and u1 ∈ U ∞

D1
, but we shall

not give its formal statement here to save space.

4.3 Marginal Utility Functions

In some cases, for example when we deal with utility functions of hyperbolic absolute risk

version, it is more convenient to deal with marginal utility functions, rather than the utility

functions themselves, as they possess a more tractable aggregation property and the marginal

utility function of the representative consumer is nothing but a state-price deflator. We shall now

provide an alternative formulation of the risk-sharing rules and the representative consumer’s

utility function in terms of marginal utility functions.

For each r ∈ Z++ with r ≥ 2 and each Di ∈ D , let M r−1
Di

be the set of all functions

πi : Di → R++ that satisfy the following three conditions:

Cr`1 πi is of class Cr−1

DEC π′i (xi) < 0 for every xi ∈ Di

INADA πi(xi) →∞ as xi → inf Di and πi(xi) → 0 as xi → supDi

Then, for every C2 function ui : Di → R, ui ∈ U r
Di

if and only if u′i ∈ M r−1
Di

. For D =

(D1, . . . , DI) ∈ DI , define M r−1
D = M r−1

D1
× · · · ×M r−1

DI
. Then, specifying an element of M r−1

D

is equivalent to an element of U r
D up to scalar addition to each component function. Define

M∞
Di

=
⋂∞

r=2 M r−1
Di

and M∞
D =

⋂∞
r=2 M r−1

D .

13



Theorem 1 shows that if (u′1, . . . , u
′
I) ∈ M r−1

D , then u′λ ∈ M r−1P
i Di

. Note here that by the

envelope theorem, u′λ(x) = λiu
′
i (fλi(x)) for every i and x ∈ ∑

i Di, where fλ ∈ F r−1
D is the

risk-sharing rule giving the solution to (1). Let π = u′i and πλ = u′λ, we can rewrite this as

πλ(x) = λiπi (fλi(x)) (8)

for every x ∈ ∑
i Di.

Now let x ∈ ∑
i Di and z ∈ R++ satisfy z = u′λ(x). Then x = (u′λ)−1 (z) and

fλi(x) =
(
u′i

)−1
(

z

λi

)
.

By Condition SUM,
(
u′

)−1 (z) =
∑

i

(
u′i

)−1
(

z

λi

)
,

or, equivalently,

π−1
λ (z) =

∑

i

π−1
i

(
z

λi

)
(9)

for every z > 0. This is the relationship that directly relate the individual consumers’ marginal

utility functions to the representative consumer’s counterpart.

Theorems 1 and 2 can then be restated as follows.

Corollary 4 For every I ∈ Z++, every D = (D1, . . . , DI) ∈ DI , every r ∈ Z++ with r ≥ 2,

every (π1, . . . , πI) ∈ M r−1
D , and every λ ∈ RI

++, if πλ :
∑

i Di → R is defined by (9) and

fλ :
∑

i Di → D1 × · · · ×DI is then defined by (8), then fλ ∈ F r−1
D and πλ ∈ M r−1P

i Di
.

Corollary 5 For every I ∈ Z++, every D = (D1, . . . , DI) ∈ DI , every r ∈ Z++ with r ≥ 2,

every λ ∈ RI
++, every f ∈ F r−1

D , and every π ∈ M r−1P
i Di

, there exists a unique (π1, . . . , πI) ∈
M r−1

D such that if πλ :
∑

i Di → R is defined by (9) and fλ :
∑

i Di → D1 × · · · ×DI is then

defined by (8), then f = fλ and u = uλ.

5 The Case of Hyperbolic Absolute Risk Aversion

In this section we consider the special case in which the consumers exhibit hyperbolic absolute

risk aversion. Formally, for a utility function ui ∈ U 2
Di

on Di ∈ D , the absolute risk aversion

14



ai : Di → R++ is defined by ai(xi) = −u′′i (xi)/u′i(xi) for every xi ∈ Di, and the absolute risk

aversion ai is hyperbolic if there exist a γi ∈ R and a τi ∈ R such that ai(xi) = (γixi + τi)
−1

for every xi ∈ Di. The constant γi is referred to as the cautiousness of ui. When the domain

Di =
(
di, di

)
is determined so that γixi + τi > 0 if and only if xi ∈ Di, ui satisfies Condition IN-

ADA. In fact, this is the only choice of Di for which the utility function ui exhibiting hyperbolic

absolute risk aversion satisfies Condition INADA. If Di is chosen in this way and if the cau-

tiousness γi is strictly positive, then di = −τi/γi > −∞ and di = ∞. Conversely, if di > −∞,

Di = (di,∞), and ui ∈ U 2
Di

exhibits hyperbolic absolute risk aversion ai(xi) = (γixi + τi)
−1,

then γi > 0 and τi = −γidi. In short, each utility function ui satisfying Condition INADA

and exhibiting hyperbolic absolute risk aversion with a strictly positive cautiousness can be

completely identified with the value of cautiousness, γi, and the minimum subsistence level, di.

In this case, then,

ai (xi) =
1

γi (xi − di)
(10)

for every xi > di. The relative risk aversion bi(xi) is defined by bi(xi) = ai(xi)xi for xi > 0.

Then

bi (xi) =
1
γi

xi

xi − di

.

Hence ui exhibits constant relative risk aversion γ−1
i if di = 0, strictly decreasing relative risk

aversion if di > 0, and strictly increasing relative risk aversion if di < 0.

We saw earlier that if I ∈ Z++, r ∈ Z++, D = (D1, . . . , DI) ∈ DI , (u1, . . . , uI) ∈ U r
D, and

λ = (λ1, . . . , λI) ∈ RI
++, then the value function of (1), uλ, belongs to U rP

i Di
. For each r ≥ 2,

write U r =
⋃

D∈D U r
D. We can then define a mapping

R :
⋃

I∈Z++

(
U 2 × · · · ×U 2
︸ ︷︷ ︸

I-times

×RI
++

) → U 2

by letting R (u1, . . . , uI ;λ) = uλ. Then, if ui ∈ U r
Di

for every i, then R (u1, . . . , uI ; λ) ∈ U rP
i Di

.

We also introduce a similar operation on M r−1
D . Specifically, for each r ≥ 2, write M r−1 =

⋃
D∈D M r−1

D . Then define

Q :
⋃

I∈Z++

(
M 1 × · · · ×M 1
︸ ︷︷ ︸

I-times

×RI
++

) → M 1
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by letting π = Q(π1, . . . , πI ;λ) satisfy

π−1(z) =
∑

i

π−1
i

(
z

λi

)
(11)

for every z ∈ R++. Then, if πi ∈ M r−1
Di

for every i, then R (π1, . . . , πI ; λ) ∈ M r−1P
i Di

. The

relationship between R and Q is given by the following proposition.

Proposition 1 Let (u1, . . . , uI) ∈ U r
D, u ∈ U rP

i Di
, and λ ∈ RI

++. If u = R(u1, . . . , uI ;λ),

then u′ = Q(u′1, . . . , u
′
I ; λ). Conversely, if u′ = Q(u′1, . . . , u

′
I ; λ), then u − R(u1, . . . , uI ; λ) is

constant.

Proof of Proposition 1 The first part can be shown as in Section 4.3. Suppose that u′ =

Q(u′1, . . . , u
′
I ;λ). Write uλ = R(u1, . . . , uI ; λ), then we can show, as before, that

(
u′λ

)−1 (z) =
∑

i

(
u′i

)−1
(

z

λi

)
.

By assumption,
∑

i

(
u′i

)−1
(

z

λi

)
=

(
u′

)−1 (z).

Thus (u′)−1 = (u′λ)−1, and hence u′ = u′λ. Thus u− uλ is constant. ///

We now introduce the concept of closedness under aggregation.

Definition 1 A subset W of U 2 is closed under aggregation if I ∈ Z++, ui ∈ W for every

i = 1, . . . , I, and λ ∈ RI
++, then R (u1, . . . , uI ;λ) ∈ W .

We can give an analogous definition for marginal utility functions.

Definition 2 A subset L of M 1 is closed under aggregation if I ∈ Z++, πi ∈ L for every

i = 1, . . . , I, and λ ∈ RI
++, then Q (π1, . . . , πI ; λ) ∈ L .

Elements of M 1 of particular interest are the sums of power functions with negative expo-

nents. Formally, for each d ∈ R and each N ∈ Z++, let K N
d be the set of all π ∈ M∞

(d,∞) for

which there exist a c ∈ RN
++ and a p ∈ RN

++ such that

π−1(z) =
N∑

n=1

cnz−pn + d (12)
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for every z > 0. Indeed, since the right hand side is an infinitely many times differentiable

function of z ∈ R++ that has strictly negative first derivatives and ranges from ∞ to d, the

inverse function theorem guarantees that π ∈ M∞
(d,∞). Note that if π belongs to K N

d , then any

positive multiplication of π also belongs to K N
d , and also that π ∈ K N

0 if and only if there

exist a c ∈ RN
++ and a p ∈ RN

++ such that

π−1(z) =
N∑

n=1

cnz−pn (13)

for every z > 0. Thus, for every π ∈ M∞
(d,∞), π ∈ K N

d if and only if π̂ ∈ K N
0 , where π̂ is

defined by π̂(y) = π(y + d) for every y > 0.

Since the pn are allowed to take equal values, K N
d ⊂ K N+1

d for every d ∈ R++ and

every N ∈ Z++. For each d ∈ R, define Kd =
⋃∞

N=1 K N
d . For each N ∈ Z++, define

K N =
⋃

d∈RK N
d . Define K =

⋃∞
N=1

⋃
d∈RK N

d .

We also give analogous definitions for U 2. For each d ∈ R and each N ∈ Z++, define V N
d

the set of all u ∈ U ∞
(d,∞) such that u′ ∈ K N

d . Then V N
d ⊂ V N+1

d because K N
d ⊂ K N+1

d , for

every N . For each d ∈ R, define Vd =
⋃∞

N=1 V N
d . For each N ∈ Z++, define V N =

⋃
d∈R V N

d .

Define V =
⋃∞

N=1

⋃
d∈R V N

d . If u belongs to V N
d , then any positive multiplication and any

scalar addition of u also belongs to V N
d . Note that for every u ∈ U 2, u exhibits hyperbolic

absolute risk aversion with a positive cautiousness if and only if u ∈ V 1; and u exhibits constant

relative risk aversion if and only if u ∈ V 1
0 .

To familiarize ourselves with the notion of closedness under aggregation, we can paraphrase

the mutual fund theorem as follows:

Theorem 3 (Mutual Fund Theorem) 1. For every p ∈ R++, the set of all u ∈ U 2 for

which there exist a d ∈ R and a c ∈ R++ such that u ∈ U 2
(d,∞) and (u′)−1 (z) = cz−p + d

for every z ∈ R++ is closed under aggregation.

2. For every p ∈ R++, the set of all u ∈ U 2
R++

for which there exists a c ∈ R++ such that

(u′)−1 (z) = cz−p for every z ∈ R++ is closed under aggregation.

The first part of the above theorem is the mutual fund theorem for the consumers exhibiting

hyperbolic absolute risk aversion with the common cautiousness p. The second part is the
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mutual fund theorem for the special case where the consumers has the same constant relative

risk aversion p−1. Our own first results are the following.

Proposition 2 1. For every u ∈ V , there exist an I ∈ Z++, a ui ∈ V 1 for each = 1, . . . , I,

and a λ ∈ R++ such that u = R (u1, . . . , uI ; λ).

2. For every u ∈ V0, there exist an I ∈ Z++, a ui ∈ V 1
0 for each = 1, . . . , I, and a λ ∈ R++

such that u = R (u1, . . . , uI ; λ).

Proposition 3 1. For every π ∈ K , there exist an I ∈ Z++, a πi ∈ K 1 for each = 1, . . . , I,

and a λ ∈ R++ such that π = Q (π1, . . . , πI ; λ).

2. For every π ∈ K0, there exist an I ∈ Z++, a πi ∈ K 1
0 for each = 1, . . . , I, and a λ ∈ R++

such that π = Q (π1, . . . , πI ;λ).

The first part of Proposition 2 states that every utility function, of which the inverse function

of marginal utilities is a sum of power functions possibly with a constant term, can be the utility

function for the representative consumer of the economy consisting of individual consumers

exhibiting hyperbolic absolute risk aversion. The second part deals with the special case of

constant relative risk aversion: If no constant term is added to the sum of power functions, then

we can find individual consumers exhibiting constant relative risk aversion. Proposition 3 gives

the same results in term of marginal utilities and a state-pricing rule.

Proof of Proposition 3 1. let I ∈ Z++ and d ∈ R be such that π ∈ V I
d . Then let

(c1, . . . , cI) ∈ RI
++ and (p1, . . . , pI) ∈ RI

++ be such that

π−1(z) =
I∑

i=1

ciz
−pi + d

for every z ∈ R++. For each i, define πi ∈ V 1
d/I by letting

π−1
i (z) =

(
ciλ

−pi
i

)
z−pi +

d

I

for every z ∈ R++. Then

∑

i

π−1
i

(
z

λi

)
=

∑

i

(
ciλ

−pi
i

)(
z

λi

)−pi

+
∑

i

d

I
= π−1(z).
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2. This part can be established by replacing the di and d by 0 in the proof of part 1. ///

Proof of Proposition 2 This theorem follows from Theorem 5 and Proposition 3. ///

It is convenient to state Proposition 2 by explicitly referring to the representative consumer’s

utility function.

Corollary 6 1. For every u ∈ V , there exist an I ∈ Z++ and a (u1 . . . , uI) ∈ U 2×· · ·×U 2

such that ui exhibits hyperbolic absolute risk aversion for every i, and uλ = u, where uλ

is the value function of (1).

2. For every u ∈ V0, there exist an I ∈ Z++ and a (u1 . . . , uI) ∈ U 2
0 × · · · × U 2

0 such that

ui exhibits constant relative risk aversion for every i, and uλ = u, where uλ is the value

function of (1).

The main theorem of this section is the following.

Theorem 4 1. The set V is the smallest subset of U 2 that is closed under aggregation and

includes V 1.

2. The set V0 is the smallest subset of U 2 that is closed under aggregation and includes V 1
0 .

The above result will be derived from the corresponding result for the set K 1.

Theorem 5 1. The set K is the smallest subset of M 1 that is closed under aggregation and

includes K 1.

2. The set K0 is the smallest subset of M 1 that is closed under aggregation and includes

K 1
0 .

Proof of Theorem 5 1. To show that V is closed under aggregation, let I ∈ Z++, πi ∈ V for

every i = 1, . . . , I, and λ ∈ RI
++. For each i, let Ni ∈ Z++ and di ∈ R be such that π ∈ V Ni

di
.

Then let (ci1, . . . , ciNi) ∈ RNi
++ and (pi1, . . . , piNi) ∈ RNi

++ be such that

π−1
i (z) =

Ni∑

n=1

cinz−pin + di
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for every z ∈ R++. Then

Q (π1, . . . , πI ; λ) =
I∑

i=1

(
Ni∑

n=1

cin

(
z

λi

)−pin

+ di

)
=

I∑

i=1

Ni∑

n=1

(cinλpin
i ) z−pin +

I∑

i=1

di.

Thus Q (π1, . . . , πI ; λ) ∈ K
P

i NiP
i di

⊂ K .

It follows from Proposition 3 that every subset of U 2 that is closed under aggregation and

includes V 1 also includes V . Since V is itself closed under aggregation, it is the smallest subset

of U 2 that is closed under aggregation and includes V 1

2. This part can be established by replacing the di and d by 0 in the proof of part 1. ///

Proof of Theorem 4 This theorem follows from Theorem 5 and Proposition 1. ///

The following proposition establishes the essential uniqueness of individual consumers’ utility

functions and risk-sharing rules for a given utility function for the representative consumer, when

the individual consumers exhibit hyperbolic absolute risk aversion.

Proposition 4 1. Let N ∈ Z++, d ∈ R, and (p, c) ∈ RN
++ ×RN

++. Assume that p1, . . . , pN

are all distinct and define π ∈ K N
d by (12). Let I ∈ Z++, (γ, d) ∈ RI

++ ×RI , and, for

each i, ui ∈ U ∞
(di,∞) satisfy (10). Let λ ∈ RI

++ and fλ ∈ F∞
((d1,∞),...,(dI ,∞)) be the efficient

risk-sharing rule giving the solution to (1) and uλ ∈ U ∞
(
P

i di,∞) be its value function,

that is, uλ = R (u1, . . . , uI ; λ). If d =
∑

i di and u′λ(x)/π(x) does not depend on x > d,

then {γ1, . . . , γI} = {p1, . . . , pN}. Moreover, for each i, there exists a θi > 0 such that
∑
{i|γi=pn} θi = 1 for every n = 1, . . . , N and

fλi(x) = θicn (π (x))−pn + di (14)

for every i and n with γi = pn and every x > d.

2. Let N ∈ Z++ and (p, c) ∈ RN
++×RN

++. Assume that p1, . . . , pN are all distinct and define

π ∈ K N
0 by (13). Let I ∈ Z++, γ ∈ RI

++, and, for each i, ui ∈ U ∞
R++

satisfy (10) with

di = 0. Let λ ∈ RI
++ and fλ ∈ F∞

(R++,...,R++) be the efficient risk-sharing rule giving the

solution to (1) and uλ ∈ U ∞
R++

be its value function, that is, uλ = R (u1, . . . , uI ;λ). If

u′λ(x)/π(x) does not depend on x > 0, then {γ1, . . . , γI} = {p1, . . . , pN}. Moreover, for
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each i, there exists a θi > 0 such that
∑
{i|γi=pn} θi = 1 for every n = 1, . . . , N and

fλi(x) = θicn (π (x))−pn

for every i and n with γi = pn and every x > 0.

The meaning of uniqueness of Proposition 4 can be explained as follows. Suppose that we

are given a weighted sum of power functions with a constant term, just as (12). As Proposition 2

shows, there is an economy consisting of consumers exhibiting hyperbolic absolute risk aversion

and giving rise to (12) as the representative consumer’s marginal utility, or the state-pricing rule.

The cautiousness of each consumer in this economy must then be one of the exponents pn of (12),

and each such exponent is equal to the cautiousness of at least one consumer in the economy. In

other words, the exponents identify all the cautiousness present in the economy. The coefficients

cn of (12), on the other hand, identify the wealth shares, or the utility weights in the utilitarian

welfare maximization problem (1), of the consumers. As can be seen from (12), the coefficients

do not affect the elasticity of the individual consumers’ consumption levels, in excess of the

minimum subsistence levels, as a function of state prices, but they affect their slopes. In fact, if

two consumers have the same cautiousness, their consumption levels are linear functions of each

other, and the slopes of these linear functions are determined by the wealth shares between the

two. Finally, we should point out that Proposition 4 also shows where a specification of the state-

pricing rule (12) admits multiplicity in specifications of individual consumers’ characteristics.

First, we cannot pin down how the wealth is distributed across consumers of equal cautiousness.

Second, we cannot pin down the individual consumers’ minimum subsistence levels, except that

they add up to the constant term of the given state-pricing rule.

Proof of Proposition 4 1. Let I, (γ, d), and λ be as in the statement of this proposition.

Then there exists a µ ∈ RI
++ such that λiu

′
i (xi) = µi (xi − di)

−1/γi for every I and xi > di.

Define π̂ ∈ K IP
i di

by

π̂−1(z) =
I∑

i=1

µγi
i z−γi +

I∑

i=1

di

for every z ∈ R++, that is,

x =
I∑

i=1

µγi
i (π̂(x))−γi +

I∑

i=1

di (15)
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for every x >
∑

i di. Then define f ∈ F∞
((d1,∞),...,(dI ,∞)) by

fi(x) = µγi
i (π̂(x))−γi + di

for every i and every x > d. It is easy to check that f in fact belongs to F∞
((d1,∞),...,(dI ,∞)). In

particular, Condition SUM follows from (15). Moreover,

λiu
′
i (fi(x)) = µi

(
µγi

i (π̂(x))−γi
)−1/γi = π̂(x)

for every i and x > d. Since the far right hand side does not depend on i, this implies that f

gives the solution to (1), that is, f = fλ. By the envelope theorem,

u′λ(x) = λiu
′
i (fλi(x)) = λiu

′
i (fi(x)) = π̂(x).

Since u′λ(x)/π(x) does not depend on x, this means that π(x)/π̂(x) does not depend on x either.

Denote this constant value by α. Then π−1(z) = π̂−1
(
α−1z

)
for every z ∈ R++. Note now

that

π−1(z) =
N∑

n=1

cnz−pn + d,

π̂−1(α−1z) =
I∑

i=1

(αµi)
γi z−γi +

I∑

i=1

di

for every z ∈ R++. Since d =
∑I

i=1 di,
∑N

n=1 cnz−pn =
∑I

i=1 (αµi)
γi z−γi for every z ∈ R++.

This means that {γ1, . . . , γI} = {p1, . . . , pN}. Moreover, since p1, . . . , pN are all distinct,

∑

{i|γi=pn}
(αµi)

γi = cn

for every n. For each i, let n be the unique n such that γi = pn, and then define θi = (αµi)
γi c−1

n .
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Then θi > 0 and
∑
{i|γi=pn} θi = 1 for every n. Moreover,

fλi(x) = µγi
i (π̂(x))−γi + di

= µγi
i

(
α−1π(x)

)−γi + di

= (αµi)
γi (π(x))−γi + di

= θicn (π(x))−pn + di

for every i and x > d.

2. This part can be shown by replacing d and di by 0 in the proof of part 1. ///

The main results of this section can now be summarised as follows. First, the utility functions

of which the inverse functions of marginal utilities is a weighted sum of power functions, possibly

with a constant term, provides a larger class of utility functions exhibiting hyperbolic absolute

risk aversion and yet closed under aggregation (Theorem 4). Second, any utility function in this

class can be the representative consumer’s utility function of an economy comprising consumers

of hyperbolic absolute risk aversion (Proposition 2). Third, once we know the representative

consumer’s utility function, we can recover the individual consumers’ cautiousness and their

wealth shares in the economy (Proposition 4). As for this last point, we should note the stark

contrast between the case of hyperbolic absolute risk aversion and the general case of Theorem

2. While knowing the representative consumer’s utility function in no way restricts the risk-

sharing rules in the general case, it allows us to essentially identify the risk-sharing rules in the

case of hyperbolic absolute risk aversion.

6 Examples

As an implication of Corollaries 1 and 2, we give two examples of the representative and indi-

vidual consumers’ utility functions and risk-sharing rules.
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6.1 Linear Risk-Sharing Rules and Possibly Non-Constant Relative Risk

Aversion

Our first example involves linear risk-sharing rules. We shows in a series of claims that the lin-

earity of risk-sharing rules places no restriction on the representative and individual consumers’

risk attitudes.

Let Di = R++ and θi ∈ R++ for every i with
∑

i θi = 1. Define f ∈ F∞
R++×···×R++

by

letting fi(x) = θix for every i and x ∈ R++. Let u ∈ U 2
R++

and denote its relative risk aversion

by b : R++ → R++. Then, for each i, define a ui ∈ U 2
R++

so that its relative risk aversion

bi : R++ → R++ satisfies bi(fi(x)) = b(x) for every x ∈ R++.2 It follows from equality (2) of

Lemma 1 of HHK (which follows from Wilson (1968)) that there exists a (λ1, . . . , λI) ∈ RI
++

(and appropriate scalar additions to the ui) such that u = R(u1, . . . , uI ; λ).

By the envelope theorem,

u′(x) = λiu
′
i(θix) (16)

for every i and x ∈ R++. By differentiating both sides with respect to x, we obtain

u′′(x) = λiu
′′
i (θix)θi (17)

Divide both sides of (17) by their counterparts of (16) and then multiply −x, then we establish

the following equality.

Claim b(x) = bi(θix) for every i and x ∈ R++.

We know from this equality that u exhibits constant relative risk aversion if and only if

every ui exhibits constant relative risk aversion. The same can be said of strictly decreasing

relative risk aversion, nonincreasing relative risk aversion, nondecreasing relative risk aversion,

and strictly increasing relative risk aversion. In short, the linearity of risk-sharing rules does

not significantly restrict the representative and individual consumers’ risk attitudes.

We can also note that if u exhibits constant relative risk aversion, then all the bi are identical,

and the ui are affine transformations of one another. But this sort of identify cannot be obtained

if u exhibits strictly decreasing or strictly increasing relative risk aversion. To see this point,
2It can be shown that since u satisfies the Inada condition, any ui defined in this way also satisfies the Inada

condition.
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suppose that u exhibits strictly decreasing relative risk aversion and θi > θj ; that is, consumer

i has a larger share of the aggregate consumption than consumer j. Then, for each individual

consumption level z ∈ R++, we have θ−1
i z < θ−1

i z and hence bi(z) = b(θ−1
i z) > b(θ−1

j z) = bj(z).

Thus the richer consumer is strictly more risk averse than the poorer consumer. In contrast, if

u exhibits strictly increasing relative risk aversion, then the richer consumer is less risk averse

than the poorer consumer.

In fact, more can be said of the relationship between the representative consumer’s risk

attitudes and the equality of individual consumers’ risk attitudes.

Claim If b is either nonincreasing or nondecreasing, θi 6= θj for some i and j, and b1 = · · · = bI ,

then b1, . . . , bI , and b are constant functions taking the same value.

In other words, if the representative consumer has nonincreasing or nondecreasing relative

risk aversion, and if all individual consumers have the same risk attitudes, then the represen-

tative consumer and all the individual consumers must exhibit constant relative risk aversion,

sharing the same value for it, unless all consumers have the equal share of the aggregate con-

sumption.

Proof of the Claim We shall prove that if b is nonincreasing and nonconstant, then the bi

cannot be identical. This means that if b is nonincreasing and the bi are identical, then b must

be constant, which implies, together with the linearity of f , that all the bi are constant and

equal. The case of a nondecreasing b can also be analogously proven.

So let’s assume that b is nonincreasing and nonconstant. Then there exists an x ∈ R++

such that b(x) > b(y) for every y > x. Since the θi are not all equal, there exist an i and a j

such that θi > θj . Let z = θix, then

bi(z) = b

(
z

θi

)
= b(x) > b

(
θi

θj
x

)
= b

(
z

θj

)
= bj(z)

This shows that bi and bj are not the same. ///

In the above claim, the assumption that b is nonincreasing and nonconstant is indispensable.

In other words, if b is allowed to oscillate, then b need not exhibit constant relative risk aversion

even when all the bi are identical. The following proposition substantiates this assertion.
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Proposition 5 For every (θ1, . . . , θI) ∈ RI
++ with

∑
i θi = 1, every (β, β) ∈ R++ ×R++ with

β ≥ β, and every ε > 0, there exist a (θ̂1, . . . , θ̂I) ∈ RI
++ with

∑
i θ̂i = 1, a û ∈ U ∞

R++
, with its

relative risk aversion b̂ : R++ → R++, and a λ ∈ RI
++ having the following properties:

1. max b̂(R++) exists and equals β, and min b̂(R++) exists and equals β.

2. |θ̂i − θi| < ε for every i.

3. Define f̂ ∈ F∞
R++×···×R++

by letting f̂i(x) = θ̂ix for every i and x ∈ R++. Then f̂ gives

the solution of (1) where each ui is replaced by û.

In other words, for every linear risk-sharing rule, we can find another linear risk-sharing rule

arbitrarily close to it that is generated from a collection of consumers having the identical risk

attitudes. The need to use another, yet arbitrarily close, risk-sharing rule arises from an integer

problem of the oscillation of relative risk aversion, to be made clear in the proof. The first part

shows that the linearity of risk-sharing rules in no way restricts the range within which the

relative risk aversion oscillates.

Proof of Proposition 5 Let (θ1, . . . , θI) ∈ RI
++ with

∑
i θi = 1. For each n ∈ Z++ and i,

define kn
i ∈ Z so that

exp
2kn

i π

n
≤ θi

θ1
< exp

2(kn
i + 1)π
n

.

It is then easy to show that

exp
2kn

i π

n
→ θi

θ1

as n →∞. Define

τn =
I∑

i=1

exp
2kn

i π

n
∈ R++.

Then τn → 1/θ1 as n →∞. For each n and i, define

θn
i =

exp
2kn

i π

n
τn

∈ R++,

then
∑

i θ
n
i = 1 for every n. Moreover,

θn
i →

θi/θ1

1/θ1
= θi

26



as n →∞. Define fn ∈ F∞
R++×···×R++

by letting fn
i (x) = θn

i x for every i and x. We will later

put θ̂i = θn
i and f̂ = fn for a sufficiently large n such that |θn

i − θi| < ε for every i.

Let (β, β) be as stated in this proposition, and define bn : R++ → R++ by

bn(x) =
β + β

2
+

β − β

2
sin(n log x)

for every x ∈ R++. Then, for each i, define bn
i : R++ → R++ by

bn
i (xi) = bn

(
(fn

i )−1 (xi)
)

= bn

(
xi

θn
i

)

for every xi. By this construction, for every un
i ∈ U 2

R++
, if bn

i is the relative risk aversion of un
i ,

then there exists a λ ∈ RI
++ such that fn gives the solution of (1) where each ui is replaced by

un
i . We now show that bn

1 = · · · = bn
I . Indeed, for every i and z ∈ R++,

bn
i (z) = bn

(
τnz exp

(
−2kn

i π

n

))

=
β + β

2
+

β − β

2
sin (n log τn + n log z − 2kn

i π)

=
β + β

2
+

β − β

2
sin (n log τn + n log z) .

Since the right-hand side does not depend on i, this proves that bn
1 = · · · = bn

I . It also shows

that max bn
i (R++) exists and equals β, and min bn

i (R++) exists and equals β.

The proof can now be completed by letting, for a sufficiently large n, θ̂i = θn
i , f̂ = fn, and

û be a utility function of which the relative risk aversion equals bn
i . ///

The importance of the example of this subsection should not be underestimated. To see

it, note first that the linearity of risk-sharing rules implies that if the consumers attain the

corresponding consumption allocation via asset transactions, then the composition of their

portfolios must be equal; that is, the proportion of wealth invested into each asset must be

common across them. In the well known paper of Friend and Blume (1975) and subsequent

empirical studies, researchers looked into whether the proportion of wealth invested into risky

assets depend on consumers’ (households’) wealth levels, and whenever they found it does not,

they concluded that the consumers exhibit constant relative risk aversion. The argument of
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this subsection shows that this line of reasoning is quite mistaken. First, we saw that they can

exhibit increasing or decreasing relative risk aversion if their risk attitudes are heterogeneous.

Second, Proposition 5 showed that even if they have identical risk attitudes, they can have

nonconstant relative risk aversion; specifically, their relative risk aversion can oscillate between

any two levels of relative risk aversion.

6.2 Nonlinear Risk-Sharing Rules and Constant Relative Risk Aversion

Our second example involves the individual utility functions derived from correctly observed

risk-sharing rules and an erroneously postulated utility function for the representative consumer.

Let I = 2 and D1 = D2 = R++. Define û1 : R++ → R by û1(x) = log x and û2 : R++ → R

by û2(x) = 2x1/2. Thus consumer 1 exhibits constant relative risk aversion 1 and consumer 2

exhibits constant relative risk aversion 1/2. This is the special case that Wang (1996) studied.

Let λ = (λ1, λ2) = (1, 1). Then let fλ = (fλ1, fλ2) : R++ → R++ ×R++ be the risk-sharing

rule and uλ : R++ → R be the representative consumer’s utility function obtained by solving

(1). By the first-order condition, fλ2(x) = (fλ1(x))2 and, from fλ1(x) + (fλ1(x))2 = x, that

fλ1(x) =
(

x +
1
4

)1/2

− 1
2

and fλ2(x) = x +
1
2
−

(
x +

1
4

)1/2

It is easy to confirm that f ∈ F∞
R++

. It is also easy to show that f ′′λ1(x) < 0 < f ′′λ2(x) for

every x ∈ R++. This means that fλ1 is strictly concave everywhere and fλ2 is strictly convex

everywhere. Furthermore,

uλ(x) = û1 (fλ1(x)) + û2 (fλ2(x)) = log

((
x +

1
4

)1/2

− 1
2

)
+ (4x + 1)1/2 − 1

for every x ∈ R++, where the last equality follows from

(
x +

1
2
−

(
x +

1
4

)1/2
)1/2

=
(

x +
1
4

)1/2

− 1
2
.

Define bλ : R++ → R++ by bλ(x) = −u′′λ(x)x/u′λ(x) for every x ∈ R++, then bλ is the

representative consumer’s relative risk aversion. Then, according to part 2 of Corollary 8 of

HHK, b′λ(x) < 0 for every x ∈ R++. That is, the representative consumer’s relative risk aversion
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is strictly decreasing everywhere.

Let’s now imagine that we have erroneously postulated that the representative agent exhibits

constant relative risk aversion 3/4, which is the arithmetic average of the individual consumers’

true relative risk aversion, 1 and 1/2. Mathematically, define u : R++ → R by u(x) = 4x1/4

for every x ∈ R++, and let u1 : R++ → R and u2 : R++ → R be the inferred utility functions,

which are defined as in the proof of Theorem 2. Since f−1
λ1 (x1) = x1 + x2

1, (3) can be rewritten

as

u′1(x1) =
(
x1 + x2

1

)−3/4
.

Define b1 : R++ → R++ by b1(x) = −u′′1(x)x/u′1(x), then it is the relative risk aversion for the

inferred utility function u1. Then

b1(x1) =
3
4

(
2− 1

x1 + 1

)
. (18)

Thus, b1 is strictly increasing, rather than constant, from 3/4 to 3/2. Define b2 : R++ → R++

by b2(x) = −u′′2(x)x/u′2(x), then it is the relative risk aversion for the inferred utility function

u2. We can analogously show that

b2(x2) =
3
4

(
1− 1

2x
1/2
2 + 2

)
, (19)

which is strictly increasing, rather than constant, from 3/8 to 3/4.

What we have done so far can be summarised as follows. First, we take up an economy

consisting of two consumers, both of whom exhibit constant relative risk aversion, albeit at two

different levels. Then the more risky consumer has a strictly convex risk-sharing rule and the

less risky one has a strictly concave risk-sharing rule. Moreover, the representative consumer

exhibits strictly decreasing relative risk aversion. Although the strictly decreasing relative risk

aversion is a distinctive characteristic of the representative consumer’s risk attitudes, we then

move on to assume, contrary to this, that the representative consumer exhibits constant relative

risk aversion, as is often postulated in the asset pricing literature. An implication of Theorem 2

(and Corollary 2) is that this assumption is consistent with the efficient risk-sharing rules that

we have derived. The first consumer’s utility function that is consistent with the representative

consumer’s constant relative risk aversion is still unambiguously more risk averse than the second
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consumer’s counterpart, but both of them now exhibit strictly increasing relative risk aversion.

From a somewhat broader perspective, we can explain what we have done the emergence of

the utility functions exhibiting strictly increasing relative risk aversion as follows. First, recall

that the reciprocal of the absolute risk aversion is called the absolute risk tolerance and its

first derivative of the reciprocal of the absolute risk aversion is called the cautiousness. Then

the cautiousness of the true utility functions ûi are constantly equal to the reciprocals of the

(constant) relative risk aversion. The cautiousness is therefore 1 for the first consumer and 2

for the second. According to Proposition 4 of HHK, this implies that f1 is strictly concave and

f2 is strictly convex.

The inferred utility functions ui have been constructed so that f1 and f2 remain to be ef-

ficient risk-sharing rules. Let ti : R++ → R++ be the risk tolerance for the inferred utility

function ui, defined by ti(xi) = −u′i(xi)/u′′i (xi) for every xi ∈ R++. The corresponding cau-

tiousness is its first derivative t′i : R++ → R++. An application of Proposition 4 of HHK in the

opposite direction establishes t1(fλ1(x)) < t2(fλ2(x)), that is, the cautiousness is lower for the

first consumer’s inferred utility function than for the second when evaluated at their own con-

sumption levels implied by the risk-sharing rule f . We can in fact show, by direct calculation,

that

t′1(x1) =
2
3

(
1 +

1
(2x1 + 1)2

)
,

t′2(x2) =
4
3

+
1

3x
1/2
2


1− 1(

2x
1/2
2 + 1

)2




for every x1 ∈ R++ and x2 ∈ R++. Since t′1(x1) < 4/3 < t′2(x2) for every x1 ∈ R++ and

x2 ∈ R++, the cautiousness is lower for the first consumer than for the second, not only at

the consumption levels implied by the risk-sharing rules, but also at any two arbitrarily chosen

consumption levels.

The relative risk aversion is not exactly equal to the reciprocal of the cautiousness for the

ui unless their relative risk aversion are constant. Rather, the former is equal to the latter

multiplied by the elasticity of the absolute risk tolerance. By L’Hôpital’s rule, the elasticity

must converge to one as the consumption levels tends to zero or infinity. In our example, it so

happens that this elasticity is always close to one, even at intermediate consumption levels. We
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can thus expect that we obtain a similar unambiguous ranking as regards to the relative risk

aversion. In fact, we have b1(x1) > 3/4 > b2(x2) for every x1 ∈ R++ and every x2 ∈ R++, that

is, the relative risk aversion is higher for the first consumer than for the second, regardless of

the two consumption levels at which the relative risk aversion are evaluated.

Since the representative consumer is postulated to exhibit constant relative risk aversion

(and hence constant cautiousness), the nonlinearity of the risk-sharing rules implies that the

two consumers must necessarily have heterogeneous risk attitudes. According to Theorem 5 and

Proposition 7 of HHK, the presence of this type of heterogeneity makes it more likely for the

representative consumer tends to exhibit strictly increasing cautiousness and strictly decreasing

relative risk aversion. Given the constant relative risk aversion 3/4 (which is equivalent to

constant cautiousness 4/3) for the representative consumer, to generate such a risk attitude for

the representative consumer, the individual consumers must exhibit relative risk aversion that

decreases at a sufficiently high rate as the consumption level increases. This is exactly what is

happening, as we can see from (18) and (19).

7 Conclusion

In this paper we have shown that the efficiency of risk allocation in no way restricts the nature

of the risk-sharing rules beyond comonotonicity, or the nature of the state-pricing rule beyond

positivity and antimonotonicity. We have also explored implications of this result and inves-

tigated additional restrictions on the risk-sharing and state-pricing rules when the individual

consumers exhibit hyperbolic absolute risk aversion.

There are a couple of unsolved problems. One is to identify the restrictions on the risk-

sharing rules when the individual consumers have the same utility function but differing wealth

levels. Such a case is of considerable interest because it is in line with the most commonly

used macroeconomic setting, which consists of ex ante homogeneous but ex post heterogeneous

consumers, as in Weil (1992). The other is to explore possible implications of heterogeneous

probabilistic beliefs. Strictly speaking, the probabilistic beliefs are assumed to be homogeneous

across consumers in this paper, but if the degree of heterogeneity in a given state depends

only on the aggregate consumption level in the state, then the heterogeneity in beliefs may be

equivalent to heterogeneity in risk attitudes, and we may be able to use the present framework
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to analyze the implication of belief heterogeneity on the risk-sharing and state-pricing rules.
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