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Abstract

I study the dynamics of default-free bond yields and term premia using a novel equilibrium term

structure model with a New-Keynesian core and imperfect information about productivity. The

model generates term premia that are on average positive with sizable countercyclical variation

that arises endogenously. Importantly, demand shocks, in addition to supply shocks, play a key

role in the dynamics of term premia. This is in sharp contrast to existing DSGE term structure

models with perfect information, which tend to rely on large supply shocks to generate time-

variation in yields and term premia. With imperfect information, a shock to productivity is a

supply shock, while a shock to signals about productivity that do not lead to actual changes in

productivity acts as a demand shock. Nevertheless, an increase in economic activity generates

more information about productivity, regardless of which type of shock it arises from. Moreover,

a decrease in economic uncertainty leads to a decline in term premia as longer-term bonds are

risky on average. This feature helps reconcile the empirical evidence that term premia have

been on average positive and countercyclical, with numerous studies pointing to demand shocks

as being an important driver of business cycles over the last few decades.
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1 Introduction

Understanding the economic determinants of term premia is an important topic for both academics

and policymakers. Its implications span beyond default-free bonds, since the term premium is a

function purely of the term structure of stochastic discount factors, which is the foundation for

pricing financial assets in general. In addition, extracting market expectations accurately from

bond prices by adjusting for term premia is a critical component of conducting monetary policy.1

In this paper, I propose a structural explanation of the term structure of interest rates, with

a primary focus on the (counter)cyclicality of longer-maturity term premia. A number of studies

have shown empirical evidence of countercyclical term premia, consistent with the ample evidence

of countercyclical risk premia across multiple asset classes. Meanwhile, a large part of the macroe-

conomic literature based on dynamic stochastic general equilibrium (DSGE) models or structural

vector autoregressions has found that “demand” shocks—shocks that move inflation and aggre-

gate quantities such as output in the same direction—have been an important source of business

cycle fluctuations in recent decades, after the great inflation period.2 In addition, these demand

shocks are typically shocks to the level of a variable, rather than to the second moments such

as the variance, or higher-order moments.3 Relatedly, multiple studies have begun to document

the correlation of consumption growth and inflation turning positive, as the correlation of stock

and bond returns has turned negative since around the beginning of 2000.4 Taken together, these

findings would suggest that demand shocks should play an important role in making term premia

countercyclical.

Nonetheless, studies that use DSGE models to analyze yield dynamics, such as Rudebusch and

Swanson (2012), have typically considered supply shocks to play a dominant role in generating the

empirical pattern of yields and term premia.5 This is because supply shocks can generate inflation

risk premia that are on average positive, which helps explain the significantly positive nominal

term premia observed over the last several decades. While term premia can be countercyclical in

that setting, the mechanism seems at odds with the aforementioned empirical support for demand

shocks in explaining business cycles.

To explain how the countercyclicality of term premia can endogenously arise from demand

(level) shocks, I explore a novel channel in which imperfect information about productivity plays

a crucial role. As I explain in more detail below, this is an environment of rational learning

about the unobservable states of productivity, where the precision of the signal is increasing in

1For example, Atkeson and Kehoe (2008) advocate models of monetary policy that explicitly considers macroe-
conomic risk (premia).

2Similarly, I refer to “supply” shocks as shocks that move inflation and quantities in the opposite direction. This
is consistent with the “traditional interpretation” (Blanchard (1989)) also used in Smets and Wouters (2007) among
others. Baumeister and Hamilton (2015) and Bekaert, Engstrom, and Ermolov (2021) use this interpretation for
econometric identification.

3See, for example, Justiniano, Primiceri, and Tambalotti (2010), Blanchard, L’Huillier, and Lorenzoni (2013)
Chahrour and Jurado (2018), Christiano, Motto, and Rostagno (2014).

4See, for example, Campbell, Sunderam, and Viceira (2013), Song (2017), Campbell, Pflueger, and Viceira (2020).
5See the following literature review for more examples.
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economic activity. A number of studies, such as recent work by Fajgelbaum, Schaal, and Taschereau-

Dumouchel (2017) have shown that this particular form of imperfect information can explain key

aspects of the business cycle, such as countercyclical uncertainty.6 The contribution of this paper

is to show that this framework can be embedded in a nonlinear DSGE term structure model in a

tractable manner, and generate meaningful demand-side effects that can be effective in explaining

the dynamics of the term structure of interest rates.

There are, in fact, few studies that systematically analyze the cyclicality of longer-maturity term

premia including the post-financial crisis sample. Hence, before I present the model, I review the

empirical evidence of the countercyclicality of the 5-to-10 year forward term premia by regressing

three well-known measures of term premia onto a number of business cycle indicators. I find that

although the evidence varies somewhat depending on the term premium measure and the economic

indicator, there is, overall, statistically significant countercyclicality over the sample period from

the beginning of 1990 to the end of 2019, which appears to further strengthen after 2000—the

timing which coincides with the change in correlation of stock and bond returns mentioned above.

Motivated by the empirical findings, I first build a simple equilibrium term structure model

with imperfect information to clarify the intuition for why a shock to productivity as well as a

shock to signals about productivity that do not lead to actual changes in productivity (or “noise

shocks”) can generate countercyclical term premia. The model consists of a state space model of

productivity, a consumption rule, and an Euler equation. Productivity is the sum of a persistent and

a transitory component, both unobservable. Agents (rationally) infer levels of the unobservables

from productivity itself and a noisy public signal about the persistent component of productivity.

A key feature of the signal is that its precision is increasing in economic activity, which, in turn,

is increasing in productivity or the signal. Intuitively, more economic activity leads to further

information about productivity via social learning, and hence the collective signal becomes more

precise. In other words, uncertainty about productivity is countercyclical. Since term premia are

on average positive in the model, this endogenous countercyclicality of uncertainty leads to the

countercyclicality of term premia. In contrast, under perfect information, term premia are still

positive but roughly constant. Importantly, this mechanism works through both the persistent

productivity shock and the noise shock, though each shock has distinct impacts on productivity

and consumption—only the former shock actually affects productivity.

The model is nonlinear, but simple enough to be solved without approximation, and allows for

some analytical characterizations of the term premium. However, it is limited in certain aspects.

Notably, since the model does not feature inflation, it is difficult to interpret the shocks as “demand”

or “supply” shocks. In addition, the signal is not completely linked to equilibrium variables within

the model and is not suited for quantitative evaluations.

To address these issues, I build a DSGE term structure model with imperfect information by

embedding the productivity structure and the learning process of the simple model into an otherwise

standard New-Keynesian setup. The New-Keynesian model allows me to analyze the economic

6See the following literature review for more examples.
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determinants of both nominal and real yields in a more realistic setting where inflation is determined

endogenously through nominal price rigidities and monetary policy. In this model, the intermediate

goods firms must infer the states of productivity from a public signal that becomes more informative

as output increases. While models with information frictions can face computational challenges

and be hard to solve without linearization, my particular specification remains relatively tractable.

I solve the model using a high-order perturbation method to properly account for time-varying

uncertainty and term premia.

I calibrate the model to US data and show that the mechanism that generated the counter-

cyclicality of term premia in the simple model carries over to the DSGE model in a quantitatively

meaningful way. In addition, the noise shock can be clearly interpreted as a demand shock in the

DSGE model. This is because a noise shock motivates consumption without the actual increase in

the capacity of supply, causing upward pressure on prices. I show that incorporating imperfect in-

formation significantly increases average nominal term premia, and amplifies the countercyclicality

of term premia through both demand and supply shocks, such that the model-implied term pre-

mium dynamics become more in line with empirical estimates. In other words, noisy news about

productivity works as a demand shock, but affects term premia through its effect on the belief

about supply (productivity), in a quantitatively relevant manner. I also show that imperfect infor-

mation amplifies the volatility and countercyclicality of term premia due to supply shocks through

an intuitive mechanism of countercyclical uncertainty, without resorting to exogenous shocks to the

volatility of productivity.

The information friction in the model is governed by two key parameters—the volatility of

the productivity signal and the mass of signals produced per unit of output. I show that both

parameters have distinct implications for nominal and real term premia, and the latter parameter,

which controls the cyclicality of signal precision, is crucial in generating significant countercyclical

variation in term premia. Importantly, the model shows that the amplification of the average and

volatility of nominal term premia is largely coming from real term premia. The emphasis of the

“real” channel in explaining nominal yield dynamics is consistent with recent studies such as Duffee

(2018), which argues that only a relatively small portion of the variation in news about yields can be

explained by the variation in news about expected inflation. This paper can be viewed as providing

an economic interpretation of such empirical results based on imperfect information.

The structure of the paper is as follows. Following a literature review, Section 2 presents

empirical evidence on the countercyclicality of term premia that motivates this paper. Section 3

presents a simple term structure model with imperfect information that helps understand the key

mechanism of the DSGE term structure model, which is analyzed in Section 4. Section 5 offers

concluding remarks.

Literature Review

This work is related to a few strands of the literature. First, it is related to studies that analyze

models of the aggregate economy with imperfect information, which dates back to the seminal work
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of Kydland and Prescott (1982) that launched the real business cycle literature. Various forms of

imperfect information have been examined in the context of macroeconomic models, but the specific

form of imperfect information in my model builds on work that assume agents form homogeneous

expectations rationally and learn about unobservable state variables in a Bayesian fashion. Stud-

ies that embed such a structure into an RBC model include Bomfim (2001), Edge, Laubach, and

Williams (2007), Boz, Daude, and Durdu (2011), and more recent studies that analyze the impli-

cations using DSGE (New-Keynesian) models include Lorenzoni (2009), Blanchard, L’Huillier, and

Lorenzoni (2013) and Faccini and Melosi (2022). However, a key departure from this body of work

in terms of the information friction is the feature of procyclical signal precision, bringing my work

closer to a smaller set of papers such as Van Nieuwerburgh and Veldkamp (2006), Fajgelbaum,

Schaal, and Taschereau-Dumouchel (2017) and Ilut and Saijo (2021). While these papers focus on

how the information friction helps explain the business cycle, my paper argues that the friction has

implications beyond that and is useful in understanding term structure dynamics as well.

Second, it is related to studies that analyze asset pricing models with imperfect information.

This literature is also large, and difficult to cite exhaustively. Collin-Dufresne, Johannes, and

Lochstoer (2016) and Johannes, Lochstoer, and Mou (2016) are recent examples of endowment

economies. Ai (2010), Ai, Croce, Diercks, and Li (2018), Winkler (2020) and Bianchi, Lettau, and

Ludvigson (2022) are examples of production-based economies, but these papers do not focus on

Treasury yields and term premia, as I do.

Third, it is related to studies on equilibrium term structure models. Models based on endow-

ment economies have been studied as early as Campbell (1986) and more recently by Piazzesi and

Schneider (2007), but work using production-based models, and in particular, DSGE models have

picked up only in the last decade or so. Examples include Rudebusch and Swanson (2008), Doh

(2011), Andreasen (2012a), Van Binsbergen, Fernández-Villaverde, Koijen, and Rubio-Ramı́rez

(2012), Chen, Cúrdia, and Ferrero (2012), Rudebusch and Swanson (2012), Dew-Becker (2014),

Kung (2015), Lopez, Lopez-Salido, and Vazquez-Grande (2015), Carlstrom, Fuerst, and Paustian

(2017), Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2018), Andreasen and Jørgensen

(2019), Swanson (2019), Gourio and Ngo (2020) and Hsu, Li, and Palomino (2021). A common

assumption across these papers is perfect information, and the implications of imperfect informa-

tion on the yield curve remains largely unexplored, especially in the context of macroeconomic

models. By contrast, the key feature of my DSGE term structure model is imperfect information.

This feature leads to endogenous heteroskedasticity in the stochastic discount factor and provides a

deeper microfoundation to studies that incorporate forms of exogenous stochastic volatility, such as

Andreasen (2012b), Nakata and Tanaka (2016), Bianchi, Kung, and Tirskikh (2018), and Bretscher,

Hsu, and Tamoni (2020). My work is consistent with recent papers by Duffee (2018) and Chernov,

Lochstoer, and Song (2021) in emphasizing the real term structure in explaining the nominal term

structure of interest rates. However, I provide a novel explanation that works through imperfect

information.
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2 Empirical Motivation

In this section, I discuss the empirical pattern of term premia that motivates the paper. More

specifically, I provide some new evidence on the countercyclicality of nominal term premia over

the recent few decades up to the end of 2019. I also show suggestive evidence of countercyclical

macroeconomic uncertainty as well as procyclical production of information about technology, which

further motivates an explanation of term premium dynamics based on a framework with imperfect

information. I focus on the sample period before 2020, since the unprecedented economic impact

of the pandemic calls into question the suitability of the standard statistical methods I use for the

analysis.
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Figure 1: 5-to-10-year Forward Term Premium

Notes: Quarterly time series from 1990.Q1 to 2019.Q4. ACM is the term premium of Adrian, Crump, and Moench (2013b).

BR is a the term premium estimated from a version of the model by Bauer and Rudebusch (2020). KW is the term premium

of Kim and Wright (2005). Shaded grey areas correspond to NBER recession periods.

There is ample evidence on the countercyclicality of risk premia across a broad set of asset

classes, including equity, corporate bonds, and currency.7 In line with other assets, the counter-

cyclicality of nominal term premia has also been documented in a number of empirical studies.

However, analyses that include the post-financial crisis period are somewhat limited in the scope of

the term premium measures and the business cycle indicators they consider.8 Therefore, I revisit

7See Cochrane (2011) for a summary.
8Cochrane and Piazzesi (2005), Ludvigson and Ng (2009) and Piazzesi and Swanson (2008) are examples using

data before the financial crisis. Note Piazzesi and Swanson (2008) focus on excess returns of fed funds futures up to
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this issue by conducting a regression analysis using a different set of term premium estimates and

a wider range of business cycle indicators.

As the dependent variable, I consider three well-known estimates of the nominal term premium—

first, from the model of Adrian, Crump, and Moench (2013b) (ACM), second, from the model of

Kim and Wright (2005) (KW), and third, from a version of the model of Bauer and Rudebusch

(2020) (BR).9 While all three models assume yields and term premia are driven by multiple latent

factors and use no-arbitrage restrictions to help identification, the three models differ significantly

in other aspects. Importantly, only KW uses surveys (Treasury yield forecasts from the Blue Chip

surveys) to further assist identification. Meanwhile, only BR allows for a non-stationary factor

in the model, which may better account for the downward trend in interest rates than strictly

stationary models.

I focus on the 5-to-10 year forward measure to mitigate potential measurement issues stemming

from the effective lower bound (ELB).10 Figure 1 shows the three term premium series since the

beginning of 1990. As documented in the literature, term premia have generally been positive but

trending down in recent years and were close to zero by the end of 2019. Meanwhile, the rise in

term premia in the last three recessions before 2020 is visually evident, although the magnitude

differs across the series—KW rising the least, while ACM rises the most.

The independent variables are nonfarm payroll, industrial production, real GDP (all year-on-

year changes), GDP gap, unemployment gap, and capacity utilization. The details of the data are

relegated to Appendix A. I regress each term premium series on to each of the independent variables

separately with a constant. I also regress changes in term premia onto changes in the independent

variables to account for the persistence of the variables. The results are summarized in Table 1.

Each number corresponds to the regression coefficient associated with the business cycle indicator.

The number is shaded in dark blue if the coefficient is negative and statistically significant, and is

shaded in light blue if the coefficient is statistically insignificant yet still negative, consistent with

countercyclicality.

Overall, I find notable evidence of countercyclicality of the 5-to-10-year nominal term premium.

Over the sample period from the beginning of 1990 to the end of 2019, regressions based on the

level of term premia (upper left block of Table 1) show that ACM has the strongest countercycli-

cality which is statistically significant, for a number of business cycle indicators.11 The statistical

significance using BR is weaker, although the negative sign of the coefficients is consistent with

6-months maturity. Further evidence of countercyclical term premia including the post-financial crisis observations
is provided by Adrian, Crump, and Moench (2013a), Wright (2011), Bauer, Rudebusch, and Wu (2014), Bauer
and Rudebusch (2020). Econometric analysis that include observations beyond 2009 is relatively scarce, with an
exception being Bekaert, Engstrom, and Ermolov (2021), who find term premia implied from the Blue Chip surveys
show countercyclicality with respect to a recession dummy.

9I use an estimate of the trend real interest rate that is different from BR, constructed from publicly available
data. The estimate is somewhat smoother than BR. Otherwise, the model is identical to their “observed shifting
endpoint” model. I find that the correlation between the term premia from BR and my estimates over the sample
period of BR (1971.Q4 to 2018.Q1) is nearly perfect, with a coefficient of over 0.98.

10The results are similar for the 10-year term premium.
11The countercyclicality is also highlighted in Adrian, Crump, and Moench (2013a) although they do not provide

a regression analysis.
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countercyclicality. The evidence based on KW is the weakest, although most indicators still have

negative coefficients. In any case, it appears hard to find strong evidence of procyclical term pre-

mia. Furthermore, regressions based on quarterly differences of term premia (bottom left block)

show statistically significant countercyclicality across all measures of term premia.

Table 1: Regression of the 5-to-10-year Forward Nominal Term Premium on Business
Cycle Indicators

1990.Q1 - 2019.Q4 2000.Q1 - 2019.Q4

Level ACM BR KW ACM BR KW

NFP -36.3*** -18.4** -12.8 -49.8*** -32.8*** -26.0***

IP -3.0 1.1 1.5 -5.8* -2.8 -2.9*

GDP -16.6** -2.6 0.1 -29.8*** -16.0** -11.0*

GDP gap (level) -37.2*** -16.4* -11.0 -38.3*** -18.8** -9.7

UE gap (negative of level) -35.5*** -14.5 -4.6 -36.8*** -18.5* -7.7

CU (level) -22.8*** -11.6** -8.6 -27.2*** -17.0*** -13.7***

Difference

NFP -4.5*** -2.9** -2.4*** -4.7*** -4.1** -2.8**

IP -2.3*** -2.1*** -1.9*** -2.6*** -2.6*** -2.2***

GDP -4.2** -1.0 -2.3** -5.2*** -3.0 -3.8***

GDP gap -5.8*** -1.5 -3.2*** -5.3*** -2.3 -3.7**

UE gap (negative) -11.9*** -9.3*** -6.6*** -10.1*** -8.8*** -5.9***

CU -4.1*** -3.5*** -3.1*** -3.7*** -3.3*** -2.8***

Notes: ***,**,* indicate 1%, 5%, 10% significance based on Newey-West standard errors, respectively. Dark blue shades indicate

significantly negative coefficients. Light blue shades indicate negative coefficients that are statistically insignificant. Frequency

is quarterly. Regressors are year-on-year changes unless otherwise stated. The regression coefficients are in basis point units

per one percentage point change in the regressor.

As shown in the two right blocks of Table 1, the evidence of countercyclicality is even stronger

since the beginning of 2000, where, in particular, both BR and KW show statistically significant

countercyclicality against a larger number of indicators. What is especially interesting about this

period is that it also coincides with a period in which past studies have found that the correlation

between inflation and consumption growth turned from negative to positive (e.g. Song (2017)) while

the correlation between returns on Treasury bonds and equity turned from positive to negative

(e.g. Campbell, Pflueger, and Viceira (2020)), which could be interpreted as increased relevance of

demand shocks in explaining the business cycle over the period.12

12The subsample from 2000 puts more emphasis on the post-financial crisis period in which unconventional mon-
etary policy such as large scale asset purchases was implemented. Countercyclical term premia can still arise in such
an environment if asset purchases are more of an exogenous shock, decreasing term premia and increasing economic
activity at the same time, as shown by Chen, Cúrdia, and Ferrero (2012) and Carlstrom, Fuerst, and Paustian (2017).
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Given these results, a natural question would be to ask what are the potential macroeconomic

drivers behind the countercyclicality. To think about this issue, it is useful to note that DSGE

models, specifically designed to analyze the source(s) of macroeconomic dynamics, have generally

implied that, particularly since the mid-1980s (i.e., the start of the “great moderation”), demand

shocks have been an important driver of the business cycle. In addition, these demand shocks

are typically shocks to the level of a variable (or “first-moment” shocks), rather than shocks to

second-moments such as variance, or higher-order moments.13

Most DSGE models have obtained these results without considering implications for Treasury

yields and term premia, but taken at face value, the findings imply that demand shocks should be a

predominant driver of countercyclical term premia. Nevertheless, studies that use DSGE models to

analyze yield dynamics, such as Rudebusch and Swanson (2012), have typically considered supply

shocks to play a dominant role.14 This is because supply shocks can generate inflation risk premia

that are on average positive, which helps explain the positive nominal term premia observed over

the last several decades. Exceptions to this approach have emerged only recently, and rely on

exogenous shocks to volatility.15

To understand the dynamics of yields and term premia in a world of significant demand shocks,

I propose an explanation based on imperfect information. As discussed in the rest of the paper,

the crucial mechanism is the link between countercyclical term premia and countercyclical macroe-

conomic uncertainty (conditional volatility), which in turn is caused by procyclical production of

information about productivity. Indeed, numerous papers have documented evidence of counter-

cyclical uncertainty. For completeness, I plot a few relevant measures of uncertainty in Figure 2

(left panel), which confirms the finding in the literature.16 Meanwhile, the relation between coun-

tercyclical uncertainty and procyclical information production has been analyzed by a strand of

macroeconomic studies as early as Van Nieuwerburgh and Veldkamp (2006) and more recently by

Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017), among others. These studies provide a

Splitting the sample periods further generally results in reduced statistical significance due to the smaller sam-
ple size, but evidence of countercyclicality can still be observed for the subsamples from 1990.Q1 to 1999.Q4, from
2000.Q1 to 2008.Q4, and from 2009.Q1 to 2019.Q4, respectively.

13The number of relevant studies is too large to list here in full. Some examples are Smets and Wouters (2007),
Justiniano, Primiceri, and Tambalotti (2010), Christiano, Motto, and Rostagno (2014), Blanchard, L’Huillier, and
Lorenzoni (2013), Gust, Herbst, López-Salido, and Smith (2017). Obviously, DSGE models are not the only models
that can identify demand and supply shocks. For example, Bekaert, Engstrom, and Ermolov (2021) is a recent study
that uses a less structural model and highlights the role of demand shocks in the last few recessions before 2020.

14Other examples include Rudebusch and Swanson (2008), Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez
(2018) and Swanson (2019). These papers also find supply shocks make term premia countercyclical.

15Bretscher, Hsu, and Tamoni (2020) show that a shock to the volatility of government spending is a demand shock,
and generates countercyclical term premia. Bianchi, Kung, and Tirskikh (2018) show that a shock to the volatility of
time preference/TFP growth acts as a demand shock, which generates countercyclical term premia. These papers are
consistent with macroeconomic studies that highlight uncertainty shocks as important drivers of the business cycle,
such as Basu and Bundick (2017).

16In addition to two well-known measures of uncertainty: (1) the macroeconomic uncertainty index by Jurado,
Ludvigson, and Ng (2015) and (2) the VIX, I show (3) a measure of GDP growth uncertainty based on the Survey
of Professional Forecasters, which is used to calibrate the term structure model in Section 4, and (4) the conditional
volatility of TFP growth from a GARCH(1,1) model similar to Bloom, Floetotto, Jaimovich, Saporta-Eksten, and
Terry (2018). For surveys on economic uncertainty, see for example Bloom (2014) and Cascaldi-Garcia, Sarisoy,
Londono, Rogers, Datta, RT Ferreira, Grishchenko, Jahan-Parvar, Loria, Ma, et al. (2020).
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compelling framework of rational learning with imperfect information which I build on, but they

do not necessarily show direct evidence of information production. Hence, I offer one suggestive

evidence based on the growth rate of total patent applications in the U.S. (Figure 2, right panel).

It is evident that the growth rate of applications tends to fall sharply around recessions and recover

afterwards, implying that information about new technology appears to be procyclical.17
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Figure 2: Measures of Uncertainty and Information

Notes: “JLN-Macro” is the macro uncertainty index by Jurado, Ludvigson, and Ng (2015). “VIX” is the option-based measure

of the 30-day expected volatility of the S&P 500 Index. “SPF-GDP” is the standard deviation of the 1-quarter-ahead average

forecast distribution of real GDP growth from the Survey of Professional Forecasters. “TFP” is the conditional standard

deviation of TFP growth estimated from a GARCH(1,1) model, using the unadjusted TFP growth data by Fernald (2014).

The uncertainty series are quarterly from 1990.Q1 to 2019.Q4 except for “SPF-GDP”, which is measured for the last quarter of

each year. All uncertainty series are normalized such that they have zero mean and one standard deviation. Patent application

is from the dataset compiled by Marco, Carley, Jackson, and Myers (2015) and the annual growth rate is computed at the

quarterly frequency from 1990.Q1 to 2014.Q4. The dashed line portions indicate omitted data corresponding to periods of

idiosyncratic volatility due to regulatory changes in 1995.Q2 and 2013.Q1. Shaded grey areas correspond to NBER recession

periods.

By embedding into a term structure model information frictions which past macroeconomic

studies have found relevant in explaining business cycles, I complement analyses using exogenous

shocks to uncertainty and offer a deeper microfoundation of term structure dynamics that is consis-

tent with the macroeconomic literature. It also seems useful to clarify the implications of imperfect

17See Appendix A for details about the data. Applications of this dataset appear limited in the fi-
nance/macroeconomics literature, with a notable exception of Bluwstein, Hacioglu Hoke, and Miranda-Agrippino
(2020) who use it to identify technology news shocks. An alternative measure of innovation news that accounts for
stock valuation was proposed by Kogan, Papanikolaou, Seru, and Stoffman (2017), which also shows procyclicality.
However, such a measure could be biased if stocks are subject to mispricing (Haddad, Ho, and Loualiche (2022)).
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information on Treasury yields and term premia, which remain largely unexplored in the litera-

ture.18

3 Simple Term Structure Model with Imperfect Information

3.1 Model

To build intuition for how imperfect information affects term premia, I analyze a simple equilibrium

term structure model with imperfect information. The model consists of three components: (1) a

state space system of productivity where an agent learns about the unobservable components of

productivity from observable signals using a Kalman filter, (2) an optimal consumption rule that

is linear in productivity, and (3) a consumption Euler equation that prices the term structure of

default-free interest rates. Apart from transparency, another advantage of its simplicity is that,

despite being a nonlinear model, it can be solved easily in a sequential fashion, without applying

any approximation methods. In Appendix B, I show that this model is consistent with a set of

equilibrium conditions from a stylized real business cycle model without capital.

State space system of productivity: Productivity zt consists of a “persistent” component at

and a “transitory” component εz,t:

zt = at + σzεz,t. (1)

Note zt is observable to the agent, whereas its components at and εz,t are unobservable.19 at

follows an AR(1) process with a zero mean:

at = ρaat−1 + σaεa,t, (2)

where 0 < ρa < 1. Both εa,t and εz,t are i.i.d. standard normal.

In addition to productivity zt itself, the agent observes a collection (continuum) of noisy signals

sj,t about the persistent component of productivity, which is generated by economic activity. These

signals can be interpreted intuitively as “data” (following the interpretation of Farboodi, Mihet,

Philippon, and Veldkamp (2019)) or “news”. Note j ∈ [0, Jt] where Jt captures the total mass of

signals. Each signal is characterized as:

sj,t = at + σs,jεs,j,t, (3)

where εs,j,t is i.i.d standard normal with respect to j and t, and has a mean of zero and a variance

18To be clear, despite the evidence of countercyclicality, this does not necessarily mean that mechanisms which
lead to procyclical term premia are irrelevant, and my analysis does not rule them out. For example, if Treasury
bonds carry a premium for safety and liquidity (Krishnamurthy and Vissing-Jorgensen (2012)), they could become
more valuable during a recession. See also, Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2018) and Nakata
and Tanaka (2016) for alternative channels that lead to procyclical term premia.

19The parameter σz is observable, as well as all other model parameters that follow.
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of 1/∆j . ∆j is the (small) mass of signals represented by sj,t.
20 εs,j,t as well as at are unobservable,

but each signal is publicly available and hence common knowledge across all agents. This allows

abstraction from heterogeneous expectations and higher-order beliefs, making the model highly

tractable.

A sufficient statistic for the collection of signals is the “aggregate” signal st, defined as:

st ≡
1

Jt

∫ Jt

0
sj,tdj = at + σs,tεs,t, (4)

where εs,t is an i.i.d standard normal shock. This shock can be considered a “noise” shock in

line with the literature, since it is the component of st which is orthogonal to productivity. In

addition, σ2
s,t = σ2

s,j(J
−1
t ), as a result of the aggregation of signals.21 This formulation is similar

to Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017). However, while they link the mass of

signals Jt specifically to the number of firms entering into production, I interpret the source of

Jt more broadly and assume it is an increasing function of an (observable) measure of economic

activity from the previous period Ht−1:

Jt = φ(Ht−1), (5)

where φ′ > 0. Combined with the fact that σs,t is inversely related to Jt, economic activity increases

the amount of information about the persistent component of productivity, and makes the aggregate

signal st more precise. Such a mechanism may be understood intuitively as the process where firms,

by producing more goods, disseminate noisy information about aggregate productivity in the form

of data or news from various media outlets, and in turn, learning about productivity more precisely

among themselves as economic activity of others increase (Fajgelbaum, Schaal, and Taschereau-

Dumouchel (2017) refer to this mechanism as “social learning”).22

For simplicity, I assume φ is quadratic:

φ ≡
[
ξ(Ht−1 − H̄) + H̄

]2
,

where ξ > 0 controls the rate of signal production by Ht−1 and H̄ > 0 is the (non-stochastic) steady

state of Ht. Ht is specified as an AR(1) process:

Ht = (1− ρH)H̄ + ρHHt−1 + σH,aεa,t + σH,sεs,t, (6)

where σH,a ≥ 0 and σH,s ≥ 0, i.e., Ht loads positively on the (persistent) productivity shock εa,t

20As discussed in Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017), adjusting the variance of εs,j,t by ∆j

is necessary to prevent the signals from perfectly revealing at when the number of signals is large and the mass of
signals represented by each sj,t becomes infinitesimal.

21st can be understood as the limiting distribution of J−1∑N
n=1 s(mn)∆jn as ∆jn → 0, where mn is the midpoint

of interval [jn−1, jn] ⊆ [0, Jt] with length ∆jn .
22See also Van Nieuwerburgh and Veldkamp (2006) and Ilut and Saijo (2021) for examples of alternative mecha-

nisms that induce signals with procyclical precision. The formulation adopted in this paper is a simple way to capture
this key feature common across such models.
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and/or the noise shock εs,t.
23 I also assume the agent only observes Ht−1 at t, and cannot infer εa,t

or εs,t at t to avoid the model becoming trivial. While economic activity Ht should, in principle, be

explicitly linked to equilibrium variables such as consumption or output, my interpretation of Ht

here is more broad and includes various types of activity that leads to information production. This

specification simplifies the computation considerably while capturing the “cyclicality” of Ht and

allowing for some endogeneity of the process (in the sense that Ht is not generated from independent

shocks other than what are already in the model). In the DSGE model developed in Section 4, Jt

will be an explicit function of equilibrium output.

The agent updates her belief about the unobservable productivity component at via a Kalman

filter:

at|t ≡ Et[at] = ρaat−1|t−1 +Kt−1(st − st|t−1), (7)

where st is the vector of signals (st ≡ [zt, st]
′). Kt is the Kalman gain matrix:

Kt =

 1
σ2
z

φ(Ht)
σ2
s

+ 1
σ2
z

+ 1
σ2
a,t

,

φ(Ht)
σ2
s

φ(Ht)
σ2
s

+ 1
σ2
z

+ 1
σ2
a,t

 . (8)

σ2
a,t is the conditional forecast variance of at+1 (σ2

a,t ≡ Vart(at+1)) and is updated according to

the standard Ricatti equation:

σ2
a,t = ρ2

a

(
φ(Ht−1)

σ2
s

+
1

σ2
z

+
1

σ2
a,t−1

)−1

+ σ2
a. (9)

Consumption rule: Consumption (in logs) is linear in productivity zt:

ct = θczt. (10)

Euler equation: The (continuously-compounded) yield of a real default-free bond of arbitrary

maturity n, r
(n)
t , is priced by the Euler equation:

r
(n)
t = r̄ − 1

n
lnEt

[
exp

(
−χc

n∑
i=1

∆ct+i

)]
. (11)

θc, r̄ and χc are exogenous parameters. Of course, if derived from a fully-specified equilibrium

model, the Euler equation is consistent with power utility that has a risk aversion parameter of

χc. In addition, the Euler equation must be consistent with the consumption rule (10), which

imposes a cross-restriction on θc and χc (see Appendix B). However, such a restriction will be

largely irrelevant for the discussion in this section.

The term premium is constructed in a standard way.24 First, define a hypothetical price of

23Technically, I choose the parameters of Ht such that it practically never falls below zero. Therefore, while Ht is
assumed to be bounded above zero, it can be approximated very well by an AR(1).

24See for example Rudebusch and Swanson (2012).
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an n−period bond P
Q(n)
t formed by discounting cashflows by the risk-free bond price: P

Q(n)
t =

P
(1)
t Et[P

Q(n−1)
t+1 ]. Then the n−period hypothetical yield priced under risk-neutrality r

Q(n)
t = − 1

n lnP
Q(n)
t =

− 1
n lnEt

[
exp

(
−
∑n−1

i=0 r
(1)
t+i

)]
. The n−period term premium is the difference between the n−period

yield r
(n)
t and r

Q(n)
t :

tp
(n)
t ≡ r(n)

t − r
Q(n)
t . (12)

3.2 Results

To understand the dynamics of the yield curve under the setup with imperfect information, I plot

impulse responses. Since Ht acts as a “time-varying coefficient” in the state space system, the

model is nonlinear and hence standard impulse responses are neither symmetric, linear nor history

independent. Nevertheless, I present standard impulse responses as it is easier to understand the

mechanism. Since the ergodic mean of the system deviates from the steady state, I compute the

impulse responses from the ergodic mean.25

3.2.1 Parameter Values

Parameter values for the model are chosen for illustrative purposes and summarized in Table 2.

I choose ρa = 0.99 so the persistent component of productivity is close to a random walk—a

common specification. The standard deviation of the transitory productivity shock σz is relatively

large compared to the standard deviation of the noise shock σs so that learning about the persistent

component of productivity is gradual, and the additional signal st plays a meaningful role in the

learning process, and in turn, yield dynamics. The signal production rate ξ needs to be sufficiently

high to generate countercyclical uncertainty of consumption and term premia, as I describe below.

The values for θc, χc and r̄ are chosen for simplicity.

Table 2: Parameter Values for the Simple Term Structure Model

Parameter Description Value

ρa AR(1) coeff. of persistent TFP 0.99
ρH AR(1) coeff. of economic activity 0.8
σa × 100 Standard deviation of persistent TFP shock 2
σz × 100 Standard deviation of transitory TFP shock 20
σs × 100 Standard deviation of noise shock 2
σH × 100 Elasticity of H to TFP/noise shock 0.5†
ξ Signal production rate 50
θc Consumption rule coefficient 1
χc Risk aversion 1
r̄ Steady state interest rate 0

† For each impulse response exercise, only one of σH,a and σH,s is assigned this parameter value while the other is set to zero.

25A similar approach is adopted by Fernández-Villaverde, Guerrón-Quintana, Rubio-Ramirez, and Uribe (2011).
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The main result is that both the persistent productivity shock εa,t and the noise shock εs,t

generate a decrease in conditional volatility of productivity zt, which in turn, leads to a drop in

the term premium. Importantly, this is the case although only the εa,t shock has a direct effect on

productivity zt itself, and each shock leads to different dynamics of productivity and consumption.

3.2.2 Impulse Responses to a Persistent Productivity shock

Productivity/Consumption: The dark blue lines in Figure 3 show how the baseline model with

imperfect information (“model-BL”) responds to a positive one standard deviation shock to the

(unobserved) persistent component of productivity at. For reference, I also plot impulse responses

for a version of the model with perfect information (“model-PI”, light blue lines), in which σs = 0,

and a version with imperfect information, but when the mass of signals do not vary with respect to

economic activity and thus has constant precision (“model-CP”, dashed dark blue lines), in which

ξ = 0. This last version is a popular specification of imperfect information adopted in many studies.
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Figure 3: Impulse Responses to εa,t — productivity/consumption/signal

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI).
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The top left panel shows the hump-shaped response of the contemporaneous belief about the

persistent component of productivity at (at|t), which reflects learning about (and hence asymptotes

to) the true level of at over time. This is in contrast to the response under perfect information,

where the response of the belief completely tracks the true realization of at—a result documented in

the literature.26 However, compared to model-CP, the agent in model-BL learns faster as economic

activity increases and more information about persistent productivity leads to an improvement in

signal precision.

Indeed, as shown in the bottom left panel, the conditional forecast variance of at+1 (σ2
a,t)

decreases in model-BL, but is unchanged in the other models. This point can be seen clearly

from the recursive characterization of σa,t (9). The sum inside the bracket in equation (9) is the

precision of the belief of at as of time t: (Vart(at))−1. The first term inside the bracket is the

contribution from the signal st, which, in model-BL, is increasing in Ht−1 since φ′(Ht−1) > 0, and

hence,
∂σ2
a,t

∂Ht−1
< 0.

Due to the underlying increase in its persistent component, (observed) productivity zt and hence

consumption ct increases (top middle panel, note ct = zt by assumption). As shown in the bottom

middle panel, this does not affect the conditional volatility of consumption (productivity) in model-

PI and model-CP. However, in model-BL, we see a significant decrease in the conditional volatility

of consumption (dark blue line). In other words, model-BL can generate the well-documented

empirical pattern of countercyclical uncertainty.

Term Structure of Interest Rates: Figure 4 shows corresponding impulse responses regarding

the term structure of interest rates. The left and middle panel plots the responses of the 1-period

risk free rate (r
(1)
t ) and the n-period yield (r

(n)
t ), respectively. As an example, the responses of the

5-period yield (n = 5) is shown. The declines in r
(1)
t and r

(5)
t across models are consistent with the

Euler equation (11). In the models, an increase in productivity leads to an increase in consumption,

but since consumption is stationary (around a deterministic trend), consumption growth is expected

to decline over time. A decline in expected consumption growth can only be supported with a lower

equilibrium interest rate encouraging the consumer to borrow more. The decline in rates of model-

BL and model-CP are sharper compared to model-PI because when information is imperfect, the

agent suspects the shock is transitory, which leads to a larger contraction in expected consumption

growth. The responses of r
(5)
t are smaller in magnitude compared to the response of r

(1)
t due to the

stationarity of interest rates, which is consistent with the empirical evidence of a downward sloping

term structure of yield volatility.27

26See, for example, Edge, Laubach, and Williams (2007).
27See Section 4, and studies such as Cieslak and Povala (2016).
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Figure 4: Impulse Responses to εa,t — term structure

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI). The yield maturity is n = 5.

The key result is the countercyclical drop in the term premium under model-BL, as shown in

the right panel (in dark blue). One can understand this result through a combination of two largely

distinct channels. The first channel is that under perfect information, the model is approximately

homoskedastic, with a constant positive term premium. This is because stationarity in consumption

leads to a negative autocorrelation in consumption growth, which in turn, leads to a negative

autocorrelation in the stochastic discount factor. This implies that “bad (good)” times are likely

to be followed by “good (bad)” times, i.e., there is a stronger demand to hedge for the near-

term than for the longer-term, generating a positive term premium.28 The second channel is the

countercyclical uncertainty described above. Since the term premium is positive for a given level

of consumption volatility, countercyclical consumption volatility results in countercyclical moves

in the term premium as well. In other words, a rise (fall) in consumption volatility increases

(decreases) the relative hedging value of shorter-term bonds even more, raising (lowering) the term

premium. In Section 3.2.4, I make this point more formally through an analytical characterization

of the two-period term premium.

The size of the decrease in the term premium is small compared to the decrease in yields in

model-BL. However, the results of model-BL is in stark contrast with model-PI which generates little

variation in the term premium. Interestingly, the fact that model-CP cannot generate meaningful

variation in the term premium shows that a popular learning mechanism that assumes constant

signal precision per se is not sufficient to generate variation in the term premium.

28This intuition has been documented in studies as early as Campbell (1986).
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3.2.3 Impulse Responses to a Noise Shock

I now discuss the impulse responses to a noise shock εs,t. For ease of comparison with the impulse

responses to εa,t, the (positive) shock is of the same size as εa,t, which results in the same response

to Ht. The top left and middle panels of Figure 5 show distinct responses of at|t and ct(= zt)

compared to the responses to εa,t. Since the shock does not impact persistent productivity itself,

there is no response to at|t under perfect information, while the agent learns that the signal was

actually false only gradually under imperfect information. Similar to the impulse responses to εa,t,

model-BL leads to faster learning about at compared to model-CP. Since the shock has no impact

on actual productivity, there is no impact on consumption by definition.
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Figure 5: Impulse Responses to εs,t — productivity/consumption/signal

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI).

However, although the responses of at|t and ct(= zt) differ significantly from the responses to εa,t,

the increase in Ht leads to an increase in precision of at|t and a decrease in conditional uncertainty

about consumption, similar to the case of a positive εa,t (bottom left and middle panels).

As the first two panels of Figure 6 shows, yields rise in response to the shock since the shock
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has no effect on current consumption, but yet increases beliefs about future consumption under

imperfect information (model-BL and model-CP). However, consumption beliefs are still stationary,

and the countercyclical uncertainty generated from the εs,t shock then leads to a countercyclical

term premium for model-BL, as shown in the right panel of Figure 6. In contrast, both model-PI

and model-CP cannot generate meaningful variation in term premia, similar to the responses to

εa,t.
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Figure 6: Impulse Responses to εs,t — term structure

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI).The yield maturity is n = 5.

3.2.4 An Analytical Characterization

As I explained thus far, the model is stylized enough to make the key mechanism of countercyclical

term premia transparent. Furthermore, I can show that the two-period term premium has a simple

analytical expression that confirms the intuition explained in the previous sections. The conditional

log-normality of consumption implies that the term premium of a two-period real bond is:

tp
(2)
t ≡ r

(2)
t − r

(2)Q
t ∝ Covt(mt+1, r

(1)
t+1)

= −Covt(∆ct+1, r
(1)
t+1)

= (1− ρa)σ2
a,t + σ2

z ,

(13)

where mt+1 is the (real) stochastic discount factor (See Appendix C for details of the derivation).29

σ2
a,t is the uncertainty about the persistent component of productivity characterized by (9). Since

29For simplicity, I assume χc = θc = 1, as in the calibration. If the term premium was defined as the one-period
excess return of the two-period bond (with a Jensen’s correction), the final expression holds exactly, and not as a
proportionality.
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ρa ∈ (0, 1), this expression shows that the two-period term premium is always positive. Intuitively,

due to the (trend) stationarity of at, the one-period bond provides a better hedge against economic

fluctuations than the two-period bond.

Recall from (9),
∂σ2
a,t

∂Ht−1
< 0. This inequality and (13) further imply

∂tp
(2)
t

∂Ht−1
< 0. Therefore,

the term premium is decreasing in H and hence in both εa and εs, i.e., the term premium is

countercyclical.

Note that at is observable under perfect information, in which case:

tp
(2)
t ∝ (1− ρa)σ2

a + σ2
z (14)

Therefore, the term premium is constant. In contrast, imperfect information leads to a time-

varying term premium from underlying shocks that are homoskedastic. Moreover, although the term

premium is still positive under perfect information, it is smaller compared to the term premium

with imperfect information since σ2
a,t > σ2

a from equation (9).

3.2.5 Summary—Towards a DSGE Term Structure Model

In sum, the analysis of the simple term structure model shows that both the persistent productivity

shock εa,t and the noise shock εs,t generate a decrease in conditional volatility of productivity zt,

which in turn, leads to a drop in, or the countercyclicality of, the term premium. Importantly, this

is the case although only the εa,t shock has a direct effect on productivity zt itself, and each shock

leads to very different dynamics of productivity and consumption.

However, the model is limited in several ways. First, since the model does not feature inflation,

the mechanism solely relies on the “real” channel. In particular, it is difficult to interpret the

shocks in the model as the arguably more intuitive “demand” or “supply” shocks. Second, the

microfoundation of Ht is somewhat unclear and the exogeneity of Ht eliminates some interesting

channels where beliefs about technology affect the dynamics of Ht, and hence, consumption. Third,

the model is not suited to assess the quantitative relevance of the featured mechanism of counter-

cyclical term premia. In an attempt to address these issues, I analyze a DSGE term structure

model with imperfect information that embeds the core of the simple model.

4 DSGE Term Structure Model with Imperfect Information

4.1 Model

I construct a DSGE term structure model with a mostly standard New-Keynesian core that features

nominal price rigidities and a Taylor-type monetary policy rule. The key departure from the

standard structure is the inclusion of imperfect information. While features such as Epstein-Zin

preferences with habit formation are added to improve the quantitative performance of the model,

I deliberately keep the rest of the model relatively simple and close to canonical models such as

Rudebusch and Swanson (2012), so that the impact of imperfect information remains transparent.
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4.1.1 Households

The representative household has Epstein-Zin (EZ) preferences (Epstein and Zin (1989)). Its value

function Vt takes the following recursive form:

Vt =

Ut(Ct, Nt) + β
{
Et
[
V 1−γ̃
t+1

]} 1
1−γ̃

for Ut ≥ 0

Ut(Ct, Nt)− β
{
Et
[
(−Vt+1)1−γ̃]} 1

1−γ̃ for Ut ≤ 0.
(15)

β is the time discount rate. The period utility function Ut(Ct, Nt) takes a standard form with

external habits and separable labor disutility:

Ut(Ct, Nt) =

(
Ct − χhC̃t−1

)1−χc

1− χc
−G1−χc

t

N1+χn
t

1 + χn
, (16)

where χc > 0 captures the attitude towards intertemporal substitution of consumption (net of

habits) and χn > 0 is the inverse Frisch elasticity. Gt is a deterministic trend in total factor

productivity (TFP) which I return to later in the section. The scaling of labor disutility by Gt

ensures the existence of a balanced growth path in equilibrium.

Ct is the household’s aggregate consumption of final goods based on a CES aggregator of inter-

mediate goods Ct ≡
(∫ 1

0 C
1− 1

θ
i,t di

) θ
θ−1

, where θ > 1 is the elasticity of demand for the intermediate

goods. C̃t−1 is aggregate consumption in the previous period which is taken as given by the house-

hold (external habits). Nt =
∫ 1

0 Ni,tdi denotes the household’s total supply of labor, which is the

integral of labor Ni,t supplied to each intermediate good producer i ∈ [0, 1] in a perfectly competi-

tive labor market. The household takes nominal wage Wt as given. γ̃ parameterizes the household’s

risk aversion. γ̃ = 0 corresponds to the special case of power utility. Note that a larger γ̃ implies

higher risk aversion when U ≥ 0 and lower risk aversion when U ≤ 0.

The household maximizes (15) by choosing state contingent paths for Ct, Nt and asset holdings

subject to its initial wealth and the following sequence of flow budget constraints:

PtCt + Et [Mt+1Wt+1] ≤WtNt +Wt +Dt, (17)

where the aggregate price level of the consumption basket Pt ≡
(∫ 1

0 P
1−θ
i,t di

) 1
1−θ

is implied by the

household’s cost minimization problem (or equivalently, the optimization of a perfectly competitive

representative final good producer combining intermediate goods). Assuming complete financial

markets, Wt+1 is the household’s wealth portfolio of state contingent claims chosen by the end

of period t. These claims are priced by the unique nominal pricing kernel Mt+1 implied by the
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household’s problem (for Ut ≥ 0):

Mt+1 = β

(
UC,t+1

UC,t

) Vt+1[
Et
[
V 1−γ̃
t+1

]] 1
1−γ̃


−γ̃

1

Πt+1
, (18)

where UC,t =
(
Ct − χhC̃t−1

)−χc
and Πt+1 ≡ Pt+1

Pt
is the (gross) aggregate inflation rate. The term

with squared brackets is the additional term that appears by assuming EZ preferences, implying

that the household is sensitive to the distribution of future consumption (and labor supply) in

addition to current consumption growth. Dt =
∫ 1

0 Di,tdi is aggregated firms’ dividends rebated

back to the household.

4.1.2 Firms

There are a continuum of intermediate goods producers (firms) indexed by i ∈ [0, 1] who are

monopolistically competitive and maximize their equity value. Each firm faces nominal rigidities

in the form proposed by Calvo (1983) where a firm can reoptimize the price of its good with only

a fixed probability 1− ϕ in each period. Firm i’s equity value V f
i,t is then:

V f
i,t = Et

[ ∞∑
τ=0

ϕτMt+τ

{
Pi,t

(
τ∏
s=1

Π
ιp
t+s−1Π̄1−ιp

)
Yi,t+τ −Wt+τNi,t+τ

}]
. (19)

When a firm cannot optimize its price, it indexes the price to a weighted average of inflation in

the previous period and steady state inflation Π̄. Each firm i is also subject to the demand and

production functions for its own good Yi,t:

Yi,t =

(
Pi,t
Pt

)−θ
Yt (20)

Yi,t = K1−α
t (GtZtNi,t)

α, (21)

where Yt is aggregate output taken as given by each firm and Kt = K̄Gt is the level of capital that

grows deterministically with Gt (see next paragraph).

Productivity with imperfect information: Productivity (TFP) consists of two observable

components Gt and Zt. Gt is a deterministic trend component which grows at a rate of ζ (i.e.,

ζ = Gt
Gt−1

− 1). Zt is a stationary component. Similar to the simple term structure model, it is

composed of a “persistent” component At and a “transitory” component et:

Zt = At + et. (22)
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At and et are unobservable and follow independent AR(1) processes:

At = (1− ρa)Ā+ ρaAt−1 + σaεa,t (23)

et = ρeet−1 + σeεe,t, (24)

where εa,t and εe,t are i.i.d standard normal shocks that are also unobservable. I assume 1 > ρa �
ρe ≥ 0.30 Note the state space system in the simple term structure model was a special case of this

system where the transitory component was assumed to be i.i.d.

As in the simple term structure model, firms also observe a continuum of noisy signals about

the persistent component of productivity sj,t, where j ∈ [0, Jt]. The mass of signals Jt is increasing

in output (Jt ≡ φ(Yt−1)2 and φ′ > 0) and can be aggregated to a noisy public signal St.
31 Thus,

St can be characterized as:

St = At +
σs

φ(Yt−1)
εs,t, (25)

where εs,t is i.i.d standard normal and unobservable to the firms. I assume Jt is quadratic, and

hence φ(Yt−1) is linear:

φ(Yt−1) ≡ ξ(Yt−1 − Ȳ ) + Ȳ , (26)

where ξ > 0 is now the parameter that controls the amount of productivity signals generated by the

output gap Yt−1 − Ȳ .32 Note the mass of signals (Jt) is increasing with respect to an endogenous

variable (output), in contrast to the simple term structure model, in which Jt was largely exogenous.

Firms form beliefs about the unobservable components At and et by learning from observations

on Zt and St via a Kalman filter. In other words, the beliefs are updated through the following

system of equations (27) through (29):

Xt|t ≡ Et[Xt] = ρXt−1|t−1 +Kt−1(St − St|t−1) (27)

Kt−1 = V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1 (28)

V t+1|t = ρ(V t|t−1 − V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1ΨV ′t|t−1)ρ′ + ΣxΣ

′
x, (29)

where Xt = [Ât, et]
′, St = [Ẑt, Ŝt]

′, ρ = [ρa, 0; 0, ρe], Ψ = [1, 1; 1, 0], Σx = [σa, 0; 0, σe], Σs,t =

[0, 0; 0, σs/φ(Yt)]. The “hat” variables indicate the demeaned versions. Kt is the Kalman gain

matrix and V t|t−1 is the forecast variance matrix of Xt.

30While the assumption that At is stationary is entirely standard, it is also important in obtaining an upward
sloping real term structure. Various studies of the yield curve based on macroeconomic models therefore adopt this
feature, such as Rudebusch and Swanson (2012). Nevertheless, I calibrate the process of At to be close to a random
walk, consistent with empirical evidence. Note that although I assume TFP does not have a stochastic trend, it still
allows for a deterministic trend.

Separately, the process of At is characterized in levels, but the realized values practically never fall below zero in
the simulations.

31The assumption that Jt is a function of previous period output makes the model more tractable.
32Assuming Jt is linear in Yt−1 leads to broadly similar results, except that the time-variation in consumption

growth and term premia is smaller.
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The timeline of events within a period for each firm is summarized in Figure 7. After the

unobserved shocks εa,t and εs,t are realized, firms update their beliefs about productivity based on

signals St, the precision of which is affected by output in the previous period Yt−1. Then goods

are produced based on the beliefs and dividends are paid out to the household.

t t+ 1

shocks realized update beliefs production

pay dividend

Figure 7: Timeline of Events for the Firm

4.1.3 Monetary Policy

The central bank sets the (gross) nominal one-period interest rate, R
(1)
t , following a standard Taylor

rule:

R
(1)
t =

(
R

(1)
t−1

)ρr (
R̄

[
Πt

Π̄

]φΠ
[
Yt
Ȳ Zt

]φY)1−ρr

, (30)

where R̄ and Ȳ denote the steady state of R
(1)
t and normalized output Ŷt ≡ Yt

Zt
, respectively. I

abstract from monetary policy shocks for simplicity.

4.1.4 Market Clearing

In equilibrium, the goods market, labor market, and asset market must clear at all dates and states.

The clearing condition for final goods is:

Yt = Ct + (ζ + δ)K̄Zt. (31)

I focus on a symmetric equilibrium. Aggregating the supply of intermediate goods by integrating

each producer’s supply leads to:

Yt =
1

∆t
K1−α
t (GtZtNt)

α, (32)

where ∆ ≡
∫ 1

0

(
Pi,t
Pt

)−θ
di is price dispersion, which follows:

∆t = (1− ϕ)

(
P ∗t
Pt

)−θ
+ ϕ

(
Πt

Π
ιp
t−1Π̄1−ιp

)θ
∆t−1, (33)
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where P ∗t is the price set by the optimizing firm. For the asset market, I make a standard assumption

that state contingent claims are in zero net supply.

4.1.5 Term Structure of Interest Rates

Given the equilibrium under complete markets, the price of a n−period zero-coupon nominal bond

that pays one dollar at maturity P
(n)
t can be derived recursively using the nominal stochastic

discount factor (18):

P
(n)
t = Et[Mt+1P

(n−1)
t+1 ], (34)

where P
(0)
t = 1 for ∀t. The continuously compounded yield to maturity of this bond follows

directly from its price: r
(n)
t = − 1

n lnP
(n)
t . Note r

(1)
t is the one-period nominal risk-free rate and

R
(1)
t = exp(r

(1)
t ) in the monetary policy rule.

As described in Section 3.1, the n−period term premium tp
(n)
t is computed from equation (12)

with the risk neutral yield r
Q(n)
t computed by recursively discounting cashflows using the nominal

risk-free rate (instead of the real risk-free rate). As also shown in Section 3.1, the yield to maturity

and the term premium of a n−period zero-coupon real bond can be derived analogously, by simply

replacing the nominal stochastic discount factor and the nominal one-period interest rate used for

discounting the risk-neutral prices with their real counterparts.

4.1.6 Equilibrium Characterization

Given the initial condition {R(1)
−1, Y−1,X−1|−1,V 0|−1} and the exogenous processes {Gt, At, et, εs,t}t≥0,

a monopolistically competitive rational expectations equilibrium is defined in a standard way as

a set of stochastic processes for quantities and prices such that (1) households maximize utility,

(2) firms set prices and maximize profits identically (symmetry), (3) the central bank conducts

monetary policy according to the interest rate rule, and (4) goods, labor and asset markets clear.

Conditional expectations E[·|It] are defined over the information set It common across households,

firms and the central bank, which precludes {At−τ , et−τ , εs,t−τ}τ≥0.

To obtain a stationary equilibrium I follow the standard procedure of normalizing all relevant

variables by the (deterministic) trend growth Gt. Equilibrium conditions are summarized in Ap-

pendix D.

4.1.7 Calibration

I calibrate the model to fit key moments of macroeconomic variables and moments of the term

structure of interest rates using U.S. data. In particular, I target the first and second moments

of quarterly data on consumption growth, inflation and interest rates covering a sample period

from the beginning of 1990 to the end of 2008.33 The end point is a conservative choice to avoid

33The data source is mostly standard. See Appendix A for details.
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complications due to the ELB.34 The calibrated parameter values are summarized in Table 3.

Table 3: Parameter Values for the DSGE Term Structure Model

Parameter Description Value

Household

β̃ Time discount rate 0.99

χc 1/IES 4

χh External habit 0.3

χn 1/Frisch elasticity 3

RRA Risk aversion 52

Firm

θ Demand elasticity 6

ϕ 1 - price adjust. freq. 0.8

ιp Indexation weight 0.5

α Labor share in prod. 0.67

δ Capital depreciation rate 0.02

ξ Signal prod. 65

Parameter Description Value

Monetary Policy

φπ Inflation gap coeff. 2.1

φy Output gap coeff. 0.02

ρr Interest-rate smoothing coeff. 0.5

Exogenous Processes

ρa AR(1) of persistent TFP 0.99

ρe AR(1) of transitory TFP 0.7

σa × 100 Std of persistent TFP 0.41

σe × 100 Std of transitory TFP 0.41

σs × 100 Std of noisy signal 1.9

χc, the inverse of the elasticity of intertemporal substitution (without habits) is set to 4. Ac-

counting for external habits, the elasticity is 0.18, which is much smaller than 1, consistent with

many macroeconomic studies.35 The degree of habit persistence (χh) is set to 0.3, within the range

found in previous studies.36 χn is set such that the Frisch elasticity of labor supply is 1/3, in

line with estimates from microeconomic studies. The risk aversion parameter (γ̃) is set to −21,

which implies a relative risk aversion of 52, based on the measure proposed by Swanson (2018)

that accounts for the household’s ability to hedge risk by adjusting its labor supply.37 While this

value appears high relative to what is typically used in the macroeconomic literature, a number of

models with EZ preferences aimed to price the yield curve requires a comparable or even higher

level of risk aversion to fit the data. For example, the value I use is significantly lower compared to

Rudebusch and Swanson (2012), which reports a risk aversion of 110 in their canonical DSGE term

34For an analysis on how the ELB affects yields and term premia using a DSGE term structure model, see for
example, Nakata and Tanaka (2016).

35Log-linearizing the Euler equation implies an elasticity of (1− χh(1 + ζ)−1)/χc.
36See, for example, Del Negro, Giannoni, and Schorfheide (2015).
37Swanson’s risk aversion measure for recursive utility with external habit can be computed as:

RRA =
χc

1− χh(1 + ζ)−1

1

1 + χcW̄ N̄
χn(1−χh(1+ζ)−1)C̄

+
γ̃(1− χc)

1− χh(1 + ζ)−1

1

1 + (χc−1)W̄ N̄

(1+χn)(1−χh(1+ζ)−1)C̄

,

where X̄ is the steady state value of normalized Xt, i.e., Xt/Zt. Intuitively, the first and third terms on the right
hand side constitute the traditional measure of relative risk aversion abstracting from the flexible labor margin, while
the second and fourth terms scale down that measure when labor supply is determined endogenously.
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structure model.38 The deterministic trend growth in TFP is set to 2.1 percent per year, which

aligns the model-implied average consumption growth rate to the data. The time discount rate β̃ is

set to 0.99, which implies an average 1-quarter real interest rate of 2.0 percent taking into account

the trend growth rate.

The parameters that characterize the firms’ problem are set to values fairly standard in the

literature; the elasticity of substitution among intermediate goods (θ) is set to 6, and the probability

with which a firm cannot readjust its price each period (ϕ) is set to 0.8. The firm uses a price

indexation scheme where it places 50 percent weight (ιp) on previous period inflation and another

50 percent weight on steady state inflation. The Cobb-Douglas parameter for the labor share (α)

is set to 0.67 and the capital depreciation rate (δ) is set to 0.02. The choices of the steady state

capital stock (K̄) and persistent component of technology (Ā) largely determine the capital-output

ratio of 2.5, the value also targeted by Rudebusch and Swanson (2012).

For the parameters of the monetary policy rule, I set the coefficient on inflation (φπ) and the

output gap (φy) to be 2.1 and 0.02 respectively. These values are fairly standard—for example,

they are in line with the parameters estimated for several variants of the Smets-Wouters model in

Del Negro, Giannoni, and Schorfheide (2015). The interest-rate-smoothing parameter (ρr) is set

to 0.5, a value somewhat smaller than what is reported in Del Negro, Giannoni, and Schorfheide

(2015). However, as shown by Rudebusch (2006), policy inertia could be overestimated, and in fact,

the value I use is close to the estimate in Blanchard, L’Huillier, and Lorenzoni (2013). The steady

state inflation target rate is set such that it implies an average annual inflation of 2.0 percent, which

is lower than the average core CPI inflation, but very close to the average core PCE inflation over

the sample period.

ξ controls the amount of signals generated from output, and is a key parameter that affects

the conditional uncertainty of macroeconomic variables and term premia, as we discuss further

below. Since there is no clear empirical counterpart to the signals in the model, I discipline the

parameter based on measures of conditional uncertainty about GDP growth from the Survey of

Professional Forecasters (SPF), similar to Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017).

Specifically, I take the standard deviation of the average forecast distribution of GDP growth in

the SPF (reported each quarter) as a measure of conditional uncertainty about GDP growth, and

set ξ such that the model is in line with the (time-series) property of this standard deviation.39

I set ρa = 0.99, so that at is close to a random walk, but still stationary. The rest of the

parameters characterizing the exogenous processes (ρe, σ{a,e,s}) are determined such that the model

fits the volatility of consumption growth and inflation, as well as the moments of the term structure.

While models with information frictions can face computational challenges and be hard to solve

without linearization, my particular specification remains relatively tractable. I solve the model

38As explored in Andreasen and Jørgensen (2019), an extension that explicitly models the timing attitude of
consumers may reduce the risk aversion even further.

39From the SPF, I take each survey in the fourth quarter and compute the standard deviation of the distribution
for the current year forecast of year-over-year GDP growth. See Figure 2 for a visual of the series. I consider this
standard deviation as a proxy for conditional volatility of year-over-year GDP growth 2-quarters ahead in the model,
taking into account the uncertainty from future revisions of GDP data.
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using a third-order perturbation method to properly account for time-variation in volatility and

term premia. The state-space system is pruned based on the method of Andreasen, Fernández-

Villaverde, and Rubio-Ramı́rez (2018).

4.2 Results

4.2.1 Moments

Table 4 summarizes the quantitative performance of the model by comparing model-implied mo-

ments with those of the data. The second column reports the moments from the data, and the third

column reports the moments of the simulated data from the model with imperfect information. For

reference, the last column reports the moments from the model with perfect information, which

sets the standard deviation of the noise shock (σs) to zero while keeping the rest of the parameters

unchanged from the model with imperfect information.

Table 4: Selected Moments

Data Model Model

(Imperfect Info.) (Perfect Info.)

Macro Variables

E[∆c] 2.12 2.09 2.09

E[π] 2.70 2.02 2.22

σ[∆c] 1.39 1.33 1.10

σ[π] 0.81 0.91 0.84

ρ[∆c, π] -0.24 -0.07 -0.14

E[σ[∆c]] 0.66 0.70 0.67

σ[σ[∆c]] 0.18 0.10 0.06

Yields

E[r(1)] 4.00 4.08 4.51

E[r(20→40)] 6.44 6.07 6.16

E[rr,(20→40)] 2.97 2.94 2.98

E[tp(20→40)] 2.03 1.99 1.66

σ[r(1)] 1.81 1.70 1.63

σ[r(20→40)] 1.28 1.25 0.88

σ[rr,(20→40)] 0.72 0.55 0.36

σ[tp(20→40)] 0.85 0.60 0.30

Notes: Data is quarterly and in annualized percent. Sample period is from 1990Q1 to 2008Q4.

In terms of the macro variables, the averages and standard deviations of consumption growth
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and inflation from the model with imperfect information are in line with the data. The model also

captures the negative correlation between consumption growth and inflation, although the mag-

nitude is relatively smaller. The model with perfect information generates a somewhat reduced

standard deviation of consumption growth and inflation. This is intuitive since imperfect informa-

tion adds uncertainty to the economy by introducing a shock to the signal. The correlation between

consumption growth and inflation is more negative for the model with perfect information, but the

mechanism is not completely obvious, a point which I revisit later in Section 4.2.3.

The table also reports the mean (E[σ[∆c]]) and standard deviation (σ[σ[∆c]]) of conditional

volatility of consumption (= GDP) growth 2-quarters ahead. The mean of conditional volatility is a

bit larger in the model with imperfect information compared to the model with perfect information,

but both are broadly consistent with the data. In terms of the standard deviation of conditional

volatility, both models fall short of fitting the data, but the model with imperfect information

generates a significantly larger variation in conditional volatility, nearly doubling what is implied

by the model with perfect information. This ability to generate sizable time-varying volatility in

macro variables translates to better performance in fitting the term structure of interest rates, as

I explain below.

The model with imperfect information can fit several important moments of the yield curve

well. As a proxy for long-term yields, I focus on the 5-to-10-year forward rate so the results are

easily comparable with the empirical analysis in Section 2. As shown by the fit to the average

1-quarter nominal rate (E[r(1)]) and the average 5-to-10 year nominal forward rate (E[r(20→40)]),

the model can match the average level and (upward) slope of the nominal yield curve data. The

model can also fit the unconditional standard deviations of nominal yields well, as indicated by its

fit to the standard deviations of the 1-quarter nominal rate (σ[r(1)]) and the 5-to-10 year forward

rate (σ[r(20→40)] ). Thus, the model-implied yield volatility curve is downward sloping, as suggested

by the data.

While the model with perfect information can also replicate the qualitative pattern of an upward

sloping yield curve and downward sloping yield volatility curve, the average slope is significantly

smaller, and the yield volatility curve is significantly more downward sloping than what the data

and the model with imperfect information suggest.

It is worth emphasizing the model’s fit to empirical estimates of the term premium.40 In

particular, the model with imperfect information can generate a sizable average term premium for

the nominal 5-to-10-year rate (E[tp(20→40)]). The nominal term premium is positive because, in the

model, (1) average real term premium is positive due to the (trend) stationarity of consumption, and

(2) average inflation risk premium is positive due to the negative correlation between (longer-run)

consumption growth and inflation. Additionally, while the term premium is not as volatile as what

an average of the empirical estimates suggests, it still explains about 70 percent of the standard

deviation of its empirical counterpart (σ[tp(20→40)]). This is in clear contrast to the model with

40The values for the mean and standard deviation of the 5-to-10-year nominal term premium listed in the data
column are the averages over the three term premium estimates analyzed in Section 2.

28



perfect information, in which both the average and volatility of term premia are significantly smaller,

and the model-implied volatility is only about a third of its empirical counterpart. Importantly,

the increase in the volatility of term premia by incorporating imperfect information is not simply a

reflection of higher volatility in consumption growth and inflation. For example, the ratio of term

premium volatility to consumption growth (inflation) volatility is 45 (66) percent for the model

with imperfect information, while 27 (36) percent for the model with perfect information. In other

words, imperfect information is a useful channel to explain the large variation in term premia

compared to variation in macro variables, which is harder to explain with a model with perfect

information.

Lastly, the model with imperfect information fits the average 5-to-10-year real rate based on

TIPS data (E[rr,(20→40)]). Given the model also fits the average 1-quarter nominal rate and one-

quarter inflation, the model can fit the average real yield curve, which is upward sloping in the

data, but more mildly so, compared to the nominal yield curve. While the model-implied volatility

of the 5-to-10 year real rate (σ[rr,(20→40)]) is smaller than the data, the volatility is larger compared

to the model with perfect information.41

The reason for the large increase in the volatility of the term premium is its countercyclical

variation generated through imperfect information. To understand the role of imperfect information

further, I next turn to impulse responses, which isolate the contribution of each shock to the

dynamics of macro variables and the term structure of interest rates.

4.2.2 Impulse Responses

Figures 8 through 11 show impulse responses of the DSGE term structure model. The format

closely follows that of the impulse responses of the simple term structure model in Section 3, but

here I plot the generalized impulse responses of Koop, Pesaran, and Potter (1996), which are the

nonlinear responses to the average path without the shock. The dark blue lines show responses

of the baseline DSGE model with imperfect information (“model-BL”). For reference, I also plot

impulse responses of the model with perfect information (“model-PI”, light blue lines) in which

σs = 0, and of a version with imperfect information, but when the mass of signals do not vary with

respect to output and thus has constant precision (“model-CP”, dashed dark blue lines) in which

ξ = 0.

The main result is that consistent with the findings from the simple term structure model with

imperfect information, both the persistent shock to productivity and the shock to the signal about

41Duffee (2018) proposes an alternative way to assess a macro-finance term structure model’s fit to the data,
by looking at the ratio of the variance of news about expected inflation to the variance of yield shocks. Specifi-

cally, the inflation variance ratio for yield maturity m is computed as
Var[η

(m)
π,t ]

Var[r̃
(m)
t ]

, where η
(m)
π,t ≡ Et

[
1
m

∑m
i=1 πt+i

]
−

Et−1

[
1
m

∑m
i=1 πt+i

]
and r̃

(m)
t ≡ r(m)

t − Et−1[r
(m)
t ]. Duffee argues that at a quarterly frequency, this ratio is between

10 to 20 percent in the data. It turns out that the model with imperfect information implies a variance ratio of 16 and
18 percent at the 5- and 10-year maturity, respectively, which is consistent with Duffee’s observation and my finding
that the model reasonably fits other moments of the data. Interestingly, the model with perfect information under
my specification implies a similar variance ratio, suggesting that adding imperfect information does not necessarily
seem to improve the model fit based on this particular measure.
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productivity significantly amplify the countercyclicality of term premia. However, in contrast to

the simple model, the DSGE model allows the shocks to be interpreted intuitively as a “supply

shock” and a “demand shock”, respectively.

Impulse Responses to a Persistent Productivity shock

Figure 8 shows responses of various macroeconomic variables to an (unobserved) positive per-

sistent TFP shock (εa,t). The responses of model-BL show that consumption (top left) rises as

inflation drops (top middle). The opposite response of consumption and inflation allows the shock

to be interpreted as a “supply shock”, a feature which is common across all model specifications.

Consumption shows a hump-shaped response which is well-documented in the literature to be em-

pirically plausible. This is partly due to habit formation, which is why the hump-shape can be seen

across all specifications. More importantly, the hump-shape is also generated from incorporating

imperfect information through a gradual learning of the persistence in the TFP shock. This can be

seen from the more delayed response in model-BL and model-CP compared with the response in

model-PI. Furthermore, consumption in model-BL shows a somewhat faster increase compared with

consumption in model-CP. The mechanism is similar to that in the simple model; the TFP shock

increases consumption (output), which generates more signals about the persistent component of

TFP. The information is shared among the agents via social learning, and the signals become more

precise in the aggregate. Indeed, model-BL shows a decrease in the volatility (or increase in the

precision) of beliefs about the persistent component of TFP (top right) as well as volatility of TFP

per se (bottom right). Such a response cannot be observed in model-CP and model-PI. These

results confirm that the mechanism of the simple model in Section 3 holds more generally in the

DSGE model.42

Compared with model-PI, inflation in model-BL decreases more, reflecting the slower pickup in

consumption (demand). The decrease in inflation is most pronounced for model-CP, since house-

hold’s learn about the persistent productivity the slowest in this model, and thus demand is held

back the most. Labor hours (bottom left) decrease upon the shock for all specifications, which is

consistent with some leading DSGE models (with perfect information) such as Smets and Wouters

(2003).43 Real wages (bottom middle) generally rise as productivity increases, but the rise is slower

for model-BL and model-CP, in which it takes time to learn that the increase in productivity will

persist.

Figure 9 shows the responses of interest rates and term premia. The 1-quarter nominal rate

(policy rate) declines in model-BL (top left), which is similar across other specifications, and is

a standard response to a positive supply shock as the central bank accommodates to alleviate

deflationary pressure. The degree of accommodation is most pronounced in model-CP, which is

42In the simple model, this mechanism was seen in the belief of the persistent component of productivity as
opposed to consumption since the latter was equal to productivity in that model.

43Labor hours can be made to respond positively by using a utility function proposed by Greenwood, Hercowitz,
and Huffman (1988). I find that the impulse responses for the other variables are qualitatively similar with this
modification.
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followed by model-BL, reflecting the magnitude of the decline in inflation. The relatively large drop

in the policy rate compared to longer-term yields leads to an increase in the nominal yield spread

in model-BL and model-CP (top middle). These responses of the yield spread are consistent with

studies that use similar models with perfect information.44 The 1-quarter real rate (bottom left)

and the real yield spread (bottom middle) show a qualitatively similar pattern as their nominal

counterparts.
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Figure 8: Impulse Responses to εa,t — macro variables

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI).

The key feature of model-BL that differentiates it from the other specifications is the response

of the term premium. In model-BL, both the nominal (top right) and real (bottom right) term

premia fall in response to the TFP shock. The countercyclicality of real term premia follows from

countercyclical uncertainty about productivity, and hence other macro variables, as explained in

Section 3 using the simple term structure model. The (trend) stationarity of consumption implies

a positive term premium on average, and the countercyclicality of consumption volatility means

44See, for example, Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2018).
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that the level of the term premium is compressed due to a decrease in the quantity of risk when

the economy is booming. Such a mechanism is non-existent in model-PI and model-CP, and term

premium variation in both specifications is significantly smaller.
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Figure 9: Impulse Responses to εa,t — term structure

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI).

Furthermore, the nominal term premium shows a similar countercyclical pattern, but with a

larger magnitude. This is because the inflation risk premium is also countercyclical in the models. In

particular, to understand the significant countercyclicality in model-BL, recall that the correlation

between consumption growth and inflation is negative, and hence the inflation risk premium is

positive. In addition, since inflation risk premium increases with productivity uncertainty which is

countercyclical, inflation risk premium is also countercyclical.45

The fact that the response of the term premium in model-CP is as small as that in model-

PI shows that time-varying signal precision is crucial in generating variation in term premia, and

45See Section 4.2.3 for further discussion on the inflation risk premium. Also, note what matters for the positive
longer-term inflation risk premium is the correlation of consumption growth and inflation over multiple periods, as
opposed to the one-period correlation.
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not imperfect information per se. While other studies discuss different mechanisms that result in

countercyclical term premia due to supply shocks, my model with imperfect information offers a

complementary mechanism that is intuitive and consistent with the data.46 In addition, my model

does not require an independent shock to the volatility of TFP, providing a deeper microfoundation

to setups that use exogenous stochastic volatility.

In the context of matching the data on consumption and the term structure jointly, the fact

that consumption dynamics feature an endogenous hump-shaped response due to learning is an

appealing feature, and complements other mechanisms such as habit formation. While the highly

persistent, but trend stationary feature of consumption ensures the (real) term premium to be

positive on average, the gradual increase in consumption after the response leads to a positive

autocorrelation of consumption growth in the near-term, consistent with the data.

Impulse Responses to a Noise Shock

In this section, I analyze the impulse responses to an (unobserved) positive noise shock (εs,t). As in

Figure 8, Figure 10 collects the responses of key macroeconomic variables. Since this shock plays

no role under model-PI, the relevant comparison with model-BL will only be model-CP.

A positive noise shock to the signal leads to increases in both consumption (top left) and

inflation (top middle) in model-BL and model-CP. This is because under imperfect information, a

positive noise shock makes the consumer believe her present value of income has increased due to a

persistent increase in productivity, which raises consumption. However, since productivity did not

actually increase, supply cannot increase in tandem, creating upward pressure on inflation. The

initial impact of a one standard deviation noise shock is about a third of the impact of a TFP

shock of the same magnitude, and the impact on inflation is about two thirds of a TFP shock in

model-BL. The positive correlation between consumption and inflation suggests that the shock can

be clearly interpreted as a “demand shock”, which confirms the results of related studies.47

In addition to consumption and inflation, labor hours (bottom left) and real wages (bottom

middle) rise following the shock, for both model specifications. Similar to when a positive persistent

TFP shock hits the economy, the increase in output leads to a decrease in the volatility (or increase

in the precision) of beliefs about the persistent component of TFP (top right) as well as volatility

of TFP per se (bottom right). Again, such a countercyclical response of volatility cannot be seen

in the other models.

Figure 11 shows the responses of interest rates and term premia. Both the 1-quarter nominal

rate (policy rate, top left) and to a lesser extent, the 1-quarter real rate (bottom left) increases

similarly for both model-BL and model-CP. This is a standard response to a positive demand shock

as the central bank tightens monetary policy to reign in economic activity. The relatively large

increase in the policy rate compared to longer-term yields leads to a decrease in the nominal yield

46See, for example, Rudebusch and Swanson (2012), Andreasen, Fernández-Villaverde, and Rubio-Ramı́rez (2018),
and Swanson (2019).

47See, for example, Lorenzoni (2009) and Blanchard, L’Huillier, and Lorenzoni (2013). Note these models fall into
the class of model-CP, as they do not exhibit time-varying signal precision.
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spread in both models (top middle). As the decrease in the yield spread is followed by a decrease

in consumption and inflation, such a response is largely consistent with strong empirical evidence

of the slope of the yield curve being a leading indicator of the business cycle. The results show that

noise shocks help explain the empirical pattern.
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Figure 10: Impulse Responses to εs,t — macro variables

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI).

Similar to the case of a positive persistent TFP shock, the countercyclical response of volatility

to a signal shock leads to a fall in both the nominal and real term premia in model-BL (top and

bottom right). The key difference is that the drop in term premia is now associated with a demand

shock that has distinct effects on the macroeconomy compared to a supply shock. While term

premia in model-CP also show a countercyclical decline, the magnitude is significantly less than in

model-BL. In sum, I show that the noise shock about productivity—despite being a demand shock—

becomes an important driver of the term premium through changes in the perceived properties of

productivity, i.e., supply.
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Figure 11: Impulse Responses to εs,t — term structure

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline model with

imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the model with imperfect information

with constant precision (model-CP). Light blue lines indicate impulse responses of the model with perfect information (model-

PI).

4.2.3 Further Discussion on the Effect of Imperfect Information

In this section, I provide further discussion on how imperfect information affects the model dynam-

ics. In particular, I isolate the roles of the two key parameters that characterize the information

friction—the volatility of the noise shock (σs), and the parameter that controls the rate of signal

production (ξ), and provide a more detailed study about their impact on term premia. I also use

the comparative statics to offer some thoughts on the increase in the correlation of consumption

growth and inflation observed over the last few decades and its relation to term premia.

The effect of imperfect information on term premia: Figure 12 shows how the signal

specification affects nominal term premia, by plotting the model-implied average (left panel) and

volatility (right panel) of the 5-to-10 year nominal term premium with respect to σs, and for

different values of ξ. σs and ξ each leads to an increase in both the average term premium and

the volatility of term premium, but the way in which each parameter affects term premia is quite
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different. The average of the 5-to-10 year nominal term premium (E[tp(20→40)]) monotonically

increases with respect to σs. The panel also shows that ξ has a negligible impact on E[tp(20→40)].

In contrast, the volatility of the 5-to-10 year nominal term premium (σ[tp(20→40)]) has a hump-

shape with respect to σs, which becomes more pronounced as ξ increases. Also, a sufficiently large

ξ is key in generating time variation in the term premium.
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Figure 12: Effect of the Noisy Signal on Nominal Term Premia

Notes: Each line corresponds to the moments generated from the indicated value of ξ. The black triangle indicates the moment

from the baseline model.

To better understand the result, I further decompose the effect on the nominal term premium

into the effect on the inflation risk premium and the real term premium. Figure 13 shows that in

terms of averages (left panel), the real term premium (solid lines) increases with respect to σs but is

largely insensitive to ξ, and these effects are comparable to the effects on the inflation risk premium

(dashed lines). However, in terms of volatilities (right panel), both parameters have outsized effects

on the real term premium.

The intuition for the effects of σs and ξ on the real term premium can be understood clearly

by revisiting the analytical expression for the two-period real term premium (13) in Section 3.2.4.

From equations (13) and (9), it is immediate that the average real term premium is (monotonically)

increasing in σs through an increase in σa,t, i.e., a noisier signal increases uncertainty about the

persistent component of TFP, and leads to an increase in the term premium. In contrast, the

volatility of the real term premium is monotonically increasing in σs when ξ = 0, but is hump-

shaped when ξ > 0, and the hump becomes more pronounced as ξ increases. When ξ > 0, the term

φ/σ2
s in (9) can become an important source of time-variation in the term premium and ξ increases

its variability, all else fixed. However, the effect of a time-varying φ disappears either as σs → 0

(since φ/σ2
s → ∞ , and hence σ2

a,t → σ2
a (constant)), or as σs → ∞ (since φ/σ2

s → 0 , and hence
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σ2
a,t → σ̄a

2 (another constant), where σ̄a solves σ̄a
2 = ρ2

a

(
σ−2
z + σ̄a

−2
)−1

+ σ2
a).
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Figure 13: Effect of the Noisy Signal on Inflation Risk Premia and Real Term Premia

Notes: The solid lines are the moments of the real term premium (tpr,(20→40)). The dashed lines are the moments of the

inflation risk premium (irp(20→40)). Different colors correspond to the moments generated from different values of ξ.

The effects of σs and ξ on the inflation risk premium turns out to be qualitatively similar, and

the mechanism is analogous to the effect on the real term premium. To guide intuition, consider a

simple extension of the two-period term premium analysis in Section 3.2.4, where I add inflation πt

specified as πt = −θπzt, where θπ > 0 is an exogenous parameter. Then, the two-period inflation

risk premium (irp
(2)
t ) is:

irp
(2)
t ∝ Covt(mt+1, πt+2) ∝ θπρaσ2

a,t. (35)

In other words, the inflation risk premium is an increasing function of σa,t just like the real term

premium. Hence, the effects of σs and ξ work through σa,t analogously.48

Imperfect information offers a channel that can increase both the average and the volatility of

nominal term premia by largely impacting real term premia. This emphasis on real term premia is

a notable departure from the literature that stresses positive inflation risk premia as the primary

factor behind positive nominal term premia. The result can also be seen as lending theoretical

support to studies such as Duffee (2018), which aruges that a relatively small portion of the variation

in yield news can be explained by the variation in news about expected inflation.

Term premia and the changing correlation of consumption growth and inflation: While

a detailed study is out of the scope of this paper, the comparative statics can offer some insight into

48θπ is obviously affected by σs and ξ in the DSGE model, and in particular, θπ can decrease as consumption and
inflation becomes more positively correlated under imperfect information. However, the simple example highlights
the channel through the effect on σa,t, which is useful to understand the overall effect of the change in parameters.
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the determinants of a longer-term relationship between term premia and the increasing correlation

of consumption growth and inflation that has been documented in the literature. The left panel of

Figure 14 shows the model-implied correlation of consumption growth and inflation with respect

to σs and ξ. Recall a noise shock can be interpreted as a demand shock, in the sense that it moves

consumption and inflation in the same direction, as shown by the impulse responses. Hence, it

may be natural to expect an increase in the correlation of consumption and inflation by adding a

noise shock. However, the figure shows that this is not necessarily the case. In particular, when

the signal precision is constant (ξ = 0), the correlation becomes more negative as σs increases from

the perfect information case when there are only TFP shocks (σs = 0). Correlation can increase

only when the signal precision is sufficiently time-varying, i.e., ξ is large, but even in this case, the

correlation is not monotonically increasing with respect to σs.
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Figure 14: Effect of the Noisy Signal on the Correlation of ∆c and π and the
Regression Coefficient of tp(20→40) on to ∆c

Notes: Each line corresponds to the correlations (left panel) and regression coefficients (right panel) generated from the indicated

value of ξ. The black triangle indicates the statistic from the baseline model.

The reason why a larger volatility of the noise shock can lead to a (further) negative corre-

lation between consumption and inflation is that a noise shock changes how a TFP shock affects

consumption and inflation by influencing agents’ beliefs about productivity. For instance, under

imperfect information, an increase in TFP due to an increase in the persistent component of TFP

is perceived to be partly driven by an increase in the transitory component. Hence, compared with

the case under perfect information, the increase in consumption is dampened, exacerbating the

deflationary pressure of the TFP shock and resulting in a stronger negative correlation.49

49By assuming no habit formation, no monetary policy reaction to the output gap, ρa = 1 and ρe = 0 for the TFP
process, the linearized solution of the DSGE model admits an analytical expression where inflation is orthogonal to
εa under perfect information, but negatively correlated with εa under imperfect information.
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The time-variation in signal precision is critical in reversing this mechanism. If signal precision

is procyclical, this dampening effect is offset as the increase in consumption leads to an increased

flow of information.50 This result shows that the increase in the correlation may not be simply

due to an increase in the volatility of a demand shock, but rather, the origin may be traced to

a combination of moves in σs and ξ. This point can actually be made without considering the

term structure of interest rates, but it is an interesting byproduct of introducing time-varying

signal precision to improve the DSGE model’s fit to the term structure, and a point that appears

overlooked in the literature.

Meanwhile, the right panel of Figure 14 shows the model-implied slope coefficient of a regression

of the 5-to-10 year nominal term premium on year-over-year consumption growth. The empirical

counterpart of this regression was discussed in Section 2. Consistent with my analysis thus far,

the slope coefficient becomes significantly more negative, i.e., the term premium becomes more

countercyclical, when signal precision is procyclical (ξ > 0). Interestingly, the effect of σs is

nonlinear, and the slope coefficient is most negative under intermediate values of σs, because that

is when ξ has the most impact on the volatility of the term premium, as explained above.

As discussed in Section 2, the countercyclicality of term premia did not necessarily decrease

across the two sample periods, while there was a notable decline in the level of term premia and

increase in the correlation of consumption growth and inflation. Through the lens of my model, this

phenomenon would be qualitatively consistent with some decrease in σs from an intermediate level

in an economy where ξ is sufficiently positive. Alternatively, and perhaps more realistically, the

mechanism through which imperfect information affects the term premium can be combined with

other possible explanations in the literature. For instance, Nakata and Tanaka (2016) show that an

increase in the volatility of a preference shock depresses term premia and increases the correlation

of consumption growth and inflation. However, term premia end up being procyclical. Imperfect

information could reverse this procyclicality, offering an explanation that brings the model more in

line with the data.

5 Conclusion

In this paper, I studied the dynamics of default-free bond yields and term premia using a novel

equilibrium term structure model which combined a New-Keynesian core with imperfect informa-

tion about the persistence of shocks to productivity. The model generated term premia that are

on average positive with sizable countercyclical variation that arose endogenously. Importantly,

demand shocks, in addition to supply shocks, played a key role in the dynamics of term premia

by creating countercyclical uncertainty over the aggregate variables. This is in sharp contrast to

existing DSGE term structure models with perfect information, which tend to rely on large supply

shocks to generate time-variation in yields and term premia. I argued that incorporating imperfect

50As σs → ∞, the correlation asymptotes to a unique level that is more negative than the case with perfect
information, regardless of ξ. This is because, as st becomes completely uninformative, the only effective signal is
productivity itself, the precision of which does not vary over time.
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information in a DSGE model helps reconcile the empirical evidence that term premia have been

on average positive and countercyclical, with numerous studies pointing to demand shocks as being

an important driver of business cycles over the last few decades. While the focus on a specific

form of information friction proved to be tractable and effective in understanding some important

features of the yield curve, other, perhaps more elaborate variants could be explored that could

explain more aspects of agents’ beliefs. I leave such an investigation for future research.
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Appendix

A Data

The macroeconomic data source used for the regression analysis in Section 2 is as follows. Nonfarm
payroll, industrial production, capacity utilization, and real GDP data are taken from the FRED
database. GDP gap is the CBO measure of the output gap, from the Haver Analytics database and
the unemployment gap is the Civilian Unemployment Rate: 16 yr + (seasonally adjusted) minus
the CBO measure of the natural rate of unemployment, also from Haver. I remove a linear trend
from capacity utilization, estimated from monthly observations from January 1990 to December
2019.

Additional data is used for calibrating the DSGE term structure model. For the short-term
nominal interest rate, I use the 3-month T-bill rates from the Federal Reserve Board’s H.15 statis-
tical release. For nominal yields of 5-, and 10-year maturities, I use the zero-coupon yields from
Gürkaynak, Sack, and Wright (2007). For 5- and 10-year real yields, I use zero-coupon yields in-
terpolated from TIPS by Gürkaynak, Sack, and Wright (2010). These yield data are widely used
in the literature.

For consumption data, I compute per capita consumption from personal consumption expendi-
tures (nondurables + services, seasonally adjusted). I use the quarterly change in the core CPI as
a measure of inflation. Both measures are taken from Haver.

I use the Survey of Professional Forecasters (SPF), published by the Federal Reserve Bank
of Philadelphia, to construct a measure of conditional uncertainty about GDP growth. In each
quarterly survey, the SPF includes average forecast distributions of year-over-year GDP growth
for the current year (and the next). Assuming the probability assigned to each bin represents the
probability of the mid-point of that bin, I compute the standard deviation of the average forecast
distribution. The nature of the data is somewhat disconnected before and after 1992.Q1; the
forecasts are based on real GNP before 1992.Q1 and on real GDP since then. The bins also vary
across the two periods. I construct a time series using only surveys in the fourth quarter so that
the forecast horizon is effectively constant at about a quarter.

The patent data used in Figure 2 is compiled by Marco, Carley, Jackson, and Myers (2015)
and available on the website of the U.S. Patent and Trademark Office. I sum the monthly total
application series for each quarter and compute the annual growth rate for each quarter. I do
not show growth rates that include data for 1995.Q2, 2013.Q1 and 2013.Q2 since there were large
swings in applications due to regulatory changes, as described in Marco, Carley, Jackson, and Myers
(2015).

B The Simple Term Structure Model as an RBC Model

In this section, I show that the simple term structure model in Section 3.1 can be derived from a
stylized real business cycle model without capital.

The representative household maximizes lifetime expected utility:

E0

[ ∞∑
t=0

βt

(
C1−χc
t

1− χc
− N1+χn

t

1 + χn

)]
, (B.1)
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subject to its budget constraint:

Ct + Et [Mt+1Wt+1] ≤WtNt +Wt. (B.2)

Ct is consumption, Nt is labor, Wt is (real) wages. Assuming complete financial markets, Wt+1 is
the household’s wealth portfolio of state contingent claims chosen by the end of period t. These
claims are priced by the unique (real) stochastic discount factor Mt+1 ≡ β(Ct+1/Ct)

−χc implied by
the household’s optimizing behavior. Assets are in zero net supply.

The perfectly competitive firm with a production function Yt = ZtNt maximizes its profits
Yt−WtNt each period. Zt is an exogenous productivity process. Market clearing imposes Ct = Yt.

The model is simple enough to solve analytically. The equilibrium condition from the labor
market implies:

Cχct Nχn
t = (ZtNt)

χcNχn
t = Zt. (B.3)

Solving for Nt:

nt =
1− χc
χc + χn

zt, (B.4)

where small-case variables correspond to their log counterparts e.g. nt ≡ ln(Nt). The decision rules
for consumption immediately follows from the production function:

ct =
1 + χn
χc + χn

zt, (B.5)

which corresponds to the consumption rule (10) in Section 3.1 with θc = 1+χn
χc+χn

.
Since this solution holds for any arbitrary process zt, it must also hold for the state space system

characterized by equations (1) through (6) in Section 3.1. Lastly, the stochastic discount factor
of the household implies that default-free bonds are priced according to the Euler equation (11)
where r̄ = − lnβ.

C Derivation of the Two-period Term Premium

This section shows the derivation of the two-period term premium with imperfect information
(equation (13) in Section 3.2.4).

tp
(2)
t ≡ r

(2)
t − r

(2)Q
t = −1

2
Covt(mt+1,R(2)

t+1)

= −1

2
Covt(−χc∆ct+1,Et+1[−χc∆ct+2] +

1

2
Vart+1[χc∆ct+2])

= −1

2
χ2
cCovt(∆ct+1,Et+1[∆ct+2])

= −1

2
χ2
cθ

2
cCovt(∆zt+1,Et+1[∆zt+2])

∝ −Covt(∆zt+1,Et+1[∆zt+2]),

(C.1)

where R(2)
t+1 = p

(1)
t+1 − p

(2)
t is the (log) return from holding a two-period bond for one-period. The

second equality follows from mt+1 ≡ −r̄ − χc∆ct+1, and p
(1)
t = −r(1)

t = Et[mt+1] + 1
2Vart[mt+1].

The third equality uses the fact that Vart+1[χc∆ct+2] is measurable at time t. The fourth equality
follows from ct = θczt.
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zt follows:
zt = ρaat−1|t−1 + (st − st|t−1) (C.2)

at|t = ρaat−1|t−1 +Kt−1(st − st|t−1), (C.3)

where Kt is the Kalman gain matrix and st ≡ [zt, st]
′.

Generalizing Lemma 2 in Blanchard, L’Huillier, and Lorenzoni (2013) to the case of time-varying
coefficients, C.3 and C.2 are observationally equivalent to the system:

zt = ρaãt−1 + Σs,t−1ε̃t (C.4)

ãt = ρaãt−1 +Kt−1Σs,t−1ε̃t, (C.5)

where ãt and ε̃t are observable, ε̃t are mutually independent, i.i.d. standard normal shocks, and
Σs,t−1Σ

′
s,t−1 = Vart−1[st]. Substituting C.5 and C.4 into C.1 and after some algebra, I obtain (13)

in the main text.

D Equilibrium Conditions of the DSGE Term Structure Model

In this section, I list the equilibrium conditions of the DSGE term structure model in full (excluding

the equations for the term structure to save space). Defining the normalized variables using hats

(e.g. Ĉt ≡ Ct
Gt

), the normalized equilibrium conditions, are (for Ut ≤ 0):

V̂t =
X̂1−χc
t

1− χc
− N1+χn

t

1 + χn
− β̃ζ

{
Et
[
(−V̂t+1)1−γ̃

]} 1
1−γ̃

(D.1)

Mt+1 = β̃

(
X̂t+1

X̂t

)−χc  −V̂t+1[
Et
[
(−V̂t+1)1−γ̃

]] 1
1−γ̃


−γ̃

1

Πt+1
(D.2)

Ŵ r
t = Nχn

t X̂χc
t (D.3)

Et
[
Mt+1R

(1)
t

]
= 1 (D.4)

F̂t =
θ

θ − 1
λ̂rt Ŷt + E

[
ξpMt+1

Πt+1

Π
ιp
t Π̄1−ιp

F̂t+1ζ

]
(D.5)

Ĥt = Ŷt + E
[
ξpMt+1

Πt+1

Π
ιp
t Π̄1−ιp

Ĥt+1ζ

]
(D.6)

(P ∗t )1+
θ(1−α)
α =

F̂t

Ĥt

(D.7)

λ̂rt =
Ŵ r
t

αK̄1−αZtN
α−1
t

(D.8)
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P ∗t =


1− ξp

(
Πt

Π
ιp
t−1Π̄1−ιp

)− θ
α

1− ξp


1

1−θ

(D.9)

∆t = (1− ϕ)

(
P ∗t
Pt

)−θ
+ ϕ

(
Πt

Π
ιp
t−1Π̄1−ιp

)θ
∆t−1 (D.10)

R
(1)
t =

(
R

(1)
t−1

)ρr R̄ [Πt

Π̄

]φΠ
[
Ŷt
Ȳ

]φY1−ρr

(D.11)

Ŷt =
1

∆t
K̄1−αZtN

α
t (D.12)

Ŷt = Ĉt + (ζ + δ)K̄ (D.13)

St = ΨρXt−1|t−1 + (St − St|t−1) (D.14)

Xt|t ≡ Et[Xt] = ρXt−1|t−1 +Kt−1(St − St|t−1) (D.15)

Kt−1 = V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1 (D.16)

V t+1|t = ρ(V t|t−1 − V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1ΨV ′t|t−1)ρ′ + ΣxΣ

′
x, (D.17)

where X̂t ≡ Ĉt − χh
ζ Ĉt−1, V̂t ≡ Vt

G1−χc
t

, β̃ ≡ βζ−χc , and all other variables are defined in the main

text.
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