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Abstract. For a finite set of actions and a rich set of fundamentals, consider the
rationalizable actions on the universal type space, endowed with the usual product
topology. (1) Generically, there exists a unique rationalizable action profile. (2)
Every model can be approximately embedded in a dominance-solvable model. (3)
For any given rationalizable strategy of any finite model, there exists a nearby

finite model with common prior such that the given rationalizable strategy is
uniquely rationalizable for nearby types.
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1. Introduction

Rationalizability is considered a weak solution concept, for the set of rationaliz-
able strategies tends to be large in complete information games. In their seminal
work, Carlsson and van Damme (1993) have challenged this view. They have as-
sumed that the domain of possible payoff parameters is rich enough, so that each
action can be strictly dominant for some parameter value. Then, for two-player,
two-action supermodular games of complete information, they have shown that if
each player observes a noisy signal about parameters, with small, additive, indepen-
dent noise instead of parameters being common knowledge, then the resulting game
is dominance-solvable–except for the degenerate signal values at which the strate-
gies jump. Morris and Shin (1998) and Frankel, Morris, and Pauzner (2003) have
extended this result to all monotone supermodular games of complete information
(Van Zandt and Vives (2004)). These results appear to be specific to supermod-
ular games, in that such perturbations need not reduce the set of rationalizable
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outcomes in general games, such as the Matching-Pennies game. Also, multiplicity
reappears when there is a sufficiently precise "public" signal (Helwig (2002)). In this
paper, I show that the intuition of Carlsson and van Damme is quite general. Under
their richness assumption, we can always introduce small incomplete information in
such a way that the perturbed types have unique rationalizable actions. Indeed, for
generic types in the universal type space, there is a unique rationalizable action.
One cannot use this to select a particular equilibrium, however. By considering
suitable information structures, we can select any rationalizable strategy profile in
the original game.

Example 1 (Carlsson and van Damme (1993)). To be concrete, consider

α2 β2
α1 θ, θ θ − 1, 0
β1 0, θ − 1 0, 0

where θ is a real number. Assume that θ is unknown but each player i ∈ {1, 2}
observes a noisy signal xi = θ+εηi, where (η1, η2) is independently distributed from
θ, and the support of θ contains an interval [a, b] where a < 0 < 1 < b. When ε = 0,
θ is common knowledge. If it is also the case that θ ∈ (0, 1), there exist two Nash
equilibria in pure strategies and one Nash equilibrium in mixed strategies. Under
complete information, the players are able to "coordinate" on different equilibria.
With incomplete information, this is no longer possible. Under mild conditions,
Carlsson and van Damme show that when ε is small but positive, multiplicity dis-
appears: for each signal value xi 6= 1/2, there exists a unique rationalizable action.
The rationalizable action is βi whenever xi < 1/2, and it is αi whenever xi > 1/2.

This difference between the cases of ε = 0 and small but positive ε becomes
important when we analyze a strategic situation in the interim stage, when players
already have their private information. In the interim stage, players have beliefs
about fundamentals, which are called the first-order beliefs, beliefs about the first-
order beliefs, which are called the second-order beliefs, and so on. Assume that
we cannot observe players’ beliefs perfectly, but we observe their beliefs at finitely
many orders with some noise. In particular, our observation suggests that a player’s
kth-order belief is within an open set for finitely many k–with respect to the weak
topology as in "convergence in distribution". Now, suppose that it is consistent with
our observation that it is common knowledge that θ = θ̄ for some θ̄ ∈ (0, 1) (and
ε = 0). That is, if we compute the kth-order beliefs using this complete-information
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model, they will be in the open set for each k above. In that case, we tend to model
the situation by a simple game in which it is common knowledge that θ = θ̄. This
simplicity tends to complicate the analysis. There are now multiple equilibria and
hence multiple rationalizable outcomes. We then introduce epistemic arguments
in order to reduce the set of outcomes, so that we can make predictions. On the
other hand, when ε = 0 is consistent with our observation, it is also consistent with
our observation that ε is small but positive. If we model the situation by small but
positive ε, then our model will be more complicated, but our analysis will be simple.
There will be a unique rationalizable strategy profile. This will also allow generating
insights that were not possible in the complete-information case. For example, in
the currency-attack problem, if θ is the vulnerability of the economy, then Example
1 predicts that attack becomes likelier when the economy is more vulnerable (Morris
and Shin (1998)). Moreover, our epistemic arguments for selection in the case of
ε = 0 are all muted when ε is positive, as there is a unique outcome in the latter case.
The unique outcome may differ from what we select. In that case, our predictions
will be false when ε is positive.

My main result shows that this intuition is quite general. Formally, consider a
finite-player, finite-action game with some unknown payoff parameters. Following
Carlsson and van Damme, assume that each action becomes strictly dominant for
some parameter value. Endow the game with the universal type space T ∗ of Mertens
and Zamir (1985) and Brandenburger and Dekel (1993), where T ∗ is endowed with
the usual product topology of weak convergence. The product topology precisely
captures the above observational problem in the interim stage, as the open sets
here correspond to the set of type profiles we cannot rule out for some observation.
Writing A for the set of actions, I prove the following.

Main Result. Generically, there exists a unique rationalizable action profile, and
it is generically continuous. That is, there exist an open, dense set U ⊂ T ∗ and a
continuous (i.e. locally constant) function s∗ : U → A, such that s∗ (t) is the unique
rationalizable action profile at t for each t ∈ U . In particular, every rationalizable
strategy is continuous on the open, dense set U .1

1Here, U , the set of all type profiles with unique rationalizable action profile, is open simply be-
cause the rationalizability correspondence is upper semicontinuous (Dekel, Fudenberg, and Morris
(2003)) and the action space is finite. I show that U is dense, using a result of Mertens and Zamir
(1985) and a construction by Weinstein and Yildiz (2004), whose main idea can be traced back to
Rubinstein (1989) and Carlson and van Damme (1993).
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Since U is dense, in each open set there is a type profile with unique rationalizable
outcome. Hence, in the modelling problem discussed above, no matter how precise
our observation is, there will be a type profile (from some model) that is consistent
with our observation. If one chooses to represent the situation by that type profile,
then rationalizability (and the chosen model) will predict a unique strategy profile
as the outcome for the situation at hand. Moreover, U is open, and s∗ is locally
constant. Now, suppose that in the actual situation that we try to model, there
is indeed a unique rationalizable outcome, i.e., the players’ beliefs are accurately
represented by some t ∈ U . Then, this implies that there is a neighborhood of
t at which we have a unique rationalizable outcome (openness), and all type pro-
files in this neighborhood have the same action (continuity). In that case, if we
had a sufficiently precise (but not necessarily perfect) observation about sufficiently
many orders of beliefs, we could know precisely what players will play according to
rationalizability–independent of the type profile we choose to model the situation.
This establishes that rationalizability is a strong solution concept in the following
sense. Without precise knowledge of entire infinite hierarchy of beliefs, we can never
rule out the possibility that, by having a more precise (but not perfect) observa-
tion about the actual case, we could have known what players will do using only
rationalizability.

Using this genericity result, we can generalize the result of Carlsson and van
Damme (1993) to arbitrary games. For arbitrary finite-action games with arbitrary
payoff and information structures (with possibly infinite type spaces), I show that
we can introduce small incomplete information in such a way that the resulting
game is dominance-solvable, where the incomplete information need not satisfy the
assumptions of Carlsson and van Damme on the noise structure. Moreover, the
dominance-solvable model will remain so, when further small perturbations are in-
troduced. In particular, even if there were perturbations that lead to multiplicity,
we can introduce further perturbations to regain uniqueness, and the reverse is not
true for perturbations with unique rationalizable strategies.

In particular, when presence of a "public" signal leads to multiplicity, we can in-
troduce further small incomplete information to obtain a dominance-solvable model,
which will be robust to further small perturbations. The intuition for this comes
from Carlsson and van Damme. By designating a signal public, one assumes that its
value is common knowledge. That makes it possible to coordinate on different equi-
libria. When we slightly relax this common-knowledge assumption, coordination
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becomes difficult. Common-knowledge assumptions lead to multiplicity in differ-
ent games for different reasons. For example, in the Matching-Pennies game, some
players have an incentive to change their actions when these actions are known by
the players. In that case, there must be multiple rationalizable outcomes in the
complete-information case. Introducing incomplete information will ease this ten-
sion. for, under incomplete information, players need not know the other players’
actions even if they know the others’ strategies.

More broadly, slight relaxation of an assumption in a given model (if anything)
reduces the number of rationalizable actions for the perturbed types. There is a
simple mathematical reason for this. The rationalizability correspondence is upper-
semicontinuous. Each type profile t has an open neighborhood, such that if an
action profile is rationalizable for some t0 in this neighborhood, it must also be
rationalizable for t. Then, when we relax an assumption so slightly that we remain
in this neighborhood, we can only get rid of some rationalizable actions. Indeed, if
we relax this assumption in a suitable way, we can get rid of all but one rationalizable
action–as this paper shows.

This leads to a natural question: should we then use a dominance-solvable model
that is consistent with our observation to make predictions about what players will
do? Indeed, since all the types in their perturbed model play according to risk
dominance, Carlsson and van Damme (1993) have proposed that we select the risk-
dominant equilibrium in the original game. My second result, which builds upon
an earlier result of Weinstein and Yildiz (2004), answers this question. I show that,
given any finite type space and any rationalizable strategy in that type space, one can
slightly perturb the players’ interim beliefs to obtain a nearby dominance-solvable
model in which the given strategy is uniquely rationalizable for the nearby types.
That is, we can select any rationalizable strategy profile that we want by focusing on
a suitable dominance-solvable model that is consistent with observation. Therefore,
we cannot use this method for selecting a particular equilibrium. The following
example illustrates this.

Example 2 (Izmalkov and Yildiz (2005)). In Example 1, drop the common-prior
assumption, and assume that

(1.1) Pri
¡
ηj > ηi|ηi

¢
= q (∀i 6= j)

for some q ∈ (0, 1), where Pri is the probability according to player i. That is, player
i assigns probability q to the event that the other player is more optimistic ex-post.
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Under the common-prior assumption q = 1/2. Here, q − 1/2 measures the level of
optimism of j according to i. For each xi 6= 1 − q, there is a unique rationalizable
action s∗i (xi), given now by

s∗i (xi) =

(
αi if xi > 1− q

βi if xi < 1− q.

Hence, given any xi, we can make action αi uniquely rationalizable by choosing the
level q of optimism sufficiently high, or make action βi uniquely rationalizable by
choosing the level q of optimism sufficiently low. But when ε is very small, the value
of q has very small impact on players’ beliefs,2 and the players’ beliefs converge to
that of common knowledge at all orders as ε→ 0.

Now consider the currency-attack problem of Morris and Shin. As they discuss, in
their model there is no role for investor sentiments, which were given a prominent role
in earlier informal arguments based on multiple equilibria. Example 2 shows that
by dropping the common-prior assumption (about small aspects of the problem),
we can develop a richer theory. In the new theory, measured as the likelihood
of the fellow players’ optimism, investor sentiments play an important role along
with the fundamentals. We can generate a richer set of monotone comparative
statics: the attack becomes likelier if investors are more optimistic, or the economy
is more vulnerable. We cannot, however, do this by simply focusing on risk-dominant
equilibrium.

This result also establishes that rationalizability is a strong solution concept in
another sense: without having precise information about the entire hierarchy of be-
liefs, we cannot refine rationalizability any further to obtain sharper predictions.
For each rationalizable action profile, there will always be a type profile that is
consistent with our observation and for which the strategy profile is uniquely ra-
tionalizable. Since our refinement must select that outcome for that type profile,
the set of outcomes that cannot be ruled out by our refinement and observation
will contain the set of all rationalizable outcomes. This issue has been extensively
studied for equilibrium refinements by Weinstein and Yildiz (2004).

Example 2 may suggest that the above results are due to the type spaces without
a common prior. That is not the case. Using a result by Lipman (2003), I show

2For example, starting from the uniform distribution on [−1, 1] for both ηi and ηj , shift the
distribution of ηj up by the amount of y where (1 − y/2)2/2 = 1 − q, so that (1.1) is satisfied.

Then, the conditional distribution of xj on xi is shifted only by εy.
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that all of the above results remain intact if we restrict ourselves to the finite models
with common prior. This will hold with the exception that, when we impose the
common-prior assumption, the perturbed model may contain some far-away types
with multiple rationalizable actions. All of the nearby types will have unique ratio-
nalizable actions, which will be in accordance with the fixed rationalizable strategy
of the original model in my second result.

As I discussed already, the common-knowledge assumptions in our models tend to
produce extra rationalizable actions. The above multiplicity at far away types may
also be a factor in multiplicity of rationalizable strategies in our models. Dominance-
solvability of the entire model is a much more stringent condition than having unique
rationalizable actions for types relevant to the analysis of a particular case. For
example, consider a class of games of incomplete information, such that in each
of them most of the types have unique rationalizable actions but some types have
multiple rationalizable actions. Clearly, each of these games will have multiple
rationalizable strategies, but rationalizability will lead to unique outcomes for most
of the types considered in this class.

In the next section I illustrate how one can make the Matching-Pennies game
dominance-solvable by introducing small incomplete information. In Section 3, I
introduce the model and preliminary results. The main results are presented in Sec-
tion 4. The proof of a central lemma is presented in Section 5. Section 6 concludes.

2. Matching Pennies

The information structure of Carlsson and van Damme does not work inMatching-
Pennies game. In order to illustrate how one can introduce incomplete information in
a general game and obtain a dominance-solvable model, I now consider the difficult
case of Matching-Pennies game. I will first consider a belief structure without a
common prior and then reinstate this assumption.

Example 3 (Matching Pennies–without a common prior). Consider the payoff
matrix

α2 β2
α1 θ, 0 θ − 1, θ
β1 0, 0 0, θ − 1

.

If θ is common knowledge and is in (0, 1), then there is no pure strategy equilib-
rium. Take Θ = {θ0, θ1, . . . , θM−1}, where θ0 = −ε/2, θ1 = ε/2, θ2 = 3ε/2,. . . ,
θM−1 = θ̄ < 1, and assume that θ is uniformly distributed on Θ. Players have
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different priors on the signals (x1, x2). Conditional on θ = θm, each player i assigns
probability 1− γ to (xi, xj) = (θm, θm−1) and probability γ to (xi, xj) = (θm−1, θm).
As in Example 1, it is common knowledge that the players’ signals are within ε-
neighborhood of θ, and the game converges to the the complete-information game as
ε→ 0. For ε = 0, every strategy is rationalizable. But when 0 < γ < ε/ [2 (1− ε)],
the incomplete-information game is dominance-solvable, and the unique rationaliz-
able strategy profile is as in the following table:

xi θ0 θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 · · ·
s∗1 (x1) β1 α1 α1 β1 β1 α1 α1 β1 β1 · · ·
s∗2 (x2) α2 α2 β2 β2 α2 α2 β2 β2 α2 · · ·

(Clearly, when xi = θ0, player i assigns high probability 1 − γ to θ = θ0, when
β1 and α2 are dominant actions for players 1 and 2, respectively. When, xi = θ1,
player i assigns high probability to (θ, xj) = (θ1, θ0). Given the dominant action for
j at xj = θ0, the player i has a unique best response; it is αi. One computes s∗

iteratively in this way.)

In this example the players do not have a common prior. This is not crucial. The
elimination process in this game stops at the Mth round, and hence the rationaliz-
ability depends only on the first M orders of beliefs (Dekel, Fudenberg, and Morris
(2003)). Using Lipman’s (2003) method, we can then construct an incomplete-
information game with a common prior and with types whose first M orders of
beliefs are as in the original game. These types will have unique rationalizable
actions, as in the following example.

Example 4 (Matching Pennies–with a common prior). In the previous example,
assume that, in addition to xi, each player i partially observes a random variable k
that is correlated with θ and takes values in {1, 2, . . . , 2K} for some integer K > M .
Player 1 observes the value y1 (k) of the smallest odd number y with y ≥ k; e.g.,
y1 (1) = 1, y1 (2) = 3, y1 (3) = 3, etc. Player 2 observes the value y2 (k) of the
smallest even number y with y ≥ k, e.g., y2 (1) = 2, y2 (2) = 2, etc. Now, the
players have a common prior µ̄ about (θ, x1, x2, k) as follows. Let µi (θ, x1, x2) be
the prior probability of (θ, x1, x2) according to player i in the previous example, e.g.,
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µ1 (θ1, θ1, θ0) = (1− γ)2 /M and µ1 (θ1, θ0, θ1) = γ2/M . Define µ̄ iteratively by

µ̄ (θ, x1, x2, 1) = αµ1 (θ, x1, x2)

µ̄ (θ, x1, x2, k) = Lk−1αµik (θ, x1, x2)−
X
l<k

µ̄ (θ, x1, x2, l)

for each (θ, x1, x2) and k ∈ {2, 3, . . . , 2K} where L > (1− γ) /γ, α = 1/L2K−1, and
ik is 1 if k is odd and 2 if k is even. Once again, it is common knowledge that, in
addition to yi, each player observes a signal xi that is within ε-neighborhood of θ.
As ε→ 0, the belief hierarchy of each type with (xi, yi (k)) converges to that of the
common knowledge of θ = xi. Lipman (2003) shows that

(2.1) µ̄ ((θ, x1, x2) |xi, yi (k)) = µi ((θ, x1, x2) |xi)

for each yi (k) ≤ 2K. That is, the posterior beliefs in the new model are identical to
those of previous example, except for the case that player 1 observes that y1 (k) =
2K + 1. It follows from (2.1) that, for each (xi, yi (k)) with yi (k) ≤ 2K −m where
xi = θm, there exists a unique rationalizable action

ŝi (xi, yi (k)) = s∗i (xi) ,

where s∗i is the unique rationalizable strategy of i in the previous example.
3 In

particular, the types with (xi, yi (1)), which approximate the complete-information
model, will have unique rationalizable actions.

Notice that, in this example, the types whose belief hierarchies are far way from
those of original model may have multiple rationalizable actions; for an example
consider the types with yi (k) > 2K −m and xi = θm for some m.

3. Model

Consider a game with finite set of players N = {1, 2, . . . , n}, finite set A = A1 ×
· · ·×An of action profiles a = (a1, a2, . . . , an), and utility functions ui : Θ×A→ R,
i ∈ N , where Θ is a compact metric space of payoff-relevant parameters θ, and ui is
continuous in θ. The finite set A is endowed with the discrete topology. The game is

3Use induction on m to check this. For m = 0, by (2.1), s∗i (θm) is dominant action for each
(θm, yi (k)) with yi (k) ≤ 2K. Assuming the statement is true for m− 1, consider any (θm, yi (k))
with yi (k) ≤ 2K −m. Player i knows that yj (k) ≤ 2K −m+1, and assigns very high probability
on {θ = θm, xj = θm−1}. By assumption, he must assign high probability on j playing s∗j (θm−1),

against which the only best response is s∗i (θm).
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endowed with the universal type space. A type of a player i is an infinite hierarchy
of beliefs

ti =
¡
t1i , t

2
i , . . .

¢
where t1i ∈ ∆ (Θ) is a probability distribution on Θ, representing the beliefs of
i about θ, t2i ∈ ∆ (Θ×∆ (Θ)n) is a probability distribution for (θ, t11, t

1
2, . . . , , t

1
n),

representing the beliefs of i about θ and the other players’ first-order beliefs, and so
on. Here, ∆ (X) is the space of all probability distributions on X, endowed with the
weak* topology. I assume that it is common knowledge that the beliefs are coherent
(i.e., each player knows his beliefs and his beliefs at different orders are consistent
with each other). The set of all such types are denoted by T ∗i ; T

∗ = T ∗1 × · · · × T ∗n
denotes the set of all type profiles t = (t1, . . . , tn), and T ∗−i =

Q
j 6=i T

∗
j is the set of

profiles of types t−i for players other than i. Each T ∗i is endowed with the product
topology, so that a sequence of types ti,m converges to a type ti, denoted by ti,m → ti,
if and only if tki,m → tki for each k. A sequence of type profiles t (m) = (t1,m, . . . , tn,m)
converges to t iff ti,m → ti for each i. For each type ti, let κti ∈ ∆

¡
Θ× T ∗−i

¢
be

the unique probability distribution that represents the beliefs of ti about (θ, t−i).
Mertens and Zamir (1985) have shown that the mapping ti 7→ κti is an isomorphism.
That is, it is one-to-one, and κti,m → κti if and only if ti,m → ti.

A strategy of a player i is any function si : T ∗i → Ai.4 For each i ∈ N and for each
belief π ∈ ∆ (Θ×A−i), BRi (π) denotes the set of actions ai ∈ Ai that maximize
the expected value of ui (θ, ai, a−i) under the probability distribution π.

Remark 1. In my formulation, it is common knowledge that the payoffs are given
by a fixed continuous function of parameters. This assumption is without loss of
generality because we can take a parameter to be simply the function that maps
action profiles to the payoff profiles. For example, we can take Θ = Θ1 × · · · ×Θn

where Θi = [0, 1]
A for each i, and let ui (θ, a) = θi (a) for each (i, a, θ). This model

allows all possible payoff functions, and here θ is simply an index for the profile of
the payoff functions. This model clearly satisfies the following richness assumption,
which is also made by Carlsson and van Damme (1993).

Assumption 1 (Richness Assumption). For each i and each ai, there exists θai ∈ Θ

such that

ui (θ
ai , ai, a−i) > ui (θ

ai , a0i, a−i) (∀a0i 6= ai,∀a−i) .
4I do not restrict the strategies to be measurable. Measurability restriction could lead to a

non-existence problem, which can be avoided in the present interim framework (Simon, 2003).
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That is, the space of possible payoff structures is rich enough so that each action
can be strictly dominant for some parameter value. When there are no a priori re-
strictions on the domain of payoff structures and the actions represent the strategies
in a static game, Assumption 1 is automatically satisfied. When actions represent
the strategies in a dynamic game, one needs to introduce trembles and use a reduced
form to satisfy this assumption.

Interim Correlated Rationalizability. For each i and ti, set S0i [ti] = Ai, and
define sets Sk

i [ti] for k > 0 iteratively, by letting ai ∈ Sk
i [ti] if and only if ai ∈

BRi

¡
margΘ×A−iπ

¢
for some π ∈ ∆

¡
Θ× T ∗−i ×A−i

¢
such that margΘ×T∗−iπ = κti

and π
¡
a−i ∈ Sk−1

−i [t−i]
¢
= 1. That is, ai is a best response to a belief of ti that puts

positive probability only to the actions that survive the elimination in round k− 1.
I write Sk−1

−i [t−i] =
Q

j 6=i S
k−1
j [tj] and Sk [t] = Sk

1 [t1] × · · · × Sk
n [tn]. The set of all

rationalizable actions for player i (with type ti) is

S∞i [ti] =
∞\
k=0

Sk
i [ti] .

A strategy profile s : T ∗ → A (resp. a strategy si : T
∗
i → Ai) is said to be

rationalizable iff s (t) ∈ S∞ [t] for each t (resp., si (ti) ∈ S∞i [ti] for each ti).

Remark 2. The interim correlated rationalizability (Battigalli (2003), Battigalli
and Siniscalchi (2003) and Dekel, Fudenberg, and Morris (2003)) is the weakest
among the known notions of rationalizability. Dekel, Fudenberg, and Morris (2003)
show that, for arbitrary type space and independent of whether correlations are
allowed, if an action ai is rationalizable for a type with belief hierarchy ti, then ai
is interim correlated rationalizable for ti. Using a weak notion of rationalizability
strengthens my results; they will remain valid under any stronger notion of ratio-
nalizability.

Mathematical Definitions and Preliminary Results.

Definition 1 (Genericity). The closure of a set T ⊆ T ∗, denoted by T , is the
smallest closed set that contains T . A set T is dense (in T ∗) iff T = T ∗, i.e., for
each t ∈ T ∗, there exists a sequence of type profiles t (m) ∈ T such that t (m)→ t.
A set T is said to be nowhere-dense iff the interior of T is empty, i.e., T does not
contain any open set. A statement is said to be generically true if it is true on an
open, dense set of type profiles.
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An open and dense set T ⊆ T ∗ is large in the sense that its complement, T ∗\T ,
is nowhere-dense. In that case, T ∗\T is simply the boundary of T , denoted by ∂T .
Clearly, topological notions of genericity may widely differ from measure theoretical
notions of genericity, but they are related (Oxtoby (1980)). This paper uses a strong
topological notion of genericity with respect to a canonical topology. However,
the results may not be true under other topologies or under measure theoretical
notions of genericity. This caveat also applies to the discussions. Clearly, all what
matters is what these results mean in terms of economic modeling, as discussed in
the introduction.

Definition 2 (Finite Types, Models). A subset T ⊆ T ∗ is said to be belief-closed iff
for each ti ∈ Ti, supp(κti) ⊆ Θ×T−i. A belief-closed T ⊆ T ∗ is said to be finite iff T

contains finitely many members and t1i has finite support for each ti = (t
1
i , t

2
i , . . .) ∈

Ti. Let T̂ be the union of all finite, belief-closed subspaces T ⊂ T ∗. Members of T̂
are referred to as finite types. I will use the terms model and belief-closed subset of
T ∗ interchangeably.

Lemma 1 (Mertens and Zamir (1985)). T̂ is dense, i.e., T̂ = T ∗.

Definition 3 (Dominance-Solvability). A model T ⊆ T ∗ is said to be dominance-
solvable if and only if |S∞ [t]| = 1 for each t ∈ T .

Definition 4 (Common Prior). A model T ⊆ T ∗ is said to admit a common prior
(with full support) if and only if there exists a probability distribution p ∈ ∆ (Θ× T )

such that supp(p) = Θ0×T for some Θ0 ⊆ Θ and κti = p (·|Θ× {ti} × T−i) for each
ti ∈ Ti.

The set of all type profiles that comes from a model with a common prior is
denoted by TCPA; formally, TCPA

i = {ti ∈ Ti|T is belief-closed and admits a common
prior}. The next result by Lipman (2003) shows that, given any finite model "with
full support", one can obtain a nearby finite model that admits a common prior.
This is because the common-prior assumption does not put any restriction on finite-
order beliefs other than full support (see also Feinberg (2000)).5

5Lipman (2003) uses a partitional model. If one takes Ω = Θ × T ∗ as the state space and©©
(θ, t) |ti = t̃i

ª
|t̃i ∈ T ∗i

ª
as the partition of player i, then the condition in the lemma immediately

implies his weak-consistency condition, which characterizes the finite-order implications of the
common-prior assumption.
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Lemma 2 (Lipman (2003)). Let T ⊆ T̂ be a finite model with supp(κti) = Θ0×T−i
for some Θ0 ⊆ Θ and for each ti ∈ Ti. Then, for each m, there exists a finite model
Tm ⊆ T̂ that admits a common prior with full support and a one-to-one mapping
τ (·,m) : T → Tm such that τ (t,m)→ t as m→∞.

Lemmas 1 and 2 immediately implies the following result.

Lemma 3 (Lipman (2003)). T̂ ∩ TCPA is dense.

Definition 5 (Continuity). A strategy si is said to be continuous (or locally-
constant) at ti iff si is constant on an open neighborhood of ti, i.e.,

(3.1) ti,m → ti ⇒ si (ti,m)→ si (ti)

for each sequence of types ti,m. A (bounded) correspondence F : T ∗ → 2A is said
to be upper-semicontinuous if its graph is closed in the product topology of T ∗×A.
Since A is finite, F is upper semicontinuous iff each t has a neighborhood η with
F [t0] ⊆ F [t] for each t0 ∈ η.

Lemma 4 (Dekel, Fudenberg, and Morris (2004)). S∞ is non-empty and upper-
semicontinuous.

Dekel, Fudenberg, and Morris (2004) proves upper-semicontinuity of interim cor-
related rationalizability in their framework. Since my framework is slightly different
(e.g. Θ may be infinite), for the sake of completeness, I provide a proof in the
appendix. Together with the observations in the following lemma, this lemma will
provide a main step in the proof of the main result.

Lemma 5. Given any non-empty, upper-semicontinuous F , let UF = {t| |F [t]| = 1}.
Then, UF is open, and there exists a continuous function f∗ : UF → A such that
F [t] = {f∗ (t)} for each t ∈ UF .

Proof. Define f∗ : UF → A by F [t] = {f∗ (t)}, t ∈ UF . By upper-semicontinuity of
F , each t ∈ UF has a neighborhood η with F [t0] ⊆ F [t] = {f∗ (t)} for each t0 ∈ η.
Since F [t0] 6= ∅, this implies that F [t0] = {f∗ (t)} for each t0 ∈ η, so that η ⊂ UF .
Therefore, UF is open. By definition, f∗ (t0) = f∗ (t) for each t0 ∈ η, and hence f∗ is
continuous. ¤
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4. Results

In this section, I show that, generically, there exists a unique rationalizable action,
and for any model, there is a perturbation that leads to a dominance-solvable model.
Moreover, for each rationalizable strategy of any finite model, I show that there
exists a perturbation that leads to a finite model with common prior and such that
the given strategy of the original model is uniquely rationalizable for the perturbed
types. The next result will be the main tool for this analysis.

Lemma 6. Under Assumption 1, for any t̂ ∈ T̂ , and any a ∈ S∞
£
t̂
¤
, there exists

a sequence of finite models Tm with type profiles t̃ (m) ∈ Tm, such that t̃ (m) → t̂

as m → ∞ and S∞
£
t̃ (m)

¤
= {a} for each m. Moreover, Tm can be chosen to be

dominance-solvable or with a common prior with full support.

That is, given any type and any rationalizable action ai for that type, one can find
a nearby type for which ai is uniquely rationalizable. Moreover the new type can
be found in a dominance-solvable model or in a (possibly not dominance-solvable)
model with a common prior. Since the proof of this result is somewhat involved, I
will present the proof in Section 5, after exploring the important implications of the
lemma for this paper.

4.1. Genericity of Uniqueness. Let

U = {t ∈ T ∗| |S∞ [t]| = 1}

be the set of type profiles with unique rationalizable actions. Together with Lemma
1, Lemma 6 implies that U is dense in universal type space. Since S∞ is upper-
semicontinuous, U is also open. This yields the first main result of the paper: if
one excludes a nowhere-dense set of types, there is a unique rationalizable action
for each remaining type, which must be continuous in player’s belief hierarchy.

Proposition 1. Generically, there exists a unique rationalizable action, and it is
generically continuous. That is, there exist an open, dense set U and a continuous
function s∗ : U → A, such that S∞ [t] = {s∗ (t)} for each t ∈ U . In particular, every
rationalizable strategy is continuous on the open and dense set U .

Proof. Since S∞ [t] is upper-semicontinuous, by Lemma 5, U is open, and there
exists a continuous function s∗ : U → A with S∞ [t] = {s∗ (t)} for each t ∈ U . To
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show that U is dense, first observe that, by Lemma 6, for any t̂ ∈ T̂ , there exists
a sequence t̃ (m) → t̂ with S∞

£
t̃ (m)

¤
= {a} for some a ∈ S∞

£
t̂
¤
. By definition,

t̃ (m) ∈ U for each m. Hence, Ū ⊇ T̂ . But T̂ = T ∗ by Lemma 1. Therefore,

Ū ⊇ T̂ = T ∗, showing that U is dense. ¤

By Proposition 1, we can partition the universal type space to an open and dense
set U and its nowhere-dense boundary T ∗\U . On U , each type has a unique ratio-
nalizable action, and every rationalizable strategy is continuous. On the boundary,
each type profile has multiple rationalizable action profiles. Assumption 1 is not su-
perfluous. For example, a complete-information game can be modeled with |Θ| = 1,
when T ∗ consists of a single common-knowledge type profile. When the original
game is not dominance-solvable, U = ∅.

Proposition 1 uncovers an interesting structure of the universal type space T ∗.
One can divide T ∗ into finitely many open sets

Ua = {t|S∞ [t] = {a}} (a ∈ A),

and their boundaries ∂Ua ≡ Ua\Ua, where Ua is the closure of Ua. The open sets
form a partition of an open, dense set U , while their boundaries cover the boundary
of U , i.e., T ∗\U =

S
a∈A ∂U

a, which is a nowhere-dense set. On each open set
Ua, a is the unique rationalizable action profile. Since S∞ is upper-semicontinuous,
a ∈ S∞ [t] for each t ∈ ∂Ua. At any t ∈ ∂Ua ∩ ∂Ua0 with distinct a and a0,
both a and a0 are rationalizable. At any such t with multiple rationalizable action
profiles, every rationalizable strategy profile s must be discontinuous, as there are
sequences t (a,m) → t and t (a0,m) → t with s (t (a,m)) = a and s (t (a0,m)) = a0,
where t (a,m) ∈ Ua and t (a0,m) ∈ Ua0. Here, all rationalizable strategies are
rendered discontinuous at t by the fact that the generically unique rationalizable
theory changes its prescribed behavior at t.6

In summary, Proposition 1 establishes that, if one excludes a nowhere-dense set
of types, then there will be a unique rationalizable strategy profile for the remaining
types, and it will be continuous with respect to players’ beliefs. Discontinuities or
multiplicities arise only on the nowhere-dense boundary of the open and dense set

6It is also a general possibility that t ∈ ∂Ua\ ∪a0 6=a ∂Ua0 for some a. But Lemma 6 implies
that there cannot be such a finite type; it implies that t̂ ∈ ∩a∈S∞[t̂]Ua for each t̂ ∈ T̂ . At

any t ∈ ∂Ua\ ∪a0 6=a ∂Ua0 , there are multiple rationalizable action profiles (as t ∈ T ∗\U), but
a is the only action profile that remains rationalizable on an open neighborhood of t, and some
rationalizable strategies may be continuous at t.
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U , where the unique rationalizable strategy above potentially changes its prescribed
behavior for players. Hence, from a theoretical point of view, for generic situations,
rationalizability leads to quite robust predictions: we can know the players’ actions
if we know their beliefs sufficiently well. We do not need to know their beliefs about
the strategies for this prediction; common knowledge of rationality suffices.

This is a theoretical robustness, however. The usual practical problems with
dominance-solvability and other robustness results do apply here. One may have to
specify the players’ beliefs with such a high precision that it may be impractical to
make any prediction with any reasonable level of precision. For example, a finitely-
repeated prisoners’ dilemma game with many repetitions will become dominance-
solvable if we introduce small trembles and use a suitable reduced-form representa-
tion, but it is well known that the equilibrium predictions will dramatically change
when the probability of an "irrational" type exceeds a very low threshold, such as
0.001, as shown by Kreps, Milgrom, Roberts, and Wilson (1982). Moreover, in
application, we typically have a large set of rationalizable actions, suggesting that
our common knowledge assumptions lead us to the boundary of U , and the present
economic theories are about these nowhere-dense set of types.

One may wonder if the genericity result above applies to smaller type spaces of
interest, such as the space of finite types and space of types consistent with common
prior assumption. The next result shows that the same genericity result is true for
any dense type space, including the mentioned spaces.

Corollary 1. For any dense model T ⊆ T ∗, the set U ∩T is dense and open with
respect to the relative topology on T . In particular, U ∩ (T̂ ∩ TCPA) is dense and
open with respect to the relative topology on T̂ ∩ TCPA.

Proof. Since U is open and dense and T is dense, U ∩ T is dense. Since U is open,
U ∩ T is open with respect to the relative topology on T–by its definition. ¤

Remark 3 (Redundant Types). In some type spaces, there may be distinct types
with identical belief hierarchies. In such type spaces with "redundant types", there
may be equilibrium strategies that are not rationalizable for the corresponding belief
hierarchy in the universal type space if one insists on independence of strategies from
θ. One needs a larger type space to capture the strategically relevant information
encoded in the redundant types (Ely and Peski (2004)). On the other hand, even
when there are "redundant types", if the belief hierarchy of a type is ti, then all the
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rationalizable actions of that type are contained in S∞i [ti] (Dekel, Fudenberg, and
Morris (2003)). Proposition 1 establishes that, generically, |S∞i [ti]| = 1, and hence
a unique action is rationalizable for all types that come from arbitrary spaces but
have the same generic belief hierarchy. Then, the universal type space suffices to
capture the strategic behavior of types with generic belief hierarchies. (The set U
may not be open and dense in the larger space of Ely and Peski (2004).)

Remark 4 (Unified Theories). A strategy profile in this paper simultaneously de-
scribes an outcome for every model embedded in the universal type space. It can
then be regarded as a unified theory. Proposition 1 implies that, if we assume com-
mon knowledge of rationality, then we can have only one unified theory for generic
cases, and each of these unified theories will be continuous (prescribing the same be-
havior for indistinguishable models) at generic type profiles. Kohlberg and Mertens
(1986) and Govindan and Wilson (2004) seek equilibrium refinements that depend
only on the reduced-form representation and are independent to certain "irrelevant
transformations," including the introduction of mixed strategies as pure strategies,
a transformation that is ruled out here by the richness assumption. I take a comple-
mentary approach to the same conceptual problem they have addressed. Towards a
unified theory of games, they focus on developing a uniform equilibrium refinement,
while I show that generically there is only one such theory.

4.2. Nearby dominance-solvable models. Since U is dense, for any usual game
with a large set of rationalizable strategy profiles, there is a model such that if a
player’s interim beliefs and payoffs are similar to that of a player in the original
game, then he has a unique rationalizable action. I will now show a stronger fact.
Given any economic model, one can find a nearby dominance-solvable model, where
every type has a unique rationalizable action.

Proposition 2. Under Assumption 1, for any model T ⊆ T ∗, and any integer m,
there exist a dominance-solvable model Tm and a mapping τ (·,m) : T → Tm such
that τ (t,m)→ t as m→∞.

Proof. First, take any t ∈ T ∗. By Lemma 1, there exists a sequence of type profiles
t̂ (m) ∈ T̂ with t̂ (m) → t. By Lemma 6, for all integers m and k, there exists a
dominance-solvable model Tm,k with member t̃ (m, k) such that t̃ (m, k)→ t̂ (m) as
k → ∞. Define T t,m ≡ Tm,m and τ (t,m) ≡ t̃ (m,m). Clearly, τ (t,m) → t. Now,
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define Tm by

Tm
i =

S
t∈T

T t,m
i .

Since each T t,m is dominance-solvable, so is Tm. For each t ∈ T , τ (t,m) ∈ Tm. ¤

Proposition 2 extends the result of Carlsson and van Damme to arbitrary games.
It states that, given any model, we can perturb the model by introducing a small
noise in players’ perceptions of the payoffs in such a way that the new model is
dominance-solvable. Moreover, since U is open, the perturbed model will remain
dominance-solvable when we introduce new small perturbations. The next result,
which is the second main result of this paper, states that, when the original type
space is finite, the dominance-solvable model can be taken to be part of a model that
admits a common prior with full support.7 Moreover, we can do this for each ratio-
nalizable strategy profile sT in the finite model, so that sT is the unique rationalizable
strategy profile in the perturbed model. In this proposition, there are two pertur-
bations. The first perturbation leads to a finite, dominance-solvable model T sT ,m

where the unique rationalizable actions of perturbed types τ (·, sT ,m) agree with
sT . The second perturbation leads to a finite model T̃ sT ,m that admits a common
prior, which may not be dominance-solvable, but the perturbed types τ̃ (t, sT ,m)
have all unique rationalizable actions, and these actions agree with sT .

Proposition 3. Let T ⊆ T̂ be any finite model and sT : T → A be any rationaliz-
able strategy profile, with sT (t) ∈ S∞ [t] for each t ∈ T . Then, under Assumption
1, there exist sequences of finite models T sT ,m and T̃ sT ,m and one-to-one mappings
τ (·, sT ,m) : T → T sT ,m and τ̃ (·, sT ,m) : T → T̃ sT ,m such that

(1) T sT ,m is dominance-solvable, and T̃ sT ,m admits a common prior,
(2) S∞ [τ (t, sT ,m)] = S∞ [τ̃ (t, sT ,m)] = {sT (t)}, and
(3) τ (t, sT ,m)→ t and τ̃ (t, sT ,m)→ t as m→∞ for each t ∈ T .

Proof. By Lemma 6, for each t ∈ T and m, there exists a finite, dominance-solvable
model T t,sT ,m with τ (t, sT ,m) ∈ T t,sT ,m as in the proposition. As in the proof of
Proposition 2, define the finite model T sT ,m by

T sT ,m
i =

S
t∈T

T t,sT ,m
i .

7As in the matching-penny game, this result does not rule out the possibility that some far away
types in the common-prior model have multiple rationalizable actions. (This is rather due to the
method of proof.)
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Since τ (t, sT ,m)→ t for each t ∈ T and T is finite, there exists m̄ such that, for any
distinct t, t0 and any m > m̄, we have τ (t, sT ,m) 6= τ (t0, sT ,m). Hence, τ (·, sT ,m)
is one-to-one for m > m̄. (Consider only m > m̄.)

Since T sT ,m is finite, by Lemma 11 in Section 5, for each integer k, there exist a
finite model T̃m,k that admits a common prior and a one-to-one mapping τ 0 (·, k) :
T sT ,m → T̃m,k such that S∞ [τ 0 (t̄, k)] = S∞ [t̄] and τ 0 (t̄, k) → t̄ as k → ∞ for each
t̄ ∈ T sT ,m. Pick T̃ sT ,m = T̃m,m and τ̃ (·, sT ,m) = τ 0 (·,m) ◦ τ (·, sT ,m). ¤

Building on a result of Weinstein and Yildiz (2004), Proposition 3 provides a
new perspective on refining rationalizability. It implies that a finite model sum-
marizes various dominance-solvable situations by abstracting away from the details
that would have mattered mostly for computing the beliefs at very high orders. By
specifying these details appropriately, any rationalizable strategy could have been
made uniquely rationalizable. But then, refining rationalizability tantamount to
ruling out some of these nearby models as the true model. Hence, selection of a
refinement is tied to which information structures one finds more reasonable–more
so than which epistemic arguments make more sense on what beliefs players should
form on other players’ strategies. Weinstein and Yildiz (2004) have proved a simi-
lar result by considering only equilibrium refinements and "strictly rationalizable"
actions, which will be defined in the next section.

5. Proof of Lemma 6

Now, I will prove Lemma 6. A substantial part of the proof utilizes the following
stronger notion of rationalizability, analyzed by Weinstein and Yildiz (2004).

Strict Interim Rationalizability. Let W 0
i [ti] = Ai and, for each k > 0, let

ai ∈W k
i [ti] if and only ifBRi

¡
margΘ×A−iπ

¢
= {ai} for some π ∈ ∆

¡
Θ× T ∗−i ×A−i

¢
such that margΘ×T∗−iπ = κti and π

¡
a−i ∈ Sk−1

−i [t−i]
¢
= 1. Finally, let

W∞
i [ti] =

∞\
k=0

W k
i [ti]

be the set of all strictly rationalizable actions for ti. Notice that an action is elimi-
nated if it is not a strict best-response to any belief on the remaining strategies of
the other players. Clearly, W k

i ⊆ Sk
i , and W k

i [ti] may be empty.
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Lemma 7. Given any belief-closed T , consider any family Vi [ti] ⊆ Ai, ti ∈ Ti, i ∈ N ,
such that each ai ∈ Vi [ti] is a strict best reply to a belief π ∈ ∆ (Θ× T−i ×A−i) of
ti with π (a−i ∈ V−i [t−i]) = 1. Then, Vi [ti] ⊆W∞

i [ti] for each ti.

Proof. It directly follows from the fact that no ai ∈ Vi [ti] is ever eliminated for
ti. ¤

The proof of Lemma 6 has three main steps, which are presented as the following
three lemmas. The first step (namely, Lemma 8) shows that, when we focus on
strictly rationalizable strategies and do not require a common prior, Lemma 6 is true
for each ti ∈ T̂i. The second step (namely, Lemma 9) will state that for any finite
type and any rationalizable action, there is a nearby finite type for which the action
is strictly rationalizable. Combining these two steps immediately yields Lemma
6 without a common prior. Finally, using the result of Lipman (2003), namely
Lemma 2, and the second step one more time, one can show that the common-prior
requirement can also be met (as stated in Lemma 11).

The following lemma is similar to Proposition 1 of Weinstein and Yildiz (2004).
They show that if ai ∈W k

i [ti], one can change the beliefs at order k+1 and higher
so that ai is played by the new type in equilibrium. The lemma states that one
can select the new type t̃i so that ai is the only member of Sk+1

i

£
t̃i
¤
. To prove this

lemma, I use their construction but make sure that the new type t̃i assigns positive
probability only on types t−i that come from finite models that are solved by k

rounds of iterated dominance (i.e., Sk is singleton-valued on these models). In that
case, I show that t̃i also comes from a finite model that is solved by k+1 rounds of
iterated dominance.

Lemma 8. Under Assumption 1, for each i, k, for each t̂i ∈ T̂i, and for each ai ∈
W k

i [ti], there exists t̃i such that (i) t̃
l
i = t̂li for each l ≤ k, (ii)

Sk+1
i

£
t̃i
¤
= {ai} ,

and t̃i ∈ T t̃i
i for some finite model T

t̃i = T t̃i
1 × · · · × T t̃i

1 such that
¯̄
Sk+1 [t]

¯̄
= 1 for

each t ∈ T t̃i. For any ai ∈ W∞
i

£
t̂i
¤
and integer m, there exists a finite, dominance-

solvable model Tm with type ti,m ∈ Tm
i , such that S

∞
i [ti,m] = {ai} and ti,m → t̂i as

m→∞.

Proof. For k = 0, let t̃ be the type profile according to which it is common knowledge
that each j assigns probability 1 to {θ = θaj}, where θaj is as defined in Assumption
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1. By Assumption 1, S1i
£
t̃i
¤
= {ai}, and it is vacuously true that t̃li = t̂li for each

l ≤ k. Clearly, the type space
©
t̃
ª
is belief-closed.

Now fix any k > 0 and any i. Write each t−i as t−i = (l, h) where l =
¡
t1−i, t

2
−i, . . . , t

k−1
−i
¢

and h =
¡
tk−i, t

k+1
−i , . . .

¢
are the lower and higher-order beliefs, respectively. Let

L =
©
l|∃h : (l, h) ∈ T ∗−i

ª
. The inductive hypothesis is that for each finite t−i = (l, h)

and each a−i ∈W k−1
−i [t−i], there exists finite t̃−i [a−i] =

³
l, h̃ [l, a−i]

´
∈ T

t̃−i[a−i]
−i such

that

(IH) Sk
−i
£
t̃−i [a−i]

¤
= {a−i} ,

and T t̃−i[a−i] = T
t̃−i[a−i]
1 × · · · × T

t̃−i[a−i]
n is a finite model with

¯̄
Sk [t]

¯̄
= 1 for each

t ∈ T t̃−i[a−i]. Take any ai ∈ W k
i

£
t̂i
¤
. I will construct a type t̃i as in the lemma. By

definition, BRi

¡
margΘ×A−iπ

¢
= {ai} for some π ∈ ∆

¡
Θ× T ∗−i ×A−i

¢
such that

margΘ×T∗−iπ = κti and π
¡
a−i ∈W k−1

−i [t−i]
¢
= 1. Using the inductive hypothesis,

define mapping µ : supp
¡
margΘ×L×A−iπ

¢
→ Θ× T ∗−i, by

(5.1) µ : (θ, l, a−i) 7→
³
θ, l, h̃ [l, a−i]

´
,

where type t̃−i [a−i] =
³
l, h̃ [l, a−i]

´
is as in (IH). Define t̃i by

κt̃i ≡
¡
margΘ×L×A−iπ

¢
◦ µ−1 = π ◦ proj−1Θ×L×A−i ◦ µ

−1,

the probability distribution induced on Θ×T ∗−i by the mapping µ and the probabil-
ity distribution π, where projX denotes the projection mapping to X. Notice that
projΘ×L ◦ µ ◦ projΘ×L×A−i = projΘ×L. Then, margΘ×Lκt̃i = margΘ×Lκti, and hence
the first k orders beliefs will be identical under ti and t̃i (see Weinstein and Yildiz
(2004) for a detailed derivation). Moreover, by (IH), each (θ, t−i) ∈ supp

¡
κt̃i
¢
,

which is of the form
³
θ, l, h̃ [l, a−i]

´
, has a unique action a−i ∈ Sk−1

−i
£
t̃−i [a−i]

¤
.

Thus, there exists a unique π̃ ∈ ∆
¡
Θ× T ∗−i ×A−i

¢
such that margΘ×T∗−iπ = κt̃i

and π
¡
a−i ∈ Sk−1

−i [t−i]
¢
= 1; it is π̃ = κt̃i ◦ γ−1 = π ◦ proj−1Θ×L×A−i ◦ µ

−1 ◦ γ−1

where γ :
³
θ, l, h̃ [l, a−i]

´
7→

³
θ, l, h̃ [l, a−i] , a−i

´
. Clearly, projΘ×A−i ◦ γ ◦ µ ◦

projΘ×L×A−i =projΘ×A−i. Hence, margΘ×A−iπ̃ =margΘ×A−iπ. But ai is the only
best reply to this belief. Therefore, Sk+1

i

£
t̃i
¤
= {ai}.
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Now, I will define T t̃i as in the lemma. Define

T t̃i
i =

©
t̃i
ª
∪

⎛⎝ S
(θ,t−i[a−i])∈ supp(κt̃i)

T
t−i[a−i]
i

⎞⎠ ,

T t̃i
j =

S
(θ,t−i[a−i])∈ supp(κt̃i)

T
t−i[a−i]
j (j 6= i) .

Since supp
¡
margΘ×L×A−iπ

¢
⊆ supp

¡
κt̂i
¢
× A−i is finite, the range of µ is finite,

rendering supp
¡
κt̃i
¢
finite. Hence, T t̃i is finite. For any tj ∈ T t̃i

j \
©
t̃i
ª
, tj ∈ T

t−i[a−i]
j

for some t−i [a−i], and since T t−i[a−i] is belief-closed, supp
¡
κtj
¢
⊆ Θ × T

t−i[a−i]
−j ⊆

Θ × T t̃i
−j. On the other hand, supp

¡
κt̃i
¢
⊆ Θ × T t̃i

−i, as t−i [a−i] ∈ T
t−i[a−i]
−i for each

(θ, t−i [a−i]) ∈ supp
¡
κt̃i
¢
. Hence, T t̃i is belief-closed. Finally, since Sk+1

i

£
t̃i
¤
= {ai},¯̄

Sk+1
i

£
t̃i
¤¯̄
= 1, and by construction, for each tj ∈ T t̃i

j \
©
t̃i
ª
,
¯̄
Sk [tj]

¯̄
= 1, and hence¯̄

Sk+1 [tj]
¯̄
= 1.

To prove the last statement in the lemma, take any ai ∈ W∞
i

£
t̂i
¤
. For each m,

since ai ∈ W∞
i

£
t̂i
¤
⊆ Wm

i

£
t̂i
¤
, by the first part of the lemma, there exists ti,m such

that tli,m = t̂li for each l ≤ m and Sm+1
i [ti,m] = S∞i [ti,m] = {ai}. Clearly, for any

fixed k, tki,m = t̂ki for each m > k, showing that tki,m → t̂ki as m → ∞. By the first
part, ti,m ∈ T

ti,m
i for some finite model T ti,m with |S∞ [t]| = |Sm+1 [t]| = 1 for each

t ∈ T ti,m. Pick Tm = T ti,m as the dominance-solvable model in the lemma. ¤

The next lemma states that any rationalizable strategy of a finite model is strictly
rationalizable for nearby types in a nearby finite model.

Lemma 9. Under Assumption 1, for any finite model T ⊆ T̂ and any integer m,
there exist a finite model Tm and a one-to-one and onto mapping τ (·,m) that maps
each (t, a) with a ∈ S∞ [t] and t ∈ T to τ (t, a,m) = (τ 1 (t1, a1,m) , . . . , τn (tn, an,m)) ∈
Tm such that (i) a ∈ W∞ [τ (t, a,m)] for each (t, a,m), and (ii) τ (t, a,m) → t as
m→∞ for each (t, a).

Proof. The new type space Tm will consist of types τ i (ti, ai,m), for i ∈ N , ti ∈ Ti,
and ai ∈ S∞i [ti]. Let δx denote the probability distribution that puts probability 1
on {x} and Θ0 be the finite set of all parameter values that some type tj ∈ Tj assigns
positive probability. I will define τ (·,m) by simultaneously defining the beliefs of
each τ i (ti, ai,m) about θ and the others’ types τ−i (t−i, a−i,m).8 Now, since ai ∈
8Notice that I am simply defining a finite type space. Hence, it suffices to define the belief of

each type about θ and the other players’ types. At the end of the proof, I will show that there are
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S∞i [ti], there exists a belief π
ti,ai ∈ ∆ (Θ0 × T−i ×A−i) with finite support and such

that ai ∈ BRi

¡
margΘ0×A−iπ

ti,ai
¢
, πti,ai

¡
a−i ∈ S∞−i [t−i]

¢
= 1, and margΘ×T∗−iπ

ti,ai =

κti, where we also view πti,ai as a probability distribution on Θ× T ∗−i×A−i. Define
τ i (ti, ai,m) by

κτ i(ti,ai,m) =
1

m
δ(θai ,τ−i(t̃−i,ã−i,m)) +

µ
1− 1

m

¶
πti,ai ◦ τ̂−1−i,m

where τ−i
¡
t̃−i, ã−i,m

¢
is some fixed type profile in the new type space, and τ̂−i,m :

(θ, t−i, a−i) 7→ (θ, τ−i (t−i, a−i,m)). The beliefs of τ i (ti, ai,m) correspond to a mix-
ture: with probability 1−1/m, each (θ, τ−i (t−i, a−i,m)) occurs with the probability
of (θ, t−i, a−i) according to πti,ai, and with probability 1/m there is a point mass at¡
θai , τ−i

¡
t̃−i, ã−i,m

¢¢
. For each new type τ i (ti, ai,m), define the belief

π̃ = κτ i(ti,ai,m) ◦ γ−1 ∈ ∆
¡
Θ× T ∗−i ×A−i

¢
where γ : (θ, τ−i (t−i, a−i,m)) 7→ (θ, τ−i (t−i, a−i,m) , a−i). This belief is generated
by κτ i(ti,ai,m) and the pure strategy profile s−i with s−i (τ−i (t−i, a−i,m)) = a−i at
each (θ, τ−i (t−i, a−i,m)). Clearly, projΘ×A−i ◦ γ ◦ τ̂−i,m = projΘ×A−i. Hence,

margΘ×A−iπ̃ =
1

m
δ(θai ,ã−i) +

µ
1− 1

m

¶
margΘ×A−iπ

ti,ai .

That is, the belief of τ i (ti, ai,m) about Θ×A−i is also a mixture. With probability
(1− 1/m), τ i (ti, ai,m) faces the same uncertainty as ti does when ti holds the
belief πti,ai, in which case ai is a best reply. With probability 1/m, the equality
θ = θai holds, in which case ai is the unique best reply. Then, by the Sure-thing
Principle, ai is a strict best reply, i.e., BRi

¡
margΘ×A−iπ̃

¢
= {ai}. Hence, by Lemma

7, ai ∈W∞
i [τ i (ti, ai,m)] for each τ i (ti, ai,m).

I will use induction to show that τ i (ti, ai,m) → ti, i.e., each kth order belief
τki (ti, ai,m) converges to t

k
i , as m→∞. Firstly, the first-order belief is

τ 1i (ti, ai,m) = margΘκτ i(ti,ai,m) =
1

m
δθai +

µ
1− 1

m

¶
margΘπ

ti,ai ,

which converges to

margΘπ
ti,ai = margΘκti = t1i

no redundant types in the constructed type space, so that it can be represented as a subspace of
the universal type space.
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as m→∞. Now, fix some k > 0. Let L be the set of all beliefs tk−1−i at order k− 1,
and assume that τk−1j (tj, aj,m)→ tk−1j for each (tj, aj) ∈ Tj ×Aj. Then,

τki (ti, ai,m) =
1

m
δ(θai ,τk−1i (ti,ai,m),τ

k−1
−i (t̃−i,ã−i,m))

+

µ
1− 1

m

¶
δτk−1i (ti,ai,m)

×margΘ×Lπti,ai◦τ̂−1−i,m.

As m→∞, the right-hand side converges to

lim
m→∞

δτk−1i (ti,ai,m)
×margΘ×Lπti,ai ◦ τ̂−1−i,m = lim

m→∞
δτk−1i (ti,ai,m)

× πti,ai ◦ τ̂−1−i,m ◦ proj−1Θ×L
= δtk−1i

×margΘ×Lπti,ai = tki .

[To obtain the penultimate equality, observe that projΘ×L (τ̂−i,m (θ, t−i, a−i)) =
projΘ×L (θ, τ−i (t−i, a−i,m)) =

¡
θ, τk−1−i (t−i, a−i,m)

¢
, which converges to

¡
θ, tk−1−i

¢
.

That is, projΘ×L◦ τ̂−i,m pointwise converges to projΘ×L. Then, πti,ai ◦ τ̂−1−i,m◦proj−1Θ×L
converges to πti,ai ◦ proj−1Θ×L = margΘ×Lπti,ai in weak topology.]

Finally, one can choose m large enough so that τ (·,m) is one-to-one, in which
case Tm does not have redundant types, as I will show now. For any two distinct
ai and a0i, by definition, θ

ai 6= θa
0
i, rendering τ i (ti, ai,m) 6= τ i (ti, a

0
i,m) for each ti

and m. On the other hand, for any distinct ti and t0i, since τ i (ti, ai,m) → ti and
τ i (t

0
i, a

0
i,m)→ t0i, there exists some m̄ such that τ i (ti, ai,m) 6= τ i (t

0
i, a

0
i,m) for each

(ai, a
0
i) and each m > m̄. Since there are only finitely many types, one can choose

m̄ uniformly. (Hence, by changing the index m, we can take m̄ = 0 without loss of
generality.) ¤

In the previous lemma, if the original model T is dominance-solvable, then the
new model will also be dominance-solvable. In the new model, S∞ and W∞ will
coincide. This is stated in the next lemma.

Lemma 10. Under Assumption 1, for any finite, dominance-solvable model T ⊆ T̂

and anym, there exists a finite, dominance-solvable model Tm ⊆ T̂ and a one-to-one
and onto mapping τ (·,m) : T → Tm such that (i) W∞ [τ (t,m)] = S∞ [τ (t,m)] =

S∞ [t] for each (t,m), and (ii) τ (t,m)→ t as m→∞.

Proof. Take Tm and τ (·,m) as in Lemma 9. Since T is dominance-solvable, τ (·,m)
is simply defined on type profiles. Since T is dominance-solvable and τ (t,m)→ t, by
Lemmas 4 and 5, there exists m̄ such that for each m > m̄, S∞ [τ (t,m)] = S∞ [t].
Since T is finite, m̄ can be chosen uniformly for all t. Moreover, by Lemma 9,
S∞ [t] =W∞ [τ (t,m)]. ¤
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Together with the result of Lipman (2003) and upper-semicontinuity of S∞, this
implies that a dominance-solvable model can be approximately embedded in a larger
model with a common prior without affecting the rationalizable strategies. This is
stated in the next lemma.

Lemma 11. Under Assumption 1, for any finite, dominance-solvable model T ⊆ T̂

and any m, there exist a finite model Tm that admits a common prior with full
support and a one-to-one mapping τ (·,m) : T → Tm such that (i) S∞ [τ (t,m)] =
S∞ [t] for each (t,m), and (ii) τ (t,m)→ t as m→∞.

Proof. By Lemma 10, for each m, there exist a dominance-solvable model T̃m ⊆
T̂ and a one-to-one and onto mapping τ̃ (·,m) : T → T̃m with W∞ [τ̃ (t,m)] =

S∞ [τ̃ (t,m)] = S∞ [t], and such that τ̃ (t,m) → t as m → ∞. Since each type
τ̃ i (ti,m) plays a strict best reply to his unique belief, one can perturb τ̃ i (ti,m)

by assigning positive but small probability at each (θ, τ̃−i (t−i,m)) ∈ Θ̃ × T̃m on
which τ̃ i (ti,m) puts zero probability without affectingW∞ [τ̃ (t,m)] or S∞ [τ̃ (t,m)],
where Θ̃ is the finite set of all parameters on which some type t̃j ∈ T̃m

j puts positive
probability. Hence, there exist sequences of dominance-solvable models Tm,k ⊆ T̂

and one-to-one mappings τ̄ (·, k) : T̃m → Tm,k, such that for each τ̄ (τ̃ (t,m) , k),
(i) supp

¡
κτ̄ i(τ̃ i(ti,m),k)

¢
= Θ̃ × Tm,k

−i (ii) W∞ [τ̄ (τ̃ (t,m) , k)] = S∞ [τ̄ (τ̃ (t,m) , k)] =

S∞ [t], and (iii) τ̄ (τ̃ (t,m) , k) → τ̃ (t,m) as k → ∞. But by Lemma 2, for each l,
there exists a finite model Tm,k,l ⊆ T̂ that admits a common prior and a one-to-one
mapping τ̂ (·, l) : T̃m,k → Tm,k,l such that τ̂ (τ̄ (τ̃ (t,m) , k) , l) → τ̄ (τ̃ (t,m) , k) as
l→∞. But since T̃m,k is dominance-solvable, by Lemmas 4 and 5, this implies that
S∞ [τ̂ (τ̄ (τ̃ (t,m) , k) , l)] = S∞ [τ̄ (τ̃ (t,m) , k)] when l > l̄ for some l̄. Hence, when
l > l̄, S∞ [τ̂ (τ̄ (τ̃ (t,m) , k) , l)] = S∞ [t]. By setting Tm ≡ Tm,m,m and τ (·,m) ≡
τ̂ (·,m) ◦ τ̄ (·,m) ◦ τ̃ (·,m) for m > l̄, one completes the proof. ¤

Proof of Lemma 6. Take any t̂ ∈ T̂ , and any a ∈ S∞
£
t̂
¤
. By Lemma 9, for each m,

there exists t̄ (m) ∈ T̂ such that a ∈ W∞ [t̄ (m)] and t̄ (m)→ t̂ as m→∞. But by
Lemma 8, since a ∈W∞ [t̄ (m)], for each m and k, there exists a finite, dominance-
solvable model Tm,k with a type profile t (m, k), such that S∞ [t (m, k)] = {a} and
t (m, k) → t̄ (m) as k → ∞. If we only need dominance-solvability, then t̃ (m) =

t (m,m) and Tm = Tm,m satisfy the desired properties. Now suppose we need a
common prior. By Lemma 11, for each m, k, l, there exist a finite model Tm,k,l that
admits a common prior and a one-to-one mapping τ (·, l) : Tm,k → Tm,k,l, such
that τ (t (m, k) , l) → t (m, k) as l → ∞, and S∞ [τ (t (m, k) , l)] = S∞

£
t̂
¤
= {a}
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for every t (m, k) and l. We then obtain a model with a common prior, by setting
t̃ (m) = τ (t (m,m) ,m) and Tm = Tm,m,m. ¤

6. Conclusion

Usual game theoretical models typically have a multitude of rationalizable strate-
gies, suggesting that rationalizability is a weak solution concept. The multiplicity
may be, however, a property of the present models, rather than a property of ratio-
nalizability. Generically, rationalizability leads to strong robust predictions: there
exists a unique rationalizable outcome, and it is continuous with respect to the play-
ers’ beliefs. Whenever we have only partial information about a strategic situation
(as described in the Introduction), we can find a type profile that is consistent with
our information and with a unique rationalizable outcome. Moreover, when there is
a unique rationalizable outcome for a given situation, if our partial information is
sufficiently precise, we can know which action profile is played according to rational-
izability. Hence, under our partial information, we can never rule out the possibility
that by obtaining more precise partial information, we could have learned what each
player plays according to rationalizability. Rationalizability is a strong solution con-
cept in this sense. It is also a strong solution concept in the sense that we could not
refine it to obtain sharper predictions under our partial information.

Appendix A. Proof of Lemma 4

Definition 6. For any correspondence F : X → 2Y , Gr (F ) = {(x, y) |y ∈ F [x]} denotes
the graph of F . For each k, define Bk

i : ∆
³
Θ×Gr

³
Sk−1
−i

´´
→ 2Ai by

Bk
i (π) = argmax

a0i
Eπ

£
ui
¡
a0i, a−i, θ

¢¤
= argmax

a0i
BRi

³
margΘ×A−iπ

´
.

For k = 0, Sk
i is upper-semicontinuous and non-empty by definition. Towards an

induction, fix a k > 0, and assume that Sk−1
−i is upper-semicontinuous and non-empty. I

will show that Gr
¡
Sk
i

¢
is closed. By the inductive hypothesis, Θ × Gr

³
Sk−1
−i

´
⊆ Θ ×

T ∗−i×A−i is closed and non-empty. Since Θ×T ∗−i×A−i is compact, Θ×Gr
³
Sk−1
−i

´
is also

compact. Thus, ∆
³
Θ×Gr

³
Sk−1
−i

´´
is compact. Moreover, ui is continuous and bounded

(by compactness of Θ × A), so that Eπ [ui (ai, a−i, θ)] is a continuous function of π (by
definition of weak convergence). Therefore, by Berge’s Maximum Theorem, Gr

¡
Bk
i

¢
⊆

∆
³
Θ×Gr

³
Sk−1
−i

´´
×Ai is closed. Since ∆

³
Θ×Gr

³
Sk−1
−i

´´
×Ai is compact, Gr

¡
Bk
i

¢
is also compact. Now, by definition of weak convergence, margΘ×T∗−iπ is a continuous
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function of π. Since T ∗i is isomorphic to ∆
¡
Θ× T ∗−i

¢
(Mertens and Zamir (1985)), there

also exists a continuous function φ : ∆
¡
Θ× T ∗−i

¢
→ T ∗i , such that φ (κti) = ti for each

ti. Consider the continuous mapping ψ : (π, ai) 7→
³
φ
³
margΘ×T∗−iπ

´
, ai

´
. By definition,

Gr
¡
Sk
i

¢
= ψ

¡
Gr
¡
Bk
i

¢¢
. But, since Gr

¡
Bk
i

¢
is compact and ψ is continuous, ψ

¡
Gr
¡
Bk
i

¢¢
is closed. Moreover, since Θ×Gr

³
Sk−1
−i

´
is closed (and A−i is finite), for each ti, one can

easily construct a π ∈ ∆
³
Θ×Gr

³
Sk−1
−i

´´
such that margΘ×T∗−iπ = κti , so that S

k
i [ti] is

non-empty.

Finally, since Sk
i [ti] is non-empty for each k <∞ andAi is finite, S∞i [ti] =

T
k<∞ Sk

i [ti] 6=
∅. Moreover, since Gr

¡
Sk
i

¢
is closed for each k <∞, Gr (S∞i ) =

T
k<∞Gr

¡
Sk
i

¢
is closed.
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