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Abstract

We analyze a symmetric model of an election in which voters are un-
certain about which of two alternatives is desirable for them. For each
voter, an only information resource about the alternatives is a noisy sig-
nal, and she must pay some cost to reduce the noise. Although there are
many possibilities of the signal structure, by focusing on unbiased voting
strategies, we find that the problem can be reduced to one parameter:
the probability that the desirable alternative in reality looks more plau-
sible to the signal receiver. Another problem is a possibility of multiple
equilibria. We show, however, that for any sequence of unbiased voting
equilibria, the probability of electing the desirable alternative converges
to the same value as the number of voters grows. Combining our results
with the result of Martinelli (2005), we show that if the second order
derivative of the information cost function is zero at no information then
this probability converges to one, that is, the Condorcet Jury Theorem is
valid, and otherwise converges to some value less than one, that is, the
“rational ignorance” hypothesis is valid.

KEYWORDS: Condorcet jury theorem, rational ignorance, elections,
strategic voting, information aggregation, costly information acquisition.

1 Introduction

Can elections aggregate private information in a large society? This is a central
question concerning elections. Apropos of this question, the Condorcet Jury
Theorem (hereafter CJT) gave a powerful justification for elections under the
majority voting rule. CJT asserts that the probability of making an appro-
priate decision will converge to one as the number of voters grows. There is
much of literature advocating CJT1, nevertheless CJT may not valid if each
voter voluntarily acquires costly information. Increasing the number of voters
reduces incentives for information acquisition since the probability of affecting
the outcome becomes small.
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Recently, in his pioneering work, Martinelli (2005) showed that under certain
conditions CJT is valid although information acquisition is costly. The main
point of his paper is that “rational ignorant” voters are consistent with a well-
informed electorate. Formally, Martinelli (2005) considered the sequence of
symmetric equilibria and showed that CJT is valid along this sequence if and
only if the second derivative of the information cost function at no information
is zero.

Martinelli (2005), however, employed a quite restrictive framework to lead
to this conclusion. Considering applications and the robustness of his results,
there remain two problems to be solved: (i) there are only two signals in his
model, and (ii) there still remains the possibility of asymmetric equilibria. We
answer the following question in this paper. Does his result hold under general
situations?

We study a symmetric model of an election in which voters are uncertain
about which of two alternatives is desirable for them. For each voter, an only
information resource about the alternatives is a noisy signal, and she must pay
some cost to reduce the noise. Most of previous papers typically deal with simple
signal structures, e.g., there are only two signals, while we consider general
symmetric signal structures. We allow a wide variety of signal structures such
that signals perturbed by a noise term distributed continuously.

Our first result is that if all voters adopt unbiased voting strategies such
that each vote is symmetric between two alternatives, then the problem can
be reduced to one parameter: the probability that the desirable alternative in
reality looks more plausible to the signal receiver (Theorem 1). Due to this
result, a symmetric signal structure can be degenerated to the simple one in
which each voter can predict the desirable alternative with her own probability
q. Thus, employing the simple signal structure is justified.

Our second result concerns the asymptotic property of the election outcome.
Strategic voting models generally possess the multiplicity of equilibria. We show,
however, that for any sequence of unbiased voting equilibria, the probability of
electing the desirable alternative converges to the same value as the number of
voters grows (Theorem 2). As a corollary of this result combined with Theorem 2
in Martinelli (2005), we can calculate the asymptotic probability of the electoral
outcome. Consequently, we show that if the second order derivative of the
information cost function is zero at no information then for any sequence of
unbiased-voting equilibria, the probability of electing the desirable alternative
converges to 1, that is, CJT is valid, otherwise this probability converges to
p < 1, that is, CJT is not valid.

Although a large number of studies have been done on CJT, most of them
assumed that each voter’s competence is given exogenously. This assumption
ignores salient behavior of voters: for the purpose of voting for a desirable
alternative, each voter would be willing to acquire the information about the
alternatives before the election. Taking such behavior into consideration, we
suppose costly information acquisition. More precisely, for each voter an only
information resource about the alternatives is a noisy signal, and she must
pay some cost to reduce the noise. Such endogenous information acquisition
exerts a serious influence on electoral outcomes (See Mukhopadhaya, 2003 and
Martinelli, 2005).

Related to information aggregation under costly information acquisition,
another significant thought is the “rational ignorance” hypothesis asserted by
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Downs (1957). That is, voters will not have an incentive to acquire information
about the alternatives before voting since it is extremely rare that each vote be-
comes pivotal in a large election. Therefore, it seems, at a glance, that elections
lead to a poorer decision in a large society, namely, CJT is not valid.

This inference, however, is not necessarily true. Even if the amount of infor-
mation acquired by each voter is small, the amount of aggregated information
can be large enough to the correct decision. Martinelli (2005) showed this, con-
fining to the sequence of symmetric equilibria. We show that his result is true
under any general signal structure for any sequence of equilibria.

The rest of the paper is organized as follows. Section 2 examines the model.
Section 3 derives two main results. Section 4 states conclusions. All formal
proofs are in the Appendix.

2 The Model

We analyze a symmetric election with two alternatives, L and R. Either one of
the alternatives is assumed to be commonly desirable. There are 2n + 1 voters
indexed by i. A voter’s payoff depends on the chosen alternative d ∈ {L,R},
the state z ∈ {zL, zR} and the quality of information acquired by herself before
the election x ∈ [0, x̄] = X. Acquiring information of quality x has a cost given
by C(x), so the payoff of a voter can be written as

u(d, z) − C(x).

We assume that x = 0 is equivalent to acquiring no information, and that
acquired information becomes more precise as x increases. We also assume that
C(0) = 0, C(x̄) = ∞ and C(·) is increasing. L (R) is the desirable alternative
in state zL (zR):

u(d, z) =
{

1 if (d, z) = (L, zL) or (R, zR),
0 otherwise. (1)

At the beginning of time, nature selects the state with equal probability: Pr(zL) =
Pr(zR) = 1/2. Voters are uncertain about the realization of the state and they
can only observe a noisy signal. After the realization of the state, each voter i
must decide the quality of her information xi. After deciding on xi, i receives
a private signal s ∈ S, which is independent among voters. The distribution of
signals depends on both the quality of information x and the state z. Formally,
let S be the signal space, S be the σ-algebra of subsets of S and {µx

z} be the
family of probability measures on S. Given (x, zd), the distribution of signals
follows µx

d . We restrict our attentions to symmetric signal structures.

Assumption 1
There exists a family of one-to-one transformations {τx}x∈X on S such that for
any s ∈ S,

τx(τx(s)) = s, (2)

and for any S′ ∈ S,

µx
L(S′) = µx

R(τ(S′)). (3)
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We call τx(s) the conjugate signal of s w.r.t. x. Obviously, the conjugate
signal of τx(s) w.r.t. x is s. Intuitively, the probability of receiving s under zL

is equal to that of receiving τ(x) under zR. Note that under Assumption 1 we
obtain Pr

(
zL

∣∣s) = Pr
(
zR

∣∣τ(s)
)

by Bayes’ rule, that is, if zL is plausible under
s then zR is plausible under τ(s). We give two examples of symmetric signal
structures.

Example 1 (2-signals: Martinelli, 2005)
S = {sL, sR}, X = [0, 1/2] and the probability of receiving signal sd in state zd

is given by 1/2 + x. τx(sL) = sR and τx(sR) = sL for all x. We can regard sd

as the correct signal in the state zd. This signal structure is the simplest one
that describes the situation supposed by Condorcet. ‖

Example 2 (Normal noise: Kitahara and Sekiguchi, 2005)
S = (−∞,∞), X = [0,∞] and

s(x) =
{

−x + ε if z = zL, and
x + ε if z = zR,

(4)

where ε ∼ N(0, 1). Obviously, τx(s) = −s for all x. ‖

The election takes place after voters receive their signals. A voter can either
vote for L or vote for R. (That is, there is no abstention.) The alternative with
most votes is chosen.

A strategy for a voter i is a tuple (xi, vi) where xi specifies a quality of infor-
mation and a measurable function vi : S → [0, 1] specifies a probability of voting
for L after receiving a signal. Since we assume no abstention, a probability of
voting for R given s is 1 − vi(s).

A strategy profile (x,v) is a voting equilibrium if it is a Nash equilibrium.
We restrict our attention to some subset of voting equilibria in which each vote
is unbiased between two alternatives. We define an unbiased strategy as follows.

Definition 1 A strategy (xi, vi) is unbiased if vi(s) = 1−v(τxi(s)) for all s ∈ S.

Namely, for any signal the probability of voting for L given this signal is
equal to the probability of voting for R given the conjugate signal of this signal.
An unbiased voting equilibrium is a voting equilibrium in which all voters adopt
unbiased strategies. We restrict our attention to unbiased voting equilibria for
the purpose of excluding trivial equilibria such that, for example, all voters vote
for L regardless of their signals. Take notice of following two points. First, we
do not assume that strategies are symmetric among voters, that is, voters may
adopt different unbiased strategies. Second, we do not exclude deviation to a
biased strategy, e.g., vi(s) = 1 for all s.

Remarks:
We say our election model is symmetric in the following sense.

(i) Each alternative is desirable with equal probability ex ante: Pr(zL) =
Pr(zR).

(ii) The Payoff from the desirable alternative is independent of the names of
the alternatives: Eq (1).
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(iii) The signal structure is symmetric: Assumption 1.

(iv) In equilibria, each vote is symmetric between the alternatives: Definition
1.

3 Main Results

3.1 Degeneration to 2-signals

In this subsection, we show that if all voters adopt unbiased strategies, any
symmetric signal structure can be degenerated to the two-signals case as in
Example 1. We begin with some preliminary definitions.

At first, we define a family of partitions of S w.r.t. x as follows:

SL(x) = {s ∈ S|Pr(zL|s, x) > Pr(zR|s, x)},
SM (x) = {s ∈ S|Pr(zL|s, x) = Pr(zR|s, x)},
SR(x) = {s ∈ S|Pr(zL|s, x) < Pr(zR|s, x)},

where x ∈ X. Obviously, for any x ∈ X, {SL(x), SM (x), SR(x)} constitutes
a partition of S and each element is measurable. SL(x) (SR(x)) is the set of
signals under which zL (zR) is more plausible when the quality of information
is x, and SM (x) is the set of signals under which both states are similarly
plausible. Notice that, by Assumption 1 and Bayes’ rule, s ∈ SL(x) if and only
if τ(s) ∈ SR(x), and s ∈ SM (x) if and only if τ(s) ∈ SM (x). As we will show
below, in any unbiased voting equilibria each voter who chose x and received
s ∈ SL(x) (SR(x)) votes for L (R).

Next, define an accuracy of information q : X → [1/2, 1] as:

q(x) = µx
L

(
SL(x)

)
+

1
2
µx

L

(
SM (x)

)
= µx

R

(
SR(x)

)
+

1
2
µx

R

(
SM (x)

)
.

By Assumption 1, q(x) is well-defined. The accuracy q(x) is, in other words, the
probability that the desirable alternative in reality looks more plausible for a
voter with her quality of information x. Thus, if a voter with x votes sincerely,
i.e., as if her vote alone determines the outcome, then the probability that
she votes for the desirable alternative is equal to q(x). Note that q(0) = 1/2
since we assumed that there is no information when x = 0. For Example 1,
q(x) = x + 1/2. For Example 2, q(x) = Φ(x), where Φ is the cumulative
density function of N(0, 1). After this q(x) plays a key part of our analysis.
For simplicity, we exclude a redundant x, namely, no two qualities have same q.
And we also assume that any q(x) ∈ [1/2, 1] can be attained by appropriately
choosing x.

Assumption 2
q(·) is a bijection, and hence C̃ = C ◦ q−1 is well-defined.

C̃(q) is the cost of information when an accuracy is q. In the rest of the
paper, we consider C̃ instead of C. For a voter, by Assumption 2, selecting
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x ∈ X is equivalent to selecting q ∈ [1/2, 1]. Note that C̃(1/2) = C(0) = 0. For
Examples 1 and 2, C̃ is well-defined.

To simplify notations, let yi for i = 1, ..., 2n+1 be the random variable such
that

yi =
{

1 if i votes for the desirable alternative,
0 otherwise. (5)

The only time i can influence the outcome of the election is if i’s vote is pivotal,
i.e.,

∑
j 6=i yj = n. A voter will votes for L if the expected payoff from voting

for L, conditional on her vote being pivotal, is greater than the expected payoff
from voting for R.

If voter i adopts an unbiased strategy, then Pr(yi = 1|zL) = Pr(yi = 1|zR).
Hence, in unbiased voting equilibria the probability of i’s vote being pivotal is
the same as in both states, i.e., Pr(

∑
j 6=i yj = n|zL) = Pr(

∑
j 6=i yj = n|zR), and

others’ votes have no information. Therefore, each voter votes informatively,
that is, she votes for the alternative, which is more likely to be desirable given
her signal. Thus we obtain the following Lemma.

Lemma 1 Suppose that (x∗,v∗) is an unbiased voting equilibrium. Then v∗i
satisfies the followings for all i,

v∗
i (s) =

{
1 if s ∈ SL(x∗

i ) (a.s.),
0 if s ∈ SR(x∗

i ) (a.s.), (6)

E
[
v∗i (s)

∣∣∣s ∈ SM (x∗
i )

]
=

1
2
. (7)

Moreover, Pr
(
yi = 1

∣∣∣(x∗
i , v

∗
i )

)
= q(x∗

i ).

Eq (7) is immediately obtained from the definition of the unbiased strategy.
This Lemma shows that in unbiased voting equilibria all voters vote sincerely,
and that the probability that i votes for the desirable alternative is exactly
equal to q(x∗

i ). Hence equilibrium conditions are described by the accuracy
of information q(x∗

i ). Before we state this formally, let yi(q) be the random
variable which is independently distributed as

yi(q) =
{

1 with probability q
0 with probability 1 − q.

(8)

Theorem 1
For any unbiased voting equilibrium (x∗,v∗), for all i,

q(x∗
i ) ∈ arg max

q∈[1/2,1]

{
q Pr

( ∑
j 6=i

yj

(
q(x∗

j )
)

= n
)
− C̃(q)

}
. (9)

Conversely, if x∗
i satisfies Eq (9) for all i, then there exists an unbiased voting

equilibrium, in which each voter i chooses x∗
i . The probability of electing the

desirable alternative is equal to Pr(
∑

i yi(q(x∗
i )) > n).

This Theorem reveals that for any symmetric signal structure, the optimiza-
tion problem for voters is equivalent to the maximization problem w.r.t. q(xi).
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Therefore, any symmetric signal structure can be degenerated to the two-signals
case as in Example 1.

Next we consider the existence of symmetric unbiased voting equilibria. To
guarantee the existence, we suppose the following regular assumption in the
remainder of the paper.

Assumption 3
C̃ is strictly increasing, strictly convex, and twice continuously differentiable.

For Examples 1 and 2, if C is strictly increasing, strictly convex, and twice
continuously differentiable, then C̃ does too (C̃ are given by C(q − 1/2) and
C(Φ−1(q)), respectively).

Corollary 1 Assume C̃ ′(1/2) = 0. Then for arbitrary n there exists a sym-
metric unbiased voting equilibrium, in which all voters choose the same quality
x̄n which solves (

2n
n

)
(qn(1 − qn))n = C̃ ′(qn) (10)

with qn = q(x̄n).

For the two-signals case, Martinelli also proved this statement (Theorem 1
in Martinelli, 2005).

3.2 Asymptotic Properties

We take an interest in the asymptotic property w.r.t. n. That is, whether
or not the probability of the desirable alternative being chosen by the election
converges to 1 as n goes to infinity. Even for the two-signals case, the conver-
gence property has been clarified only for the sequence of symmetric equilibria
(See Martinelli, 2005). Nevertheless, of course, there still remains the possi-
bility of asymmetric equilibria. In strategic voting models the multiplicity of
equilibria is generally observed. Can there be different performances by delib-
erately choosing asymmetric equilibria? The following theorem answers for this
question.

Theorem 2
Assume C̃ ′(0) = 0. Then, for any sequence of unbiased voting equilibria {(xn,vn)},

(i) if C̃ ′′(1/2) > 0, then for sufficiently large n, q(xn
i ) = qn for all i, where

qn is the unique solution of Eq (10);

(ii) if C̃ ′′(1/2) = 0, then

Pr
( ∑

i

yi

(
q(xn

i )
)

> n
)
→ 1 as n → ∞. (11)

In other words, for any sequence of unbiased equilibria the probability of the
desirable alternative winning the election converges to that of the symmetric
equilibria sequence defined in Corollary 1. Combining this Theorem with Mar-
tinelli’s result, the convergence property of all equilibria sequences is clarified.
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Theorem 2 in Martinelli (2005) asserted that if C̃ ′(1/2) = 0, and qn satisfies
(10) for all n, then Pr(

∑
i yi(qn) > n) approaches Φ(δ), where δ solves

φ(δ)
δ

=
1
4
C̃ ′′(1/2), (12)

where φ is the density function of N(0, 1). Hence the following holds as a
corollary of Theorem 2.

Corollary 2 Assume C̃ ′(0) = 0. Then, for any sequence of unbiased voting
equilibria, the probability of electing the desirable alternative converges to Φ(δ),
where δ is the unique solution of Eq (12).

We can summarize the results obtained so far as the following remarks.

Remarks:
(i) If C̃ ′′(1/2) = 0 then the probability of electing the desirable alternative

approaches to 1, that is, CJT is valid.

(ii) If C̃ ′′(1/2) 6= 0 then the probability of electing the desirable alternative
approaches to Φ(δ) < 1, that is, rational ignorance hypothesis is valid.

4 Conclusions

In a symmetric two-alternatives election with costly information acquisition,
general symmetric signal structures can be degenerated to the two-signals case
if we assume that each vote is unbiased between the alternatives in equilibria.

For any unbiased voting equilibria sequence, the probability of electing the
desirable alternative converges to the same value as the number of voters in-
creases. If the second order derivative of the information cost function is zero
at no information then this probability converges to 1, that is, CJT is valid.
Otherwise, it converges to Φ(δ) < 1, that is, “rational ignorance” hypothesis is
valid.

We believe that our results are useful to various applications. For instance,
Kitahara and Sekiguchi (2005) considered the case in which signals are per-
turbed by normal noise as in Example 2 and showed that if C ′ is concave, then
the election leads to poorer decision than the case of delegating the choice to
one of voters. On the other hand, if C ′ is convex, then the election leads to
better decision if and only if the value of choosing the desirable alternative is
sufficiently large.
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Appendix

The Proof of Lemma 1
Suppose that (x∗,v∗) is an unbiased voting equilibrium. Then,

Pr
(
yi = 1

∣∣∣zL, (x∗
i , v

∗
i )

)
= E

[
v∗

i (s)
∣∣zL

]
=

∫
S

v∗
i (s)µx∗

i

L (ds)

=
∫

S

(1 − v∗
i (s))µx∗

i

R (ds)

= E
[
1 − v∗

i (s)
∣∣zR

]
= Pr

(
yi = 1

∣∣∣zR, (x∗
i , v

∗
i )

)
.

Let pivi be the event that i’s vote is pivotal. Since C(x̄) = ∞, q(x∗
i ) < 1 for all

i. Then, this event occurs with positive probability in equilibria. Since i’s vote
becomes pivotal if

∑
j 6=i y∗

j = n, we have

Pr
(
pivi

∣∣∣zL, (x∗
−i,v

∗
−i)

)
= Pr

(
pivi

∣∣∣zR, (x∗
−i,v

∗
−i)

)
> 0. (13)

Thus, in unbiased voting equilibria the probability of i’s vote being pivotal is
the same as in both states. The probability distribution over states conditional
on i receiving s and pivi is computed by Bayes’ rule. This is given by

Pr
(
z
∣∣∣pivi, s, (x∗,v∗)

)
=

Pr
(
z
∣∣s, x∗

i

)
Pr

(
pivi

∣∣z, (x∗
−i,v

∗
−i)

)∑
z′∈{zL,zR} Pr

(
z′

∣∣s, x∗
i

)
Pr

(
pivi

∣∣z′, (x∗
−i,v

∗
−i)

)
= Pr

(
z
∣∣∣s, x∗

i

)
.

The last equality is given by Eq (13). Therefore, when a voter receives the signal
s, the difference between the expected payoff from voting for L and for R is

Pr
(
zL

∣∣s, x∗
i

)
− Pr

(
zR

∣∣s, x∗
i

)
.

Consequently, i votes for L (R) if she receives s ∈ SL(x∗
i ) (SR(x∗

i )) almost surely.
Eq (7) is immediately obtained from the definition of the unbiased strategy and
obviously we have Pr

(
yi = 1

∣∣(x∗
i , v

∗
i )

)
= q(x∗

i ). 2

The Proof of Theorem 1
A voter i’s expected payoff can be written as

Ui(xi, yi|x−i,v−i)

= Pr
( ∑

j 6=i

yj > n
∣∣∣(x−i,v−i)

)
+ Pr

( ∑
j 6=i

yj = n, yi = 1
∣∣∣(x,v)

)
− C(xi)

= Pr
( ∑

j 6=i

yj = n
∣∣∣(x−i,v−i)

)
Pr

(
yi = 1

∣∣∣(xi, vi)
)
− C(xi) + Const.

Due to Lemma 1, we obtain

(x∗
i , v

∗
i ) ∈ arg max

(xi,vi)
Ui(xi, vi|x−i,v−i), ∀i

⇐⇒ q(x∗
i ) ∈ arg max

q∈[1/2,1]

{
q Pr

( ∑
j 6=i

yj

(
q(x∗

j )
)

= n
)
− C̃(q)

}
, ∀i.
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Obviously, the probability of winning the desirable alternative is equal to
Pr

( ∑
i yi

(
q(x∗

i )
)

> n
)
. 2

The Proof of Corollary 1
Suppose that (x∗,v∗) is a strategy profile such that x∗

i = x̄n for all i and v∗
i

satisfies Eq (6) (7). Due to Theorem 1, (x∗,v∗) is an unbiased voting equilibrium
if x̄n solves Eq (10). If C̃ ′(1/2) = 0, then such an x̄n uniquely exists for all n.
2

The Proof of Theorem 2
Suppose that {xn,vn} is a sequence of unbiased voting equilibria.

(i) Suppose that C̃ ′′(1/2) > 0. In this case, It saffices to show that q(xn
i ) = q(xn

j )
for all i, j if n is sufficiently large.

Suppose, on the contrary, that q(xn
i ) 6= q(xn

j ). By the F.O.C.,

C̃ ′(q(xn
i )) = Pr

( ∑
k 6=i

yk

(
q(xn

k )
)

= n
)

= Pr
( ∑

k 6=i,j

yk

(
q(xn

k )
)

= n − 1
)
· q(xn

j )

+Pr
( ∑

k 6=i,j

yk

(
q(xn

k )
)

= n
)
·
(
1 − q(xn

j )
)
.

Hence,

C̃ ′(q(xn
i )

)
− C̃ ′(q(xn

j )
)

q(xn
i ) − q(xn

j )

= Pr
( ∑

k 6=i,j

yk

(
q(xn

k )
)

= n
)
− Pr

( ∑
k 6=i,j

yk

(
q(xn

k )
)

= n − 1
)
.

Since C̃ ′′ is continuous then the LHS is bounded away from 0. On the other
hand, the RHS converges to 0, it contradicts that q(xn

i ) 6= q(xn
j ).

(ii) Suppose that C̃ ′′(1/2) = 0. If q(xn
i ) = q for all i then the probability that

i’s vote becomes pivotal is

fn(q) =
(
2n
n

)(
q(1 − q)

)n
.

It reaches a maximum at q = 1/2 and it is decreasing. Define qn and q
n

such
that

C̃ ′(qn) = rfn

(
1
2

)
,

C̃ ′(q
n
) = rfn (qn) .

Since C̃ ′(q(xn
i )) = Pr

(∑
j 6=i yj

(
q(xn

j )
)

= n
)

by the F.O.C. and Pr
(∑

j 6=i yj

(
q(xn

j )
)

= n
)

is decreasing in q(xn
j ), q(xn

i ) ∈ [q
n
, qn] for all i and n.

Suppose that C̃ ′(q) = α(q − 1/2)2. In such a case, those bounds satisfy
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(
qn − 1

2

)
'

( r

α

) 1
2

(
1

nπ

) 1
4

, (14)(
q

n
− 1

2

)
'

(
qn − 1

2

)
exp

(
− r

α
√

π

)
. (15)

for sufficiently large n (by Starling’s Formula).
By Chebychev’s inequality,

√
n

(
qn − 1

2

)
→ ∞ ⇒ Pr

(∑
i

yi(qn) > n

)
→ 1.

Obviously,
√

n(qn − 1/2) → ∞ if q
n

satisfies Eq (14) (15) with equality. Then,

even if all voters adopt worst quality q
n
, Pr

( ∑
j yj

(
q

n

)
> n

)
→ 1.

Consider a general C̃ ′ which satisfies C̃ ′′(1/2) = 0. If α is sufficiently large,
C̃ ′(1/2 + ε) ≤ αε2 for sufficiently small ε. Therefore each voter’s equilibrium
quality is not less than q

n
in the case of C̃ ′(q) = α(q − 1/2)2 for sufficiently

large n. Since Pr(
∑

i yi(q(xn
i )) > n) is increasing in q(xn

i ), CJT is valid for any
sequence of equilibria if C̃ ′′(1/2) = 0. 2
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