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Abstract

This paper studies the consequences of the strategic manipulation
of resource allocation rules in the problem of assigning an indivisible
object with monetary transfers. We introduce the notion of most re-
alizable allocations, which are allocations chosen as ε-Nash equilibria
for arbitrary small ε > 0 in the direct revelation game of any rule.
We show that for every rule satisfying certain normative requirements,
the set of most realizable allocations is non-empty and in fact coincides
with the set of efficient and envy-free allocations. Thus possible strate-
gic manipulation achieves efficiency and envy-freeness, while any other
distributional objective cannot be attained. This result much contrasts
with the well-known non-existence of efficient and strategy-proof rules
in the literature. Our result also suggests a way not to depend on the
Groves rules, which violate budget balance.
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1 Introduction

Designing allocation rules that are robust to strategic misrepresentation of
preferences is the main topic in the literature of mechanism design and im-
plementation. However, this requirement is so demanding in general that no
reasonable allocation rule satisfies it in many economic models. This motivates
us to investigate if possible manipulations are really serious. In this paper, we
study this issue in the public decision problem of assigning one indivisible
object with monetary transfers. 1

An allocation is a pair of an assignment function that determines who
receives the object and a vector of feasible monetary transfers. A rule is a
function that maps each preference profile to an allocation. We shall analyze
which allocations are realizable in the direct revelation game of any rule sat-
isfying certain normative requirements. Nash equilibrium does not exist in
many cases, thus we slightly relax the equilibrium notion. An allocation is
most realizable if it can be chosen by an ε-Nash equilibrium for arbitrary small
ε > 0. Our main theorem fully characterizes the set of most realizable alloca-
tions for a broad class of rules. In fact they have exactly the same non-empty
set. We show that for arbitrary rule satisfying certain efficiency, fairness, and
continuity conditions, the set of most realizable allocations is non-empty and in
fact coincides with the set of efficient and envy-free allocations. Thus strategic
manipulation leads efficiency and envy-freeness, while any other distributional
objective cannot be attained.

It is known that the Groves rules (Groves, 1973) are the only decision
efficient and strategy-proof rules. 2 However, the Groves rules do not balance
budget among agents. Though this is admissible in the auction context at
which a third party is supposed to receive money from the accepter, it is a
serious drawback in public decision at which monetary transfers are supposed
to be closed among the agents. Our theorem suggests that this problem can be
resolved by using any rule satisfying certain conditions instead of the Groves
rules. Examples of such rules are Shapley solutions and all envy-free rules that
are continuous in money.

A closely related study by Tadenuma and Thomson (1995a) also analyzes
the manipulability of rules in the same environment. 3 They show that if
a (possibly) multi-valued rule satisfies envy-freeness and a technical require-

1This problem has a lot of applications such as the assignment of a task, location, or
right. Sakai (2005a,b) interprets the object as a garbage incineration facility and analyze
fair compensation to the siting district in generalized models. See, Thomson (2005, Ch. 10)
for a survey.

2This result is due to Green and Laffont (1977) and Holmström (1979).
3Thomson (1984, 1988) investigates the same topic in exchange economies. In the papers,

he offers surveys of the literature.
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ment called “non-discrimination”, then the set of certain equilibrium alloca-
tions coincides with the set of envy-free allocations. 4 Non-discrimination is
a condition that almost immediately implies that all envy-free allocations are
supported by equilibria. This condition is hard to be met for single-valued
rules. Indeed, all standard rules satisfying non-discrimination in this context
are multi-valued. Thus Tadenuma and Thomson’s result is strongly oriented
to understand the manipulability of multi-valued rules. On the other hand,
we focus on single-valued rules. This enables us to compare our results with
the results on strategy-proofness in the literature, since strategy-proofness is
well-defined only for single-valued rules. Also, it enables us to interpret that
our study is to find outcome functions that implement certain desirable allo-
cations in direct revelation games, since every single-valued rule can be seen
as the outcome function in the corresponding direct revelation game.

This paper is organized as follows: Section 2 defines the model. Section 3
explains the equilibrium notion and provides the main theorem. Section 4 con-
cludes the discussion. The proof of the theorem is relegated to the Appendix.

2 Model

2.1 Basic notion

Let I = {1, 2, . . . , n} be a finite set of agents. There is one indivisible object
α to be assigned to agents. For convenience, we consider that if an agent
does not receive α, she instead receives a “null” object ν. We assume that
monetary transfers are possible. Each i ∈ I has a valuation over the object,
vi ∈ R. Agent i’s quasi-linear preference over {α, ν} × R is then represented
by u( · ; vi) : {α, ν} × R→ R such that for each mi ∈ R,

u(α, mi; vi) = vi + mi,

u(ν, mi; vi) = mi.

Let v = (v1, v2, . . . , vn) ∈ RI be a profile of valuations.
An assignment function is a function σ : I → {α, ν} such that |σ−1(α)| = 1.

Given i ∈ I, σ(i) = α means that i receives the object and σ(i) = ν means that
i does not receive it. A monetary transfer vector is m = (m1,m2, . . . , mn) ∈ RI

such that
∑

i∈I mi ≤ 0. Given i ∈ I, mi ≥ 0 (resp. mi < 0) is the amount of
money he is paid (resp. pays). An allocation is a pair of an assignment function
and a monetary transfer vector, x = (σ,m). We write (xi)i∈I = (σ(i),mi)i∈I .
Let X be the set of all allocations.

4Generalizations of this result are obtained by Fujinaka and Sakai (2005).
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A rule is a function ψ from RI to X, which associates with each valuation
profile v ∈ RI an allocation, ψ(v) ∈ X.

2.2 Axioms

We first introduce efficiency conditions. They respectively state that: no unan-
imous welfare improvement is possible: an agent whose valuation to the object
is highest should receives it; no money should be wasted.

Efficiency: An allocation x ∈ X is efficient at v if there exists no y ∈ X such
that for each i ∈ I, u(yi; vi) ≥ u(xi; vi), with strict inequality holding for at
least one agent. A rule ψ is efficient if for each v ∈ RI , ψ(v) is efficient at v.

Decision efficiency: An allocation x = (σ,m) ∈ X is decision efficient at v
if vσ−1(α) = maxi∈I vi. A rule ψ is decision efficient if for each v ∈ RI , ψ(v) is
decision efficient at v.

Budget balancedness: An allocation x = (σ,m) ∈ X is budget balanced if∑
i∈I mi = 0. A rule ψ is budget balanced if for each v ∈ RI , ψ(v) is budget

balanced.

We next introduce fairness requirements. The next notion states that every
agent weakly prefers his/her own consumption to anyone else’s (Foley, 1967).

Envy-freeness: An allocation x ∈ X is envy-free at v if for each i, j ∈ I,
u(xi; vi) ≥ u(xj; vi). A rule ψ is envy-free if for each v ∈ RI , ψ(v) is envy-free
at v.

Given i ∈ I and vi ∈ R, imagine the hypothetical situation where all agents
have the same valuation as i. Here, all agents are identical, hence it is fair to
treat everyone equally. At any such allocation, the identical agents enjoy the
equal utility level of vi

n
. This is the reference utility level in the hypothetical

situation. The following notion states that everyone should be weakly better
off than this situation (Moulin, 1990). Alternately, it says that everyone should
benefit from the diversity of preferences.

Identical preferences lower bound: An allocation x ∈ X meets the iden-
tical preferences lower bound at v if for each i ∈ N , u(xi; vi) ≥ vi

n
. A solution

ψ satisfies the identical preferences lower bound if for each v ∈ RI , ψ(v) meets
the identical preferences lower bound at v.

The next symmetry condition states that every identical two agents should
be treated equally.

Equal treatment of equals: For each v ∈ RI and each i, j ∈ I with vi = vj,
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u(ψi(v); vi) = u(ψj(v); vi).

The next proposition summarizes relations among the properties defined
so far.

Proposition 1. The following relations hold:
(i) Efficiency is equivalent to the pair of decision efficiency and budget bal-
ancedness ;
(ii) Envy-freeness implies decision efficiency and equal treatment of equals ;
(iii) Envy-freeness and budget balancedness together imply efficiency and the
identical preferences lower bound ;
(iv) Given v ∈ RI , x = (σ,m) ∈ X is efficient and envy-free at v if and only
if, letting (σ,m) ≡ ψ(v) and j ≡ σ−1(α),

vj = max
i∈I

vi,
∑
i∈I

mi = 0

maxi6=j vi

n
≤ mi = mk ≤ vj

n
for each i, k ∈ N \ {j}

Proof. (i) immediately follows from quasi-linearity of preferences. Svensson
(1983) shows that envy-freeness and budget balancedness together imply effi-
ciency. A proof similar to this and the trivial fact that envy-freeness implies
equal treatment of equals show (ii). Moulin (1990, p152) shows that envy-
freeness and budget balancedness together imply the identical preferences lower
bound. 5 Thus (iii) holds.

General versions of (iv) can be found in Tadenuma and Thomson (1995a,
Lemma 2) and Bochet and Sakai (2005, Lemma 2). We only show that any
efficient and envy-free allocation is as stated in the statement. Let v ∈ RI and
x be such that x is efficient and envy-free at v. Let (σ,m) ≡ x and j ≡ σ−1(α).
By (i), x is decision efficient and budget balanced. Since all non-accepters do
not envy each other, for each i, k 6= j, mi = mk. Since j does not envy any
other agent, and mj = −(n−1)mi, vj +mj = vj−(n−1)mi ≥ mi. So, mi ≤ vj

n
.

Since any i 6= j does not envy j, mi ≥ vi− (n−1)mi. So,
maxi6=j vi

n
≤ mj. Thus

(iv) holds.

The next incentive condition states that no one can gain by preference
misrepresentation.

Strategy-proofness: For each v ∈ RI , each i ∈ I, and each v′i ∈ R,
u(ψi(v); vi) ≥ u(ψi(v

′
i, v−i); vi).

5Bevia (1996, Proposition 1) generalizes this result to multi objects cases.
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A general result by Homström (1979) implies that the Groves rules (Groves,
1973) are the only decision efficient and strategy-proof rules. 6 However, it is
known that none of them satisfies budget balancedness. 7 Thus we have:

Proposition 2. There exists no efficient and strategy-proof rule.

In this sense all efficient rules are manipulable. As explained in Introduc-
tion, this motivates us to analyze if manipulation is serious.

We introduce a continuity property, which guarantees the robustness of
social decision to small changes or misspecification of preferences. 8 In this
economy with an indivisible object, we simply define the condition by contin-
uous choice of monetary transfers when the accepter is unchanged.

Continuity: Let {vt}t∈N be a sequence in RI that converges to some v0 ∈ RI

such that

σt = σ0 for each t ∈ N,

where (σt,mt) ≡ ψ(vt) for each t ∈ N ∪ {0}. Then {mt}t∈N converges to m0.

2.3 Examples of rules

We present a few examples of rules satisfying the axioms. We say that rules
ψ, φ are equivalent in welfare if for each v ∈ RI and each i ∈ I, u(ψi(v); vi) =
u(φi(v); vi).

A rule ψ is an equal welfare rule if for each v ∈ RI , whenever (σ,m) ≡ ψ(v)
and j ≡ σ−1(α), vj = maxi∈I vi, mj = −n−1

n
vj and mi =

vj

n
for each i ∈ I \ {j}

at such an allocation (Tadenuma and Thomson, 1993). This rule is referred
to as “equal utility”, since u(ψi(v); vi) =

vj

n
for each i ∈ I. All equal welfare

rules are equivalent in welfare and in fact coincide with each other when there
is only one agent whose valuation is highest. Equal welfare rules satisfy all the
properties defined so far except for strategy-proofness. Other rules satisfying
all the properties can be found in Tadenuma and Thomson (1995b).

The next rules are based on the Shapley value (Shapley, 1953) in transfer-
able utility games. We first explain them by an example. Let I = {1, 2, 3} and

6Holmström’s result is based on Green and Laffont (1977).
7See, Ohseto (2000) and Schummer (2000) for discussion on Holmström’s result in this

environment. Other studies of strategy-proof rules are Miyagawa (2001), Svensson and
Larsson (2002), Ohseto (1999, 2004, 2006), and Bochet and Sakai (2005).

8Here each rule plays the role of an outcome function in the corresponding direct rev-
elation game. Since we analyze direct revelation games, arguments on the desirability of
continuous outcome functions in mechanism design directly apply to rules (see, Postlewaite
and Wettstein, 1989).
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v1 < v2 < v3. Consider the allocation x = (σ,m) such that σ(3) = α and

m1 =
v1

3
, m2 =

v1

3
+

v2 − v1

2
, and m3 = −v3 +

v1

3
+

v2 − v1

2
+

v3 − v2

1
.

Then the utility levels of agents at the allocation are

u(x1; v1) =
v1

3
, u(x2; v2) =

v1

3
+

v2 − v1

2
, and u(x3; v3) =

v1

3
+

v2 − v1

2
+

v3 − v2

1
,

which are the Shapley values when the worth of each coalition S ⊂ I is defined
by maxi∈S vi.

9 Formally, a rule ψ is a Shapley rule if for each v ∈ RI , whenever
(σ,m) ≡ ψ(v) and j ≡ σ−1(α),

vj = v[n],

mj = −vj +
v[1]

|I(v[1])| +
v[2] − v[1]

|I(v[2])| + · · ·+ v[n] − v[n−1]

|I(v[n])| ,

mi =
v[1]

|I(v[1])| +
v[2] − v[1]

|I(v[2])| + · · ·+ v[`] − v[`−1]

|I(v[`])| for each i 6= j with vi = v[`],

where v[`] is the `-th lowest valuation among (v1, v2, . . . , vn) 10 and I(v[`]) ≡
{k ∈ I : vk ≥ v[`]} for each `. All Shapley rules are equivalent in welfare and
in fact coincide with each other when there is only one agent whose valuation
is highest. They satisfy the properties defined so far except for envy-freeness
and strategy-proofness.

3 Allocations realizable through manipulation

To study which allocations are realizable as consequences of strategic manip-
ulation, we analyze the direct revelation game of a rule ψ (henceforth, the
game of ψ). Given a true profile v ∈ RI , a reported profile b ∈ RI is a Nash
equilibrium in the game of ψ at v if for each i ∈ I and each b′i ∈ R,

u(ψi(b); vi) ≥ u(ψi(b
′
i, b−i); vi).

LetN (ψ, v) be the set of Nash equilibria in the direct revelation game of ψ at v.
Then the set

ψ(N (ψ, v)) ≡ {x ∈ X : ∃ b ∈ N (ψ, v) such that x = ψ(b)}
9This argument is based on the simple expression of the Shapley value by Littlechild

and Owen (1973). Moulin (1992) analyzes the Shapley value in economies with indivisible
objects and money.

10For example, whenever v1 ≤ v2 ≤ . . . ≤ vn, v[`] = v` for each `.
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is the set of Nash equilibrium allocations in the game of ψ at v.
We are interested in which types of allocations belong to ψ(N (ψ, v)). How-

ever, this set is often empty due to the non-existence of Nash equilibria. For
example, consider the case I = {1, 2} and the equal welfare rule ψ that breaks
a tie by giving priority to agent 1, i.e., for each v ∈ RI with v1 = v2, agent 1
is chosen to be the ψ(v)-accepter. 11

Consider any v ∈ RI with v1 < v2. We shall show that no Nash equilibrium
exists here. Let b ∈ RI and j ∈ I be the ψ(b)-accepter. Let i 6= j.

Case 1: vj < bj. Since

u(ψj(vj, bi); vj) ≥ vj

2
> vj − bj

2
= u(ψj(b); vj),

agent j can gain by switching from bj to vj.

Case 2: bj ≤ vj and j = 1. Then b2 ≤ b1 ≤ v1 < v2. Since

u(ψ2(b1, v2); v2) =
v2

2
>

b1

2
= u(ψ2(b); v2),

agent 2 can gain by switching from b2 to v2.

Case 3: bj ≤ vj and j = 2. Then b1 ≤ b2 ≤ v2. Since ψ breaks a tie in
favor of agent 1, b1 < b2. For every ε > 0 such that b1 < b2 − ε,

u(ψ2(b1, b2 − ε); v2) = v2 − b2 − ε

2
> v2 − b2

2
= u(ψ2(b); v2).

Hence agent 2 can gain by switching from b2 to such b2 − ε. Overall, we
observed that N (ψ, v) = ∅ in all cases.

The key reason for the non-existence can be found in Case 3. Here, agent 2
is the ψ(b)-accepter who pays b2

2
. However, if she reports b2 − ε and if ε is

sufficiently small so as not to change the order of reported valuations, agent 2
can reduce her payment to b2−ε

2
with accepting the object. However, she cannot

find the most profitable ε due to the lack of the smallest number in the open
interval (b1, b2).

However, it is natural to consider that agent 2 does not care very small
gains. In such a case, whenever the interval (b1, b2) is sufficiently small, agent 2
does not switch from b2 to b2−ε with b1 < b2−ε, since the gain from the switch
is only ε

2
, which is smaller than b2−b1

2
. This argument motivates us to slightly

relax the equilibrium notion so that agents do not care very small gains.

11We can proceed the same discussion for the case that agent 2 is given the priority by
changing the role of the agents.
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Given ε > 0 and a true profile v ∈ RI , a reported profile b ∈ RI is an
ε-Nash equilibrium in the direct revelation game of ψ at v if for each i ∈ I and
each b′i ∈ R,

u(ψi(b); vi) ≥ u(ψi(b
′
i, b−i); vi)− ε.

Let N ε(ψ, v) be the set of ε-Nash equilibria in the direct revelation game
of ψ at v. Then the set

ψ(N ε(ψ, v)) ≡ {x ∈ X : ∃ b ∈ N ε(ψ, v) such that x = ψ(b)}
is the set of ε-Nash equilibrium allocations in the game of ψ at v.

One can easily check thatN (ψ, v) = ∩ε>0N ε(ψ, v), andN (ψ, v) ⊆ N ε(ψ, v)
for each ε > 0. This implies that

ψ(
⋂
ε>0

N ε(ψ, v)) = ψ(N (ψ, v)) ⊆
⋂
ε>0

ψ(N ε(ψ, v)).

Recall that our purpose is to understand which allocations are realized
through strategic manipulation. Most realizable allocations here should be
such that they can be selected by ε-Nash equilibria for arbitrary small ε > 0,
i.e., allocations belonging to ψ(N ε(ψ, v)) for each ε > 0. Hence, we shall
analyze which allocations belong to the set

⋂
ε>0

ψ(N ε(ψ, v)).

Allocations in this set are said to be most realizable for ψ at v.
The equal welfare rule in the above discussion has a non-empty set of most

realizable allocations. Indeed, consider the v in the discussion and any efficient
and envy-free allocation (σ,m) at v. Proposition 1 implies that σ(2) = α and
v1

2
≤ m1 ≤ v2

2
. Then for each ε > 0, let b1 ≡ 2m1 − ε and b2 ≡ 2m1. Then

agent 1 cannot gain by any deviation and agent 2 cannot gain more than ε
by any deviation. Thus such (σ,m) is a most realizable allocation for ψ at v.
This implies that all efficient and envy-free allocations are most realizable.

By a logic similar to Case 3 in the previous discussion, one can conversely
show that all most realizable allocations are efficient and envy-free. Thus
the set of most realizable allocations coincides with the set of efficient and
envy-free allocations here. Our theorem implies that this is not an accidental
coincidence for the particular rule. It establishes the same equivalence for a
quite large class of rules. For each v ∈ RI , we denote by PF (v) the set of all
efficient and envy-free allocations for v. Note that Proposition 1 ensures the
non-emptiness of this set. 12

12Svensson (1983) and Alkan, Demange, and Gale (1991) prove the non-emptiness in more
general situations.
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Theorem. Let ψ be an arbitrary rule satisfying efficiency, the identical pref-
erences lower bound, equal treatment of equals, and continuity. Then for each
v ∈ RI ,

∅ 6=
⋂
ε>0

ψ(N ε(ψ, v)) = PF (v).

Furthermore, in order to only obtain
⋂

ε>0 ψ(N ε(ψ, v)) ⊆ PF (v), equal treat-
ment of equals and continuity can be dropped from the list.

Proof. See the Appendix.

From this theorem, we can predict that, for all rules satisfying the four con-
ditions, by letting agents selfishly report their preferences, efficiency and envy-
freeness are achieved through strategic manipulation. In this sense, strategic
manipulation does not matter. This implication drastically contrasts with the
absence of efficient and strategy-proof rules. However, the theorem also sug-
gests that all rules satisfying the four conditions coincide with the efficient
and envy-free correspondence through strategic manipulation. This means
that any other distributional objective other than efficiency and envy-freeness
cannot be achieved.

4 Concluding remarks

We established the equivalence of the set of most realizable allocations and
the set of efficient and envy-free allocations for a broad class of rules. The
notion of most realizable allocations was introduced by this study to analyze
the consequences of strategic manipulation. In the analysis, this notion helped
a lot, since the existence of Nash equilibria in direct revelation games is a
difficult requirement here. The non-existence problem is common in other
economic environments such as exchange economies with divisible goods. Us-
ing this notion to understand the consequences of strategic manipulation in
such environments is an interesting future work.

Our theorem clarified the distributional properties of allocations that can
be selected as ε-Nash equilibria for every ε > 0. Thus a next step to be done
is to analyze the distributional properties of the set of ε-Nash equilibrium
allocations for each ε > 0. Our theorem implies that, when ψ satisfies the
four conditions in Theorem, the set at least contains all efficient and envy-free
allocations. We conjecture that the rest allocations are nearly efficient and
envy-free in some sense. This issue is also left to the future research.
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Appendix: Proof of Theorem

We hereafter fix a rule ψ that satisfies efficiency, the identical preferences lower
bound, equal treatment of equals, and continuity. We also fix a true valuation
profile v ∈ RI . To simplify the discussion, we assume that there is only one
agents whose true valuation is highest. This is just to simplify the proof. One
can easily extend the proof so as to deal with tie cases. Hence, without loss of
generality, we assume that v1 ≤ v2 ≤ · · · ≤ vn−1 < vn.

Our purpose is to show
⋂

ε>0 ψ(N ε(ψ, v)) = PF (v). To prove this, we divide
the proof by two parts. The first part shows

⋂
ε>0 ψ(N ε(ψ, v)) ⊆ PF (v), and

the second part proves the converse,
⋂

ε>0 ψ(N ε(ψ, v)) ⊇ PF (v).

Part I. Most realizable allocations are efficient and envy-
free

We show the inclusion relation
⋂

ε>0 ψ(N ε(v)) ⊆ PF (v). We do not use equal
treatment of equals and continuity in this part.

Lemma 1. For each x ∈ ∩ε>0ψ(N ε(ψ, v)) and each i ∈ I, u(xi; vi) ≥ vi

n
.

Proof. Let x ∈ ∩ε>0ψ(N ε(ψ, v)) and i ∈ I. For each ε > 0, there exists bε such
that ψ(bε) = x and bε ∈ N ε(ψ, v). By the identical preferences lower bound,

u(ψi(vi, b
ε
−i); vi) ≥ vi

n
. (1)

Since ψ(bε) = x and bε ∈ N ε(ψ, v), by (1),

u(xi; vi) = u(ψi(b
ε); vi) ≥ u(ψi(vi, b

ε
−i); vi)− ε ≥ vi

n
− ε.

Hence, u(xi; vi) ≥ vi

n
.

Let

C(v) ≡ {(σ,m) ∈ X : mi = −mσ−1(α)

n− 1
for each i ∈ I \ {σ−1(α)}}

be the set of allocations at which monetary transfers of all non-accepters are
the same. Obviously PF (v) ⊆ C(v).

Lemma 2.
⋂

ε>0 ψ(N ε(ψ, v)) ⊆ C(v).

Proof. Let x = (σ,m) ∈ ∩ε>0ψ(N ε(ψ, v)). Let j ∈ I be the x-accepter.
Let ε > 0. Let bε ∈ N ε(ψ, v) be such that ψ(bε) = x. Let b̄ε ≡ maxi∈I bε

i .
By efficiency, bε

j = b̄ε and
∑

i∈I mi = 0.
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For each i 6= j, and each b′i < b̄ε, by efficiency, i is not the ψ(b′i, b
ε
−i)-

accepter, so by the identical preferences lower bound,

u(ψi(b
′
i, b

ε
−i); vi) ≥ b′i

n
.

Since bε ∈ N ε(ψ, v),

u(xi; vi) = u(ψi(b
ε); vi) ≥ u(ψi(b

′
i, b

ε
−i); vi)− ε ≥ b′i

n
− ε. (2)

For each i ∈ I \ {j}, since u(xi; vi) = mi, by (2),

mi ≥ b′i
n
− ε for each b′i < b̄ε.

Thus,

mi ≥ b̄ε

n
− ε for each i 6= j, and each ε > 0. (3)

Since
∑

i∈I mi = 0, by (3),

−mj =
∑

i∈I\{j}
mi ≥ n− 1

n
b̄ε − (n− 1)ε. (4)

Since bε
j = b̄ε, by the identical preferences lower bound,

b̄ε + mj ≥ b̄ε

n
. (5)

By (4) and (5),

−n− 1

n
b̄ε + (n− 1)ε ≥ mj ≥ −n− 1

n
b̄ε > −n− 1

n
b̄ε − (n− 1)ε.

Thus, ∣∣∣∣mj −
(
−n− 1

n
b̄ε

)∣∣∣∣ ≤ (n− 1)ε for each ε > 0.

This implies that

lim
ε→0

−n− 1

n
b̄ε = mj,

so

lim
ε→0

b̄ε

n
= − mj

n− 1
. (6)
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By (3) and (6),

mi = u(xi; vi) ≥ − mj

n− 1
for each i ∈ I \ {j}. (7)

Since
∑

i∈I\{j} mi = −mj, (7) implies that

mi = u(xi; vi) = − mj

n− 1
for each i ∈ I \ {j}.

Hence x ∈ C(v).

The next lemma establishes the claim of Part I.

Lemma 3.
⋂

ε>0 ψ(N ε(ψ, v)) ⊆ PF (v).

Proof. Let x = (σ,m) ∈ ∩ε>0ψ(N ε(ψ, v)). Note that
∑

i∈I mi = 0. By
Lemma 2, x ∈ C(v). Let mν ≡ mi for i ∈ I with σ(i) = ν.

Case 1: σ(n) = α. By Lemma 1, vn + mn = u(xn; vn) ≥ vn

n
. Hence, by

−(n− 1)mν = mn,

−(n− 1)mν ≥ −n− 1

n
vn. (8)

By Lemma 1,

(n− 1)mν ≥ n− 1

n
vn−1. (9)

By (8) and (9),
n− 1

n
vn ≥ (n− 1)mν ≥ n− 1

n
vn−1.

Thus by Proposition 1(iv), x ∈ PF (v).

Case 2: σ(n) = ν. Let j 6= n be the x-accepter. By Lemma 1, mν ≥ vn

n
.

Hence
∑

i∈I\{j} u(xi; vi) ≥ n−1
n

vn. Since
∑

i∈I u(xi; vi) = vj < vn,

u(xj; vj) = vj −
∑

i∈I\{j}
u(xi; vi) ≤ vj − n− 1

n
vn < vj − n− 1

n
vj =

vj

n
.

This contradicts Lemma 1. Thus this case does not occur.
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Part II. Efficient and envy-free allocations are most real-
izable

In this part we conversely show that PF (v) ⊆ ⋂
ε>0 ψ(N ε(ψ, v)).

Lemma 4. Let b = (b1, b2, . . . , bn) ∈ RI be such that for each i, j ∈ I \ {n},
bi = bj < bn. Let (σ,m) ≡ ψ(b). Then σ(n) = α and

bn−1

n
≤ mi = mj ≤ bn

n
for each i, j ∈ I \ {n}.

Proof. Let us write bν ≡ bi for i ∈ I \ {n}. Since bν < bn, by efficiency,
σ(n) = α. Since all i ∈ N \ {n} report the same valuation bν , by equal
treatment of equals, they receive the same amount of money, mν . By the
identical preferences lower bound,

mn ≥ −n− 1

n
bn and mν ≥ bν

n
.

Since mn = −(n− 1)mν ,
bν

n
≤ mν ≤ bn

n
.

We introduce a technical condition. If x = (σ,m) ∈ X is such that, for
each ε > 0, there exists b ∈ RI for which

ψ(b) = x, (10)

nmν − ε

n
≤ bn ≤ nmν +

ε

n
, (11)

bn − ε

n
≤ bi < bn for each i 6= n, (12)

then we say that x is ψ-supportable.

Lemma 5. Every x ∈ PF (v) is ψ-supportable.

Proof. Let x = (σ,m) ∈ PF (v). By Proposition 1, σ(n) = α and

vn−1

n
≤ mi = mj ≤ vn

n
for each i, j ∈ I \ {n}.

Let mν ≡ mi for i ∈ I \ {n}.
Let ε > 0. Let b0 = (b0

1, b
0
2, . . . , b

0
n) ∈ RI be such that

b0
n = nmν +

ε

2n
,

b0
i = nmν − ε

2n
for each i ∈ I \ {n}.
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Let (σ0,m0) = ψ(b0). By Lemma 4,

σ0(n) = α,

mν − ε

2n2
≤ m0

i = m0
j ≤ mν +

ε

2n2
for each i, j ∈ I \ {n}.

Let m0
ν ≡ m0

i for i ∈ I \ {n}. Using b0 and (σ0,m0), we shall find b that
satisfies (10), (11), and (12). There are three cases to consider:

Case 1: m0
� = m�. Then, ψ(b0) = x, and b0 satisfies (10), (11) and (12).

Case 2: m0
� > m�. Define the function f :

[
nmν − ε

4n
, nmν + ε

2n

] → R
by

f(b′n) ≡ m′
ν for each b′n ∈

[
nmν − ε

4n
, nmν +

ε

2n

]
,

where m′
ν is the amount of money all non-accepters commonly receive at

ψ(b′n, b0
−n). This function is well-defined, since at any such ψ(b′n, b0

−n), effi-
ciency implies that all agents other than n do not accept the object and equal
treatment of equals implies that they receive the same amount of money. Fur-
thermore, continuity implies that f is continuous.

By Lemma 4,

f(nmν − ε

4n
) ≤ mν − ε

4n2
. (13)

Hence

f(nmν − ε

4n
) ≤ mν − ε

4n2
< mν < m0

ν = f(nmν +
ε

2n
). (14)

Since f is continuous, by the intermediate value theorem, there exists

b̂n ∈
[
nmν − ε

4n
, nmν +

ε

2n

]

such that f(b̂n) = mν . This implies that ψ(b̂n, b0
−n) = x. Thus (b̂n, b

0
−n) satisfies

(10), (11), and (12).

Case 3: m0
� < m�. Define the function g :

[
nmν − ε

2n
, nmν + ε

4n

] → R
by

g(b′ν) ≡ m′
ν for each b′ν ∈

[
nmν − ε

2n
, nmν +

ε

4n

]
,

where m′
ν is the common amount of money all agents other than n receive at

ψ(b′ν , . . . , b
′
ν , b

0
n). This function is well-defined, since at any such ψ(b′ν , . . . , b

′
ν , b

0
n),

efficiency implies that all agents other than n do not accept the object and
equal treatment of equals implies that they receive the same amount of money.
Furthermore, continuity implies that g is continuous.
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By Lemma 4,

mν +
ε

4n2
≤ g(nmν +

ε

4n
).

Hence
g(nmν − ε

2n
) = m0

ν < mν < mν +
ε

4n2
≤ g(nmν +

ε

4n
).

Since g is continuous, by the intermediate value theorem, there exists

b̂ν ∈
[
nmν − ε

2n
, nmν +

ε

4n

]

such that g(b̂ν) = mν . This implies that ψ(b̂ν , . . . , b̂ν , b
0
n) = x. Thus (b̂ν , . . . , b̂ν , b

0
n)

satisfies (10), (11), and (12).

In either case, we established the existence of a valuation profile that sat-
isfies (10), (11), and (12). Hence x is ψ-supportable.

The next lemma establishes the claim of Part II.

Lemma 6. PF (v) ⊆ ⋂
ε>0 ψ(N ε(ψ, v)).

Proof. Let x = (σ,m) ∈ PF (v). Note that n is the x-accepter. Let mν ≡ mi

for i ∈ I \ {n}.
Let ε > 0. By Lemma 5, x is ψ-supportable. Therefore, there exists b ∈ RI

satisfying (10), (11), and (12). It suffices to show that b ∈ N ε(ψ, v). Let j ∈ I,
b′j 6= bj, and ψ(b′j, b−j) = (σ′,m′).

Case 1: σ0(j) = α. By the identical preferences lower bound, for each
i 6= j,

u(ψi(b
′
j, b−j); vi) = m′

i ≥
bi

n
≥ bn − ε

n

n
≥ nmν − ε

n
− ε

n

n
= mν − 2ε

n2
. (15)

Since
∑

i∈I u(ψi(b
′
j, b−j); vi) = vj, by (15),

u(ψj(b
′
j, b−j); vj) = vj −

∑

i∈I\{j}
u(ψi(b

′
j, b−j); vi) = vj −

∑

i∈I\{j}
m′

i

≤ vj − (n− 1)(mν − 2ε

n2
) = vj + mn +

2(n− 1)

n2
ε

= u(xn; vj) +
2(n− 1)

n2
ε (16)

Since x ∈ F (v) and ψ(b) = x,

u(xn; vj) +
2(n− 1)

n2
ε ≤ u(xj; vj) +

2(n− 1)

n2
ε

= u(ψj(b); vj) +
2(n− 1)

n2
ε. (17)
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By (16) and (17),

u(ψj(b
′
j, b−j); vj) ≤ u(ψj(b); vj) +

2(n− 1)

n2
ε < u(ψj(b); vj) + ε.

Hence j cannot gain more than ε by this deviation.

Case 2: σ0(j) = ν. Let k 6= j be such that σ′(k) = α. By the identical
preferences lower bound,

m′
i ≥

bi

n
≥ bn − ε

n

n
for each i ∈ I \ {j, k}, (18)

m′
k ≥ −

n− 1

n
bk ≥ −n− 1

n
bn. (19)

Hence, since
∑

i∈I u(ψi(b
′
j, b−j); vi) = vk, by (18) and (19)

u(ψj(b
′
j, b−j); vj) = vk −

∑

i∈I\{j}
u(ψi(b

′
j, b−j); vi)

= vk − (vk + m′
k)−

∑

i∈I\{j,k}
m′

i

≤ (n− 1)bn

n
− (n− 2)(

bn − ε
n

n
) =

bn

n
+

n− 2

n2
ε. (20)

By the definition of bn,

bn

n
+

n− 2

n2
ε ≤ nmν + ε

n

n
+

n− 2

n2
ε = mν +

n− 1

n2
ε

= u(xn−1; vj) +
n− 1

n2
ε. (21)

Since x ∈ F (v) and ψ(b) = x,

u(xn−1; vj) +
n− 1

n2
ε ≤ u(xj; vj) +

n− 1

n2
ε = u(ψj(b); vj) +

n− 1

n2
ε. (22)

By (20), (21), and (22),

u(ψj(b
′
j, b−j); vj) ≤ u(ψj(b); vj) +

n− 1

n2
ε < u(ψj(b); vj) + ε.

Hence j cannot gain more than ε by this deviation.
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